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Abstract: Data integrity in wireless sensor networks (WSN) is very important because incorrect
or missing values could result in the system making suboptimal or catastrophic decisions.
Data imputation allows for a system to counteract the effect of data loss by substituting faulty
or missing sensor values with system-defined virtual values. This paper proposes a virtual sensor
system that uses multi-layer perceptrons (MLP) to impute sensor values in a WSN. The MLP was
trained using a genetic algorithm which efficiently reached an optimal solution for each sensor node.
The system was able to successfully identify and replace physical sensor nodes that were disconnected
from the network with corresponding virtual sensors. The virtual sensors imputed values with very
high accuracies when compared to the physical sensor values.

Keywords: data imputation; wireless sensor network; machine learning; neural network;
virtual sensor

1. Introduction

Wireless sensor networks (WSN) gained popularity in recent years as the world embraces Internet
of Things (IoT) applications as part of the 4th industrial revolution [1–4]. The sensors in WSN
applications are used to gather data about the environment and these nodes communicate with each
other and possibly a base station in order to collaboratively monitor the application environment
and make “intelligent” decision in reaction to the sensed condition [5]. A problem arises in WSNs,
where due to the nature of these devices, data can be lost or corrupted during the transmission phase
due to external interference in the communication line or malfunction sensors which produce faulty
unreliable data [6]. Furthermore, the cost of implementing or needing to replace many physical sensors
in a network can become prohibitively expensive.

The integrity of received information is an important issue in the modern age. Sensors play a
pivotal role in electronic devices of all shapes, sizes and function and especially more so in WSNs
where data loss is an expected occurrence [7]. The integrity of the data in WSN is not only an issue with
regards to the naturally occurring external factors, there are also sinister threats to these vulnerable
devices. The practical limitations of these devices mean that they are vulnerable to security attacks
from people with malicious intent [8]. This means that an attacker may be able to seize control of one
or more sensor nodes and alter the data in order to manipulate the system into making potentially
disastrous decisions which could negatively affect the application environment [9].

In network security, there is a heavy emphasis on preventative security mechanisms which
provide an external security perimeter to prevent an attacker from gaining access to the system [10].
When these preventative security mechanisms fail, detection mechanisms, diversionary tactics
and countermeasures can be used to limit the potential damage an attacker can cause [11]. Intrusion
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Detection and Prevention Systems (IDPS) can thus be used in WSNs to detect and limit the damage of
successful attacks by for example disregarding sensor readings from suspicious nodes [12]. Another
important research focus is the detection of the location of the malicious node which is not trivial
in the resource constrained environments [13–15]. This is because these countermeasures may affect
the limited system resources which are required by the main application.

Data imputation is a method that allows a system to counteract the effect of data loss by
accurately substituting values that real sensors would most likely have returned [16]. This then
allows the system to still make use of incomplete data rather than completely discarding affected data
entries. In the previous example this means that the IDPS would be able to disregard the suspicious
sensor readings without significantly affecting the system’s performance. The focus on this paper
is not on the detection of intrusions, but rather on a possible countermeasure that can be used once
an attack has been successfully detected. This countermeasure can also be used when a node is
disconnected from a system or has faulty readings in non-malicious circumstances. Data imputation
is also traditionally used to replace missing/faulty sensor values at particular time instances. This is
possible when the previous values of the affected sensor are used to infer what the current value
should be. For algorithms that use the other sensor values to infer what the affect sensor value
should be, it is necessary to have a separate imputation/filtering technique to infer values at specific
time-instances. This is because these algorithms require the remaining sensor values to be accurate in
order to effectively infer the missing values. These types of algorithms are more suitable as virtual
sensor, which replace the affected sensor values for a specified time period instead of only at specific
time instances.

