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Abstract
Two circular photon orbits are known to exist in the equatorial plane of the Kerr black hole.
In this paper, we investigate so-called spherical photon orbits—orbits with constant coordinate
radii that are not confined to the equatorial plane. A one-parameter class of solutions is found,
which includes the circular orbits as special cases. The properties of these spherical orbits are then
analyzed, with the aim of classifying them by qualitative differences in their behavior. Finally,
representative orbits from each class are plotted out, including a zero-angular momentum photon

orbit and one with non-fixed azimuthal direction.



I. INTRODUCTION

It is well known that light, or photons, can orbit around the Schwarzschild black hole at
a constant radius. In natural units, this radius takes the value r = 3M, where M is the
mass of the black hole. Although such an orbit is unstable, it is nevertheless important from
a physical viewpoint because it defines the boundary between capture and non-capture of a
cross-section of light rays by the Schwarzschild black hole (see, e.g., Ref. [1]). This boundary
has played an important role in determining, for example, the optical appearance of a black
hole with a thin accretion disk [2], or how the night sky would appear to an observer near
a black hole or very compact star [3].

In the case of a rotating Kerr black hole, there are two circular photon orbits that could
exist in the equatorial plane. One is a prograde orbit moving in the same direction as the
black hole’s rotation, while the other is a retrograde orbit moving against the black hole’s

rotation. Their radii are respectively given by [4]
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where a is the angular momentum per unit mass of the black hole. They fall in the range

M < ri <3M < ry <4M. The fact that a prograde photon orbits the black hole at a
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smaller radius than a retrograde one can be attributed to the well-known Lense—Thirring
effect, i.e., the dragging of inertial frames due to the black hole’s rotation. This dragging
would cause test objects to revolve around the black hole relative to a static observer at
infinity. Thus, to such an observer, a prograde photon would have to orbit at a smaller radius
to compensate for the ‘extra’ angular momentum acquired, while a retrograde one would
have to orbit at a larger radius to compensate for the ‘lost’ angular momentum. Indeed, in
the limit of zero rotation, these two orbits coincide at r = 3M, giving the single circular
orbit of the Schwarzschild black hole.

Now, recall that orbits around the Schwarzschild black hole are necessarily confined to
a plane passing through its center, because of the spherical symmetry of the space-time.
However, the Kerr black hole space-time has only an axial symmetry (in addition to being
stationary), and this raises the possibility of non-planar orbits. One could, for example,

contemplate the existence of spherical photon orbits—orbits with constant coordinate radii



that are not necessarily confined to the equatorial plane—around the Kerr black hole. Such
orbits would be a non-trivial generalization of the two circular photon orbits that lie in the
equatorial plane.

At first it may seem a little surprising that such spherical orbits could even exist, but
there is an interesting reason as to why they are possible. Note that an object in a spherical
orbit would, in addition to moving around the black hole in the azimuthal direction, be
undergoing some periodic motion in the latitudinal direction. This is only possible if there
is a conserved quantity associated with motion in this direction, just as angular momentum
is necessarily conserved by its rotational motion in the azimuthal direction. (This result can
be seen, for example, using action-angle variables [5].) Now, because the Kerr space-time
has only axial symmetry, geodesics in it should have only two constants of motion, namely
energy and angular momentum. However, Carter [6] has discovered the remarkable fact
that geodesics in the Kerr space-time possess a third constant of motion. It turns out that
Carter’s new constant governs the motion of geodesics in the latitudinal direction, although
it is not related to any obvious space-time symmetry. Thus, spherical orbits around the
Kerr black hole cannot be ruled out.

Indeed, spherical timelike orbits were first shown to exist in the extreme (|a| = M)
Kerr black hole by Wilkins [7], who also analyzed many of their properties in his pioneering
paper. An explicit example of such an orbit, obtained by numerical integration, subsequently
appeared in Ref. [8]. The extension to the case of the charged Kerr—Newman black hole was
considered in Ref. [9]. Spherical orbits have also been studied in the hyper-extreme (|a| > M)
Kerr space-time [10, 11], although this case does not admit a black hole interpretation
anymore.

