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Abstract: Pressure, temperature, and water vapor pressure are basic meteorological parameters 
that are frequently required in Global Navigation Satellite System (GNSS) positioning/navigation 
and GNSS meteorology. Although models like Global Pressure and Temperature (GPT) and Global 
Pressure and Temperature 2 wet (GPT2w) were developed for these demands, their spatial 
resolutions are lower than 0.75° and temporal resolutions are below 6 h, which limits their 
achievement. The publication of European Centre for Medium-Range Weather Forecasts (ECMWF) 
ERA5 hourly 0.25° × 0.25° data offers the opportunity to lift this limitation. In this work, the ERA5 
surface data are used to evaluate the temporal variabilities of pressure, temperature, and water 
vapor pressure in the area of China. We characterize their diurnal variations using hourly data and 
take into account their geographical variations by 0.25° × 0.25° grids. In addition, we improve the 
height corrections for the three parameters employing the ERA5 pressure level data. Through these 
efforts, we build a new regional model named Chinese pressure, temperature, and water vapor 
pressure (CPTw), which has the advanced resolution of 0.25° × 0.25° and temporal resolution of 1 h. 
We evaluate the performance using ERA5 data and radiosonde data compared with the approved 
GPT2w model. Results demonstrate that the accuracies of the new model are superior to the 
GPT2w model in all meteorological parameters. The validation with the radiosonde data shows 
RMS for pressure, temperature, and water vapor pressure of the CPTw model is reduced by 14.1%, 
25.8%, and 4.8%, compared with that of the GPT2w model. The new model catches especially well 
the diurnal changes in pressure, temperature, and water vapor pressure, which have never been 
realized before. Since the CPTw model can provide accurate empirical pressure, temperature, and 
water vapor pressure for any time and location in China and its surrounding areas, it can not only 
meet the need of empirical meteorological parameters in real-time geodetic applications like GNSS 
positioning and navigation, but it is also useful for GNSS meteorology. 

Keywords: GNSS positioning/navigation; GNSS meteorology; pressure; temperature; water vapor 
pressure; ECMWF ERA5 

 

1. Introduction 

The Global Navigation Satellite System (GNSS) radio signal undergoes delay and bending 
when traveling through the neutral atmosphere. This effect is known as the tropospheric delay and 
is one of the most significant error sources in GNSS positioning/navigation, hence it should be 
properly modeled and corrected. The tropospheric delay is usually modeled by the delay in the 
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zenith multiplied by a mapping function. The zenith delay is divided into two components, namely 
the zenith hydrostatic delay (ZHD) and the zenith wet delay (ZWD) [1]. In high-precision analysis of 
geodetic observations, including GNSS and very long baseline interferometry (VLBI), accurate a 
priori ZHDs must be employed [2,3] The need for ZHDs usually turns into the need for pressure 
since ZHD can be determined with in situ pressure observations in mm-level accuracy [4,5]. ZWDs 
are usually treated as unknown parameters and estimated in the analysis of geodetic observations. 
Unfortunately, a few real-time technologies do not have the advantage of postprocessing analyses, 
and thus necessitate the accessibility of accurate a priori ZWDs [6]. The ZWD can be approximated 
at centimeter level using the Saastamoinen model and surface temperature and water vapor 
pressure observations [4]. In addition, in GNSS meteorology, the determination of precipitable water 
vapor (PWV) from ZWD needs the weighted mean temperature (Tm), which is the unique 
parameter to convert ZWD to PWV and its determination needs surface temperature [7]. Therefore, 
surface pressure, temperature, and water vapor pressure are required in geodetic and meteorologic 
applications. However, not all the GNSS stations are equipped with automatic meteorological 
devices [8–11]. This causes the demand for empirical models. Especially in the past years when 
real-time GNSS applications have developed so rapidly [12], it increased the need for accurate 
empirical models [13]. 

Boehm et al. [3] established the Global Pressure and Temperature (GPT) model based on the 
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 data. This model uses a 
spherical harmonic function with degree nine and order nine (resolution is 20° × 20°) to represent 
global pressure and temperature fields and also considers their annual variations. The GPT model is 
widely used to provide empirical pressure and temperature in GNSS positioning/navigation and 
GNSS meteorology [14–17]. Lagler et al. [18] updated the GPT model to the GPT2 model by using the 
ECMWF ERA-Interim data and enhanced the model resolution to 5° × 5°. In addition to a better data 
source and improved spatial resolution, the GPT2 model considers the semiannual variations of 
pressure and temperature, and also outputs the lapse rates for temperature and water vapor 
pressure. Bohm et al. [6] published the GPT2w model that adds Tm and water vapor pressure 
decrease factor to the output parameters and has a higher resolution of 1° × 1° compared to the GPT2 
model. The GPT2w model has become a canonical tool in GNSS positioning/navigation and GNSS 
meteorology [19–22]. Krueger et al. [23,24] proposed the TropGrid model that takes the diurnal 
variations of meteorological parameters into account and has a spatial resolution of 1° × 1°, but 
ignores the semiannual variations of meteorological parameters. Similar models (the TropGrid2 
model [25], the ITG model [26], and the WHU_CPT model [27]) are also established.  