Traditionally statistical techniques were the preferred choice to impute data but in recent years
machine learning has been increasingly applied to the field [17–19]. These machine learning techniques
have been proven to be more accurate and robust than their statistical counterparts [19]. K-Nearest
Neighbours (KNN: lazy learning) [20], multi-layered perceptrons (MLP: supervised learning) [21]
and self-organizing maps (SOM: unsupervised learning) [22] are three popular machine learning
methods that have been used to great effect to solve the missing data problem in various applications.
These algorithms were all able to outperform the traditional imputations techniques such as
hot-swapping by significant margins in applications such as breast cancer detection, seed classification
and sonar imaging. Most of the published work in this regard is on data mining techniques on
incomplete datasets while the proposed work focuses on the real-time imputation of sensor values in
resource constrained WSNs. This is important because sensor nodes are both vulnerable to security
attacks and also prone to random non-malicious failures [23]. It is not always possible to expeditiously
thwart a security attack or replace faulty nodes so a temporary solution is required. The proposed
solutions should not have a large enough overhead to interfere with main application of the WSN
as that would render them infeasible in practice. The resource limitations of these systems however
make this challenging because traditional network security approaches are mostly not applicable in
this setting [24].

This paper proposes the use of data imputation methods and machine learning in WSNs to realise
virtual sensors. These virtual sensors are able to completely replace physical sensor nodes and give
accurate substituted data in place of nodes with failed sensor modules. A Kalman Filter is used
for the imputation of missing/faulty sensor readings at particular time instances and a Multilayer
Perception is used to infer the virtual sensor values. The former was necessary due to the error
prone sensor readings and anomalous environmental conditions which could affect the virtual sensor
predictions. The main function of the proposed system is to ensure the robustness of WSNs by ensuring
that damaged or compromised nodes in these systems can be replaced by these machine learning-based
virtual sensors. This intervention reduces the effects, on system performance, of not being able to use
the sensor data from the affected nodes. This allows the system to continue operating with little to no
effect while using imputed values that closely resemble the affected sensor nodes’ would-be data.
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The rest of this paper is organised as follows: Section 2 gives a brief background of all the relevant
topics while Section 3 broadly describes the proposed system. The detailed design of the system is
outlined in Section 4 and the results are presented and discussed in Sections 5 and 6 respectively.
Finally, the paper is concluded in Section 7.

2. Background

Much of the research based on virtual sensors has focused on using different machine learning
approaches in representing the lost data or in creating new data by finding the relationship between
different nodes in a network [25–27]. Virtual sensor systems implementing machine learning can
be segmented into three main different types of learning namely lazy learning, supervised learning
and unsupervised learning.

2.1. Learning Systems

In model-based data imputation machine learning applications, the data is used to train a model
that finds a relationship between the inputs and outputs and the model is used to predict a value
that can replace the missing values. In lazy learning systems, there is no prediction model so all
relevant data points have to be searched to find the closest matching neighbours to the incoming
inputs each time a query is made. Once the nearest neighbours are found the data can be imputed
using statistical parameters such as the mean or standard deviation or indeed model-based machine
learning algorithms [28]. The k-Nearest Neighbours (KNN) algorithm [29] is one of the most
widely used methods in this category. As the name implies, the algorithm attempts to find the k
nearest neighbours to the data instance that is being used for classification or regression. Several
different measures can be used to determine the degree of proximity [30] with the most popular being
the Minkowski distance for imputation applications. Once the nearest neighbours are determined,
the imputed value will be classified as part the majority category for classification problems. If it is
a regression problem, the weighted average output of the neighbours will be used as the imputed
value. The advantage of these systems is that their simplicity and relatively high accuracy while
the drawbacks are the computational complexity and inefficiencies when dealing with categorical data.
Zhang [28] however proposed a variant of kNN that uses gray relational analysis to evaluate the degree
of proximity which worked well for both numeric and categorical variables. This method outperformed
other kNN state-of-the-art techniques based on the popular Minkowski distance. The accuracy of these
systems is heavily reliant on the selection of an optimal K-value, the distance metric and the imputation
technique used. The resource constraints of the WSN application environment [31] means that this
category of algorithms will not always feasible in practice.