There has been less work done on spherical photon orbits, probably because it is known
that stable orbits can only exist below the inner event horizons of the Kerr [12, 13] and
Kerr—-Newman [14] black holes. Nevertheless, unstable photon orbits could still exist in the
exterior region of a black hole. Examples of spherical photon orbits in the hyper-extreme
Kerr space-time were illustrated in Ref. [15] as a byproduct of another problem, but still
they offer a tantalizing hint as to how these orbits might look like.

In this paper, we shall focus on spherical photon orbits (with positive energy) outside
the event horizon of a Kerr black hole, with the aim of finding and studying all such orbits.

One of the motivations for doing so is because lightlike geodesics are usually easier to treat



than timelike ones, and this case is no exception. It turns out to be possible to obtain an
explicit parameterization of the class of spherical photon orbits, which was not possible for
the timelike orbits in Ref. [7]. With an explicit parameterization, studying the properties of
the orbits becomes much simpler, and we have been able to extend the analysis of Ref. [7]
in a few directions. Eventually, of course, we hope that some of the results and experience
gleaned from the lightlike case can be applied back to the timelike case. Another motivation
for studying the lightlike case is simply because we find it quite amazing that photons can
actually trace out such orbits around a Kerr black hole (notwithstanding the existence of
Carter’s constant)!

The organization of this paper is as follows: We begin in Sec. II with a brief review of the
relevant geodesic equations and how Carter’s constant affects motion out of the equatorial
plane. In Sec. III, the conditions for the existence of spherical photon orbits are considered,
and a class of solutions is found (which includes the two equatorial orbits in (1) as special
cases). The properties of these orbits are analyzed in Sec. IV; in particular, we obtain an
expression for the change in the orbit’s azimuth for every oscillation in latitude. A way
to classify these orbits is then proposed, and selected orbits from each class are obtained
by numerical integration and plotted out in Sec. V. The paper concludes with a short

discussion.

II. EQUATIONS OF MOTION

The line element of the Kerr black hole in standard Boyer—Lindquist coordinates takes

the form (see, e.g., Refs. [16-18])
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where

Y = r?4+a’cos’h,
A = r’4a®>—2Mr, (3)
A = (r*+a®)? — Aa*sin? 6.

Here, M and a are the mass and angular momentum per unit mass of the black hole,

respectively. The latter is restricted to the range 0 < |a| < M, with the upper limit
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corresponding to the case of extreme rotation. We shall take a to be positive without any

loss of generality. The event horizons of the black hole are located at the radii
re =M+ VM?—a?, (4)

where A = 0. In this paper, we shall only be interested in the region of the black hole
exterior to the outer horizon, ie., r. < r < oo with —00 < t < 00, 0 < 6 < 7 and
0 << 2m.

The four first-order geodesic equations governing the motion of lightlike particles in this
space-time can be derived, for example, using Hamilton—Jacobi techniques [6]. They are

[16-18]

AYt = AE —2Mral,, (5a)
$%2 = EYt 4 (0B - L2 — Q)r? + 2M | (aE — L.)* + Q|r — a®Q, (5b)
) L?
Y202 = Q — {—5 — E2a2] cos’ @, (5¢)
sin“ f
L
AXp = 2MraE + (X — 2Mr)——, (5d)
sin“ 0

where the overdot denotes differentiation with respect to an affine parameter along the
geodesic. E and L, are constants of motion determining the particle’s energy and angular
momentum about the p-axis, respectively. They are familiar from the treatment of geodesics
around the Schwarzschild black hole.

