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Translator’s Preface

This document is an English translation and complete typesetting of a seminal paper in the
field of electrolyte chemistry, written by Peter Debye and Erich Hiickel in 1923, published
in the journal Physikalische Zeitschrift. Researchers in the field of electrolyte chemistry
may have read this paper in English, because there exists an extant English translation
found in the collected papers of Debye, published in 1954 (Interscience Publishers, New
York) and reprinted in 1988 (Ox Bow Press, Woodbridge, CT), that was completed by an
unknown translator. That translation, unfortunately, contained several errors, somewhat
outdated language, and both unclear terminology and inconsistent mathematical symbols.
For example, v vs. v appear to represent different variables, and the original typesetting
has been maintained despite the symbol v being similar in shape to v. In the case of x vs.
X, their similarity caused minor confusion but are now more clearly distinguishable here.

However, in the case of x vs. k, there is a serious typesetting error, after which the x symbol
carried forward in the literature but never appeared in the original work. The two figures
below depict a comparison of the existing documents (1923 German on left, 1954 English
translation on right) and show both the symbol x not corresponding to the original German
(pagination 199) and not even corresponding to a centrally typeset equation (44’) nearby
in the same document (pagination 248). Below this figure, the corrected text provided in
this document is shown for direct comparison. Dotted-line boxes and arrows have been
added.
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Here the factor ¢» on the right side has the dimension of the reciprocal of the square
of a length. We set
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so xis the reciprocal length, and equation (10") becomes
Ay = . (12)
The length introduced as
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is the most significant quantity in our theory and replaces the mean distance between
the ions in the deprecated approach of Ghosh. If one uses nuinerical values (see later)
and if the concentration is as usual in moles per liter of solution, then, if the measured
concentration is denoted by ~,
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for water at 0°C. The characteristic length therefore reaches molecular dimensions
when v =1 (1 mole per liter).

The erroneous symbol « can be found in-line throughout the 1954 translation. Below is
another such example of the x symbol being used in the 1954 English translation (pagination
199), where x was intended. The complete original 1923 German text and 1954 English
text have been provided in the final sections of this document for the reader to review
themselves.
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According to this formula it is, of course, possible to provide a
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Then, however, as equation (44') indicates by the appearance of Xy
this coefficient referred to a definite type of molecule does not
solely depend on quantities which are related to this type of
atom.

The use of x was indeed the desired symbol of the authors, as evidenced in citations of
Debye & Hiickel’s paper by their peers, such as the following snippet of work by Schéarer
(1924, “ Theorie der Loslichkeitsbeeinflussung bei starken Elektrolyten”, pagination 7).



| die ungleichnamigen. Berechnet man nach dem
Maxwell-Boltzmannschen Prinzip die Ver-
teilung aller vorhandenen Ionen um dieses eine
hervorgehobene Ion, so erzeugt diese Verteilung
im Zentrum ein Potential 1; vom Betrag?)
Z;g-% 1
V=TT + xa;
. LR
Dabei bedeutet 2 (von der Dimension einer
reziproken Linge) ein MaD fiir die exponentielle

Abnahme der elektrischen Dichte der Ionen-
atmosphire nach auBen und ist definiert durch

me? -
%% = ;) T ;2% (9)

f=1
Dabei ist D die Dielektrizititskonstante des
Losungsmittels, % die Boltzmannsche Kon-
stante, T die absolute Temperatur und 7; die
Anzahl der Ionen der 7'*" Sorte pro cm?®

N;
ﬂ,'-——?'

1) P. Debye, Physik, Zeitschr. 24, 185, 1923.

All figures have been presented as they were printed in 1923 but enlarged and increased
in exposure to improve legibility, and all tables have been reprinted from the 1954 English
translation and checked for accuracy to the original data. Where necessary, a corresponding
German (italicized) term has been provided adjacent to its translation in square brackets,
which became important to interpreting the very pithy first paragraph of Section 3 Part
(b).

Overall, this document provides a corrected and updated English translation of Debye &
Hiickel’s great work, with the additional intent of expressing as accurately as possible their
desired scientific meaning and bright tone. The theories and ideas presented will certainly
continue to offer further use and insight to ongoing scientific research and the historical
record of investigation of the physicochemical phenomena of the natural world.

- Michael J. Braus, 2019
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The theory of electrolytes.
1. Freezing point depression and related phenomena
By P. Debye and E. Huckel [1].

1. Introduction

As we know, Arrhenius’ hypothesis of dissociation explains the abnormally large values of
osmotic pressure, freezing point depression, etc., observed in electrolyte solutions, because
the existence of ions goes hand in hand with an increase in the number of individual
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particles. The quantitative theory is based on the extension of the laws of ideal gases,
which van’t Hoff introduced, to dilute solutions for the calculation of their osmotic pressure.
Because it is possible to justify this extension via thermodynamics, there is no doubt as to
the general validity of these fundamentals.

At finite concentrations, however, values for freezing point depression, conductivity, etc.
are smaller than would be expected at first consideration in the presence of complete
dissociation of the electrolytes into ions. Let, for instance, P be osmotic pressure, which
results from van’t Hoff’s classical law for perfect dissociation, the actual osmotic pressure
observed is smaller, such that

P:foPk>

in agreement with Bjerrum [2], where the “osmotic coefficient” f, thus introduced is in-
tended to measure those deviations and is observable as a function of concentration, pres-
sure, and temperature. In reality, such observations are not directly related to the osmotic
pressure itself but to freezing point depression or boiling point elevation, both deducible
for thermodynamic reasons using the same osmotic coefficient f, from their limiting values
according to van’t Hoff’s law for complete dissociation.

The most obvious assumption to explain the presence of this osmotic coefficient is the clas-
sical one, according to which not all molecules are dissociated into ions, but an equilibrium
exists between dissociated and undissociated molecules that depends on the total concen-
tration, as well as on pressure and temperature. The number of free individual particles
is therefore variable, and indeed it would have to be set directly proportional to f,. The
quantitative theory of these dependencies, as far as it relates to the concentration, relies
on Guldberg-Waage’s law of mass action; the dependence on temperature and pressure
of the equilibrium constant appearing in this law is to be determined thermodynamically
according to van’t Hoff. The whole complex of dependencies, including Guldberg-Waage’s
approach, can be grounded in thermodynamics, as Planck showed.

Because the electrical conductivity is determined solely by the ions and, according to
the classical theory, the number of ions immediately follows from f,, this theory requires
the well-known relationship between the two properties that depend on concentration,
conductivity on the one hand and osmotic pressure on the other.

A large group of electrolytes, the strong acids, bases, and their salts, grouped under the
name of “strong” electrolytes, shows pronounced deviations demanded by the classical the-
ory, which, remarkably, are all the clearer the more dilute the solutions are [3]. Therefore,
as it was realized in the course of its development, it is possible only with a certain amount
of approximation from f, demanded by the classical theory to infer the dependence of the
conductivity on the concentration. Furthermore, the dependence of the osmotic coefficient
fo itself on the concentration is quite incorrectly represented. For heavily diluted solutions,
fo approaches 1; if we now plot 1 — f, as a function of the concentration ¢, the classical
theory for binary electrolytes, such as KCI, requires that this curve intersects with the
origin [Nullpunkt] with a finite tangent (determined by the equilibrium constant K). If the
molecule of the electrolyte generally dissociates into v ions, then, according to the law of
mass action, small concentrations result:

v—1¢1

v K’

1_fo:



such that in cases where the dissociation occurs in more than 2 ions, the curve in question
must have an even higher order of contact with the abscissa axis. The complex of these
dependencies contitutes Wilhelm Ostwald’s law of dilution.

Actually, observations of strong electrolytes show quite a different behavior. The experi-
mental curve leaves the origin at a right angle [4] to the abscissa axis, independent of the
number of ions, v. All proposed practical interpolation formulas attempt to model this
behavior by setting 1 — f, to be proportional to a fractional power (less than 1, about 1/2
or 1/3) of the concentration. The same phenomenon is repeated in the extrapolation of
the conductivity to infinite dilution, which according to Kohlrausch is to be done using a
power of 1/2.

It is clear that, under these circumstances, the classical theory cannot be maintained. On
the contrary, all experimental material clearly indicates that it can also be abandoned in
its fundamental features, and, in particular, an equilibrium cannot be calculated on the
basis of Gulberg-Waage’s approach and correspond to the real phenomena.

W. Sutherland [5] in 1907 attempted to establish the theory of electrolytes on the assump-
tion of complete dissociation. His work contains some good thoughts. N. Bjerrum [6] is
probably the one who first came to a correctly delineated formulation of that hypothesis.
He has clearly stated and argued that in the case of the strong electrolytes, there is no
apparent equilibrium between dissociated and undissociated molecules and that there are
compelling reasons for considering such electrolytes to be dissociated to ions in their en-
tirety up to high concentrations. Only when considering weak electrolytes do undissociated
molecules occur again. Therefore the classical explanation falls short as the sole basis for
the variability of, for instance, the osmotic coefficient, and the task arises to search for a
hitherto overlooked effect of the ions, which, despite the absence of an association, could
explain the decrease of f, with increasing concentration.

More recently, under the influence of Bjerrum, it has been suggested that the consideration
of the electrostatic forces that the ions exert, and which, because the relatively enormous
size of the electric elementary charge should be strongly important, must provide the desired
explanation. Such forces are not mentioned in the classical theory, which rather treats the
ions as completely independent components. The theory as it was conceived corresponds
approximately to the step one takes when van der Waals passes from the ideal to those
of the real gases. However, we must resort to completely different remedies, because the
electrostatic forces between the ions decrease only with the squares of the distance and
thus differ substantially from the molecular forces, which disappear much more rapidly
with increasing distance.

For osmotic coefficients there exists a calculation by Milner [7]. It is flawless in its structure
but has mathematical difficulties that are not completely overcome and reaches its result
only in the form of a graphically determined curve for the relation between 1 — f, and
the concentration. Moreover, it will be seen from the following that the comparison with
the experience of Milner supersedes the admissibility of his negligence of excessively high
concentrations, for which the individual properties of the ions, which Milner does not take
into account, play a very important role. Still, it would be unjustified to discount Milner’s
calculations in favor of the recent accounts of J. Ch. Ghosh [§8]. In what follows, we
shall have to return to the reason why we cannot agree with Ghosh’s calculations in their
application to conductivity nor their somewhat more transparent application to osmotic
pressure. We are even forced to call his calculation of the electrostatic energy of an ionized
electrolyte, which underlies all his further conclusions, fundamentally wrong.



Quite similar to the calculations of osmotic coefficients are the calculations of conductivity.
Again, the theory must strive to understand the mutual electrostatic influence of the ions
with respect to their mobility. An attempt in this direction comes from P. Hertz [9]. He
transcribes the methods of kinetic gas theory and actually finds a mutual interference of
the ions. In the meantime, the transfer of those methods, and in particular the use of terms
that correspond to the free path of dilute gases, seems to have profound consequences in
the case of free ions between the molecules of the solvent. Indeed, the final result by Hertz
of small concentrations are irreconcilable with the experimental results.

In this first article, we will deal exclusively with the “osmotic coefficient f,” and a similar
one used by Bjerrum [10] of “activity coefficient f,” stressing its significance. Even with
such (weak) electrolytes, where a significant number of undissociated molecules is present,
it cannot simply be modeled after Gulberg-Waage’s approach

AP din =K

(¢1, ¢, ..., ¢, concentrations, K equilibrium constant). Rather, one has to write, with re-
spect to the electrostatic forces of the ions, instead of K,

faK7

introducing an activity coefficient [11] f,. This coefficient, like f,, will depend on the
concentration of ions. Although Bjerrum has a thermodynamically related relationship
between f, and f,, the relationships of the two coefficients to concentration are different.

The lengthy discussion of conductivity we will reserve for a future article, a classification,
which is internally justified. Whereas the determination of f, and f, can be done by
using only reversible processes, the calculation of mobilities leads to essentially irreversible
processes in which there is no longer a direct connection to fundamental thermodynamic
laws.

2. Fundamentals

It is known in thermodynamics that the properties of a system are fully known if one of
the many possible thermodyanemic potentials is given as a function of the properly chosen
variables. Correspond to the form in which the terms based on the mutual electric effects
will appear, we consider the quantity [12]

U
G=S5-= (1)

(S = entropy, U = energy, T = absolute temperature) to be the basic function. As
variables here (in addition to the concentration) we have volume and temperature, of
course, because

P U
dG = ZdV + dT. (1)



The calculations to be carried out below differ from the classical ones in that the electrical
effects of the ions are taken into account. Accordingly, we divide U into two components,
a classical component Uy and an additional electrical energy U,

U="U;+U.
Considering that, according to equation (1),

oG

T2
oT

=U (2)
and also divide the potential G into two parts:

G =G+ G,

we find that, according to equation (2)

G, = /—dT

Our main task is to determine the electrical energy U, of an ionic solution. For practical
purposes, however, the potential GG is not as suitable as Planck’s preferred function

U+pV

d=5-— . (4
s- =2 @)
As the differential form of the definition
% U+ pV
P =—— ——dT (4
d po + T2 dT (4)

shows, the variables important to the potential @ are pressure and temperature, and,
because the vast majority of experiments are performed at constant pressure (and not at
constant volume), @ is preferable. A comparison of equations (4) with (1) yields

PV
d—G_
¢~ (5)

if G above is known, then we must find and add the term —pV//T as a function of p and
T. Considering equation (1°), we can conclude that

b _0G_ oGy G,
T oV oV oV’

and so have obtained the equation of state that relates pressure, volume, and temperature
for the ionic solution. It can be interpreted by assuming that, as a consquence of the
electric effect of the ions, added to the external pressure p is an electric pressure p,, to be
calculated from the relation
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We will later have the opportunity [13] to determine this electrical pressure pe; it applies
only about 20 atmospheres to an aqueous solution, for example, of KC! at a concentration
of 1 mole per liter. Strictly speaking, it is not correct to use the classical approach for V'
(as a function of p and T) without considering the electrical effects of the ions, because the
pressure p. also causes a change in volume. However, understand that the compressibility
of the water is so low that 20 atmospheres can cause only a relative volume change of
0.001, so most applications the electrical addition to V' (as a function of p and T) can be
neglected. Furthering this observation, we will also break down @ into a classical part and
an additional electric component

b =&, + b, (7)

and, following equation (3), we can set

v,
@:Q:/ﬁmwm

The classical component @, is, according to Planck’s form:

@k = ZNZ(QOZ — klog G, (7”)
0
where

N,, Ny, .. N, ... N,

signify the numbers of individual particles in the solution, and N, should refer specifically
to the solvent [14]. Next is the thermodynamic potential referring to the single particle

Uit Py
QOZ_ 1 T

a quantity independent of the concentration; k is the Boltzmann constant, k& = 1.346 %
10~ 1%erg and ¢; signifies the concentration of particle i, such that

N;
" N,+Ny+..+N;+...+N,’

C;

from which the relation

ZCZ‘:l

0

follows.
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Having completed these preliminary remarks on thermodynamics, we come to the discussion
of the main task: calculation of the electrical energy Uk.