In supervised learning systems, unlike the lazy learning systems, the algorithm requires a training
phase to generalise data in the form of a model that can be used to impute missing values. Learning is
supervised in the manner that training targets are provided to the algorithm for the desired model
and parameters are adjusted accordingly over many training epoch cycles until a desirable model
emerges. One of the most popular of these supervised learning systems is the artificial neural network
(ANN) [32]. Multiple layered perceptrons (MLP) [33] are a form of feed-forward neural networks
(FFNN) which have a basic structure consists of several interconnected artificial neurons or nodes that
can be categorised into three main layers depending on their location in the network. The network
has one input layer which has a node count that is equivalent to the number of inputs. The network
also has at least one hidden layer but can more layers depending on the complexity of the problem.
Finally, the network has an output layer which has the same number of nodes as the number of
outputs. MLPs are universal function approximators which allow them to create mathematical models
through regression analysis as well as being useful in the field of classification problems. In this
category of algorithms it is generally the case that the more training data available, the more accurate
the model will be. This is especially the case in deep learning applications which could require more
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complex networks and larger training datasets. Iwashita et al. [34], for example, successfully used a
convolutional neural network to impute thermal image data from conventional RGB images.

In unsupervised learning systems, the algorithm requires a training phase but, unlike supervised
learning systems, the system does not use the input/output relationship of the data to find the model
representation. This means that the algorithm is taught how the data is structured instead of how
to map the input/output relationship of the data. The Kohonen map [35], otherwise known as a
SOM, is a widely used type of FFNN with an input layer and an output layer each of which has
multiple nodes associated with the layer. The goal of the SOM is to organise the neural network
outputs in such a manner that the target data is mapped accurately. The algorithm makes use of
competitive unsupervised learning where the neurons compete using the Euclidian distance between
the input vectors and their own vectors to find the closest match [22]. The weights are then iteratively
adjusted accordingly until an optimal solution is found. In data imputation applications these
algorithms have been found to be accurate and robust although they are more resource-intensive
than MLPs. Folguera et al. [36] were able to show the effectiveness of this approach by predicting
physicochemical water parameters. The algorithm had comparable results to imputations made by
experts through inference.

2.2. Virtual Sensor

A virtual or soft sensor is a digitised emulation of a physical sensor node. There are two main
types of virtual sensors, those that obtain sensor values from underlying physical devices [37] and those
that infer the values based on other physical parameters [38]. The former is ideal for cloud-based
applications where users are able to remotely access live sensor readings and parameters without
worrying about the configuration and maintenance of the WSN. The latter type of virtual sensor is used
to impute sensor readings from unreliable or compromised nodes so as not to affect the performance
of the system.

The authors in [39] proposed a virtual sensor based on the recurrent neural network (RNN)
that replaces the time-series values of a broken wave sensor with the imputed values. The proposed
system is made more efficient by making use of the piecewise approximate aggregation algorithm
for dimensionality reduction. The imputed sensor values produced a small enough error to
enable the system to continue functioning optimally even when the broken wave sensor readings
were replaced.

The authors in [40] proposed a virtual sensor management system that allows users to set their
quality of service parameter. Sensor readings which fall below the selected threshold are disregarded
and replaced with imputed values using the association rule mining technique. In this scenario
the virtualisation of the sensors is part of the first category of virtual sensors (i.e., the physical devices
are still operational) and the sensor values are only imputed if they are missing or fall below the quality
control threshold. The proposed system was able to produce promising results when compared to
state-of-the-art imputation techniques. Both scenarios illustrate that the virtualisation of sensor nodes
is able to limit the impact of unreliable or faulty sensor readings on system performance.

3. System Overview

This paper is largely concerned with the identification of the relationship between sensor
nodes in a sensor network using data that has been collected by the sensor network hence many
of the above algorithms are applicable to the proposed scenario. Multiple temperature sensor nodes
were deployed to generate training data resulted and each sensor node had a corresponding virtual
sensor. A FFNN was used to model the relationship between the deployed sensor nodes in the network
and these models were used to create the virtual sensors. For training, a genetic algorithm (GA) was
chosen due to experimental evidence showing that the training method converges much faster than
the back-propagation algorithm [41]. This reduces the required training time as well as the likelihood
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of falling into the potential trap of local optimums which may require a reinitialisation of the training
due to stagnant results.

A star topology was chosen for the sensor network that would make use of WiFi communication
technology where the sensor nodes would communicate with a central server. Low power usage is of
no concern in this paper where the primary concern is with sensor networks where distances from each
node are not too far apart from each other (<50 m) which would mean that expensive technology such
as ZigBee and LoRa are not required. The database of the system will be stored locally by the server
and used as training and test data for the VS once enough data has been gathered. A separate database
will collect the VS outputs for comparison to real sensed data once training is complete. Figure 1 shows
the conceptual design of the proposed system.