On the other hand, the new constant of motion Q is Carter’s constant determining the
behavior of the particle’s motion in the #-direction. Let us briefly recall how this is so, using

the method of effective potentials [16]. If we set v = cos @, then (5c¢) can be rewritten as

(%)qu = O(u)

= Q—(Q+ ®* - a®)u? — a*u’, (6)
where the new parameters
L, Q
o = R Q= o (7)

have been introduced for convenience. The physically allowed ranges for v occur when ©(u)

is non-negative, and the boundaries of these ranges can easily be found by setting ©(u) to

2

zero and solving the resulting quadratic equation in u?. Since ©(1) = —®? is negative in



general, we require the existence of at least one positive root u2 < 1. We shall analyze the
three cases of () positive, negative, and zero separately.

When @ > 0, the only positive root is given by

ug _ (a2 _Q_q>2) + \/(22;2—@—(1)2)24—4&2@’ (8)

and the general shape of ©(u) is shown in Fig. 1(a). The physically allowed range for u in
this case is between +|ug|, meaning that such orbits cross the equatorial plane repeatedly.
The points of the orbit which intersect the equatorial plane are referred to as the nodes of
the orbit [7].

When @) < 0, a necessary condition for the right-hand side of (6) to be non-negative

(hence allowing the existence of a root) is
a?—Q—®*>0. (9)

But as we shall see in the following section, this condition is rather restrictive and would
serve to rule out this case, at least for the photon orbits considered in this paper. This case
was also ruled out for bound timelike orbits in [7].

When @ = 0, the two roots are uZ = 0 and 1 — ®2/a%. If ®* > a?, only the first root is
relevant and the general shape of ©(u) is shown in Fig. 1(b). But if ®* < a?, both roots
are relevant and the general shape of ©(u) is plotted in Fig. 1(c). Both these cases describe
equatorial orbits; however, while the first is stable under perturbations in the wu-direction,
the second is not. As we shall also see below, it turns out that only the first case is relevant

for our photon orbits.

III. CONDITIONS FOR SPHERICAL ORBITS

The radial equation of motion (5b) can be rewritten as

T 2 ,
= rt 4 (a2 —®? — Q)7‘2 + QM[(a - CI))Q + Q}T‘ - CLQQ. (10)

Since we are looking for spherical photon orbits with constant radius r, the conditions

R(r) = %ﬁ” = 0 must hold at this radius. These two equations can be solved simultaneously,
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FIG. 1: Qualitative plots of ©(u) for the cases (a) @ > 0; (b) Q@ = 0, ®* > a?; and (c) Q = 0,

P2 < a?.

yielding two one-parameter classes of solutions parameterized in terms of r. They are:

, r? 4 a? r
(1) (b = a ) = _? y (11&)
() o r3 —3Mr? + a*r + a®*M
i = —
a(r — M) ’
r3(r3 — 6Mr? + 9M?r — 4a*M)
Q=-— 20— M) ) (11b)

However, it should be noted that de%” > 0 for both these classes, so if such orbits exist,

they would be unstable under perturbations in the radial direction.

It turns out that Class (i) can immediately be ruled out as being unphysical. Since
@ < 0, these parameters have to satisfy the condition (9) obtained above. However, it is
not satisfied in this case, since a? — Q — ®% = —2r? < 0.

In the second class, () may take either sign depending on the value of r. But note that,

in general, we have
2r(r® — 3M?r + 2a*M)

2 - (I)2 - _
@ —¢ (r—M)?
_ 2ry (rd — 3M?ry + 2a*M)
(r — M)?
2 (M —a?)
a (r—M)?
<0, (12)

so again (9) can never be satisfied. Thus, Class (ii) is physical only if @ is non-negative.

This corresponds to a radius lying in the range vy < r < ry, where r; and ry are the two
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FIG. 2: Qualitative plots of @), @, |ug| and |u;| versus r for solutions of Class (ii).

radii at which @) vanishes. They are none other than the radii of the equatorial orbits given
by (1). From (12), we also see that a®> < ®? and so these equatorial orbits are stable (c.f.
Fig. 1(b)).