At first glance, it seems as if this energy would be obtained directly in the following way. If,
in the solvent with the dielectric constant D, there are two electric charges of magnitudes
¢ and —e at a distance r, then their mutual potential energy is

For simiplicity, consider a binary electrolyte such as K Cl that has completely dissociated
into ions such that there exist, in the volume V of the solution, Ny = N K-ions with
the charge +¢ and an equal number Ny = N Cl-ions with the charge —e. It can then
be imagined that the mean distance r, which is used in the energy calculation, equals the
mean distance between the ions, and because the volume associated with one ion is equal
to V/2N, we write

Vs
r—(zN) )

By using this value for r, one would estimate the electrical energy of the solution to be

2 9N

_ 1/3

In fact, J. Ch. Ghosh [15] proceeds in this way. This approach, however, is fundamentally
wrong, and the entire theory built upon it (practically characterized by the introduction
of the cube root of concentration) must be rejected.

The (negative) electrical energy of an ionic solution results from the fact that, when one
looks at any one ion in the environment described above, often dissimilar ions of the same
name are found, an immediate consequence of the electrostatic forces acting between the
ions. An exemplary case is crystals, such as NaCl, KC1, etc., in which, according to Bragg’s
investigations, each atom (which also occurs here as an ion) is immediately surrounded by
dissimilar atoms. As true as it is in this case (in accordance with the precise calculations of
M. Born) to estimate the electric energy of the crystal with the distance of two neighboring

dissimilar atoms, it is a mistake to overstate the analogy using the mean distance (55)"/*
in the case of a solution. In fact, a very different length is appropriate here, because the
ions are free to move and therefore can only maintain the length due to the evaluation of
differences in the probability of residence times of similar and dissimilar ions in the same
voxel [Volumelement] near a specific ion. From this it follows that the thermally induced

movement [ Temperaturbewegung] has an essential role to play in the calculation of Uk.

In terms of dimensions, one can only conclude that, assuming the size of the ions need not
be taken into account for large dilutions [16], one energy is the expression already given
above

52<2N>1/3

D\V
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However, another energy, measured by kT, plays an equal role in the thermally induced
movement. It is therefore to be expected that U, will take the form

o= ) ) ). o

where f is a function of the ratio of the two energies over which we cannot make claims a
priori [17].

Investigation of the limiting case of high temperatures also leads to the same conclusion.
If the energy of the thermally induced movement is large, and if one considers a voxel in
the vicinity of an ion handpicked for this consideration, then the probability that an ion of
the same name is found there is the same as the probability for a dissimilar one. So in the
high temperature limit, U, must disappear, i.e. the expression for U, also contains 7" as an
essential parameter at medium temperatures.

3. Calculation of the Electric Energy of an lonic Solution of an
Uni-univalent Salt.

In a volume V', N molecules of a uni-univalent salt (for example, KCl) are dissociated into
ions; if the absolute value of the charge of an ion is ¢ (4.77 x 10710 electrostatis units),
let the dielectric constant be D. We consider one of these ions with the charge 4+ and
intend to determine its potential energy u relative to the surrounding ions. The direct
calculation, as attempted by Milner, taking into account every possible arrangement of the
ions and allowing for their probability according to Boltzmann’s principle, has proved to be
too difficult mathematically. We therefore replace it with another consideration, in which
the calculation from the outset is guided toward the mean value of the electric potential
generated by the ions.

At a point P in the vicinity of the specific ion, let the mean electrical potential be ¢ with
respect to time; if one brings a positive ion to that location, then the work required is +&,
while for a negative ion the work —e1) is required. In a voxel dV at this point with respect
to time, therefore, we will find a mean value, according to the Boltzmann principle,

_£Y
ne ¥ dV

positive and

B
ne* dV

negative ions, setting n = % In fact, in the limit for T" = oo, the distribution of the ions

must become uniform, such that the factor before the exponential function is equal to %,
i.e. must be set equal to the number of ions of one kind per em? of the solution. For the
time being, however, nothing can be said with these data, because the potential ¢ of the
point P is still unknown. According to Poisson’s equation, however, the potential must

sufficiently satisty the condition

12
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A = ——
(0 Do

if the electricity with the density p in the medium is affected by the dielectric constant D.
On the other hand, after the above

0 =ne(e  —etil) = —2n€(‘5inz?; (9)

so 1 can be determined as the equation’s solution

8mne . ey

Ay = Bin—. (10
=7 o (10)
The further one moves away from the specified ion, the smaller will be the potential ¢/, and
for larger distance the sufficient approximation Q5in% can replace % If one does that,

equation (10) takes on the much simpler form [18§]
8mne?

AV =i

. (107)

Here the factor ¢ on the right side has the dimension of the reciprocal of the square of a
length. We set

2
o 8mne

= —0:" (11
Dk‘T’( )

so x is the reciprocal length, and equation (10’) becomes

Ay = 2%1p. (12)
The length introduced as
1 | DkT
r \ 8mwne?

is the most significant quantity in our theory and replaces the mean distance between the
ions in the deprecated approach of Ghosh. If one uses numerical values (see later) and if the
concentration is as usual in moles per liter of solution, then, if the measured concentration
is denoted by 7,

1 = 306 10 %cm
T Nal

for water at 0°C'. The characteristic length therefore reaches molecular dimensions when
7 =1 (1 mole per liter).

13



We now wish to interrupt this course of thought in order to explore the physical meaning
of the characteristic length.

In an electrolyte solution of potential 0, immerse an electrode whose surface has a potential
difference ¢ to this solution. The transition from v to 0 will then take place in a layer of
finite thickness given the above considerations. If we use equation (12) and designate z as
a coordinate perpendicular to the electrode surface, then we find

= We **

a function that satisfies equation (1). Because the right-hand term of equation (12), in the
sense of Poisson’s equation, signifies —%Q, the charge density associated with the given

potential is

D$2 —xz
0= e

According to this formula, % signifies the length at which the electrical density of the ionic
atmosphere decreases to the eth part. Our characteristic length % is a measure of the
thickness of such an ionic atmosphere (i.e., of the widely known Helmholtz double layer);
according to equation (11) it depends on the concentration, temperature, and dielectric
constant of the solvent [19].

Now that the meaning of the length 1 has been clarified, let us now use equation (12)
to determine the potential and density distribution in the environment of the specified
ion with the charge +¢. We call the distance from this ion r and introduce spatial polar
coordinates to equation (12). Then equation (12) becomes

1d 200
r2dr"  dr

and this equation has the general solution

) =2y (12)

e—ZE’f‘

b=A"— + A’GT. (13)

r
Because 1) disappears at infinity, it must be that A" = 0; the constant A, on the other hand,
must be determined from the conditions in the vicinity of the ion. We want to carry out
this determination in two steps, (a) and (b), while under (a) assume that the dimensions
of the ion have no effect; under (b) consider the ion to have a finite size. Considerations
under (a) then provide the boundary law for large dilutions, while (b) provides the changes
that are to be made to this boundary law for larger concentrations.

(a) Infinitesimal Ion Diameter.

The potential of a single point charge € in a medium of dielectric constant D would be

el
¢_5;7
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if no other ions are present in the medium. Our potential in equation (13) must agree with
this expression for infinitesimally small distances, so we write

= — = — ——— (14
D r Dr D r (14)

We have subsequently divided the potential into two components, the first of which repre-
sents the potential unaffected by the surrounding ions, and the second of which represents
the potential originating from the ionic atmosphere. For small values of r, the value of this
latter potential becomes equal to

9

D

the potential energy u, which contains the specified ion +¢ relative to its surroundings, is
therefore [20]

2
u = —%x. (15)

If one now has a series of charges e; and the potential at the respective location of a charge
is 1);, according to the laws of electrostatics, the total potential energy

Ue = ; Z eﬂpz

In our case, where N positive ions are present, each of which has the potential difference
— 5 relative to its surroundings, and N negative ions with a potential difference of +5x
are added, then the desired potential energy [21]

Ne, ex N, ez Ne2x

U= S (-2) - F+D) = -5

. (16)

At the same time, = is given as a function of the concentration by equation (11), so the
potential energy of the ionic solution is proportional to the square root of concentration
and not, as in Ghosh, proportional to the cube root of the same quantity.

(b) Finite Ion Diameter.

We noted earlier that the characteristic length % at concentrations of 1 mole per liter reaches
the scale of molecular dimensions. At such concentrations, it is therefore inadmissible for
the ion of finite molecular size to be replaced by a point charge, as was done under (a).
It would not correspond to the meaning of our calculation, based on Poisson’s equation, if

15



one wanted to introduce detailed concepts about the distances of mutual approach of ions.
Rather, we will now utilize an image [Bild] that considers an ion to be a sphere of radius
a, whose interior is to be treated as a medium with the dielectric constant D, and at the
center of which is the charge 4+ or —¢, as a point charge. The magnitude of a then does
not evidently represent the ion radius but measures a length that is the mean distance
up to which the surroundings, both positive and negative ions, can approach the specified
ion. Accordingly, with positive and negative ions of exactly equal size, a would be, for
example, expected to be of the same order of magnitude as the ion diameter. In general,
this ion diameter cannot yet to be regarded as the diameter of the real ion, because ions
are expected to be surrounded according to their hydration by a firmly adhered layer of
water molecules. Therefore, with the assistance of the length a, we can only approximate
reality with the schematic provided above. However, the discussion of practical cases (see
below) will show that this approximation is fairly extensive [recht weitgehende].

The potential for a specified ion remains

e—CCT

Y =Ax

, (17)

except the constant A must now be determined differently. According to our assumptions,
inside the ion sphere (for a positive ion) we set

el
=——+B. (17
y=<_+B (7)
The constants A and B are to be determined from the boundary conditions at the surface of
the sphere. There, for r = a, the potentials ¢ as well as the field strengths —% continuously
merge together.

Accordingly
—za 1
AS -4
a Da (18)
A el tma e 1
e >  Da?’
consequently
e e erx 1
= — B=—— . (18
D1+ za’ D1+ za (18)

The value of B represents the potential generated at the center of the ion sphere by the
ionic atmosphere; accordingly, one obtains the expression for the potential energy of a
positive ion relative to its surroundings

e2r 1
= —— . (19
Y D 1+ za ( )

As the comparison with equation (15) shows, the effect of the ion size is represented by the
factor 1/(1 + xa) only. For low concentrations (n small) z is also small following equation
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(11), and the energy approaches the value given above for infinitely small ions. For large
concentrations (z large), on the other hand, u gradually approaches the quantity

62

" Da’
such that the importance of our characteristic length % lessens compared to the new length
measuring the ionic size a.

With the aid of equation (19), the expression is similar to that under (a) for the total
electrical energy of the ion solution

_New
2D

1 1

U =
¢ 1+xa1+1+xa2

, (20)

if we clearly characterize the positive ions by a radius a; and the negative ones by another
radius az. We could now use equations (16) or (20) directly to determine our thermody-
namic function as explained in Section 2. In the meantime, let us first derive equation
(20) as an expression for the energy of any ionic solution, by eliminating the restriction to
uni-univalent salts introduced for the sake of clarity.

4. The Potential Energy of Any Ionic Solution.
In a solution there exist

Nj...N;j...N;

various ions with the charges

Z1...Rj.Rg

such that the integers z...z;...25, can measure the valances and be positive and negative.
Because the total charge is zero,

ZNiZi =0

must be true. In addition to the total numbers Nj, the ion numbers per em?

are also introduced.

Again, any ion can be specified, and in its vicinity the potential is determined according
to Poisson’s equation

17



47

A) = ——
(0 Do

The density of the 7th ion of this type is provided by Boltzmann’s principle

=
n;e —Zi kT

such that
et
0=¢) mizie T,
and the fundamental equation becomes

4re

A= ==Y nize” “ir . (21)

If we use the expansion of the exponential function in the previous paragraph, then equation
(21) practically becomes the equation

47r€
Dk‘T

S nity (21)
because the condition

causes the first term of the expansion to disappear. In the general case, therefore, the
square of our characteristic length - is to be defined by the equation [22]

4re?
2 _
ize, (22

while the equation for potential maintains its former form

Ay = 2.

Again, any ion is specified and the potential v in its vicinity is determined. In accordance
with the statements of the previous paragraph,

6*.777‘

b= A

r

for the field outside the ion.

If the ion has the charge z;¢ and has an approach distance of a;, then the inside of the ion
sphere becomes

18



zie'l

= —-+B
p=22"+B,
while the constants A and B are
_ zig et oziex 1
D1+ za;’ N D 1+za;

The given value of B corresponds to the potential energy

2e?r 1

D 1+93ai

U= —

of the ion specified ion relative to its ionic atmosphere, while the total electrical energy of
the ion solution, as can be readily seen, is

N;z? ez 1
U, = — L . (23
Z 2 D14 za; (23)

The inverse length x is defined in the general case by equation (22) [23].

5. The Additional Electrical Term to Thermodynamic Potential.

In Section 2 we came to the conclusion that the additional term originating in the potential
from the mutual effect of the ions

U
G=S5S——=
T
is determined from the equation
Ue
Ge == /ﬁdT

If we now use the expression given in equation (23) for U, to address the general case,
it must be remembered when integrating that according to equation (22) the reciprocal
length in this expression contains the temperature. The calculation becomes clearer when
we first conclude from equation (22) that

where D is considered to be temperature-independent [24], and then use x as the integration
variable, not T". So the result is
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x2dx

k
e=————5> N; -2/ . (24
G 4,”27%2122 Z 1+.TCL1 ( )

If one applies the abbreviation

Tra; = Ty,

one finds that

v=z 22 1 opu=wuldu 1 1
/ rar 3/ u u:{const—klog(l—i—xi)—2(1—|—xi)—|—2(1—|—xi)2}.

1+za; a} l+u a}

The constant of integration is determined in such a way that the electrical addition G, to
the total potential disappears from the limit for infinite dilution. Because x in equation (22)

is proportional to /3" n;2?, x = 0 corresponds to the case of infinite dilution. Accordingly,
the constant in the curly brace must be determined such that for z = 0 the parenthetical
expression also disappears, and within that limit

1
log (14 ;) —2(1 4+ z;) + 5(1 + xi)Q

the value —% means

3
const. = —
2

Then

w?de 13 1
= a?{ +log (1 + ;) — 2(1 + ;) + 5(1 +xi)2}

1+ za 2
and
k N.22 (3 1
G, = Ll b log (T4 2) —2(1+2) + =(1+ ;)% 3. (26
s S5 Hloa (1 m) 21 k) + 50+ 2 (20

The function in the curly brace, when expanded with powers of x;, takes the form

4 ) 6

+ ..

w|&,

3 1 x
3 +log (1 + ;) —2(1 4+ 2;) + §(l+xi)2 =

this is why one sets the abbreviation

Xi = x(z;) = ;{; +log (1 + ;) —2(1 + ;) + ;(1 + xi)Q}, (27)

7
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therefore y approaches the value 1 for small concentrations and can be expanded to

3 3
xi=1-— 4xz+5x— . (27)

By introducing this function and considering the definition in equation (22) of x?, our
addition to the thermodynamic potential can be reduced to the form [25]

zsx
N,— 2
=2 NiprgXe (28)

where, for the sake of clarity, according to equation (22) for z,

9 _ 4rre?
= DT 2"

is explicitly repeated again here.