Figure 1. Conceptual design of the virtual sensor system.

3.1. PhysicalSensor Nodes

The ambient temperature where the sensor nodes would be deployed was not expected to change
abruptly under normal conditions so a sampling rate of one sample per 30-s interval was chosen.
No scaling circuit was designed as the modified Steinhart-Hart equation [42] was deemed a better
software solution than using hardware to convert the sensed values to corresponding temperatures.
A filtering algorithm was required to account for the noise that was experienced. This noise was due to
temperature anomalies as a result of hot air pockets moving through the buildings as well as hardware
glitches. A scalar Kalman filter (SKF) was designed and implemented in software on the server to deal
with these anomalies as it was accurate as well as being computationally simple.

3.2. Virtual Sensor

For the virtual sensor, a supervised MLP algorithm was used to find a model representation of
the relationship between the deployed sensors. An algorithm was implemented to iterate through
various topologies based on several hidden nodes as well as hidden layers to determine an optimal
middle ground where an acceptable accuracy was reached by the MLP while taking training time into
consideration. During Training the fittest neural networks are selected for breeding using the GA.
Parents are then randomly selected for breeding, irrespective of which parent is the fittest in the subset
population. Weights are randomly selected across both parents’ weight arrays to complete a child
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neural network’s weight array with a small chance to completely randomise a single weight in the array
to act as a mutator until the original population size is reached. This is repeated over a specified
number of epochs until a candidate neural network emerges for a specific VS.

The VSs are deployed on both the server and the sensor nodes, applying the weights that have
been found through the training phase. The system will identify if a sensor node is not communicating
with the server and use the appropriate VS to take over sensing operations until the sensor node
is able to reconnect to the network. If this is not the case, the sensor node will send both VS data
and physically sensed data back to the server.

4. System Design

4.1. Sensor Node

The sensor circuit is implemented using an NTC thermistor to realise a temperature sensor
and the PIC32MX220F032B (PIC32) microcontroller as the processor unit. Two voltage divider circuits
were implemented with the outputs connected to different analog input pins on the microcontroller
meaning two temperature sensors were implemented per sensor node. This was done for redundancy
since components may have slightly different tolerances than specified in the datasheet.

For the wireless communication there was a choice between using Bluetooth technology or
WiFi. WiFi was chosen as TCP/IP was the preferred method of message transmission in the network
and the chosen star network topology. The ESP8266 WiFi module was chosen due to the low power
options available on the ESP8266 microcontroller as well as for the ability to communicate through
USART. Four ESP8266 WiFi modules were implemented in the paper, one to serve as the server’s
communication device and the other three to be used on each sensor node. Each node needs to
establish a connection with a server which requests sensor readings from all three nodes every 30 s.
Should the connection between the node and server be unreliable/interrupted, the values are replaced
by the virtual sensor readings until it is able to establish a reliable connection with the server.

The client communication modules which act as the client’s communication interface, require
communication through USART to transmit all received data to the microcontroller as well as transmit
data over WiFi when data is received through USART from the microcontroller. These modules
communicate with the server communication module which acts as the server’s communication
interface requires communication through USB to transmit all received data to the server on the desktop
PC. To enable this communication a serial-to-TTL device was required. The schematic of the sensor
node is shown in Figure 2.

Figure 2. Conceptual design of the virtual sensor system.
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4.2. Scalar Kalman Filter

During experimentation it was found that there is a rare glitch in the system that occurs when
a sensor node reconnects to the network where ground values are received instead of the expected
sensor readings. An SKF was designed and implemented to filter out the glitches as well as to smooth
out the received readings. Equation (1) shows the five equations that make up the SKF where x is
the sensor reading, S is the prediction, M is the prediction error, K is the Kalman gain, and σu is
the noise covariance. The noise analysis of the SKF was done using gathered data and scaling up
the noise covariance. The functional flow of the SKF is shown in Figure 3. The covariance noise
value was determined and chosen to be 0.01 which resulted in minimal loss of data was experienced
and the glitches were successfully filtered out. As can be seen in Figure 4 the overall shape of the graph
does not vary as much from the original while still being able to filter out the glitches more effectively
than smaller or larger Q values.