In the case of extreme rotation, a = M, Class (ii) simplifies to

r2 —2Mr — M?
M b

B r3(r —4M)
Q= ——E (13)

(i) @=

Again, r is bounded from above by ry = 4M. On the other hand, the lower limit r| = M
appears to coincide with the location of the event horizon itself. However, there is actually a
non-zero proper distance separating the equatorial photon orbit at r; and the event horizon
r,, even though they share the same coordinate radius. As explained in Ref. [4], this is due
to the fact that an infinite throat develops near the horizon of the extreme Kerr black hole,

which is most readily seen with the aid of an embedding diagram (c.f. Fig. 2 in Ref. [4]).

IV. PROPERTIES OF THE SPHERICAL ORBITS

In this section, we shall study in detail the properties of the spherical photon orbits of
Class (ii), in the physical range r; < r < ro. It will become apparent that such orbits exhibit
a much richer set of behavior than their purely equatorial counterparts.

We begin with a discussion of the parameter (). Its qualitative dependence on 7 is shown
in Fig. 2. As can be seen, it monotonically increases from zero at r = rq, to a maximum

value of 27M? at r = 3M, before monotonically decreasing back to zero at r = r5. A



possible physical interpretation of this parameter may be obtained by setting 6 = 7 in (5c).
We obtain the equation 20 = ++1/Q, which shows that Q is related to the angular speed
of the photon passing through the equatorial plane in the #-direction. When @ = 0, the
photon’s motion lies entirely within the equatorial plane, just as we have deduced above.
As () increases, the photon acquires a velocity in the #-direction as well. At the maximum
value Q = 27M?, the photon’s motion is entirely in the #-direction, with no component in
the ¢-direction. This can be confirmed by checking that ¢ = 0 when 6 = 7, using (5d).

On the other hand, the parameter ® is related to the angular momentum of the photon
about the ¢-axis. It monotonically decreases from some positive value at » = r1, to some

negative value at r = ro. In particular, it vanishes at the intermediate radius

1 1 M(M? — a?
rg = M + 24/ M? — =a? cos —arccos(—a:),, , (14)
3 3 (MZ—%CLQ)E

corresponding to a photon with zero angular momentum. There is, in fact, a relationship
between |®| and the maximum latitude ||, given by (8), that the photon can reach. Observe
from Fig. 2 that the latter depends inversely on the former, a result expected from the
conservation of angular momentum: the smaller the angular momentum of the photon, the
closer to the p-axis it can approach. This translates into a higher latitude |ug|. The photon
can reach the p-axis at its maximum latitude |uo| = 1, if and only if ® vanishes.

Since the orbits considered here vary periodically in latitude, it is useful to have a measure
of this periodicity. One possibility is to consider the change in azimuth Ay for a complete
latitudinal oscillation of the orbit. It turns out to be possible to obtain an exact expression
for Ay for the lightlike orbits under consideration, following the timelike case [7], as we now
briefly describe.

If we set w = u?, then from (5d) and (6), we have

de — [2Mra — a’d N ) 1 (15)
dw 2A 2(1 —w) | Y(w)’

where
Y w) = Qu — (Q + ®* — a*)w? — a*w®. (16)

2

It would be useful to write the latter in the form —a*w(w — w,)(w — w_), where w4 are

the positive and negative roots of Y?(w), respectively. Then the change in azimuth for one

complete oscillation in latitude is
_ 4AMra—2a*® [“ dw /“”r dw
o (-

v P2 T eve

A A 0 Y(w)

(17)
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FIG. 3: Qualitative plot of Ay versus r. Orbits with Ap > 0 are prograde, while those with
Ayp < 0 are retrograde. Note the discontinuity at » = r3, where A takes the value indicated by

the single point.