Even as the empirical models listed above improve, they still have some drawbacks. First, data 
sources used to establish the models have limited temporal resolutions (as high as only 6 h), such a 
resolution is insufficient to fully capture diurnal variations in temperature, pressure, and water 
vapor pressure. Second, their highest spatial resolution is only 0.75° × 0.75°. This low spatial 
resolution may limit their performance. In 2016, the release of the fifth-generation of reanalysis data 
distributed by ECMWF (ERA5) provides the opportunity to address these drawbacks. The ERA5 
reanalysis data have unprecedented temporal resolution (1 h) and spatial resolution (0.25°). This 
motivates and enables us to develop a new model that fully characterizes diurnal variations and 
improves the spatial resolution of current models.  

This study uses state-of-the-art ERA5 reanalysis data to develop a refined pressure, 
temperature, and water vapor pressure model. Compared to the existing models (e.g., GPT, GPT2w, 
and WHU_CPT), this new model is featured by the highest temporal (semidaily) and spatial (0.25°) 
resolutions, and may also exhibit the best accuracy. Due to these advancements, this new model can 
provide high-quality empirical pressure, temperature, and water vapor pressure data for geodetic 
applications, and may therefore improve the accuracy of GNSS position/navigation and GNSS 
meteorology. 
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2. Study Area and Data 

2.1. Study Area 

The latitude range of the research area is from 15°N to 55°N and the longitude range is from 
70°E to 135°E, which covers the entire China area. The ERA5 reanalysis data range and the 
distribution of the 80 radiosonde stations used are shown in Figure 1. 

 
Figure 1. ERA5 reanalysis data range and distribution of the 80 radiosonde stations used. 

2.2. ERA5 Reanalysis Data 

ECMWF released the fifth-generation accurate global atmospheric reanalysis (ERA5) in 2018, 
which covers the period from 1979 to the present [28]. The ERA5 data have upgraded the spatial 
resolution to ~31 km and the temporal resolution to 1 h, in comparison with the earlier ERA-Interim 
data [29]. The ERA5 hourly data on pressure levels and hourly data on single levels in 2012–2017 are 
used in this work. The ERA5 hourly data on single levels is regard as “surface data” hereafter. The 
ERA5 surface data have a horizontal resolution of 0.25° × 0.25°. The ERA5 surface data, including 
geopotential, surface pressure, 2 m temperature, and 2 m dewpoint temperature, are used to model 
surface pressure, temperature, and water vapor pressure. We use the geopotential of the surface 
divided by gravity acceleration to represent the topography. The hourly data on pressure levels 
employed in this study have a horizontal resolution of 0.25° × 0.25° and a vertical resolution of 37 
levels from 1000 to 1 hPa. The pressure level data, including geopotential, relative humidity, 
temperature, and pressure, are used to fit and solve parameters in the height corrections for 
temperature, pressure and water vapor pressure. Since the pressure level data do not provide water 
vapor pressure, we use the Wexler method [30,31] and temperature and relative humidity to 
calculate the water vapor pressure: 

ln 𝑒௦௩ = ෍ 𝑐௜𝑇௜ିଵ + 𝑐ସଷ
௜ୀ଴ ln 𝑇 (273.15 K ≤ 𝑇 <  373.15 𝐾) (1) 
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ln 𝑒௦௩ = ෍ 𝑐௜𝑇௜ିଵ + 𝑐ହସ
௜ୀ଴ ln 𝑇(173.15 K ≤ 𝑇 <  273.15 𝐾) (2) 

 

𝑅𝐻 = 𝑒𝑒௦௩ × 100% (3) 

where 𝑒௦௩ denotes the saturated water vapor pressure (Pa) and 𝑇 is temperature (K). In Equation 
(1), 𝑐଴ =− −6.04361117 × 103, 𝑐ଵ = 1.89318833 × 101, 𝑐ଶ = −2.8238594 × 10−2, 𝑐ଷ = 1.7241129 × 10−5, and 𝑐ସ = 2.858487. In Equation (2), 𝑐଴ = −5.8653696 × 103, 𝑐ଵ = 2.224103300 × 101, 𝑐ଶ = 1.3749042 × 10−2, 𝑐ଷ 
= −3.4031775 × 10−5, 𝑐ସ = 2.6967687 × 10−8, and 𝑐ହ = 6.918651 × 10−1. 𝑅𝐻 is relative humidity in 
percent and 𝑒 is the water vapor pressure. When we use dewpoint temperature to calculate water 
vapor pressure, we can directly obtain water vapor pressure by replacing 𝑇 in Equations (1) and (2) 
by dewpoint temperature. 

2.3. Radiosonde Data 

Radiosonde is an accurate method to measure meteorological parameters and usually used to 
validate other observations and model outputs [32–36]. The radiosonde data are accessed freely 
from the archive at the website of the University of Wyoming 
(http://weather.uwyo.edu/upperair/sounding.html). These data are available at 00:00 UTC and 12:00 
UTC every day. We downloaded all the available radiosonde data in the research area in 2017 and 
derived the temperature, pressure, and water vapor pressure. After removing 9 stations whose data 
quality was bad, 80 radiosonde stations were finally used and their distribution is shown in Figure 1. 