Prediction : S[n|n− 1] = aS[n− 1|n− 1],

Prediction error : M[n|n− 1] = σ2
u + a2M[n|n− 1],

Kalman gain : K[n] =
M[n| − 1]

σ2
n + M[n|n− 1]

,

Correction : S[n|n] = S[n|n− 1] + K[n](x[n]− S[n|n− 1]),

Update error : M[n|n] = (1− K[n])M[n|n− 1]

(1)

Figure 3. Scalar Kalman filter function.
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(a) Raw sensor data with Q = 0.001

(b) Raw sensor data with Q = 0.01

(c) Raw sensor data with Q = 1

Figure 4. Scalar Kalman filter function with different Q values.
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4.3. Data Imputation

4.3.1. Neural Network Structure

The MLP neural network was the chosen algorithm to implement the virtual sensor in the WSN.
A topology of three input nodes, eleven hidden nodes plus bias node and one output node was chosen.
The number of input and output nodes correspond to the number of system inputs and outputs
respectively. A configuration with only three sensors was selected to increase the complexity of
the problem. The more sensors the system had the easier it would have be to impute missing/incorrect
values using the remaining sensors. In this case, the input values are the other two sensor readings
and the third input is the time of day the readings were taken. There is only one output because
the idea is that each MLP should be able to predict the value of one faulty sensor using the other two
sensors which are presumably functioning correctly. Several different hidden layer configurations
were evaluated the one that produced the best results only had one hidden layer with eleven neurons.
Having multiple hidden layers with a smaller number of neurons in each layer increased the training
time considerably while not getting significantly better results than the chosen configuration. It was
thus decided to have one hidden layer where the evaluated number of nodes in the layer were between
three and twelve over 500 epochs. The chosen configuration was preferred because it has a fast training
time and does not overfit the data while also not being too computationally expensive. The output
can be described mathematically as the sum and products of the inputs, weights and activation
functions. Equation (2) shows how the output of each input layer hidden layer is calculated where x1,i
is the normalised input to the input node.

a1,i =
x1,i

1 + |x1,i|
(2)

The output of each hidden layer is shown in Equation (3) where x2,i is the result of the sums of
the inputs multiplied by the weights (Equation (4)). Finally, Equation (5) shows the output layer which
uses a linear activation function.

a2,i =
x2,i

1 + |x2,i|
(3)

x2,i =
N

∑
i=1

3

∑
j=1

wi,j · a1,i (4)

a3 =
N

∑
i=1

wi · a2,i (5)

In addition to the above, the input layer and every hidden layer has a bias node included that is
not connected to the previous layer. This is implemented to increase the flexibility of the model to fit
the data and to allow the network to fit data if in the unlikely scenario all the input features are equal
to zero.

4.3.2. Genetic Algorithm

Genetic algorithms (GA) are based on the principle of natural selection and form part of
the broader field of evolutionary computation [43]. Analogous to its biological counterpart the idea
behind evolutionary computing is to search the multiple different possibilities to find an optimal
solution. In biology, the genetic sequences most likely to be passed on to the next generations are
the ones which will most likely allow them to survive in harsh environments to ensure the survival of
the species. In evolutionary computation, only the solutions which are the most effective in solving
the problem are allowed to “reproduce” until an optimal solution is found. In both cases evolution
is spurred on by random variation and then a process of “natural selection” evaluates each of these
variations to find the best candidates to be passed on to the next generation.
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A genetic algorithm was designed and implemented for neuro-evolution of the MLP as shown in
Figure 5. There are four main steps involved in using the genetic algorithm to train the MLP, namely
the forward propagation, prediction, error calculation, parent selection and finally repopulation.
GA’s start by initialising a random population of chromosomes (i.e., solutions) which consist of several
genes (i.e., sub-solutions) in particular loci (i.e., positions) within the chromosomes and represent
instances of alleles (i.e., traits). In MLPs, GAs generally use the weights as the genes but there
are other implementations that combine the weights as well as the number of nodes and hidden
layers. This means that the first step is to initialise a population of MLPs with random weights.
Once the weights initialised the MLPs can predict the sensor values by forward-propagating through
the networks as described by Equations (2)–(5). Each prediction is based on three input parameters
which are the other two sensor node inputs in the WSN and the time that those data points were
collected during the day. The output of the forward propagation stage is the predicted virtual sensor
value which will not be very accurate during this initial step.