These integrals can be evaluated using standard techniques, to give

4 2Mr — a® wy o 1 Wy Wy
Ap = K e m( —
7 \/w+—w_[ A (w+—w_)+a1—w+( 1—wy’ w+w?}’)
18

where K (x) and II(v,x) are the complete elliptic integrals of the first and third kind, re-

spectively.

The qualitative dependence of Ay on r is shown in Fig. 3. When r; < r < r3, correspond-
ing to positive ®, we see that Ay is also positive. On the other hand, when r3 < r < ry,
corresponding to negative ®, we see that Ay is negative. Thus, the orbits are prograde
whenever ® is positive, and retrograde whenever ® is negative.

Furthermore, it can be shown that Ay > 27 for the prograde orbits, and |Ayp| < 27 for
the retrograde ones. This means that each latitudinal oscillation of a prograde orbit takes
more than one revolution in ¢ to complete, while each latitudinal oscillation of a retrograde
orbit takes less than one revolution in ¢ to complete. In either case, the nodes of the
orbit are dragged in the direction of the black hole’s rotation, and is a manifestation of the
Lense-Thirring effect. A similar phenomenon occurs for spherical timelike orbits [7].

Note that there is a discontinuity at r = r3 (® = 0), in going from prograde to retrograde
orbits. The difference between the left and right limits is, remarkably, always equal to 4.

Furthermore, the particular orbit with ® = 0 will have a positive value of Ay that lies
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exactly halfway between these two limits. It turns out that there is a satisfying explanation
for this behavior, which we will return to in the following section when we give an explicit
example of such an orbit.

Although each orbit that we are considering has a definite non-zero value for Ay, it is
not guaranteed that the photon is moving in a fixed azimuthal direction at every point of
its orbit. In fact, it follows from (5d) that ¢ changes sign whenever u? reaches the value

s _ 2Mra— (2Mr —r*)®

U= ) 2Mra — a?®
a’(r+ M)

A plot of |uy| can be found in Fig. 2. Note that this effect is only physically relevant if
|ur| < Jug|. It can be checked that this occurs only when r3 < r < 3M (corresponding
to —2a < ® < 0). Orbits with these parameters would therefore not be moving in a fixed
azimuthal direction, although the net change in azimuth for one latitudinal oscillation is still
negative. An example of such an orbit will also be given in the following section, together

with a physical interpretation of this effect.

V. EXAMPLES OF SELECTED ORBITS

It follows from the analysis in the preceding section, and in particular from the graphs
in Fig. 2, that our one-parameter class of spherical photon orbits can be divided into three
sub-classes exhibiting qualitatively different behavior. Firstly, they can be categorized into
prograde and retrograde orbits, depending on whether the radius r of the orbits lies between
r1 and 73, or between r3 and 7. The sub-class of retrograde orbits can then be further
divided into those without a fixed azimuthal direction (r3 < r < 3M) and those with
(3M < r < ry). There are two special cases, namely the orbits with » = r3 and 3M.

In this section, we shall present explicit examples of spherical photon orbits from each of
these three sub-classes, as well as the two special cases. These orbits can only be obtained
numerically, by integrating the first-order differential equations (5a)—(5d). Fortunately, it is
relatively easy to do so using standard algorithms, such as the fourth-order Runge—Kutta
method [19] that we chose to use. A sufficiently small step-size was chosen so that the
computed values of Ay and |ug| agreed with those obtained from the exact expressions

(18) and (8) to at least five significant figures. This is a good consistency check that our
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TABLE I: Parameters of the spherical-photon-orbit examples considered in Sec. V

/M r/M Q/M? |uol Ap
0 1++2 114+ 8v2 1 3.1761
-1 1++3 12+ 83 0.98186 —3.7138
—2 3 27 0.93515 —4.0728
—6 1+2v2 —13 4+ 16v2 0.46335 —4.7450
1 2 16 0.97174 10.843
1.999 1.0316 3.2590 0.69543 159.42

FIG. 4: Two latitudinal oscillations of the photon orbit with & = 0. The orbit begins at the
equator and heads southwards. For clarity, numbered arrows indicate the order and direction of

motion.

algorithm was implemented correctly.