For small concentrations, therefore, in G., each ion has a contribution proportional to =z,
i.e. proportional to the square root of the concentration. If the finite dimensions of the ions
were neglected, then, according to equations (27’) and (25), x; would be equal to 1, and this
dependency would appear to be valid for all concentrations. The dependence on the ion’s
size, which takes into account the individual properties of the ions, is therefore measured
by the function x given equations (27) or (27’). In the limit for large dilutions, however,
this influence disappears, and the ions only differ as far as their valences are different.

6. Osmotic Pressure, Vapor Pressure Depression, Freezing Point
Depression, Boiling Point Elevation.

According to Section 2 regarding equations (7), (77), and (7”), the thermodynamic function
@ of the solution is represented by the expression

2262 a:

— 3D TN

D =) Ni(p; — klog ¢;) i (29)
0

In this case, for the electrical addition to @, equation (28) is used, in which x; = x(z;) =
X(za;) is provided by equation (27) and, as explained in the previous paragraph, approaches
the value of 1 (unity) in the limit for infinitesimal concentrations. =z is our reciprocal
characteristic length, defined by equation (22),

4re?
2
= e niz;

According to the method used in Planck’s textbook on thermodynamics [possibly Vorlesun-
gen tber Thermodynamik (1897)], the laws of the phenomena named in the heading can
all be deduced by differentiation of equation (29). The condition for equilibrium in the
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transition of a quantity of d N,-molecules of the solvent from the solution to the respective
other phase is known,

5P + 6@ =0,

if @' signifies the thermodynamic potential of that second phase. We set

' = N, (30)

and wish to account for the case of equilibrium between the solution and the frozen solvent,
bearing in mind that the most extensive and reliable measurements for freezing point
depression are as a function of concentration. We now let N, vary by 0N, and N vary by
dN/ and then immediately find that

2
S(B+F) = GLON, + (o — klog c)oN, + 3 N, dlzx:) O

N,, (31
- 30T e on, e BV

as it is easily apparent

log ¢
0og05N

ZNZ(Slog CZ—ZN
0

has the value zero.

Because

SN = 6N,

the condition for equilibrium is

> 262 d(xy;) Ox
Loy = —k log cy+ 3 Njmo 0N
Po ¥ e +; '8DT dz ON,’

; (32)

it could be utilized in this form for all the phenomena named in the heading and represents
a relation between pressure, temperature, and concentrations.

In the definition of x, n; represents the number of ions of the ith type per unit volume,
such that

On the other hand, the whole formulation, like that of Planck for volume V, is based on
the linear approach

s s
V= Z N;V; = NyUp + Z n;v;
0 1
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Accordingly, equation (22) becomes

2 2
ox 4re o Niv,  dme* v, 9
- n;z

2 __ ‘ _
YON, T T DET &5y DKTV

i
according to this equation of definition one therefore finds

or T U,

ON, 2V’

and our condition for equilibrium takes the form:

~ o met d(rxi)
o /:kl o o izzg .
%) Y, 0g Co + v zljnfiDTx I

. (32)

The function for concentration characterizing the effects in question

d(xx;)
dx

can easily be calculated from equation (27). If we designate it as oy, it follows while keeping
the abbreviation

Tr; = Ta;
to
d(xx;) 1
o= T = | - 2l (1) (33)
For small values of x;, the expansion is
3 9 = 1
aiz1—7:1:,‘4—*@2—290?—#—...:23”—’— xy,
2 = v+3

such that o; approaches the value 1 (unity) for small concentrations; for large concen-
trations, o; disappears as 3/x7. Table 1 contains numerical values for o as a function of
x = za; Fig. 1 presents the trend of the function graphically.

Table I
x olx) x alx) x olx) % ofx)
0 1.000 0.4 0.598 0.9 0.370 3.0 0.1109
0.05 0.929 0.5 0.536 1.0 0.341 3.5 0.0898
0.1 0.855 0.6 0,486 1.5 0.238 4.0 0.0742
0.2 0.759 0.7 0.441 2.0 0.176 4.5 0.0628
0.3 0.670 0.8 0.403 2.9 0.136 5:5 0.0540
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Because we will later take the opportunity to address the freezing point of concentrated
solutions, it is advisable to calculate the magnitude of depression from equation (32)
without first introducing all the simplifications that are permitted in very dilute solutions.
The freezing point of the pure solvent is T,, the freezing point of the solution 7, — A, the
heat of fusion of the frozen solvent ¢, the specific heat of the liquid solvent at constant
pressure ¢,, and the same quantity for the frozen solvent ¢/. The three latter quantities
should always be related to a real molecule, such that they represent the typical molar
masses divided by Loschmidt’s number. Then, according to the equation that defines ¢,

2q
cp) T

For ¢, we can set

Continuing, we set

it finally follows that

A g Afe—c g s 2y

e —— - =—1 z o Ty 7-

T,kT, T2 ( 2k KT, 09 (1= 2. e) = gpp7 Z” i 50
If Loschmidt’s number is called N, then

Nqg=@Q

is the melting heat of a mole,
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NE =R
is the gas constant, and
Nc¢, = Cpand N¢, = C,,

the specific heat per mole of liquid or solid solvent, respectively, such that you can also
write

AQ AC-C  Q s 2
iRT T2 ( 2R RTO - log zl:cz 6DET Zvo n; Z g;. (34)

For small concentrations first A?/T2 then A/T, can be neglected, second,

—10g (I—ZCZ> :ZCZ'
1 1

becomes true, and third, the total volume can be identified with the volume of water by
considering the number of dissolved ions as infinitesimal relative to the number of water
molecules. It is identical when we set

Vo V; Nz
Vo Ny = —N; = — =
V NO N0+Zi U’L N’L

= C;.
With these approximations you find [26]

A Q s 2
T,RT, 2136< 6D/<;TZ‘”>’ (35)

whereas under the same assumptions, the classical formula would be

AQ
iRTo—XI:CZ.

7. The Freezing Point Depression of Dilute Solutions.

The characterstics of the electric effect of the ions are particularly evident in the limiting
laws for large dilutions, as represented by equation (35). We therefore wish to treat the
formulas and laws for this limiting case separately. Equation (35) is applicable to the
general case of a mixture of a variety of electrolytes that may also have only partially
dissociated into ions. Here we consider the special case of a single species of molecule in
solution. The molecule is completely dissociated into ions and consists of s-ion species,
numbered 1, ....... Tyoveenn s, such that
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Vi, ...Vj, ...Us

ions of the species 1, .....1, .....s compose the molecule. The charges associated with each of
these ions are

Zi€, .ZiE, ...ZsE.

(For HyS0y, this would be dissociated into the ions H and SOy, for example,

I/1:27 V2:17 21:+17 Z2:_27

if the superscript index 1 is related to the H-ions and the superscript index 2 to the SO4-
ions.)

Because the molecule as a whole is uncharged, it is true that

s
Z Viz; = 0.
1

The solution now consists of N, molecules of solvent and N molecules of the added elec-
trolyte, where N is considered small relative to N,. Then,

_ NN
_N0+ZL1§NZ _No.

G
Considering that

Ni = VZ'N

and designates c¢ as the concentration of the dissolved species, in the approximation used
here

so will

C; = V;cC.

Equation (35) for the freezing point depression then becomes

AQ _ _ |
foRTo - fozcz - fOCZV’L (36)

with
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e2r ¥ Vizfai

" 6DKT S v

Jo=1 - (37)

The quantity f, is the osmotic coefficient mentioned in the introduction, because f, = 1
would correspond to the transition to classical theory, as shown by equation (35’). If one
calls Ay the freezing point depression calculated according to the classical theory, then

A
Kk_fo
or
A — A
1— f=—2_=,
J A,

The relation in equation (37) therefore shows, qualitatively for the moment, that the actual
depression of the freezing point must be smaller than expected under classical theory, a
result that is consistently confirmed for dilute electrolyte solutions. The quantities = and
o occurring in equation (37) are determined by equations (22) and (33) (the latter with
the associated table). As explained in the previous section, o; measures the influence of
the ionic size and disappears at very low concentrations, because then o tends to value 1.
Accordingly, if we deal first with the limiting law, which should be valid for goose large
dilutions, then in the limiting case we find

e2r 3 ViZZ-Q

Jo=1=GDrT Su

(38)

On the other hand, according to equation (22)

4re?
2 _ Z B2
T T prr &

however, because

N
n;, =Vi— =rvn

Vv

with the introduction of the volume concentration n of the dissolved molecules, so too

4drne?
2 2
T° = T E viz; .

It follows that for very low concentrations,

g2 4re? SN2l 3/2
s= 1=y e INE )
J 6DkT Dk:TnZV< v ) (38)
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where n Y v; represents the total number of ions per cm? of the solution, and

2 3/2
w = (%”j) (39)

is to be called the valence factor, because it measures the influence of the ion valences z;
on the phenomena. It is best not to consider f, itself but the deviation from 1 (unity) and
so write for very low concentrations:

g2 [4me?

Firstly, with this formula expressing how the deviations 1— f, depend on the concentration,
namely, it states in this regard:

Theorem 1.

For all electrolytes, in the limit for low concentrations, the percentage deviation of the
freezing point depression from the classical value is proportional to the square root of the
concentration.

It is possible to state this law as a general law because all the electrolytes for large dilutions
can be considered as completely dissociated into ions. Of course, only the strong electrolytes
practically reach that area of complete dissociation.

Secondly, equation (39) makes a statement about the influence of ion valence, which can
be formulated as follows:

Theorem 2.

If the dissolved molecule dissociates into vy, ...v;, ...vs different ions of types 1, ...i, ...s
with the valences zy, ...z;, ...zs, then, for low concentrations, the percentage deviation of
the freezing point depression from the classical value is proportional to a valence factor w,
which is calculated from

2 3/2
w = (Z Yizi ) )
vV

As an example for the calculation of this valence factor, Table 2 is presented, where in the
left column an example of the type of salt is given, and in the right column the value of w
is given:
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Table II

Type Valence factor, w
KCl sl ¥ |
CaCl, z f2 = 2.83
CuS0, 4 I =8
AlCLs S V3 = 5,20
Alo(S0L) 5 6 V6 =16.6

The influence of the ions therefore increases considerably with increasing valence, which
also corresponds to the qualitative findings.

Thirdly, the solvent has an influence, in the sense of Nernst’s well-known suggestion for
explaining the ionizing force of solvents with a high dielectric constant. Following equation
(40), one finds

Theorem 3.

For low concentrations, the percent deviation of the freezing point depression from the
classical value is inversely proportional to the 3/2th power of the dielectric constant of the
solvent.

The remaining constants in equation (40) are the charge of the elementary electric quantum
e =4.77%1071% e.s.u., Boltmann’s constant k = 1.346 * 10716 erg, and the temperature T,
the latter of which occurrs both explicitly and implicitly, because the dielectric constant D
varies with T'.

If one deals with dilute solutions in the conventional sense, then ¢ can no longer be replaced
by 1 (unity), and equation (37) comes into effect, which is explicit:

g? \/47T€2—ZVZ'Z'201'
1_ 0= - iil . 4]_
fo= e\ Drr" 2" S 4

As Table 1 shows, as well as equation (33), upon which it is based, o; continuously decreases
with increasing concentration, and ultimately

3
2 2
x; -

2
xr=a;

i.e. inversely proportional to the concentration, because x is proportional to the square
root of this quantity. Therefore, according to equation (41), the deviation 1 — f, must first
increase proporational to the square root of the concentration for very low concentrations
but then increase with increasing concentration in view of the influence of o, i.e. the devi-
ation will reach a maximum and finally decrease again inversely proportional to the square
root of the concentration. Although this statement contains a poorly justified extrapo-
lation to larger concentrations of equation (41), which is specialized for dilute solutions,
the statement remains qualitatively valid even on closer examination of more concentrated
solutions (see Section 9). In fact, the measurements also show a maximum of deviation
of 1 — f, as a characteristic of the curves for the freezing point depression. However, we
believe that the phenomenon of hydration (see the concluding section) also significantly
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influence the production of the maximum. A numerical comparison of the theory with
empirical knowledge will be provided in Section 9.

8. The Dissociation Equilibrium.

If one does not restrict oneself only to strong electrolytes, there will be an equilibrium of
dissociation between undissociated molecules and ions. However, this equilibrium will not
be calculated according to the classical formula, because otherwise the mutual electrical
forces of the ions will interfere. The way in which this happens according to our quantitative
theory will be calculated here. We start again from equation (29) for the thermodynamic
potential @ of the solution

S S

Z€CC
=S Ny(¢; — k log ¢; N2
EO: (i 03 < +§1: 3D T

7 Xis

the individual particles present in the solution are both charged and uncharged. For the
latter we simply set z; = 0. The solvent will be provided with the superscript index o.
Now we introduce a variation of the number N; in the well-known manner and calculate
the corresponding change of the potential. This results in

=5 2 2 1=8 2252 d(xXz) 7=s 8x

:;)5]\7@-( 0; — k log ¢ +Z§N3DT:L’XZ+ZZ:1N3DT - ]ZladeNj,

taking into account that, according to the definition-equation (22),

4re? =3 Are? =5 Np22
2 _ l
! _DkT;nl DkTZ Vv

the quantity x may depend on all numbers N;...N,. If one exchanges the indices of sum-
mation ¢ and j in the third sum, then & may also be reduced to the form:

g2 ,d(xx;) Ox
0® =06N, —kl o) + ON; |pi — k1 i i+ )
( og C ;:1 0og C; 3D <Z Trx Z J%j du 5]\71-)]

However, following the definition of z can be calculated. If, for the volume, the linear

approach is maintained,

’8N

or x . 22— v 5yt
ON; 23 mzf 1%

Making the convetional assumption that the following proportion holds in a chemical re-
action in the solution
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the condition for equilibrium follows from the variation of the potential

2 1=s

i—s i=s S Qd(wxj)
HiPi e°x Z 1 njz
Z,ui logcizz 1 +6DkTZ 20 22X + (2 vZanj J= = JJ dx . (42)
=1 =1 i=1 E 1 nj .7

This differs from the classical condition by the additional term on the right-hand side. If
one ntroduces the activity coefficient f,, as was done in the introduction, one sets

Z wilog e; = log(f,K),
1

where K is the classical equilibrium constant, the activity coefficient is defined by the
relationship

523:. i=s s E Nz Qd(ffXJ)
log f,= 6DET Z 2;“22 Xi + Uz — Y Zn] Zj 32:1 J 7”JL o . (43>
i=1 j= 1 J j

According to this formula, it is of course possible to provide each atom participating in the
reaction or molecule with its own activity coefficient by setting

log fa = pilog fy + ..pilog fy+ ..pslog f2 (44)

with

. 2 s 21 n;z 2d§Xz)
log. fa = G| 2 i Ulzn] D s ()
.7

Then, however, as shown by equation (44’) by the appearance of x, this coefficient referring
to a particular species of molecule will not be applicable solely to quantities related to that
type of atom.