Figure 5. Genetic Algorithm.

The error of each MLP prediction is then calculated using based on some pre-determined error
function. For this application the mean absolute error (MAE) is used as shown in Equation (6) where pi
is the value predicted by the MLP, ti is the target value associated with the inputs, and N is the number
of training points. Genetic algorithms are structured such that the strongest members of the population
will have a high probability of reproduction while the weakest members will not have good chances
of surviving the selection process. This means that the genes of offspring will likely be made up
of combinations of the genes of the strongest chromosomes from the previous population. In this
application the selection of parent MLPs is done immediately after the last MLP in the population
has had its MAE calculated after forward-propagating through the entire training dataset. The parent
population is chosen as the top 10% of the entire population and these will be used to breed the next
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generation of MLPs. Breeding parents are selected at random from this population without regard
for which have strongest solutions.

MAE =
∑N

i=1 |pi − ti|
N

(6)

Reproduction (or crossover) occurs when the genes of two chromosomes (called parents) are
mixed to produce new chromosomes (called offspring). A process of mutation, in which genes are
altered to represent different alleles is also applied to a subset of offspring to replicate the copying
error induced mutations of their biological counterparts. These offspring and their mutations will
then be evaluated as part of the new population and only the strongest members of that population
will be allowed to reproduce. The crossover and mutation processes do not use fixed parameters but
rather rely on probabilities. The former is called the crossover rate and is a measure of the chances of a
crossover occurring at a particular point. The probability that a gene is copied over to the child MLP is
calculated using the error associated with both parents using Equation (7). In the equation, MAEn is
the error associated with each parent. This allows the fitter parent a higher likelihood of transferring
weights that are more desirable. The mutation rate is the probability of a mutation happening at each
lotus after the crossover process. There is a chance that none of the genes of a particular offspring will
be mutated as this is heavily dependant on the chosen rate.

P(A) = 1− MAE1

MAE1 + MAE2
(7)

To avoid stagnation in the population as the training epochs increase, every gene, when copied,
has a small probability (<=2%), to be completely randomised instead of copied over from the parent
MLPs. This ensures that there is always some diversity in the genetic pool of the MLP population.
This evolutionary process typically continues until it produces an optimal solution. In the application
environment the process is repeated beginning with the forward propagation step until the specified
epoch number has been reached. Specifying the optimal number of epochs is thus very important
because if this value is too small an optimal solution will not be found but if it is too large it could
lead to overfitting. For this application the training loss was simulated over 500 epochs for each sensor
node and the results are shown in Figure 6.

(a) Sensor 1

Figure 6. Cont.
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(b) Sensor 2

(c) Sensor 3

Figure 6. Training loss of the MLP over 500 epochs.

5. Results

To test the performance of the proposed system it was deployed in 2 different scenarios as shown
in Figure 7.

(a) Small building

Figure 7. Cont.
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(b) Big building

Figure 7. Floor Plans for small and large residential units used in experiments.

5.1. Virtual Sensor Accuracy

An experiment was carried out to test the accuracy of the virtual sensor imputation values.
The analysis was performed using 14,000 VS and physical sensor readings acquired from
the experimental setup over a five-day period. Then physical sensor readings were considered
the ground-truth when acquiring the accuracy percentage for the VS. The sensor readings were saved
onto a dataset and the accuracy is evaluated offline for convenience. The system contains three virtual
sensors, one for each physical sensor, and each of them are evaluated independently. For VS1, physical
sensors 2 and 3 (and the timestamp) are used to predict the values of physical sensor 1. The accuracy
of the prediction is then found using Equation (8). The process continues for each time instance until
all 14,000 data points have been evaluated. Once completed the minimum, maximum and average
accuracy for the VS values can be calculated and the system evaluated. VSs 2 and 3 go through the same
process so that there are three independent accuracy metrics for each VS. In this way the system is able
to simulate what would happen if the physical sensor values had to be imputed and evaluate how
accurate the imputed values will be. The results of the experiment are shown in Table 1.

acc = (1− |VSi − sensori|
sensori

× 100) (8)

Table 1. Accuracy results of the deployed virtual sensors.