3. Methods  

To model the pressure, temperature, and water vapor pressure, we have to know their temporal 
and spatial variation features. As for the temporal variation, we mainly detect and determine its 
periodical variations. As for spatial variation, we separately describe its vertical and horizontal 
variations. We used 0.25° grids to describe the horizontal variations and used empirical models to 
describe the vertical variations. Therefore, determining the temporal and vertical variations of these 
parameters were the two key aspects in modeling them. The detailed steps for establishing the new 
model follow: Firstly, we used fast Fourier transform (FFT) analysis to detect the diurnal variations 
of pressure, temperature, and water vapor pressure based on the ERA5 data. Secondly, we 
determined the empirical models to describe the vertical variations of the three parameters and then 
used them to make height corrections. Finally, we determined the mathematical frames of the model 
and embodied it by determining its coefficients using ERA5 data. The schematic methodology for 
generating the CPTw is shown in Figure 2. 
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Figure 2. Flowchart of the main procedures to establish the CPTw model. 

3.1. Diurnal Variations of Meteorological Parameters 

The seasonal variations of pressure, temperature, and water vapor pressure have been 
extensively studied and modeled [6,18,23–25], but their diurnal variations are not well modeled due 
to insufficient temporal resolution of the data. Here we focus on analyzing the diurnal variations of 
the pressure, temperature, and water vapor pressure using the ERA5 data. We first fitted and 
removed the annual and semiannual signals by applying a high-pass filter to increase the 
signal-to-noise ratio of the diurnal signals. Then, a fast Fourier transform (FFT) analysis was 
executed on the residuals. Figure 3 shows the power spectrums at four typical points; we used 95% 
of the peak values to indicate the significance of the peaks. 
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Figure 3. Power (Pow) spectrums of pressure (P), temperature (T), and water vapor pressure (e) at (a) 
(94.75°E, 37.5°N), (b) (88.75°E, 29°N), (c) (106°E, 35.5°N), and (d) (120.75°E, 23.5°N) from ERA5 grid 
data for 2012 to 2016. The horizontal dashed yellow lines indicate 95% of the peak values. 

Two peaks are observed at 1 day and 0.5 day in the power spectrums of pressure (Figure 3a–d), 
suggesting that pressure has strong diurnal and semidiurnal variations. This is due to the 
atmospheric tides and was revealed by [37]. Especially, the peaks at 0.5 day are even greater, which 
displays that the semidiurnal variation is stronger than the diurnal variation. As for the temperature, 
two peaks are also observed at 1 day and 0.5 day (Figure 3a–d) but the 0.5-day peak is much weaker 
than the 1-day peak, which indicates that temperature has a forceful diurnal variation and a feeble 
semidiurnal variation. A peak from the power spectrum of water vapor pressure appears at 1 day in 
Figure 3b–d but does not appear in Figure 3a. Even when it has peaks at 1 day, the peaks are usually 
below the 95% level. The power spectrum of water vapor pressure does not show any peak at 0.5 
day, indicating it has no regular semidiurnal variations. So, the diurnal variations of water vapor 
pressure are not as regular as the pressure and temperature, which present difficulties in modeling 
it. 

Based on the analysis above, we propose Equation (4) to express the diurnal and semidiurnal 
variabilities of pressure, temperature, and water vapor pressure:  𝑟(𝑡) = 𝐴଴ + 𝐴ଵ cos ൬𝐻𝑂𝐷24 2𝜋൰+ 𝐵ଵ sin ൬𝐻𝑂𝐷24 2𝜋൰ + 𝐴ଶ cos ൬𝐻𝑂𝐷24 4𝜋൰ + 𝐵ଶ sin ൬𝐻𝑂𝐷24 4𝜋൰ 

(4) 

where 𝑟(𝑡) could be pressure, temperature, or water vapor pressure, 𝐻𝑂𝐷 indicates hour of day, 
and 𝐴௜  and 𝐵௜  (𝑖 = 0, 1, 2) are model coefficients. The second and third terms in Equation (4) 
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together represent the diurnal variations and the fourth and fifth terms together represent the 
semidiurnal variations. When modeling water vapor pressure, the last two terms are not necessary. 

3.2. Height Corrections for Temperature, Pressure, and Water Vapor Pressure 

3.2.1. Height System Conversion 

Since the GNSS uses the ellipsoid height system while the ERA5 data uses the geopotential 
height system, we needed to unify the height system so that we could determine the right height 
differences. Here we converted the geopotential height to the ellipsoid height by two steps. We first 
converted the geopotential height (it is the geopotential divided by gravity acceleration) to the 
orthometric height by using Equation (5) [38], and then converted the orthometric height to ellipsoid 
height by using Equation (6). Unifying the height system is a premise for height corrections since 
height difference should be quantified in the same system. 