Again, simplifications are possible when limited to smaller concentrations. In that case,

s

2

(4 Z TLij
1

can be neglected compared to 2?; when this is the case, the volume of the dissolved sub-
stance is regarded as vanishing Wlth respect to the Volume of the whole solution. Therefore,

2 dxx:)
log f; = i z {2 Xﬁzl]]élm}- (45)

6DKT 17525
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Finally, the limit can be specified for the activity coefficient for maximally dilute solutions.
In this limit, where the effect of ion’s size vanishes, Y = 1 can be set to obtain

7 621' 9
log f!= 2Dsz§. (45")

Because x depends on the properties of all ions (affected by their valence), even in this
limit, coefficient f¢ is not simply a function of the properties of the ith ion. We refrain
from discussing the limiting law in detail and only comment again that, in the limit, log f,
is proportional to the square root of the concentration.

9. Comparison of Freezing Point Depression with Experimental
Empirical Knowledge.

Fig. 2 depicts the characteristic behavior of strong electrolytes. On the horizontal axis,
the variable vv, which measures the ion concentration, is plotted against -, which, as
stated earlier, is the concentration of the electrolyte in moles per liter [27], while v = > v;
represents the number of ions into which one molecule of the salt dissociates. The four
representatives KCl, K9S0y, La(NO3)s and MgSO, were selected from the four types
distinguished by their ionic valences. K C' dissociates into two univalent ions, K250, into
one univalent and two bivalent ions, La(NO3)s into three univalent and one trivalent ions,
and MgSO, into two divalent ions. If we designate the freezing point depression with Ay
that is expected in the case of complete dissociation according to the classical theory, and
the real observed freezing point depression with A, the expression is

A A

&) A

, (46)

i.e. the percentage deviation from the classical value was found and plotted as ordinate.
Following Section 7 we also set

O=1-f,; (46)

as shown, @ indicates the deviation of the osmotic coefficient from its limiting value 1.
Because, in an aqueous solution,

Ay = vy x 1.860° (47)

for all electrolytes, a point on the axis of abscissa corresponds to a concentration that should
always produce the same freezing point depression disregarding the mutual forces. We have
plotted the observed values alone without the corresponding curve to avoid any interference.
This method, however, was only made possible by the fact that some American researchers
have recently carried out very excellent measurements of freezing point depression at low
concentrations. The measurements of Fig. 2 are from Adams and Hall and Harkins [28].
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It is evident that the deviation © does not increase, as the law of mass action would
require, for small concentrations proportional to the first or even a higher power of the
concentration.

Additionally, the curves demonstrate the strong influence of ion valence.

Our theory now requires that, at very low concentrations, the percentage deviation @ be
proportional to the square root of the concentration, with a factor of proportionality that
depends substantially on the valence of the ions. According to equations (39) and (40) (if
the molecule dissociate into v; ... v; ... vs ions with valences z; ... z; ... 24
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g2 4re?
= N S v (48)
~Jo =W piT\ DR 2V

w = <Z”Z )3/2 (49)

Vi

with the valence factor

We must now express the number of ions n per cm? in concentration 7, measured in moles

per liter. We assume the value 6.06 * 10?* for Loschmidt’s number, then

n = 6.06 * 10%%.
Further, it is assumed that ¢ = 4.77 * 10719 es.u., k = 1.346 * 10~ %erg, and, because
the following deals with freezing points of aqueous solutions, 7" = 273 [sic]. For the di-

electric constant of water, we take the formula of interpolation calculated by Drude from
measurements, according to which [29], for 0°C,

D =88.23.

Using these figures (setting }- v; = v),
S 0231« 108\/_—
DkT""

© = 0.270 wy/v7y. (50)

and therefore

The quantity = becomes, using the above numerical values,

iz

z = 0.231 % 108/vy
14 cm

—. (51

In Fig. 3, observed values [30] of © were plotted against the abscissa /77, and the observed
points have been connected by straight lines.
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Additionally, in the figure, four straight lines radiating from the origin are depicted, which
represent the limiting law of equation (50). The four types of salt in the figure have the
valence factors

w=1, w:2\/§, w:3\/§, w = 8§,

corresponding to the aforementioned straight lines. It is apparent that the straight lines are
approximated for small concentrations, such that the limiting law with the square root from
the concentration evidently corresponds to the facts. The absolute values of the slope (as
expressed by the factor 0.270 w in equation (50)), calculated using the dielectric constant
88.23, and otherwise theoretically distinguished only by the valence factor, are confirmed
by the experiment. However, Fig. 3 shows that deviations from the limiting law begin early.
This agrees with the considerations of Section 3 and equation (51), according to which,
even in the case of uni-univalent electrolytes, the characteristic length 1/x is on the order
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of magnitude of the ion diameter already at v = 1, and it is therefore no longer permissible
to neglect it. We have now based our theory on the simplified form of equation (21’), of
the potential equation. This too could have an effect. However, we pointed out (see note
18) that this latter effect is theoretically relatively small. The experimental results also
indicate that the deviation from the limiting law are caused by the individual properties
of the ions. To show this, we present Fig. 4.

These observation are entered only for uni-univalent salts [31] as a function of 1/2v (because
v = 2 here). The straight line represents the limiting law discussed above. The deviations
are very different in magnitude and remarkably, in the case of the chloride salts, are ordered
as Cs, K, Na, and Li. This is the same sequence that results when alkali ions are ordered
by decreasing mobility, an order that contradicts the assumed size of the ions and, more
recently from Born [32], was considered to be correlated with the relaxation time of water
for electric polarization according to dipole theory. In order to allow an orientation towards
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work by Ghosh, the curve for @ is provided as a dashed line in the figure, as it results from
that theory. It should simultaneously apply to all salts and also goes to the origin with a
vertical tangent.

The question then arises as to how far our theory, which has been improved with regard
to ionic dimensions, is able to account for the individual deviations. The relationships are
illustrated in Fig 5.

Again, we chose the four electrolytes from the four types mentioned above and plotted the
observed values for © as a function of ,/7y. According to equation (41), considering the
ionic size (after entering the numerical values),

> Vizfai
e=1- fo = 0.270w\/V’}/W, (52)

where o; represents the formula of the argument z; = xa; tabulated in Table 1 and given by
equation (33), where q; is the length of the size of the ith ion relative to its surroundings. It
seemed to us appropriate, in the present situation, not to investigate the individual sizes of
ions, but to calculate with a mean diameter a that is the same for all ions of an electrolyte.
Then all o; become equal to each other and one obtains the expression for ©

O = 0.270 wy/vy o(za). (53)
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For the determination of the magnitude of a, we chose only one, namely the point observed
at the highest concentration, and then plotted the curve, with a determined according to
the theoretical equation (53), in the figure. Four dashed straight lines radiate from the
origin (the tangents of the curves) representing the limiting law equation (50) for large
dilutions. The agreement with the observations is a very good one, especially in terms
of the determination of the constant from a single observation point [33]. The figure is
supplemented by the following tables:

Table III.
KClfa = 3.76 % 107 %cm)
. P (6] e]
“Y 2y observed calculated

0.0100 0.100 0.0214 0,0237
0.01983 0.139 0.0295 0.0313
0.0331 0.182 0.0375 0.0392
0.0633 0.202 0.0485 0.0499
0.116 0.341 0.0613 0.0618
0.234 0.484 0.07358 e
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Table TV,
K250,(a = 2.69 x 1078 cm)

3y oy g =

cbserved calculated

0.00722 0.0906 0.0647 0.0612
0.0121 0.110 0.0729 0.0724
0.0185 0.136 0.0776 0.0871
0.0312 0.176 0.101 0.108
0.0527 0.229 0.128 0.132
0.0782 0.280 0,147 0.152
0.136 0.369 0.178 0.183
0.267 0.516 0.220 0.217
0.361 0. 600 0.238 s
Table V.
La(NOs) g(a = 4.97 x 10~° cm)
0 (&)
4y JZ?T observed calculated
0.00528 0.0728 0.0684 0.0828
0.0142 0.119 0.110 0.121
0.0322 0.179 0.151 0.157
0.0343 0.185 0.158 0.161
0.0889 0.298 0.197 0.204
0.0944 0.308 0.201 0.207
0.173 0.418 0.223 0.230
0.205 0.453 0.229 C.235
0.346 0.588 0.243 0.248
0.599 0.836 0.255 ——
Table VI.
MgSO,4fa = 3.35 % 107% cm)
(5] (¢}
2y' V2y' observed calculated
0.00640 0.0800 0.160 0.147
0.0107 0.103 0,199 0.179
0.0149 0.122 0.220 0.203
0.0262 0.162 0.258 0.248
0.0534 0.&31 0.3086 0.311
0.0976 0.312 0.349 0.368
0.138 0,372 0.392 0.400
0.242 0.493 0.445 G

In the first column, the respective ion concentration [34] v+, in the second column the
abscissa /vy of Fig. 5, in the third column the observed value of © [34], and in the
fourth column the value of the same quantity calculated from equations (53) and (51). The
number corresponding to the largest concentration is not listed here, because it was used
to calculate the value of the mean diameter a stated in the heading of the tables.

Finally, Fig. 6 provides a plot of the theory and observation of aqueous KC' solutions. In
discussing this figure, our primary goal is to make some remarks regarding the behavior of
concentrated solutions; in addition, we intend to show how large the deviations are between
the separate results given in the literature by individual observers with purportedly great
accuracy. For this purpose, the figure contains all the observations we have found of KC'l
solutions since the year 1900 [35].
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As an abscissa, as previously, /27 is chosen, where v is by definition the concentration in
moles per liter of solution. All data referring to differently measured concentrations have
been converted to those concentrations using measured densities [36] of K C solutions. The
ordinate is again referred to as © but does not exactly represent the previous expression

A —A
AV

In fact, the classical theory, when it comes to concentrated solutions, no longer shows
proportionality of freezing point depression and concentration. The first reason for this is
that log(1 — ¢) appears in the classical equation, not the concentration c itself. Second, the
difference between the thermodynamic potentials of ice and water is no longer accurately
represented by the first term of the Taylor series, propotional to A, and the second member,
incorporating A2, must be retained. Accordingly, in this case, we have to use the full
equation (34). In the case of KCI, ny = ny = n and z; = —29 = 1 are to be set, and we
wish to replace the two ion diameters a; and as by a mean value a. Then equation (34)
can be arranged as follows

2

1 [A Q A Cp—C Q e
2m;0[ (73z _RTO>+10g (1=2¢)) = =57 B

T,RT, T2

The left-hand term is now calculated for different concentrations. For this, we set C),—C), =
3.6, corresponding to an approximate value for C]; = 14.4, as extrapolated from Nernst’s
measurements [37] of the specific heat of ice at 273°. For the calculation it is still necessary
to know the molar concentration ¢ and the volume concentration v. With the aid of the
observed density of the solution, this relation can be readily established; however, both
here and in the derivation of the equation itself, the molecular weight of the water has a
certain influence. As a first approximation, this influence disappears, but the second-order
members are not free from this influence. Insofar as this effect only influences the second
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order, its influence is greatly suppressed, so we have consistently used the simple expected
molecular weight 18. The quantity 2nv, in the denominator can finally be equal to

5
M, = 20—
n 1000

if 2, signifies the molar volume of water. If no mutual electrical effect of the ions were
present, the left-hand term would have to be zero at the onset of the observed depression
of the freezing point. In fact, it gives a finite value, and we call that value —6©. Then,
according to the theory, this difference @ must be represented by the right-hand term, such
that

e2x

= 6DkTU(m) = 0.270v/27 o(za) (55)

should hold. Moreover, it is confirmed that the definition of @ obeyed here agrees with the
limit given above for low concentrations.

The points, which are plotted in the figure, have the ordinates calculated from the obser-
vations using the outlined method. The curve in the figure represents the right-hand term
of equation (55), assuming a = 3.76 * 10~% cm. This value of a was determined from an
observation by Adams, according to which the experimental value @ = 0.0758 pertains to
v = 0.117. The straight line, which is also plotted in the figure, again represents the limiting
law for extreme dilution corresponding to o = 1. It can be claimed that the observations
are representative up to concentrations of about 1 mol/liter. At higher concentrations, the
observations show a maximum for ©. Although the theoretical curve has a maximum, but
this is, as the figure shows, so flat that it is hardly indicated. We would like to regard this
difference at high concentrations as real and make several remarks in the next section.

10. General Remarks.

It may be concluded from the preceding sections that it is inadmissible from the theoretical
as well as the experimental standpoint to consider the electrical energy of an ionic solution
essentially determined by the mean mutual distance of the ions. Rather, the characteristic
length is a quantity that measures the thickness of the ionic atmosphere, or, to refer to a
more familiar concept, the thickness of a Helmholtz double-layer. Because this thickness
depends on the concentration of the electrolyte, the electrical energy of the solution also
becomes a function of this quantity. The fact that this thickness is inversely proportional
to the square root of the concentration results from the fact that the limiting laws for large
dilutions owe their characteristic nature to that 1/2 power. We must therefore refrain from
discussing a lattice structure of the electrolyte in the popular sense, and, as the development
of the subject has shown, although taking this image too literally will lead to impermissible
errors, a kernel of truth is contained in it. To make this clear, we will perform the following
two thought experiments. First, take a space unit and think of moving it many times in
succession to any point of the electrolyte. It is clear that, in a binary electrolyte, one
will encounter equally often a positive as a negative ion. Second, however, take the same
space unit and place it in the electrolyte many times in succession, not quite arbitrarily
but always such that it, for example, is always removed by a certain distance (of several
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angstrom) from a randomly selected positive ion. Now, one will no longer encounter both
positive and negative charges but more frequently the negative ones. Therefore, in the
immediate vicinity of each ion, the oppositely charged ions predominate in number, and
one can rightly see an analogy to the crystal structure of the NaCl type, where every
Na-ion is directly surrounded by 6 Cl-ions and every Cl-ion by 6 Na-ions. However, it is
important to note an essential characteristic of the electrolyte solution is that the measure
of order is determined by the thermal equilibrium between attractive forces and thermally
induced movement, while it is predetermined in the crystal.

The calculations and the comparison with empirical knowledge were carried out such that
the ambient solvent was expected to have its usual dielectric constant. The success proves
the validity of this assumption, but in itself this procedure is justified at low concentrations
and should lead to errors at large concentrations. In fact, it follows from dipole theory that
dielectrics at high field strengths [Feldstdrken| must exhibit saturation phenomena that
are similar to the known magnetic saturation. The recent experiments by Herweg [38] can
be regarded as an experimental confirmation of this theoretical requirement. Because a
field strength of approximately 200 000 volt/cm can be expected at a distance of 10~7 cm
from a singly charged ion, one should be prepared to observe some of these saturation
phenomena. It would, of course, be very interesting if it were possible to extract that effect
from these observations, the more such that nature makes available to us field strengths of
a magnitude that would otherwise be difficult to attain by ordinary experimental means.