Building VS # Min acc % Max acc % Avg acc %

VS 1 78.96847 99.99847 94.03248
Small VS 2 92.47204 99.99996 97.07589

VS 3 86.52291 99.99825 95.15422

VS 1 85.52389 99.99967 94.70205
Large VS 2 88.34544 99.99998 96.54874

VS 3 87.90576 99.99992 96.28131

The minimum, maximum and average accuracy expressed in percentages were recorded for each
virtual sensor using both acquired datasets. The overall averages of the small residential building
virtual sensors were around 95%. The overall averages of the large residential building virtual sensors
also had similar performance. The worst-case accuracy experienced was by virtual sensor 1 in both
cases with 78.97% and 85.52%. The best-case scenario resulted in a near 100% accuracy for all three
sensors in both test cases. This means that the system is accurately able to model the relationship
between the 3 sensors.
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Comparison with State-of-the-Art

To adequately evaluate how well the system works it was compared to the performance of other
state-of-the-art techniques. The two techniques chosen in this regard are kNN and linear regression.
The former is a typical data-mining used to impute missing values in large datasets. The latter is a
typical statistical approach the models the input out relationship of the system to deduce future values.
These techniques were chosen to represent the aforementioned algorithm types in the application
environment. The results of the experiment are shown in Table 2.

Table 2. Accuracy of the deployed virtual sensors vs state-of-the-art techniques.

Building VS # MLP % kNN % LinReg %

VS 1 94.03248 91.34519 91.80413
Small VS 2 97.07589 92.55777 93.88260

VS 3 95.15422 81.60299 79.39729

VS 1 94.70205 78.94263 71.84740
Large VS 2 96.54874 85.37011 86.25564

VS 3 96.28131 81.38311 81.31372

In the small building the results of all of the algorithms are comparable except when looking at
VS3. This is because sensor 3 is in a different environment when compared to the other two sensors.
The result is that both kNN and linear regression struggle a lot more to predict this value accurately
whereas the proposed scheme has little difference between the three sensors. This means that it is
more robust than both kNN and linear regression. In the big building there is a significant disparity
between the proposed scheme and the state-of-the-art techniques. The results of the proposed scheme
are only slightly lower than they were in the small building but even in this case the results are
comparable. There is also little difference in the results when looking at the sensor location within
the building. Both kNN and linear regression have far lower accuracies in this configuration than
they did in the small building. The latter struggles particularly to infer the value of VS1 because
the sensor is in a vastly different environment when compared to the other two sensors. In general
though, all three algorithms perform well in the application environment with the proposed scheme
being the most accurate and robust of the three algorithms.

5.2. Standard Deviation

An experiment was carried out to calculate the standard deviation of the virtual sensor
imputation values. The analysis was performed using 14,000 VS and physical sensor readings
acquired from the experimental setup over a five-day period for the small building and a seven-day
period for the bigger building. The sensor readings were considered the ground-truth when
acquiring the errors for the VS. The standard deviation in ◦C is recorded in Table 3 the small
and large residential buildings. The 5-day plots of the virtual sensor and physical sensor readings
for the small residential building and the 7-day plots for the large residential building are displayed in
Figures 8 and 9 respectively.

Table 3. Standard deviation results of the deployed virtual sensors.

Building VS # STD DEV (◦C)

VS 1 1.226344
Small VS 2 0.518652

VS 3 0.721729

VS 1 0.964535
Large VS 2 0.784815

VS 3 0.692576
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(a) Sensor 1

(b) Sensor 2

(c) Sensor 3

Figure 8. Virtual Sensor Readings in small residential building.
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(a) Sensor 1

(b) Sensor 2

(c) Sensor 3

Figure 9. Virtual Sensor Readings in large residential building.
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5.3. Imputation Time

An experiment was set up to evaluate the time it takes to impute values on but the server
and the physical sensor nodes. The time data is then averaged for each individual sensor over multiple
iterations to get a mean-time-to-impute as well as the virtual sensors on the server. The minimum time
and maximum time to impute is also extracted from the data. These results are shown in Table 4.

Table 4. Virtual sensor time to impute.