⎩⎪⎪
⎨⎪
⎪⎧ 𝐻௢ = 𝑅௘(𝜑) ∙ 𝐻௚𝑔(𝜑)𝑔଴ 𝑅௘(𝜑) − 𝐻௚𝑔(𝜑) = 𝑟௘ 1 + 𝑘𝑠𝑖𝑛ଶ𝜑ඥ1 − 𝑒ଶ𝑠𝑖𝑛ଶ𝜑𝑅௘(𝜑) = 𝑎1 + 𝑓 + 𝑚 − 2𝑓𝑠𝑖𝑛ଶ𝜑

 (5) 

where 𝜑 is the latitude (radian), 𝐻௢ and 𝐻௚ are the orthometric height and geopotential height, 𝑔(𝜑) is the gravity acceleration at 𝜑, 𝑔଴ is the gravity constant (9.80665 m/s2), and 𝑅௘(𝜑) is the 
Earth’s curvature radius at latitude 𝜑. The variables 𝑎, 𝑓, 𝑚, 𝑘, 𝑒ଶ, 𝑟௘ are constants and can be 
referred to [38]. 𝐻௘ = 𝐻௢ + 𝑁 (6) 

where 𝐻௘ is the ellipsoid height, 𝑁 is the geoid height and was obtained from [39]. 

3.2.2. Determining Height Correction Methods for Meteorological Parameters 

Determining the method for height correction is a critical aspect of modeling pressure, 
temperature, and water vapor pressure since these meteorological parameters show the strongest 
variations in the vertical direction. If proper consideration is given to their vertical changes, it will 
enable the model to provide accurate parameters at different heights. 

The exponential function is commonly used to make height corrections for pressure [6,18,25,26]. 
The linear function is used to do height corrections for temperature [6,18,23–26]. For water vapor 
pressure, most studies employ the exponential function to do the height correction [6,23–25]. 
Accepting the conventional approaches, we used Equations (7), (10), and (13) to do the height 
corrections for pressure, temperature, and water vapor pressure, which are the same methods used 
in the GPT2w model.  𝑃 = 𝑃଴ ∙ exp (− 𝑔଴ ∙ 𝑑𝑀𝑡𝑟𝑅௚ ∙ 𝑇௩ ∙ 𝑑ℎ) (7) 𝑇௩ = 𝑇଴ ∙ (1 + 0.6077 ∙ 𝑄) (8) 𝑄 = 0.622 ∙ 𝑒଴/(𝑃଴ − 0.378 ∙ 𝑒଴) (9) 

where 𝑃 refers to the pressure (hPa) at the site, 𝑃଴ represents the grid-based pressure (hPa) at the 
surface, 𝑑ℎ denotes difference of height between site and grid point, 𝑑𝑀𝑡𝑟 refers to the molar mass 
of dry air (28.965∙10−3 kg/mol), 𝑅௚ represents the universal gas constant (8.3143 J/K∙mol), 𝑇௩ is the 
virtual temperature (K), 𝑇଴ is the grid-based temperature (K) at two meters above the surface, 𝑄 
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denotes the specific humidity, and 𝑒଴ indicates the grid-based water vapor pressure (hPa) at two 
meters above the surface. 𝑇 = 𝑇଴ + 𝛽 ∙ 𝑑ℎ (10) 

where 𝑇 refers to the temperature (K) at the site and 𝛽 denotes the temperature lapse rate (K/km). 
According to Smith [40], the water vapor mixing ratio ω can be well approximated by  ω = ε ∙ (𝑒 𝑃⁄ ) (11) 

where ε = 0.622. Smith [40] also assumes that the average decrease of moisture through the entire 
atmosphere column can be described by the power law: ω = ω଴ ∙ (𝑃 𝑃଴⁄ )ఒ (12) 

where ω଴ is the surface water vapor mixing ratio. 
Substituting Equation (11) into (12), we obtain 𝑒 = 𝑒଴ ∙ (𝑃/𝑃଴)ఒାଵ (13) 

where 𝑒 refers to the water vapor pressure in hPa at the site; we follow [6] to call 𝜆 “the water 
vapor pressure decrease factor” which is the key parameter to describe the average vertical variation 
of water vapor pressure. 𝜆 can be obtained by fitting Equation (13) or (14) [41]. In this work, we 
follow [6] to solve 𝜆 by fitting Equation (14): 𝑍𝑊𝐷 = 10ି଺ ∙ (𝑘ଶ‘ + 𝑘ଷ/𝑇௠) 𝑅ௗ(𝜆 + 1)𝑔଴ 𝑒଴ (14) 

where 𝑘ଶ‘  and 𝑘ଷ refer to empirically determined coefficients (16.52 K/hPa and 3.776 × 105 K2/hPa), 𝑇௠ denotes the weighted mean temperature (K), and 𝑅ௗ represents the specific gas constant for the 
dry constituents (287.058 J/kg∙K) [42]. 

According to the Equations (7)–(14), 𝛽 and 𝜆 are important parameters in height corrections 
for pressure, temperature, and water vapor pressure. The vertical profiles of pressure, temperature, 
and water vapor pressure from 2012 to 2016 were employed to fit and solve Equations (10) and (14) 
for 𝛽 and 𝜆. This was done hourly for consistency with the ERA5 data. Then, we performed a FFT 
analysis on the seasonal signals and their diurnal signals. Figure 4 shows the exemplary power 
spectrums of these at one grid point (88.75°E, 29°N). Two peaks are observed at 1 year and 0.5 year 
in Figure 4a,c and the peaks are all above the 95% level, suggesting that 𝛽 and 𝜆 both have strong 
annual and semiannual variations. Especially, the peaks at 0.5 year from power spectrums are even 
greater than the peaks at 1 year, which demonstrates that semiannual variation of 𝛽 is stronger than 
the annual variation. As for the diurnal power spectrums of 𝛽 and 𝜆, two peaks are also observed at 
1 day and 0.5 day (Figure 4b,d) and all the peaks are greater than the 95% level, indicating 𝛽 and 𝜆 
also have diurnal and semidiurnal variation. Therefore, we consider not only the seasonal variations 
but also the diurnal variations of temperature lapse rate and the water vapor pressure decrease 
factor in height correction. 
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Figure 4. Power spectrums of β (a,b) and λ (c,d) at (88.75°E, 29°N). The left column shows the 
seasonal power spectrums. The right column shows the diurnal power spectrums. Data for this 
example are from ERA5 grid pressure level data from 2012 to 2016. The horizontal dashed yellow 
lines indicate the 95% of the peak values. 