But, in other ways, more concentrated solutions must exhibit special behavior. If there
are many ions in the surroundings of each individual, this may be considered a change of
the surrounding medium in electrical terms, an effect that has not been considered in the
preceding theory. Whatever it may be, let it emerge from the following consideration. Take
an ion that is held captive and one that is mobile, approximately oppositely charged, and
investigate the work required to remove the mobile ion. This work can then be regarded as
consisting of two parts: firstly, the ion will consume some work to remove it, but secondly,
one will gain work by subsequently filling the space previously occupied by the ion with
the solvent. Now, experiments on the heat of dilution actually provide an indication of
the real existence of such conditions. If, for example, a solution of H NOj3 of initially low
concentration is used and it is diluted with a large amount of water (that is, so much that
dilution would no longer produce a thermal effect), then cooling takes place, i.e., work
must be done in the sense of the prior considerations to further separate the ions from each
other. However, if the starting solution has a larger concentration, heat will be generated
in the same experiment, i.e., work is gained by liberating the surroundings of each ion from
enough other ions and replacing them with water molecules. In conventional terms, this
means that hydration of the ions predominantly occurs, and this process is considered to be
an exothermic process. Obviously, the above considerations aim to interpret this so-called
hydration with purely electrical methods. In fact, it is possible to make an approximate
calculation that theoretically gives Berthelot’s rules for the dependence of the heat of
dilution on the initial concentration, which makes knowable the order of magnitude of the
numerical coefficients as they are found in practice. For the freezing point observations,
these considerations are meaningful in that they suggest the possibility of calculating why
and to what extent the curves found for the percent deviation © (see the case of KCI)
bend downwards at higher concentrations and even cross the abscissa axis, provided the
concentration is high enough. In this case, the freezing point depression is greater than
that which is classically expectable (and also, explicitly stated, if the classical theory is
used in its unabridged form). Until then, one had been contented to speak of hydration in
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such instances.

However, before the conditions for concentrated solutions can be investigated, it must first
be shown that the irreversible process of conduction of the current in dilute strong elec-
trolytes can be quantitatively controlled from the standpoint taken here. We reserve the
detailed statements on this subject for the following article, in which one will find their
mathematical execution. Here we content ourselves with a presentation of the basic ideas. If
an ion in the liquid moves under the influence of an external field strength, the surrounding
ions must constantly rearrange in order to be able to form the ion atmosphere. If one now
assumes a charge has suddenly arisen in the interior of the electrolyte, then the ionic atmo-
sphere requires a certain relaxation time for its formation. Similarly, for the moving ion,
the surrounding atmosphere will not be able to achieve its equilibrium distribution [Gle-
ichgewichtsverteilung|, so it will not be calculable on the basis of the Boltzmann-Maxwell
principle. However, their determination can be properly carried out with the equations
for Brownian motion. It can already be qualitatively estimated in what sense this effect
can have an effect based on the presence of a finite relaxation time. At a point in front
of the moving ion (i.e., a point toward which it moves), the electrical density of the ionic
atmosphere must increase with time; for a point behind the ion, it must decrease. Owing
to the effect of the relaxation time, however, the density before the ion will be somewhat
smaller than its equilibrium values, but behind it will not have dropped to its equilibrium
value. As a result, during movement there is always a slightly larger electrical density of the
atmosphere behind the ion than in front of the ion. Because charge density and ion charge
always carry opposite signs, a force occurs that slows the ion in its motion, regardless of
its sign, and that obviously must increase with increasing concentration.

This is one effect that works in the same sense as the decrease of the degree of dissociation,
which is otherwise calculated on the basis of Ostwald’s law of dilution. But there is a second
effect that must also be considered. In the vicinity of one ion there exist predominantly
ions of opposite sign, which, of course, move in the opposite direction under the influence
of the external field. These ions will drag with them the surrounding solvent to some
extent. This means, therefore, that the individual ion considered does not have to move
relative to a stationary solvent but rather relative to a solvent moving in the opposite
direction. Because, apparently, this effect increases with increasing concentration, one has
a second effect, which acts in the same sense as a decrease of the degree of dissociation.
Quantitatively calculated, the effect may be based on the same principles that Helmholtz
has applied for the treatment of electrophoresis.

The common factor of the two effects mentioned is, as the calculations show, that both are
directly related to the thickness of the ionic atmosphere, and therefore the forces gener-
ated are proportional to the square root of the concentration of the electrolyte, at least in
the limit of very low concentrations. Therefore, according to the observation material of
Kohlrauch [39], at low concentrations, the percentage deviation of the molecular conduc-
tivity from its limiting value is proportional to the square root of the concentration. The
proportionality factor naturally receives a molecular interpretation.

Anticipating the detailed presentation of the conditions of electrolytic conduction in the fol-
lowing article, we can conclude, as a result of the whole account, that the notion, according
to which the strong electrolytes are completely dissociated, is entirely supported.

Zurich, February 1923.
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Notes

1) The present considerations were inspired by a lecture by E. Bauer in the local Physical
Society based on Ghosh’s works. The general points of view, which are used here to
calculate freezing point depression and conductivity, led me, among other things, to
the limiting law using the square root of concentration. I was able to report about
it in the winter of 1921 in the local colloquium. Under the active assistance of my
assistant Dr. E. Huckel, the detailed discussion of the results and their summary took
place in the winter of 1922. — P. Debye

2) N. Bjerrum, Zeischr. f. Elektrochemie 24, 231, 1918.

3) A summary of this subject was reported by L. Ebert, “Research on the anomalies
of strong electrolytes (Forschungen ueber die Anomallen starker Electrolyte),” Jahrb.
Rad. u. Elektr. 18, 134, 1921.

4) See Fig. 2.
5) W. Sutherland, Phil. Mag. 14, 1, 1907.

6) Proceedings of the seventh international congress of applied chemistry, London May
27th to June 2nd, 1909, Section X: A new form for the electrolytic dissociation theory.

7) Milner, Phil. Mag. 23, 551, 1912; 25, 743, 1913.

8) J. Ch. Ghosh, Chem. Soc. Journ. 113, 449, 627, 707, 790, 1918; Zeitschr. f. phys.
Chem. 98, 211, 1921.

9) P. Hertz, Ann. d. Phys. (4) 37, 1, 1912.
10) N. Bjerrum, l.c. und Zeitschr. f anorgan. Chem. 109, 275, 1920.

11) The activity coefficient f, introduced here is not completely identical to that intro-
duced by Bjerrum. Namely, Bjerrum splits our coefficient f, into a product of coeffi-
cients, each of which is unique to the individual ionic species. (See Section 8.)

12) The potential G differs from the Helmholtz free energy F' = U —T'S only by the factor

—%. By itself, this difference is negligible; we define, as it appears in the text, a direct

connection to Planck’s thermodynamics.
13) See note 25.

14) Our relation differs from Planck’s in that we do not count the number of moles but
the actual number of particles, which proves to be more suited to our purposes. This
corresponds to the occurrence of the Boltzmann constants k instead of the gas con-
stant R. An essential difference from Planck is, of course, not caused by the above
formulation.

15) See note 8.

16) It will be shown below that this assumption is true.
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17) The considerations of O. Klein agree with this discussion of dimensions: Meddelanden
fran K. Vetenskapsakademiens Nobelinstitut 5, Nr. 6, 1919 (A commemoration of the
60th birthday of S. Arrhenius).

18) We have also investigated the influence of the following terms in the development of

(‘Sin% and found that their influence on the final result is very small. For the sake of
brevity, the communication of these calculations will be omitted.

19) The agreement of the above results regarding the bilayer with calculations of M. Gouy
was subsequently shown. Journ. de phys. (4), 9, 457, 1910 on the theory of the
capillary electrometer. Perhaps we may point out that in this case equation (10)
enables a simple solution.

20) Apart from the graphical result mentioned in the introduction, Milner’s work contains
a footnote (Phil. Mag. 23, 575, 1912), according to which, in the case of the above

text, in our notation
e Im
U= ——Iy/—=.
D V2

A derivative of this formula is missing. It differs from our resultant by the factor \/g :

21) Because we are concerned only with the mutual potential energy, ¢); must not take the
value of the whole potential but only the part resulting from the surrounding charges,
always calculated for the point at which the potential charge e; is located.

22) Because, for monovalent salts, ny = ny = n and z; = z2 = 1, the general equation (22)
for 2% agrees with the earlier one (see equation (11)) given for this special case.

23) By the expression given for U,, we are immediately able to derive to the heat of
dilution. We convinced ourselves that the theoretical value corresponds to the obser-
vations.

24) In fact, a direct kinetic theory of osmotic pressure, reported elsewhere (Recueil des
travauz chimique des Pays-Bas et de la Belgique), shows the validity of the final ex-
pression for G, independent of this assumption. For a discussion of the thermodynamic
calculation we can refer to B. A. M. Cavanagh, Phil. Mag. 43, 606, 1922.

25) The additional electric pressure p., which was mentioned in Section 2, equation (6’),
results from this formula. The numerical value given there was calculated in this way.

26) There is no need to make a distinction between ions and uncharged molecules; if both
occur, you simply have to set z; = 0 for the latter. If all particles are uncharged,
naturally equations (35) and (35’) become identical.

27) For the salts K9S0y, La(NOs3)s, M gSOy, instead of 7, the concentration 4’ is used in
moles per 1000 g of water, as given by the authors cited below, because, in the absence
of measurements of the density of these salt solutions at 273°, a conversion into moles
per liter was not executable; this means only an insignificant deviation among the low
concentrations considered here.

28) L.H. Adams, Journ. Amer. Chem. Soc. 37, 481, 1915 (K Cl); L.E. Hall u. W.D.
harkins, ibid. 38, 1658, 1916 (KQSO4, La(N03)3, MgSO4).

29) Ann. d. Phys. 59, 61, 1896.
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30) L. H. Adams, l.c. (KNOs, KCI); R. E. Hall u. W. D. Harkins, l.c. (K350y,
La(NOs3)s, MgSOy4, BaCly); T. G. Bedford, Proc. of the Royal Soc. A 83, 454,
1909 (CuSOy4) [Concentration in mol per liter at KCl, CuSOy; a mole per 1000 g of
water at KNOg, BCLCZQ, KQSO4, La(NO3)3]

31) In addition to the references cited, measurements by H. Jahn, Ztschr. F. Phys. Ch.
50, 129, 1905; 59, 31, 1907 (LiCl, CsCl); E.W. Washburn et al. Maclnnes, Journ.
Amer. Chem. Soc. 33, 1686, 1911 (LiCl, CsNOs); W.H. Harkins u. W.A. Roberts,
ibid. 38, 2658, 1916 (NaCl) [concentration partly in moles per liter, partly in moles
per 1000 g of water].

32) M. Born, Zeitschr. f. Phys. 1, 221, 1920.

33) The method for determining a is explained in detail using the example of La(NOs)s.
For v/ = 0.17486 was observed @ = 0.2547; because v = 4, the abscissa becomes
VY = 0.836. According to the limiting law equation (50) for extreme dilution, if
w = 3V3 (as vy = 1, 1o, 23 = 3, 25 = —1 corresponding to equation (49)) then
© = 1.173, the value actually observed is derived from this limit by multiplication by
0.216. This factor is equal to o according to equation (53). From Fig. 1 one now finds
the ordinate o = 0.216 has the abscissa x = xa = 1.67; on the other hand, according
to equation (51), v/vy" = 0.836 is the value of x = 0.336 * 10~%cm~!. So the observed
value is the diameter .

a===4.97%10"%cm.
X
[For the salts K3S04, La(NO3)s, MgSO,, the concentration 7' is given in moles
per 1000 g of water and was used instead of ~ for the determination of ©, which is
therefore designated ©'. For the low concentrations considered here, the deviations
are very slight; a conversion from 4’ to v observed no appreciable change in the values
for the @ observed, the @' calculated, and the a yielded.]

34) See the previous note.

35) J. Barnes, Trans. Nova Scot. Inst. of Science 10, 139, 1900; C. Hebb, ibid. 10, 422,
1900; H. J. Jones, J. Barnes u. E. P. Hyde, Americ. Chem. Journ. 27, 22, 1902; H.
B. Jones u. Ch. G. Caroll, ibid. 28, 284, 1902; W. Biltz, Zeitschr. f. phys. Chem.
40, 185, 1902; Th. W. Richards, ibid. 44, 563, 1903; S. W. Young u. W. H. Sloan,
Journ. Americ. Chem. Soc. 26, 919, 1904; H. Jahn, l.c.; T. G. Bedford, 1l.c.; F.
Fligel, Zeischr. f. physl. Chem. 79, 577, 1912; L. H. Adams, l.c.; W. H. Rodenbusch,
Journ. Americ. Chem. Soc [sic] 40, 1204, 1918.

36) Baxter u. Wallace, Journ. Americ. Chem. Soc. 38, 18, 1916.
37) W. Nernst, Berl. Ber. 1910, 1, 262.

38) Zeischr. f. Phys. 3, 36, 1920 and 8, 1, 1922.

)

39) F. Kohlrausch u. L. Holborn, The Conductivity of Electrolytes, 2nd ed., Leipzig 1916,
p- 108 and 112.
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Translated Text (English, 1954)

ON THE THEORY OF ELECTROLYTES. 1I. FREEZING POINT
DEPRESSION AND RELATED PHENOMENA.*
(Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung
und verwandte Erscheinungen)

P. Debye and E. Hiickel**

Translated from
Physikalische Zeitschrift, Vol. 24, No. 9, 1923, pages 185-200

I. Introduction

It is known that the dissociation hypothesis by Arrhenius ex-
plains the abnormally large values of osmotic pressure, freezing
point depression, etc., observed for solutions of electrolytes, by
the existence of free ions and the associated increase in the num-
ber of separate particles. The quantitative theory relies on the
extension, introduced by van't Hoff, of the laws for ideal gases to
diluted solutions for the computation of their osmotic pressure.
Since it is possible to justify this extension on the basis of
thermodynamics, there can be no doubt regarding the general vali-
dity of these fundamentals.

*submitted February 27, 1923.

**The present conslderations were stimulated by a lecture by E.
Rauer on Ghosh's works, held at the Physikalische Gesellschaft.
The general viewpoints taken as the basls for the computation of
the freezing point depression as well as of the conductlvity lead
me, among other things, to the limiting law 1nvolving the square
root of the concentration. I could have reported on this during
the winter of 1921 at the "Kolloquium."™ With the active assist-
ance of my assistant, Dr. E. Hiickel, a comprehenslve dlscusslon
of the results and their collectlion took place during the winter

of 1922.