For simplicity, we shall only consider the case of an extreme Kerr black hole, i.e., when
a = M. Orbits for a < M turn out to be qualitatively similar.

In each of the following examples, we plot the orbits on an imaginary sphere of fixed
radius. (Actual values of the radii, as well as other parameters of the orbits, may be found
in Table I.) Each orbit begins at the equator and heads southwards. The observer is assumed
to be located at infinity, 30° west of the starting point of the orbit, and 60° north of the
equator. The sense of rotation of the black hole itself is from west to east.

We begin with the special case & = 0 (corresponding to r = r3), which describes a

12



FIG. 5: Three latitudinal oscillations of the photon orbit with & = —2M.

photon with zero angular momentum. Despite this, such a photon can still orbit the black
hole at constant radius due to the dragging of inertial frames around it, as predicted by the
Lense—Thirring effect. Furthermore, since ® = 0, the photon’s orbit will take it through
all possible latitudes, to the p-axis itself. Fig. 4 shows two latitudinal oscillations of this
orbit. As can be seen, the photon passes alternately through the north and south poles in a
prograde orbit, taking slightly more than half a revolution in ¢ to complete one oscillation
in latitude.

Recall that this is also the case which straddles the discontinuity in the graph of Fig. 3.
With an explicit visualization of such an orbit at hand, it is quite easy to understand why
this discontinuity arises. Let us consider perturbing the orbit in Fig. 4 slightly away from
® = 0, in both the positive and negative directions, and examine what happens to the
photon orbit near the north and south poles. It can be seen that for small positive P,
the photon would ‘swing around’ the poles, instead of passing directly through them, in
a prograde orbit. Observe that this swinging around the poles would add an extra 27 to
Ay, thus giving rise to a finite discontinuity in the graph of Ag. On the other hand, for
small negative ®, the photon would miss the poles in a retrograde orbit. Since the orbit
is now retrograde, its change in azimuth should be measured from the opposite direction;
furthermore, it should be negative by definition. This effectively means we have to subtract
2m from Agp.

Our next example, ® = —2M (r = 3M), is also special in the sense that it is the unique

orbit which has the maximum allowed value of @), namely 27M?. Recall that this implies

13



FIG. 6: Five latitudinal oscillations of the photon orbit with & = — M.

that the photon is moving vertically whenever it is at the equator, a fact that is clear from the
plot of the orbit in Fig. 5. On the whole, however, it is still a retrograde orbit with negative
angular momentum. This behavior can be understood from the Lense-Thirring effect: the
dragging of inertial frames is strongest at the equator, and in this case, it precisely cancels
out the retrograde motion of the photon. Away from the equator, the dragging becomes
weaker and so the orbit regains its retrograde character.

It was shown in the preceding section that when —2M < & < 0 (r3 < r < 3M), the
photon orbits do not have a fixed azimuthal direction. Five latitudinal oscillations for the
case & = —M is plotted in Fiig. 6. Observe that although the orbit is retrograde on the whole,
it is actually moving in the positive p-direction within a certain latitude (|u;| = 0.73205)
of the equator. This can again be attributed to the strength of the Lense-Thirring effect
in the equatorial region: in this case, the negative angular momentum of the photon is not
large enough to negate this effect, resulting in it being dragged along in the direction of the
black hole’s rotation.

For angular momentum —7M < & < —2M (3M < r < r3), the orbits are completely
retrograde even in the equatorial region. This is due to the fact that the angular momentum
of the photon is large enough in this case to dominate over the Lense-Thirring effect. A
representative example of ® = —6M is shown in Fig. 7. Another point to note from this
figure, is the relatively low maximum latitude (Jug] = 0.46335) of the photon. It goes to
zero in the limit & — —7M, resulting in a retrograde circular orbit in the equatorial plane.