3.3. Establishing the CPTw Model 

Since pressure, temperature, and water vapor pressure show obvious seasonal and diurnal 
variations, we use Equations (15) and (16) to represent their temporal variations. 𝑀𝑃 = 𝐴଴ + 𝐴ଵ cos ൬𝐻𝑂𝐷24 2𝜋൰ + 𝐴ଶ sin ൬𝐻𝑂𝐷24 2𝜋൰ + 𝐴ଷ cos ൬𝐻𝑂𝐷24 4𝜋൰+ 𝐴ସ sin ൬𝐻𝑂𝐷24 4𝜋൰ 

(15) 

𝐴௜ = 𝑎௜଴ + 𝑎௜ଵ cos ൬ 𝐷𝑂𝑌365.25 2𝜋൰ + 𝑎௜ଶ sin ൬ 𝐷𝑂𝑌365.25 2𝜋൰ + 𝑎௜ଷ cos ൬ 𝐷𝑂𝑌365.25 4𝜋൰+ 𝑎௜ସ sin ൬ 𝐷𝑂𝑌365.25 4𝜋൰ 
(16) 

where 𝑀𝑃  indicates the meteorological parameters (pressure, temperature, or water vapor 
pressure). Equation (15) describes their diurnal variations, we fitted and solved coefficients 𝐴௜ (i =0, … ,4) every day from 2012 to 2016. We used Equation (16) to fit 𝐴௜, which describes the seasonal 
variations of the meteorological parameters. 

To account for geographic variations, Equations (15) and (16) were fitted and solved at each 
0.25° × 0.25° grid node in the research area. We also used similar methods to model the parameters 𝛽 
and 𝜆 in the height corrections and solved for the corresponding coefficients at the same grid nodes. 
It should be noted that since Equations (15) and (16) models only the annual mean and daily mean 
variations of pressure, temperature, and water vapor pressure, they cannot describe synoptic 
variations. 

Equations (7)–(16) form the mathematical frame of the new model. Together with the 
determined coefficients on 0.25° grid nodes, they constitute a new model which is called the CPTw 
model. When using this model to estimate pressure, temperature, or water vapor pressure at any 
site, we first find the four grid nodes that are closest to the selected site and calculate the required 
parameters at the four grid nodes. Then we reduce the temperature, pressure, or water vapor 
pressure from grid-based height to the height of the site via height corrections. Finally, we 
interpolate the corrected temperature, pressure, or water vapor pressure to the site location through 
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a bilinear interpolation. It should be noted that this model can perform well in the lower atmosphere 
(<10 km height), above which its performance may decrease. 

3.4. Validation of CPTw 

To assess the performance of the CPTw model, we exploit ERA5 data and the radiosonde data 
to validate the model and compare it to the widely used GPT2w model. Bias, standard deviation 
(STD), and root mean square (RMS) are used as the accuracy criteria. Bias, STD, and RMS are 
computed by Equations (17)–(19). 

𝑏𝑖𝑎𝑠 = 1𝑁 ෍(𝑀𝑃ప෪ − 𝑀𝑃௜)ே
௜ୀଵ  (17) 

 

𝑆𝑇𝐷 = ඨ1 𝑁 ෍ (𝐷௜ − 𝑢)ଶே௜ୀଵൗ ; 𝐷௜ = 𝑀𝑃ప෪ − 𝑀𝑃௜; 𝑢 = 1 𝑁⁄ ෍ 𝐷௜ே௜ୀଵ  (18) 

 

𝑅𝑀𝑆 = ඨ1 𝑁 ෍ (𝑀𝑃ప෪ − 𝑀𝑃௜)ଶே௜ୀଵൗ  (19) 

where 𝑀𝑃ప෪  is the reference value, 𝑀𝑃௜ denotes the value estimated by the model, and 𝑁 is the 
number of observations. 

4. Results 

4.1. Validation with ERA5 Data 

The 2017 ERA5 data are used to validate the CPTw model. Using a different year of ERA5 data 
to validate the model is necessary since this variation is free of the influences from the systematic 
biases between different kinds of data sets. For each grid node in the research area, we compare the 
ERA5 data-derived pressure, temperature, and water vapor pressure with the model outputs and 
calculate the bias, STD, and RMS of their differences. The results are shown in Table 1 and Figure 5. 

Table 1. Validation results of the CPTw model tested by ERA5 data. 