70 217



ELECTROLYTES

However, for finite concentrations we obtain smaller values
for freezing point lowering, conductivity, etc. than one wou%d ex-
pect on first consideration, in the presence of a complete disso-
ciation of the electrolyte into ions. Let P,, for instance, be
the osmotic pressure resulting from the classical law by van't Hoff
for complete dissociation, then the actually observed osmotic pres-
sure will be smaller, so that:

P=fnP*

where, according to Bjerrum,® the "osmotic coefficient" f, thus
introduced is intended to measure this deviation independent of
any theory-and can be observed as a function of concentration,
pressure, and temperature. In fact, these observations do not
relate directly to the osmotic pressure but to freezing point
lowering, and boiling point rise, respectively, which can both be
derived on the basis of thermodynamics, and by means of the same
osmotic coefficient f , from their limiting value following from
van't Hoff's law for complete dissociation.

The most evident assumption to explain the presence of the
osmotic coefficient is the classical assumption, according to
which not all molecules are dissociated into ions, but which
assumes an equilibrium between dissociated and undissociated mole-
cules which depend on the over-all concentration, as well as on
pressure and temperature. The number of free, separate particles
is thus variable, and would have to be made directly proportional
to fo. The quantitative theory of this dependence, as far as it
relates to the concentration, relies on the mass action law of
Guldberg-Waage; the dependence on temperature and pressure of the
constant of equilibrium appearing in this law can be determined
thermodynamically, according to van't Hoff. The complete aggre-
gate of dependencies, including the Guldberg-Waage law, can be
proved by thermodynamics, as is shown by Planck.

Since, the electric conductivity is determined exclusively by
the ions, and since, according to the classical theory the number
of ions follows immediately from fo, the theory requires the well
known relation between the dependence on the concentration of the
conductivity on the one hand and of the osmotic pressure on the
other hand.

A large group of electrolytes, the strong acids, bases, and
their salts, collectively designated as "strong" electrolyteg_
exhibits definite deviations from the dependencies demanded by the
classical theory. It is especially noteworthy that these devia-
tions are the more pronounced the more the solutions are diluted.*
Thus, as was recognized in the course of developments and following

*A summary presentatlion of this subject was given by L. Ebert,
*Forschungen ueber dle Anomallen starker Elektrolyte, » Jahrb, Rad.
u. Elektr., 18, 134 (1921).
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the classical theory, it is possible only with a certain degree of
approximation to draw a conclusion from f, as to the dependence of
the conductivity on the concentration. Moreover the dependence of
the osmotic coefficient f, on the concentration is also represented
entirely incorrectly. For strongly diluted solutions, fo approach-
es the value 1; if 1-f, is plotted as a function of the concentra-
tion ¢, classial theory requires for binary electrolytes, such as
KC1l, that this curve meets the zero point with a finite tangent
(determined by the constant of equilibrium, ). In the general
case, provided the molecule of the electrolyte splits into v ions,
we obtain from the law of mass action for low concentrations:

yv—ic'!

1—fo=——
fo vy K

so that in cases where splitting into more than two ions occurs,

the curve in question should present even a higher order of con-

tact with the abscissa. The complex of these dependencies con-

stitutes Ostwald's dilution law.

Actually observations on strong electrolytes show an entirely
different behavior. The experimental curve starts from the zero
point at a right angle (cf. Figure 2) to the abscissa, independent
of the number of ions, v. All proposed, practical interpolation
formulas attempt to represent this behavior by assuming 1-fo to be
proportional to a fractional power (smaller thaf 1, such as 1/2
or 1/3) of the concentration. The same remark holds with regard
to the extrapolation of the conductivity to infinite dilutions
which, according to Kohlrausch, requires the use of the power #.

It is clear that under these circumstances the classical
theory can not be retained. All experimental material indicates
that its fundamental starting point should be abandoned, and that,
in particular, an equilibrium calculated on the basis of the mass
action law does not correspond to the actual phenomena.

W. Sutherland,? in 1907, intended to build the theory of the
electrolytes on the assumption of a complete dissociation. His
work contains a number of good ideas. N. Bjerrum® is, however,
the first to have arrived at a distinct formulation of the hypo-
thesis. He clearly stated and proved that, for strong electro-
lytes, no equilibrium at all is noticeable between dissociated and
undissociated molecules, and that, rather, convincing evidence
exists which shows that such electrolytes are completely disso-
ciated into ions up to high concentrations. Only in considering
weak electrolytes, undissociated molecules reappear. Thus the
classical explanation as an exclusive basis for the variation of,
for instance, the osmotic coefficient, has to be abandoned and the
task ensues to search for an effect of the ions, heretofore over-
looked, which explains, in the absence of association, a decrease
in fo with an increase in concentration.
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Recently, under the influence of Bjerrum, the impression gained
strength that consideration of the electrostatic forces, exerted by
the ions on one another and of considerable importance because of
the comparatively enormous size of the elementary electric charge,
must supply the desired explanation. Classical theory does not
discuss these forces, rather, it treats the ions as entirely 1nd?-
pendent elements. A new interaction theory has to be analogous in
some respects to van der Waals' generalization of the law of ideal
g€ases to the case of real gases. However, it will have to resort
to entirely different expedients, since the electrostatic forces
between ions decrease only as the square of the distance and thus
are essentially different from the intermolecular forces which de-
cline much more rapidly with an increase in distance.

Milner* computed the osmotic coefficient along such lines.
His computation can not be objected to as regards its outline, but
it leads to mathematical difficulties which are not entirely over-
come, and the final result can only be expressed in the form of a
graphically determined curve for the relation between 1-fo and the
concentration. From the following it will further emerge that the
comparison with experience, carried through by Milner, supposes the
admission of his approximations for concentrations which are much
too high and for which, in fact, the individual properties of the
ions, not taken into account by Milner, already play an important
part. In spite of this, it would be unjust to discard Milner's
computation in favor of the more recent computations by Ghosh® orr
the same subject. We shall have to revert, in the following, to
the reason why we can not agree to Ghosh's calculations, neither
in their application to the conductivity nor in their more straight-
forward application to the osmotic pressure. We will even have to
reject entirely his calculation of the electrostatic energy of an

ionized electrolyte, which is the basis for all his further conclu-
sions.

The circumstances to be considered in the computation of the
conductivity are very similar to those for the osmotic coefficient.
Here also the new interaction theory has to make an attempt at
understanding the mutual electrostatic effect of the ions with re-
gard to its influence on their mobility. An earlier attempt was
made in this direction by Hertz.® He transcribes the methods of
the kinetic theory of gases, and, in fact, finds a mutual inter-
ference of the ions. However, the transcription of this classical
method, and particularly the use of concepts like that of the free
path length of a molecule in a gas for the case of free ions
surrounded by the molecules of the solvent, does not seem to be

very reliable. The final result obtained by Hertz cannot, in fact,
be reconciled with the experimental results.
In this first note, we shall confine ourselves to the "osmotic

coefficient fo" and to a similar "activity coefficient fqr" used by
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Bjerrum’ and stressed in its significance. Even for such (weak)
electrolytes, where a noticeable number of undissociated molecules
is present, the equilibrium cannot simply be determined by the
Guldberg-Waage formula in its classiecal form:

c;'u' Cg“'. s byl = K

(¢c1y €2y...c,, are the concentrations, K the constant of equili-
brium). It will be necessary, in view of the mutual electrostatic
forces between the ions, to write:

f.K

instead of K, introducing the activity coefficient® fq. This co-
efficient, just as f,, will depend on the concentration of the
ions. Though, according to Bjerrum, a relation to be proved by
thermodynamics exists between f, and f,, their dependence on the
concentration is different for the two coefficients.

The detailed treatment of conductivity shall be reserved for
a later note. This division seems justified, since the determina-
tion of fo and f, requires solely a consideration of reversible
processes, whereas the computation of mobilities has to do with
essentially irreversible processes for which no direct relation
to the fundamental laws of thermodynamics exists.

II. Fundamentals

As is well knovn, it is shown in thermodynamics that the
properties of a system are completely known, provided one of the
many possible thermodynamic potentials is given as a function of
the correctly chosen variables. In view of the form in which the
terms based on the mutual electric effects will appear we chose the
quantity:**

*The activity coefficient fa introduced here 1s not 1ldentical with
that introduced by Bjerrum. Bjerrum splits our coefficlent fa in
order to give a produce of coefficlents each of which is asso-
clated with a separate lon type. (Compare sectlion 8).

**rne potential G differs from Helmholtz' free energy F=0-17TS
only by the factor -1/T. This difference 1s not essentlal at all;
we define it as in the text: to have immedlate connectlon with

Planck's thermodynamlics.
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U
C=S—— (1)

(S = entropy, U = energy, T = absolute temperature) as basic func-
tions. As variables in this case (besides the concentration) we
have, naturally, volume and temperature, since:

dc;:%dv.{.%dT (1)

The computations which follow differ from the classical computa-
tions in that the electrical effects of the ions are taken into

account. Accordingly, we divide U into two parts, a classical part
Up and an additional electrical energy U, :

U=U"+Ul‘
If we consider that, according to equation (1):

3G
Ttez=U (2)

and divide the potential G also into two parts:
G=0G:+ G,

we find that, according to equation (2):
U,

L )
C.= 74T (3

It is our main assignment to determine the electr
an ionic solution. For practical evaluations,
tial G is not as suitable as the function:

ic energy U, of
however, the poten-
"’=S———T— (4)

also preferred by Planck. As shown by the differential form of
this definition:

v U4 pV :
dP=—odp+ '!;.f aT 1)

the variables pertaining to the potential ® are pressure and tem-
perature, and since a large majority of the experiments are carried
through at constant pressure (and not at constant volume), Db is
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preferable. A comparison between (4) and (1) results in:

e G2
=gty (s)

if, according to the above, G is known, it remains to find the
additional term -pV/T as a function of p and I, and to add it. 1In
view of (1') we can conclude that:

p 3G 3G, G,
T=w—wt (6)

2

and so have obtained the equation of state which relates pressure,
volume, and temperature for the ionic solution. It can be inter-
preted by assuming that, as a consequence of the electric effect
of the ions, an additional, electric pressure p,, is added to the
external pressure p; the electric pressure is to be computed from
the relation:

oG, .
be=—3p (©)

Later we shall, incidentally,® have occasion to determine this
electric pressure p,; it amounts to approximately 20 atmospheres
for an aqueous solution of, for instance, KCl at a concentration

of 1 mole per liter. Strictly speaking, it is incorrect to use the
classical expression for V (as function of p and T) without regard
to the electric effect of the ions, since the pressure p, causes
also a change in volume. In view of the low compressibiiity of
water which results in a relative change of volume of 0.001 for

20 atmospheres, the electric addition to ¥ (as function of p and T)
can be neglected for most applications. In the light of this
remark, we shall also divide ¢ in a classical part and an addition-

al electric part:
=D+ P, (7)

and can put, according to equation (3):

&b,=G,— ﬁ“‘ (7)

The classical part, ®,, has, according to Planck, the form:

®, =3 N (i — klog ¢,) (7"
i}

*Ccompare with footnote, page 237.
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where :
Nl.ll N]n"-va'“Nl

designate the number of separate particles in the solution, and ¥,
refers to the solvent.* Further the thermodynamic potential re-
ferred to a single particle is equal to:

) W+ Py
(P: sl i T
8 quantity independent of the concentration; £ is Boltzmann's

constant, & = 1.346 X-10-1® erg, and c; denotes the concentration
of the i type particle so that:

N;
No+N+ .. FN:+...+N,

Ci=
of which the relation:

2(’,‘-‘—“1

o

is a consequence.

Upon completion of this thermod ynamic introduction, we pro-

ceed to the discussion of the principal assignment: computation of
the electric energy Ug.

At a first glance it appears as if this energy could be ob-
tained directly in the following manner. 1In a solvent with dielec-
tric constant D are located two electric charges of magnitudes €

and -e, respectively, at a distance ry 80 that their energy is
given by:

1 ¢t

Dy

For simplicity, in these general considerations,

a binary electro-
lyte, such as KC1, is kept in mind which is compl

etely split into

*our relation deviates from that given by Planck1i
not use the number of moles but rather the numbe
cles, which appears to be more sultable for our purpose. This
corresponds to the appearance of Boltzmann's constant % instead
Of the gas constant R. An essentlal difference compared with

Planci 1s,0f course, not caused by this formulation,

N as much as we do
r of actual parti-
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ions so that in a volume V of the solution ¥, = N K ions with the
charge +e and an equal number ¥, = ¥ C1 ions with the charge —€
are present. It can then be imagined that the average distance r,
which enters into the computation of energy, equals the average
distance between the ions, and since the volume associated with
one ion is equal to V/2N, we write:

—(&)

In using this value for r, the electric energy of the solution
would be estimated to:

e? /2N\'h
v.=—N5 (%)

In fact, Ghosh® proceeds in this manner. This consideration, how-
ever, is wrong, and the complete theory based on it (practically
characterized by the introduction of the cube root of the concen-
tration), is to be rejected.

The (negative) electric energy of an ionic solution originates
from the fact that, considering any one ion, we shall find on the
average more dissimilar than similar ions in its surroundings, an
immediate consequence of the electrostatic forces effective between
the ions. There is some similarity to the case of crystals, such
as NaCl, KCl, etc., in which, according to Bragg's investigations,
each atom (here also present as ion) has dissimilar ones as nearest
neighbors. Though it is correct (in agreement with the exact cal-
culations by Born) to estimate the electric energy of the crystal
by inserting the distance of two neighboring dissimilar atoms, it
is a mistake to overestimate the analogy, and to use the same
average distance (V/zﬁ)l 3 in the case of solutions. In fact, here
an entirely different length is of fundamental importance, since
now the ions can move freely, and, consequently, the desired
length can only follow on the basis of an evaluation of the differ-
ence in probability for the period of time spent by similar and
dissimilar ions in the same volume element in the vieinity of a
gpecified ion. From this alone it already follows that the temper-
ature movement will be of importance in the calculation of U,.

From dimensions alone, we can only conclude the following.
Assuming that the size of the ioms does not have to be taken into
account® for high dilutions, then one energy is the expression

given above:

*In the following it will be shown that this assumption actually
holds.
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)

Another energy, that of the temperature movement, measured by kT,
is of equal importance. Thus it is to be expected that v, will
take the form:

oy (G ()'0)

in which f is a function of the ratio of the two energies about
which we can not make any a priors: statements.*

A consideration of the limiting case of high temperatures
leads to the same conclusion. If the energy of the temperature
movement is large, and if we consider a volume element in the
neighborhood of an ion singled out for this consideration, the
probability of finding in it a similar jon is equal to the pro-
bability to find a dissimilar one. In the limit for high tempera-
tures, {, must disappear, i.e., the expression for U, has T as
essential parameter also for medium temperatures.

III. Computation of the Electric Energy of
an Ionic Solution of a Uni-Univalent Salt

In a volume ¥V, ¥ molecules of a uni-univalent salt (for inst-
ance, KC1) are present disintegrated into ions; if the absolute
value of the charge of an ion is € (4.77 X 1071° eleetrostatic
units), the dielectric ccnstant of the solvent is D. We follow
one of these ions with the charge +e, and we intend to ascertain
its potential energy u with respect to the surrounding ions.
Direct calculation, as attempted by Milner, who considers each
possible arrangement of ions and lets it enter into the computa-
tion with the probability corresponding to Boltzmann's principle,
proved too difficult mathematically. We therefore replace it by
another consideration, where the computation is, from the beginning
directed toward the average of the electric potential generated by
the ions.