Location VS # min (ms) max (ms) avg (ms)

VS 1 382 588 413
Node VS 2 391 547 412

VS 3 378 550 412

VS 1 9.322 9.366 9.379
Server VS 2 9.343 9.392 9.379

VS 3 9.327 9.374 9.379

6. Discussion

The success of any virtual sensor system using machine learning at the core of the design is
dependent on the successful design and implementation of the chosen machine learning method
as well as the quality of the training data that is used to train the virtual sensors. This was evident
in the results obtained for the overall virtual sensor network and its associated subsystems. When
the results for the accuracy are compared with regards to the size of a building it was found that
a virtual sensor network deployed in a large residential building very marginally outperforms a
small residential building, but this was negligible. It was further found that the system was able to
impute values with an accuracy of around 95% for both deployed scenarios. The system was trained
and evaluated using real sensor readings from the experimental setup described in the previous section.
This means that the trained MLPs were deployed on the sensor nodes and could impute values in real
time on the physical system. A more detailed discussion on the computational consideration will be
deferred for later in this section.

When compared to state-of-the-art techniques it is evident that the proposed approach has better
comparable results on average. Zhang [28] evaluated three kNN implementations on two popular
datasets. The mean accuracy for all three algorithms on both datasets ranged from 85% in the worst
case to 98% in the best case. As mentioned previously though, the approach proposed in this paper is
more suitable for WSNs than kNN because of the resource constraints of the application environment.
Folguera et al. [36] proposed and SOM technique for data imputation of physicochemical water
parameters and compared it to data imputed by expert inference. The expert data yielded a mean
accuracy of around 84% while the proposed SOM technique achieved a mean accuracy of almost 90%.
The approach proposed in this paper is again preferred in the application environment because it is
more resource friendly.

The choice of using genetic algorithms to train the MLP proved to be well suited in all three
virtual sensor cases as evidenced by the standard deviation measurements in Table 3 and visualised by
the plots shown in Figures 8 and 9. It was seen that the virtual sensors accurately depicted the changes
with very little variation between the measured and imputed temperatures values over several days.

It was found that with the increase in computational power in the modern-day has resulted in
very fast turnaround times when imputing sensor values using an MLP. Even the 40 MHz processing
speed of the PIC32 was able to impute values in under a second with the longest imputation lasting
0.588 s. On the server-side the desktop PC used for this system was able to impute values on average in
9.379 ms for all three sensors. Depending on the size and topology of the network, imputing the sensor
values on the physical sensor node may not always be practical. In large networks where multiple
sensor values have to be imputed an execution time of 0.588 s could cause significant delays which
could affect overall system performance. The purpose of the proposed system is to maintain system
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performance even when some of the sensors are malfunctioning so if the proposed scheme also affects
overall system performance it would be counterproductive.

The approach to implement the wireless communication in the WSN using WiFi communication
was a positive design choice as many IoT applications in the literature make use of the TCP/IP stack
which works well over the WiFi 2.4 GHz spectrum and allows easier management of clients that
connect to the network. It was found that due to the power spikes that occur when transmitting data
from the server that a query could only be sent every 5 s or WiFi module connected to the server would
crash and require a cold restart which is due to the oscillations in current draw.

7. Conclusions

In this paper, a virtual sensor using machine learning was proposed for use in wireless sensor
networks. The system was designed and implemented using an MLP neural network trained using a
genetic algorithm. The genetic algorithm was able to converge on an optimal solution in a relatively
small amount of time despite no parallelism being implemented into the training algorithm. A SKF was
also designed and implemented to filter out noisy readings as well as to smooth out the received values.
The SKF proved to be an effective filtering method in this application and could deal with anomalous
values such as the ground glitches. In general, the system was able to successfully identify and replace
a physical sensor node that was disconnected from the network with a virtual sensor. The virtual sensor
imputed values with a very good accuracy when compared to the physical sensor values. For future
work the algorithms ability to impute values of different sensor types in more complex application
scenarios will be investigated. The number of sensors required in order to accurately impute values in
dynamic and potentially non-linear environments will also be explored. Lastly, the use of multiple
machine learning algorithms in combination (i.e., hybrid and ensemble schemes) to get possibly even
more accurate virtual sensor results will also be investigated.
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