  
  

Pressure (hPa) Temperature (K) Water vapor pressure (hPa) 
Bias STD RMS Bias STD RMS Bias STD RMS 

Mean 0.5 3.88 3.94 0.44 3.16 3.21 0 2.29 2.29 
[Min Max] [−1.36 1.75] [1.59 9.84] [1.59 9.86] [−1.46 2.70] [0.63 6.05] [0.63 6.06] [−-4.65E−08 6.87E−08] [0.56 4.17] [0.56 4.17] 

Note. STD = standard deviation; RMS = root mean square. 
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Figure 5. Bias, STD, and RMS of the pressure (a–c), temperature (d–f), and water vapor pressure (g–i) 
validated by ERA5 hourly surface 0.25° × 0.25° data in 2017. 

Table 1 shows that the mean bias of pressure is 0.50 hPa with a minimum of −1.36 hPa and a 
maximum of 1.75 hPa, the mean RMS is 3.94 hPa, and the RMS ranges from 1.59 hPa to 9.86 hPa. 
Figure 5a illustrates that the pressure tends to have positive bias over the research area, except for 
the northeast regions. The absolute bias of pressure is biggest in the Xinjiang Province and in the 
northern regions, and the overall absolute bias is relatively small (0.72 hPa) in mainland China. The 
distributions of the STD (Figure 5b,e,h) and the RMS (Figure 5c,f,i) are similar, so only the RMS is 
described here. Figure 5c shows that the pressure’s RMS is larger at high-latitude regions, especially 
in the northwestern region, and smaller at low-latitude regions, especially in Qinghai–Tibetan 
Plateau. This is because the pressure has stronger variations in high-latitude regions than in 
low-latitude regions (see Figure A1d in Appendix A for annual amplitudes of pressure). The 
stronger seasonal and synoptic variations bring more difficulty in modeling pressure, resulting in 
larger RMS. The mean RMS of pressure from the Qinghai–Tibetan Plateau is 1.75 hPa smaller than 
that in other regions, which is because the magnitudes and variations of pressure there are slighter 
than those in other regions (see Figure A1a,d in Appendix A for mean values and annual amplitudes 
of pressure). 

The mean bias of temperature is 0.44 K with a minimum of −1.46 K and a maximum of 2.70 K, 
the RMS ranges from 0.63 to 6.06 K, with a mean value of 3.21 K. Figure 5d shows that the bias of 
temperature in northern regions is larger than that in the southern regions, especially at latitudes 
higher than 45°. Figure 5f shows that the RMS in high latitudes for temperature is larger than those 
in low latitudes, and larger on land than over the sea. This is ascribed to variations of temperature 
from the high-latitude regions, which are stronger than those from low-latitude regions, and 
stronger on the land than over the sea, which can be observed from Figure A1e in Appendix A for 
annual amplitudes of temperature.  

The bias of water vapor pressure is close to zero in the entire research area, the RMS ranges 
from 0.56 hPa to 4.17 hPa with an average of 2.29 hPa. Figure 5i presents that the water vapor 
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pressure’s RMS is larger in the east, southwest of the research area, and smaller in the 
Qinghai–Tibetan Plateau. This results from the fact that the eastern regions are near the Pacific 
Ocean and the southwestern regions are close to the Indian Ocean. The influence of the East Asian 
monsoon and South Asian monsoon in these regions is strong. The abundance and high changes of 
water vapor lead to the larger RMS there (see Figure A1c,f,i in Appendix A for mean values, and 
annual and semiannual amplitudes of water vapor pressure). In contrast, the high altitude and the 
dry climate of the Qinghai–Tibetan Plateau causes very small water vapor pressure in that region 
(see Figure A1c in Appendix A for mean values of water vapor pressure). Figure A2 in Appendix A 
shows the distributions of the fitting residuals’ RMS, which are in agreement with Figure 5c,f,i, 
demonstrating that the model accuracy and the fitting accuracy are strongly related. 

To further analyze the temporal variations of the model's accuracy, we calculated the spatially 
averaged RMS daily and show them in Figure 6. As seen in Figure 6, the RMS of pressure has 
obvious seasonal features, i.e., the RMS is smaller (<3 hPa) in summer and larger (>3 hPa) in other 
seasons. The RMS of pressure and pressure itself show an apparent correlation, i.e., when the 
pressure is high its RMS is also high, and vice versa. The RMS of temperature is smaller (<2.5 K) in 
summer and larger (>2.5 K) in other seasons and shows anticorrelation with the temperature. As for 
water vapor pressure, larger RMS is observed during summer, while smaller RMS appears in winter. 
The RMS of water vapor pressure and water vapor pressure itself shows a positive correlation.  

 
Figure 6. Time series of daily RMS of the CPTw model tested by ERA5 data in 2017. (a) Blue dots are 
daily RMS of pressure and red plus signs are daily pressure. (b) Blue dots are daily RMS of 
temperature and red plus signs are daily temperature. (c) Blue dots are daily RMS of water vapor 
pressure and red plus signs are daily water vapor pressure. 
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4.2.1. Model Performance 

Pressure, temperature, and water vapor pressure from 80 radiosonde stations in 2017 were used 
to assess the CPTw model in comparison with the commonly used GPT2w model (1° version). There 
are two aspects that may improve the performance of the CPTw model, one is the new data set and 
the other is the improved spatiotemporal resolution. To understand how the two aspects contribute 
to model improvements, we developed an intermediate model named CPTw_i which has the same 
mathematical schemes and spatiotemporal resolutions with the GPT2w model (the different part is 
modeling data set). This model helps to differentiate the contributions from data updating and 
resolution improvements. So, in this section we apply independent radiosonde data to compare the 
three models. Table 2 shows the accuracies of the three models. 