At a point P in the surroundings of the specified ion, the
average value of the electric potential with respect to time be v;
to transport a positive ion there, the work expended is +eys for i
a negative ion, however, the work expended is —ey. Therefore, in

*The conslderations by O. Kleln are In agreement with this discus-
sion on dimenslons. MNeddel. fran. K. Vetenskapsakad. Nobelin-
stitut, 5, No. 6 (1919) (Article to celebrate the 60th birthday
of S. Arrhenius).
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a volume element dV at this location, we shall find, as an average
value with respect to time, according to Boltzmann's principle,

ey

ne 4y
positive and:

f_l{l_
ue+“'dV

negative ions, putting n = ¥/V. 1In fact, in the limit for T = =,
the ion distribution must become uniform, so that the multiplying
factor of the exponential function must be put equal to #/V, i.e.,
equal to the number of ions of one kind per cubic centimeter of
solution. With these statements however, nothing can as yet be
obtained, since the potential w of the point P is still unknown.
However, according to Poisson's equation, this potential must
satisfy the condition:

if the electricity is distributed with a density p in a medium of
dielectric constant D. On the other hand, from the above:

Ly i

E
(J-=ﬂ£(8_ BT +ﬁ)=—zne@3iu% (9)

so that y can be determined as a solution of the equation:

8
4y =5~ Gin gy (10)

The further we go from the specified ion, the smaller will be the
potential y. For large distances we can then replace, with suffi-
cientapproximation, sinh(ey/kT) by ey/kT, If this is done, equa-
tion (10) assumes the much simpler form:

8aned
dy =" ¥

(10)

¥we have also Iinvestigated the effect of the successive terms 1in
the expansion of sinh(ey/kT), and could establish that thelr ef-
fect on the final result 1s rather small. Thils computation 1s

not presented.
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In this equation, the factor of y on the right hand side has the
dimension of the reciprocal of the square of a length. We put:

w2208 (11)

8o that x is the reciprocal of a length, and equation (10') be-
comes:

Agp-——x'lp (12)

The length, introduced in this way:

€__ DRT
x ¥ Bane

is the essential quantity in our theory and replaces the average
distance between ions in Ghosh's consideration. If numerical
values are inserted (see later) and the concentration is measured,
as usual, in moles per liter solution, then, if this conecentration
is denoted by v,

-Lmﬁ 10~%cm

= ¥r

for water at 0°C. The characteristic length reaches molecular
dimensions for a concentration of y = 1 (1 mole per liter).

We shall now interrupt the course of the consideration in
order to investigate the physical interpretation of our character-
istic length.

If an electrode is immersed in an electrolytic solution of
potential o, the surface of the electrode compared with the solu-
tion have a potential difference y. The transition from Vv to o will
then take place within a layer of finite thickness which is given
by the above considerations. Using equation (1lx) and designating
by z 2 coordinate at right angles to the surface of the electrode,
we obtain:

‘p= qfs—l'
a function which satisfies equation (1lZ). Since the right term of

equation (1z), from Poisson's equation, stands for -4np/D, the
charge density related to the given potential is:

Dx? S
e=—2=Y
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According to this formula, 1/x measures the length within which
the charge density of the ion atmosphere reduces to one eth part.
Our characteristic length is 2 measure for the thickness of the
ion atmosphere (i.e., of the well-known double laver by Helmholtz);
according to equation (11), it depends on concentration, tempera-
ture, and dielectric constant of the solvent.*

Having clarified the significance of 1/x, we shall now use
equation (12) to determine the potential distribution and the den-
sity distribution in the neighborhood of the singled-out ion with
charge +e. We designate the distance from this ion by r, and intro-

duce spatial polar coordinates in equation (12). Equation (12)
then becomes:

1 d [, dy
7 ar (P ge) == (12)
and this equation has the general solution:

e—xr

le.'
p=A - +4 = (13)
Since y disappears at infinity, A' must equal zero; the constant
A, however, will have to be found from the conditions prevailing
in the neighborhood of the ion. This determination shall be
carried through in two steps, (a) and (b), assuming for (a) that
the dimensions of the ion have no effect, and under (b) take the
size of the ion into consideration. The trend of thought under
(a) will then give the limiting law for high dilutions, while
under (b) will fall the changes to be made in order to adapt this
limiting law to larger concentrations.

(a) Ion Diameter Negligible

The potential of a single point charge € in a medium of di-
electric constant D would be:

L3
v:-;; pe

assuming no other ions in the medium. Our potential, equation
(13), must agree with this expression for infinitely small dist-
ances, consequently we must put;

*Agreement of the above results on the double layer with computa-
tions by M. Gouy, J. Physik. (4), 9, 457 (1910) on the theory of
the caplllary electrometer was subsequently established. We may,
perhaps, point out that in this instance the original equation
(10) permits a simple solution.
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M

and the desired potential becomes:

e R 2 ()

wt:ji r D r D r

We split the potential into two parts, the first part representing
a potential which is undisturbed by the surrounding ioms, and the
second part representing the potential derived from the ion atmos-
phere. For small values of r, the value of this latter potential
is equal to:

the potential energy u of the singled-out ion +e with respect to
its surroundings amounts to:*

E!
“=— (15)

If we have a series of charges e;, and if the potential at the
respective location of each charge is w;, then, according to the

laws of electrostatics, the total potential energy:
U=}Z e

In our case, where N positive ions are present, each of which at
a potential difference -ex/D against its surrounding, and further
N negative ions with a potential difference of +ex/D, the desired
potential enerzy**will be:

*Besldes the grapnical result mentioned 1n the preface, the article
by Milner contains a footnote (Phil. Mag., 24, 575, 1912), accord-
ing to which In the case of the above text and in our termlnology:

62
u = - (n/2)?

A derivation of thls formula 1s not lncluded. It differs from our
result by the factor (m/2)%.

¥¥since we are only concerned with the mutual potentlal energy, we
have to take for ¥; not the value of the total potentlal but only
the part caused by the surrounding charges, always calculated for
the point at which the enarge e; 1s located.
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D) — -

-9
1

Since x is given by equation (11) as a funetion of the concentra-
tion, the potential energy of the ion solution is proportional to
the square root of the concentration and not, as according to
Ghosh, to the cube root of this quantity.

(b) Ion Diameter i1s Finite

We observed, previously, that the characteristic length 1/x
reaches the magnitude of molecular dimensions for concentrations
of 1 mole per liter. At suh concentrations, it is therefore in-
admissible to replace an ion of finite, molecular size by a point
charge, as was done under (a). It would not be within the nature
of our calculations, based on Poisson's equation, to introduce a
detailed concept of the distances to which the ions approach one
another. Rather we shall in the following visualize ions as
spheres of radius a, the interior of which is to be treated as a
medium of dielectric constant D, and in the center of which is
located a point charge of value +&¢ or —e. Then the magnitude a,
obviously, does not measure the radius of the ion but a length
which constitutes the mean value for the distance to which the
surrounding ions, positive as well as negative, can approach the
singled-out ion. Correspondingly, for positive and negative ions
of equal size, for instance, a would be expected to be of the or-
der of magnitude of the ion diameter. In general, the ion diameter
is not to be considered the diameter of the actual ion, since, most
likely, the ions have to be imagined as surrounded by a firmly at-
tached layer of water molecules. It is obvious that the introduc-
tion of such a length a cannot be expected to be more than a rough
approximation. The discussion of practical cases (compare later)
will show that, in practice, this approximation is rather good.

As before, we express the potential surrounding a singled-out
ion by:

e—r

p=A4-— (17)

only the constant 4 must now be determined differently. According
to our assumptions, we have to write:

W=

—+B (17)

S|~
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for the interior of the ion sphere (for a positive %Oﬂ)- Constants
A and B must be determined from the boundary conditions on.the sur-
face of the sphere. There, that is, for r = a, the potentials y

as well as the field strengths —dy/dr must be continuous. From
this it follows that:

e € 1
—_—=——48
4 a Da+ (18)
R L
A-e a* D a?

hence:

& e Ex 1

ol - + xa’ B=—-D1 + za

(18)

The value of B represents the potential generated by the ion atmos-
phere in the center of the ion sphere; from this we obtain for the

potential energy of a positive ion with respect to its surroundings
the expression:

ex 1

u=__—D-:+xa (19)

As shovm by comparison with equation (15), the effect of the size
of the ion is expressed by the factor 1/(1 + xa) only. For low
concentrations (n small) x is also small, according to equation
(11), and the energy approaches the value given previously for
infinitely small ions. For large concentrations (x large), how-
ever, u gradually approaches the value:

Et
"~ Da

so that our characteristiec length, 1/x, loses its effect in favor
of the new length a which measures the size of the ions.

By means of equation (19) we obtain, as under (a), for the
total electric energy of the ion solution the expression:
N 2 1 I
U,:—.____[___ ___._]
2 D '+"a:+l+xa, (20)

provided - as appears to be indicated -

characterized by a radius a, and the neg
radius a,. We could use (16) or (20) ai
tion of the thermodynamic function in ac
sion in section II. However, we shall first derive the expression
for the energy, corresponding to (20), for any ionie solution, by

eliminating the restriction to uni-univalent saltsg introduced in
the interest of brevity.
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IV. The Potential Fnergy of an Arbitrary Ion Solution

A solution contains:

Nyoo oW oo N

different ions with charges:

Z¢veZBriead

1 s

such that the integers Zi.+4:2;....2; measure the valencies and

may assume positive as well as negative values. Since the total
charge is equal to zero, '

Z2Nz;=o0

must hold. In addition to the total numbers ¥;, the number of ions
per cubic centimer:

Mygeeallines

be introduced.

Again any one of the ions is singled out, and the potential
in its surroundings is determined from Poisson's equation:

From Boltzmann's principle, the density of the ith ion type is
given by:

2 o
nie 'O

so that:
_l‘.P
e=¢Zniz;ie AT

and the fundamental equation is given by:

ey
&r (21)

-2

d(p = _..i‘%fsn,-z;c

If we use again the expansion of the exponential function, as in
the previous paragraph, the equation:

?
.dap=:)xk;.2f?.'fi"ﬂ (21)
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instead of (21) will be the basic equation, since, because of the
condition:

2?1';2,'= o

the first term of the expansion disappears. Thus, in the general

case, the square of the characteristic length 1/x? is to be o~
fined by the equation:*

JI‘&

2 22
—Drr Ems L
while the equation for the potential retains its previous form:

dyp =2y

Again an ion shall be singled out, and the potential y in its
vicinity be determined. In concordance with the discussion in the
preceding paragraph,

ur
is obtained for the field outside the ion.

Provided the ion carries a charge z;e and a distance of ap-

proach to it equal to a; is to be considered, then we have for the
interior of the ion sphere:

while the constants 4 and B are evaluated to:

A e e Z;Ex 1
T e — _——
D +xa;’ D 1+4=xa;

To the given value of B corresponds the potential energy:

z72e% 1
D 1+4=xa;

(7 pr—

of the singled-out ion with respect to its ion atmosphere, while
the total electric energy of the ion solution, as will readily be
seen, assumes the value:

Nz-'t %
U. L—Z . l+xn (23)

*since for uni-univalent salts ny = nmp ® n and 2, = -2, = 1, the
general expression (22) for x2? agrees with the one (compare
equation 11) given for this special case.
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Yhe igverse length % is, in the general case, defined by equation
22).

V. The Additional Electric Term to the
Thermodynamic Potential

In section IT we arrived at the result that the additional
term to the thermodynamic potential:
U
G-—S-—-T

resulting from the mutual effect of the ions, should be found from

the equation:
U,
Go= [ adt

To take care of the general case, let us take the expression (z3)
for Ue, then, when integrating, we have to consider that, accord-
ing to (22), the reciprocal length in this expression depends on
the temperature. The computation becomes clearer, if we first
conclude from (22) that:

4me? dT
2xdx = — Dk Eﬂ.-z,.’-r‘—

where D is assumed independent of temparature.** and then use x
and not T as variable of integration. Thus results:

x%d

k tdx
S R Lel b

If we introduce the abbreviation:
xa; == X; (25)

find:

*prom the expression for U,, we can immediately derive the heat
of dilution. We established that the theoretical value agrees
with the experiments.

**¥1n fact a direct, kinetlc theory of the osmotic pressure, re-
ported in Recuell des travaux chimiques des Pays-Bas et de la
Belglque , proves the valldity of the final expression for Ge
independent of this assumption. For a discusslon of the thermo-
dynamic computation we may refer to B. A. M. Cavanagh, Phil. Nag.,
43, 608 (1922).
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u:lzd -:x.-d I
x*dx 1 1tdu 1 ; .
fl + xa; =_3fl + u‘__a_ﬂ.{conﬂ +log(r4+x)—2(1+x)+ 101 Tx'-)zf

The constant of integration must be so determined that in the limit
for infinite dilution the electrical addition G, to the total po-

tential disappears. Since according to (22), ¥ is proportional
to:

VZn;z32
= O corresponds to infinite dilution. Consequently the constant

in the bracket must be so determined that for x; = O the expres-
sion in the bracket is also equal to zero. Since at this limit:

log (1 +2) —2(r +x) + § (1 + x)?

assumes the value -3/2, our constant is 3/2. Then:

2
JEE =St — 204 m0+ § ()

1+ xa

and :

k i
Com st 2 et (B +E( 2 =205 4 5)+ § (1 +

FED T
If expanded with respect to powers of x5 the function in the
bracket takes the form:
§+log(:+x,-)—2(1-§-x,-)+}(| +x,~)’=

% xS xS xp

If we, therefore, introduce the abbreviation:
=x(x)=
—3',-{’+108(1+2')—'2(1+1'-)+§(l-|-x.)’]
(27)

x will, for small concentration, approach unity, and can be ex-
panded into:

p=1—{x+3ixt—... (27

(26)
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By introduction of this function and consideration of the equation
(22) defining x2?, the addition to the thermodynamic potential can
now be presented in the form:*

2,2
G.=3N, zbf‘,. % X (28)

where, for clarity, the expression (22) for x according to which:

2
%t %%2”,‘2,"

be repeated explicitly.

For small concentrations, therefore, an amount of G, propor-
tional to x, i.e., proportional to the square root of the concen-
tration, is associated with each ion. If the finite dimensions
of the ions are neglected, then, according to (27') and (25), X;
would be equal to 1 throughout, and this dependency would appear
to be valid for all concentrations. The dependence on the size of
the ions, which accounts for the individual properties of the ions,
is, then, measured by the function X, given by (27) or (27'). In
the 1limit for high dilutions, however, this influence disappears,
and the ions can only be distinguished if their valencies are
different.