We now briefly turn to the case when ® is positive: 0 < ® < 2M (r; < r < r3),
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FIG. 7: Four latitudinal oscillations of the photon orbit with ® = —6M.

FIG. 8: One latitudinal oscillation of the photon orbit with & = M.

corresponding to prograde orbits. Consider, for example, the orbit with ® = M as illustrated
in Fig. 8. The photon swings right around both the south and north poles, taking more
than one revolution in ¢ to complete one oscillation in latitude. Another example is given
in Fig. 9 for the more extreme case of ® = 1.999M. A helical pattern is apparent in this
case, similar to the timelike example in Fig. 6 of Ref. [7]. The angle of inclination of the
photon (recall that this is related to ) when the photon is at the equator) is now so small
that it takes more than 25 revolutions just to complete one oscillation in latitude.

The alert reader may, at this stage, be wondering why the orbit in Fig. 9 does not appear
to be approaching the circular orbit that is supposed to exist when & = 2M. This is due to

the fact that for the extreme Kerr black hole, the prograde circular orbit no longer belongs

15



FIG. 9: One latitudinal oscillation of the photon orbit with ® = 1.999M. For clarity, the circle

indicating the equator has been removed from this and the subsequent figures.

FIG. 10: Eleven latitudinal oscillations of the photon orbit with & = M.

to the class of solutions (13) (even though the retrograde one does, as mentioned above).
In fact, it can be seen from (13) that as » — r;, Q approaches the non-zero constant 3M?2.
This subtlety is only present when the limit of extreme rotation is taken.

Finally, we remark that rather interesting quasi-periodic patterns would result if the
photon orbits are continued for many latitudinal oscillations. For example, Fig. 10 shows how
the photon orbit with ® = M in Fig. 8 would look like after eleven latitudinal oscillations.
The existence of a maximum latitude is manifest as circles surrounding the north and south
poles. Fig. 11 shows how the orbit with & = —6M in Fig. 7 would appear after a total of 49

latitudinal oscillations. Because of its relatively low maximum latitude, the orbit appears as
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FIG. 11: 49 latitudinal oscillations of the photon orbit with & = —6M.

a ‘band’ surrounding the equator. The orbit will fill up the area of the band as time passes.

We have written a Java applet to plot the spherical photon orbits considered in this section
(as well as other examples) as wireframe models, which the user can then interactively
rotate to view them from any angle. They are available at the World Wide Web site
http://www.physics.nus.edu.sg/ phyteoe/kerr/.

VI. CONCLUSION

While it is well known that two circular photon orbits can exist in the equatorial plane of
the Kerr black hole, it is less generally appreciated that spherical photon orbits extending
beyond the equatorial plane are also possible. In this paper, we have found a one-parameter
class of solutions describing spherical photon orbits outside the black hole horizon, and
analyzed their properties. As we have seen, these orbits exhibit a variety of interesting
behavior that are absent in circular orbits. Finally, representative examples of such orbits
were obtained numerically, and used to illustrate some of these behavior.

Perhaps the biggest drawback of these spherical photon orbits is the fact that they are
unstable under radial perturbations. This is, however, not a problem for the spherical
timelike orbits considered by Wilkins [7]; moreover, timelike orbits would be more relevant
than lightlike ones from an astrophysical viewpoint. Although a fairly detailed study of these
orbits was already performed by him, more remains to be done. One of these is to extend

his analysis to the non-extremal case. Another is to categorize all the possible orbits and
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their defining properties (only the helical case was explicitly described in Ref. [7]), perhaps

along the lines of this paper. For instance, what other general shapes can the orbits take

besides helices? How do zero-angular momentum orbits behave? Are orbits with non-fixed

azimuthal direction possible? These are but some of the questions that deserve further

attention.
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