Table 2. Accuracies of the GPT2w, CPTw, and CPTw_i models assessed by radiosonde data. 

Model 
Pressure (hPa) Temperature (K) Water Vapor Pressure 

(hPa) 
Bias STD RMS Bias STD RMS Bias STD RMS 

GPT2w 
1.35 4.08 5.25 −1.06 4.51 4.72 0.5 2.9 3.12 

[−7.77, 
7.12] 

[1.91, 
6.28] 

[1.96, 
9.15] 

[−4.68, 
1.39] 

[1.00, 
7.14] 

[1.09, 
8.54] 

[−3.86, 
3.29] 

[1.17, 
6.08] 

[1.18, 
6.35] 

CPTw 
−0.08 3.98 4.51 −0.14 3.41 3.5 0.29 2.83 2.97 

[−3.54, 
8.49] 

[1.83, 
6.27] 

[2.42, 
9.31] 

[−2.73, 
1.61] 

[0.96, 
5.21] 

[1.00, 
5.23] 

[−2.79, 
2.28] 

[1.19, 
6.06] 

[1.20, 
6.14] 

CPTw_i 
0.39 4.08 4.62 0.36 4.44 4.56 0.46 2.86 3.00 

[−3.14, 
9.84] 

[1.94, 
6.28] 

[2.30, 
10.59] 

[−4.17, 
2.51] 

[0.99, 
6.81] 

[1.02, 
7.82] 

[−2.02, 
2.36] 

[1.13, 
6.09] 

[1.18, 
6.18] 

Note. STD = standard deviation; RMS = root mean square. 

Table 2 presents the CPTw model’s mean bias, STD, and RMS for pressure, which are −0.08, 
3.98, and 4.51 hPa, while they become 1.35, 4.08, and 5.25 hPa for the GPT2w model, suggesting an 
accuracy improvement of 14.1% in terms of RMS in the CPTw model. The CPTw model’s mean bias, 
STD, and RMS for temperature are −0.14, 3.41, and 3.50 K, while they become −1.06, 4.51, and 4.72 K 
for the GPT2w model, which indicates an accuracy improvement of 25.8% in terms of RMS in the 
CPTw model. Furthermore, the CPTw model’s mean bias, STD, and RMS for water vapor pressure 
are 0.29, 2.83, and 2.97 hPa, while they become 0.50, 2.90, and 3.12 hPa for the GPT2w model, 
suggesting an improvement of 4.8% in terms of RMS in the CPTw model. All the above point to that 
the CPTw model outperforms the GPT2w model in estimating pressure, temperature, and water 
vapor pressure.  

To identify the percentages of improvements contributed from data updating (from 
ERA-Interim to ERA5) and resolution improvements, we first compare the performance of the 
GPT2w model with the CPTw_i model. The only difference between them is the data set used to 
build the model. Results show that the CPTw_i model’s bias, STD, and RMS are overall smaller than 
that of the GPT2w model in estimating pressure, temperature, and water vapor pressure. When 
compared with the GPT2w model, the CPTw_i model has 12.0%, 3.4%, and 3.8% improvement for 
pressure, temperature, and water vapor pressure in terms of RMS, which are attributed to the use of 
ERA5 data. We then compare the CPTw_i model with the CPTw model. The only difference between 
the two models is the spatiotemporal resolutions (1° to 0.25°, 6 to 1 h). Results show that the CPTw 
model improves the model accuracy in terms of RMS by 2.4% for pressure, 23.2% for temperature, 
and 1.0% for water vapor pressure, which are due to improvement in the spatiotemporal resolution. 
When these improvements (referenced to CPTw_i) are referenced to the GPT2w model, they become 
2.1%, 22.4%, and 1.0%.  

The above analysis suggests that the accuracy improvement in pressure (14.1%) is mainly 
contributed from data updating (12.0%) and slightly from resolution improvement (2.1%). The 
accuracy improvement in temperature (25.8%) is mainly contributed from resolution improvement 
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(22.4%) and slightly from data updating (3.4%). The water vapor pressure improvement (4.8%) is 
largely contributed from data updating (3.8%) and slightly from resolution improvement (1.0%). All 
these indicate data updating and resolution improvement are two important and necessary aspects 
for improving model performances and that they can contribute differently to the meteorological 
parameters. 

To demonstrate the performances of different models in a more intuitive way, Figure 7 gives 
RMSs reduction at all radiosonde sites. It can be seen in Figure 7a that the CPTw model shows 
smaller pressure RMS than the GPT2w model at most stations, notably in the western regions. 
Figure 7b shows that the CPTw model’s RMS for temperature is significantly decreased in 
comparison with the GPT2w model at almost all stations, and the reduction is greater in the western 
regions than that in other regions. Figure 7c reveals that the RMS of CPTw model for water vapor 
pressure is smaller than that of the GPT2w model at more than half of stations, and most of the RMS 
reductions appear in the western regions. 

 
Figure 7. RMS reductions of the CPTw model compared with the GPT2w model for pressure (a), 
temperature (b), and water vapor pressure (c). 

4.2.2. Spatial Distribution of Model Accuracy 

To analyze the performances of the two compared models in different latitudes in China, we 
divide the research area into eight latitudinal bands and calculate bias, STD, and RMS within each 
band for the CPTw model and the GPT2w model. Figure 8 shows that STD and RMS of pressure and 
temperature increase with increasing latitude for both models, indicating that the accuracies of 
pressure and temperature are correlated with latitude. The relation between the accuracy of water 
vapor pressure and latitude is not obvious. These results show that the accuracy analyzed by 
radiosonde data is consistent with those estimated by ERA5 data (see Section 4.1). 
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Figure 8. Bias, STD, and RMS of pressure (a–c), temperature (d–f), and water vapor pressure (g–i) 
from different models at different latitude ranges. 

The reduction of absolute bias, STD, and RMS for the CPTw model relative to the GPT2w model 
at different heights is presented in Figure 9. In Figure 9, positive values mean positive accuracy 
improvements of the CPTw model relative to the GPT2w model. It shows that the CPTw model has 
smaller absolute bias and RMS for pressure than the GPT2w model, except for the heights from 100 
to 250 m. This suggests that the pressure height corrections in the CPTw model perform better than 
that in the GPT2w model. The CPTw temperature has positive absolute bias reduction in most 
height intervals, except for above 2000 m, and positive RMS reduction in all height intervals. The 
reduction in water vapor pressure bias shows no clear trends. STD and RMS reductions for the 
CPTw pressure, temperature, and water vapor pressure overall increase with increasing height, 
suggesting that the CPTw model performs even better at greater heights. 
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Figure 9. Absolute bias reduction, STD reduction, and RMS reduction of pressure (a–c), temperature 
(d–f), and water vapor pressure (g–i) from the CPTw model in comparison with the GPT2w model at 
each altitude range. (Positive values mean positive accuracy improvements in the CPTw model). 

4.2.3. Model Accuracies of Different Seasons 

To investigate the models’ accuracies at different times, Figure 10 provides the pressure, 
temperature, and water vapor pressure from the CPTw model and the GPT2w model in 2017 
compared with the radiosonde data at four stations Xuzhou, Hotan, Simao, and Ejin Qi. These four 
stations are located in the eastern, western, southern, and northern China (see Figure 1). It shows 
that a better consistency exists between the CPTw pressure and the radiosonde data at the four 
stations compared to the GPT2w model. The GPT2w model underestimates pressure for most of the 
time, resulting in overall a positive bias. There is a better agreement between temperature from the 
CPTw model and the radiosonde temperature compared to the GPT2w model. The water vapor 
pressure is apparently underestimated by the GPT2w model in summer, while the CPTw water 
vapor pressure is more consistent with the radiosonde data. In addition, the CPTw model’s curves 
for meteorological parameters are thicker than the corresponding curves of the GPT2w model. This 
result means that the CPTw model can capture high-frequency variations of meteorological 
parameters while the GPT2w model cannot. This is attributed to modeling of diurnal variations. 
Overall, the results in Figure 10 indicate that the CPTw model has more temporal stability than the 
GPT2w model for forecasting meteorological parameters. 
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Figure 10. Pressure, temperature, and water vapor pressure at stations Hotan (a–c), Ejin Qi (d–f), 
Xuzhou (g–i), and Simao (j–l) from the CPTw model, the GPT2w model, and radiosonde data. 

5. Conclusions 

In this study, a refined regional empirical model (CPTw) is established for estimating pressure, 
temperature, and water vapor pressure over China and its surrounding areas. This model is based 
on the ECMWF ERA5 data and has greater spatial resolution (0.25° × 0.25°) and temporal resolution 
(1 h). By analyzing the temporal characteristics of pressure, temperature, and water vapor pressure, 
we find that pressure has strong diurnal and semidiurnal variations, temperature has pronounced 
diurnal variations, and water vapor pressure has no regular semidiurnal variations. In view of these, 
we build a new model that takes into account the annual, semiannual, diurnal, and semidiurnal 
variations in pressure, temperature, and water vapor pressure. In this new model, we also improve 
the height corrections via considering the annual, semiannual, diurnal, and semidiurnal variations 
in temperature lapse rates and water vapor pressure decrease factors. 

The accuracy of the CPTw model is validated using ERA5 data—the RMS of pressure, 
temperature, and water vapor pressure are 3.94 hPa, 3.21 K, and 2.29 hPa. Validated by radiosonde 
data, the CPTw model improves the accuracy of pressure, temperature, and water vapor pressure by 
14.1%, 25.8%, and 4.8% in terms of RMS when compared with the widely used GPT2w model. These 
improvements are benefited from better reanalysis data and improved spatiotemporal resolution. 
Comprehensive validations indicate a better performance of the CPTw model compared to the 
canonical GPT2w model, which will not only contribute to real-time GNSS positioning/navigation 
and GNSS meteorology but also to high precision geodetic applications. 
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Appendix A 

 
Figure A1. Mean values, annual, and semiannual amplitudes of pressure (a,d,g), temperature (b,e,h), 
and water vapor pressure (c,f,i). 

 
Figure A2. RMS of fitting residuals of pressure (a), temperature (b), and water vapor pressure (c). 
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