VI. Osmotic Pressure, Vapor Pressure Depression,
Freezing Point Depression, Boiling Point Increase

In accordance with the discussion of section II and in view
of equations (7), (7'), and (7''), the thermodynamic function &
of the solution is given by the expression:

¢=iN.-(fp.~—k log ¢;) + ﬁN.-f':gix.- (29)
0 1 3D T

Here equation (28) has been used for the additional electric term
to ®, where:

X; = X(x;) = X (xa;)

is given by (27), and, as explained in the preceding paragraph,

approaches unity in the limit for infinitely small concentrations.

x is our characteristic reciprocal length, defined by equation

(22),

*The additional electric pressure ,, mentioned in section II, equa-
tion (8'), results from this formula. The numerical value given
there was computed in thls way.
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:
e
P, LA PP

DRT

By the method followed in Planck's Lehrbuch der Thermodynamik, the
rules for the deseription of the phenomena mentioned in the head-
ing can all be derived by differentiation of equation (29). The
condition for equilibrium of a transition of a guantity &N, mole-
cules of the solvent from the solution to the appropriate other
phase is, as is well known,

db 4+ dF=o0

where @' designates the thermodynamic potential of the second phase.
We put:

F=N,q, (30)

We wish to carry out the computations for the case of equilibrium
between the solution and the frozen solvent, in view of the fact
that the most extensive and the most reliable measurements are
available for the freezing point depression as a function of con-
centration. We let No vary by the amount &Ny and No' by the amount
6No', and obtain immediately:

§(®+ )= g5 6Ny + (9o — klog o) No +
L z%e* d(xy) ox
+ENiTpT dx o, D

since, as will readily be seen:

-2 -~ olog c;
uEN;dIOgCV———'?N. al\gf,, dNo

assumes the value zero.
Since:

AN e d N

the condition for equilibrium reads:

. s N, 200 d(ey) dx
e R
(32)
As presented here, it may be applied to all the phenomena ment ioned
in the heading, and it constitutes a relation between pressure
temperature, and concentrations. ¥
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In the definition of %,n; designates the number of ions of

the ith type per unit volume so that:

Nj== —

4

and, as in Planck's treatment, the method is based on the linear

relation for the volume:
VEEH,'T);==ﬂ0'U°+E?‘I;v,'
0 1

According to equation (22),

dx qrer o o Niv,
AR L Cie
A Y g,
DET v 2"

Again using the equation defining %, we obtain:

L.}
oN, 2 V
and our condition for equilibrium assumes the form:

i Loozrer d(xy i
%—'fn=k1°8€n+"o.?"-'mz%“ (32)

The function of the concentration:

d(xx:)
dx

characterizing the phenomena considered, can be computed easily
from equation (27). Let us designate it by o;, then, retaining
the abbreviation:

Xj=xda;
we obtain:

o A
T odx

=;§:;[(l+xi)_l___:‘7i—zlog(l+1i)] (33)
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For small values of x;, the expansion:

gi=1—3x+xf—2224+...=

- syt

v=0

is valid so that o; approaches unity for small concentrations; for
large concentrations 0, approaches zero as 3/%;2. Table I
contains numerical values for o as a function of x = Xa.

Table I
% olx) x olx) x olx) x alx)
0] 1.000 0.4 0.598 0.9 0.370 3.0 0.1109
0.05 0.929 0.5 0.536 1.0 0.341 3D 0.0898
0.1 0.855 0.6 0.486 1.5 0.238 4.0 0.0742
0.2 0.759 0.7 0.441 2.0 0.176 4.5 0.0628
0.3 0.670 0.8 0.403 2.9 0.136 5.5 0.0540

In Figure 1 a plot of this function is presented.

\_\
= | ——]
s ne ;l' x 1: A
Figure 1

Since we shall have occasion to treat the freezing point de-
pression of more concentrated solutions, it is advisable to calcu-
late the amount of this depression from equation {320)’ without
introducing all simplifications permissible for highly diluted
solutions. Let the freezing point of the pure solvent be T,, the
freezing point of the solution To — A, the heat of fusion o% the
frozen solvent g, the specific heat at constant pressure of the
liquid solvent c,, and the same quantity for the frozen solvent
¢s', where the tﬁree last mentioned quantities be referred to an
actual molecule so that they constitute the conventional quant it ies
for one moledivided by Loschmidt's number. According to the equa-
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tion defining 9, we then have:

romvim s il -]
For co we can put:
Co=1 —%c.-
Since further we abbreviated:
o,

it finally follows that:

4 9 & (Cf—".-‘ q )_

TokT, T\ 2k kI,

= —log (1 —"’c-)—-e'—lev n;2;G;
T . 6DkT 1 0 o | i
If Loschmidt's number is designated by N,
Ng=20
the heat of fusion of one mole,
Nk=R
the gas constant, and:
= ! = r
NCP CP e.g. NCP Cp

the specific heat per mole of the liquid and solid solvent, res-
pectively, so that we can also write:

b e |

R RTo
i 3 © ] 69
= - - i) — My 2;°0;
log (1 = 2 &) — g o7 4 Vo™

For low concentrations we can (1) neglect A2/To2? compared with A/T,,
(2) put:

—log (1 —i-’-‘f)=éc;‘
1 1

and (3) the total volume can be identified with the volume of the
vater, considering the number of the dissolved ions as infinitely

94
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small compared with the number of the water molecules. This cor-
responds to:

vnn.-=T'j,!N,-=—IYi=—- IV:'
No+2 UJ'NI‘
1

== (;

N,

With these approximations, we obtain:*

4 Q x x

whereas the classical formula for the same assumptions reads:

4 Q ic;

‘T;RTo'-—’l (35)

VII. Freezing Point Depression of Diluted Solutions

The characteristics of the electric effect of the ions are
particularly clear in the limit for highly diluted solutions as
expressed in equation (35). We shall therefore treat the laws
for this limiting case separately. The formula (35) applies to
the general case of a mixture of several electrolytes which, more-
over, may be only partially dissociated into ions. We consider
the special case of one type of molecule in solution. The molecule
be completely dissociated into ions, and consist of s types of
ions, numbered l,....efyc00ceeeS, 80 that:

Vi, ooV Lo,

ions of the type 1,....1,....s constitute the molecule. If the
charges associated with each of these ions are:

Z¢, . . Rl oo Bk
(For H,S0,, dissociated into the ions H and SO,, for instance,

V=2, V=1, 21=+|' z'=.__2
*It 1s not necessary to distinguish between 10ns and neutral mole-
cules; 1f both are present, we Imply have to put Z; = 0 for the
latter. If all separate partlicles are neutral, then, naturally,
equations (35) and (35') become ldentical.
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provided subscript 1 refers to the H ions and subscript Z to the
30, ioms.)

Since the molecule as a unit carries no charge, we have:
5.1«’,'2,- =0
1

The solution thus consists of ¥, molecules of the solvent and ¥
molecules of the added electrolyte, where N may be considered small
compared with No. Then:

Nf N,r
&G = —,*fﬁ
N0+?N; $
If we take into account that:
N;'—"-—P,'N

and designate by ¢ the concentration referred to the dissolved
type of molecule so that, in the approximation here used,

s DY
N,

then:
Ci = ¥iC

Equation (35) for the freezing point depression then becomes :

TA.,'R'QT; = foZci=focZvi (36)

where:

e2x Dzt
h=1—%pir =v 97
The quantity fo is the osmotic coefficient mentioned in the intro-
duction, since fo = 1 represents the transition to classical theory
as indicated by equation (35'). If A, designates the freezing
point depression calculated in accordance with classical theory,

then:
a4

z"=f0
or: Ay — A
===
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Relation (37) indicates qualitatively that the actual freezing
point depression should be smaller than that expected from classic-
al theory, a result which is consistently confirmed for diluted
electrolytic solutions. The quantities x and s which appear 1n
equation (37) are determined by formulas (2z) and (33) (the latter
one with associated table). As explained in the preceding para-
graph, 0; is a measure for the effect of the finite size of the
ions which disappears for very small concentrations, since O then
approaches unity. Therefore, if we first consider the limiting

laws valid for highly diluted solutions, we have for this limiting
case: .

— _._E'_"_E”l’zl'!
=D =0, G9)

Further, from equation (22):

2
xt = %‘%Emz.’

and since:

V.
= ¥ V =rin
introducing the volume concentration, n, of the dissolved mole-
cules, we have: ‘
4nel

K= S22

It follows that for very low concentrations:

£ 4med Szt p
=1 —spirV B2 Ee) o9

where nzvi designates the number of total ions per cubiec centi-
meter in the solution, and:

w= (M)’" (39)

El?.'
shall be called the "valency factor," since it measures the effect

of the valencies, 2z;, on the phenomena.It is best not to consider
fo, but its deviation from unity, and thus to write for very low

concentrations:
£? PETS
t—h =gl BErrSn o
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First, this formula expresses the dependence of 1 — fo on
concentration, stating in this regard:

Law No. 1

For all electrolytes and in the limit for small concentra-
tions, the percentage deviation of the freezing point de-
pression from its classical value is proportional to the
square root of the concentration.

It is possible to state this law as a general law, because, in
highly diluted solutions, all electrolytes can be considered as
completely dissociated into ions. However, the rezion of complete
dissociation is, in practice, only reached by strong electrolytes.

Second, equation (39) makes a statement on the effect of the
valencies of the ions which may be formulated as follows:

Law No. 2

If the dissolved molecule dissociates into v;,.Vj...¥g
different iomns 1,...%1,...s with the valencies z;...2;...2¢,
then, for low concentrations, the percentage deviation of
the freezing point depression from its classical value is
proportional to a valency factor, w, which can be computed

from:
. 23’,?2,’ 3/2
w= (_23’; )

As an example for the calculation of this valency factor
Table II is presented, where the type of the salt is determined
by the example given in the left column, and the value of w is
given in the right columm:

Table II
Type Valency factor, w
KCl 1=1
CaCl, z Y& = 2.83
Cuso‘ 4 J‘L_ = 8
ALCLy 3 V3 = 5.20
Alo(S04) 5 6 V6 =16.6

Thus the influence of the ions increases considerably with
increasing valency which also is in accordance with the qualita-
tive prediction.

Third, the solvent also has an effect in keeping with the
well known suggestion by Nernst intended to explain the ionizing
force of solvent with high dielectric constant. According to
equation (40), we have:
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Law No. 3

For low concentrations the percentage deviation o? the freez-
ing point depression from the classical value jg inversely
proportional to the 3/2th power of the dielectric constant of
the solvent.

The other constants appearing in equation (40) are the elemen-
tary charge € = 4.77 X 10"*° ¢, 5. u., Boltzmann's constent & = 1.346 X 10-1s
erg, and the temperature, T, which.latter is present explicitly
and implicitly, since the dielectric constant, D, varies with T.

If we deal with diluted solutions in the conventional sense,

0 can no longer be replaced by unity, and equation (37) applies,
which reads explicitly:

e &2 l/4xe= <, 2Piti 0
t=h=vsorrV DrT"2% T UV

As shown by Table I, as well as by the formula (33) from which the

table is derived, o; continuously decreases with increasing con-
centration and finally decreases as:

i-_— 3
2

x; x*a?

i.e., inversely proportional to the concentration, since x is pro-
portional to the square root of this quantity. According to (41)
the deviation 1 — f, increases proportional to the square root of
the concentration for very small concentrations, then, for higher
concentrations, in view of the effect of o, i.e., in view of the
finite diameter of the ions, the deviation will reach a maximum,
and finally decrease inversely proportionally to the square root

of the concentration. Even though this statement contains an ex-
trapolation to higher concentrations of equation (41) which is not
entirely justified, it seems to describe the behavior of concen-
trated solutions (compare section IX). In fact, measurements show
a maximum of 1- fo as a characteristic of the curves for the freez-
ing point depression. However, we believe that the phenomenon of
hydration (compare the last section) also contributes considerably
to the formation of the maximum. A numerical comparison of theory
and experiments will be given in section IX.

VIII. Dissociation Equilibrium

Not limiting our considerations to strong electrolytes only,
a dissociation equilibrium will exist between undissociated mole-
cules and ions. However, the equilibrium is not to be computed by
means of the classical formula, because also in this instance the
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mutual electric forces have a disturbing influence. How this can
be taken into consideration in accordance with our theory shall
now be computed. We start again with the expression (29) for the
thermodynamic potential ¢ of the solution:

& =SNigi—hkloge) + SN,ZEX
- (® klog('a)"'? '3DTxl

some of the particles present in the solution will carry an
electric charge, while others will be electrically neutral. For
the latter, we will have simply z; = 0. The solvent shall be
indicated by the subscript o. We now undertake, in a well-known
procedure, the variation of the numbers #;, and calculate the asso-
ciated changes in the potential. This leads to:

=g fae

s F-Z'dN (g:— klogc)) +2¢ sz,

i=0 i=1

1y 2 d(zz)
+2N3DT dx Zazv,
F=1 J=1
If it is taken into account that, according to the defining equa-
tion (22):
=1 {=s

4me? N2z

NEEELS I
* 5¥T29mh'_DkT

=1 f—l

the quantity x may depend on all numbers Nj...N;. If in the third
sum the indices of summation, i and j, are interchanged 5® may be
written in the form:
i=s f=s
o : . d(xy;) 3x
0P =8N, (py — klog c,) +26Nf[ @i — klog ¢ + DT(Z' i+ D) N2 =3 'R)]

=1 i=1

However, Ox/AN; can be calculated from the definition of x. We
obtain, provided the linear relation regarding the volume is re-
tained,

&
“J a
2t —v; Znep
x 1

ox _ .
oN;: zE‘n,z,’ v
1

If the conventional assumption is made that a chemical reaction
may take place in the solution, where the proportions:
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ON,:dN,:...dN;:...:dN, =
= Joy iyt S oo i

hold, the condition of equilibrium follows from the expression

= 1=35 ddx .

f=as 'v=‘”_¢‘ !:3., i=gs ) .glﬂjz’.-_(d—xz')'
Zﬂilogc.i =2-;k-: -L'w_-k.r' z,u,-z.’z;-i-#.-(z,-’--v,-lEn,z,-’)"—,%,—z_.—" (42)
i=1 i=1 i=1 - N2

=1

for the variation of the potential. This condition is distinguish-
ed from the classical condition by the additional term on the
righthand side. If the activity coefficient fg is introduced, as
was done in the introduction, by putting:

_"‘Sp,-logc,-= log (f.K)
1

where I represents the classical constant of equilibrium, the
activity coefficient is defined by the relation:

P 1= d(xy,)
i . e i . . .gln‘z'g _dx:
log fa =m2 222y izt — Ti,:zl n,-z,-) — = | (43)
i=1 Znz?
i=1

According to this formula it is, of course, possible to provide a

special activity coefficient for each atom or molecule taking part
in the reaction by putting:

log fo = pylog fa! + ..

(44"

pilog fai + ... pu.log f* (44)
with:
l‘ d ;
e i . , %n,-z't (::)
= Axit (2 — v "
log [+ cDET 27 i+ (2 vzlu‘z,

= nz? ‘
1

Then, however, as equation (44') indicates by the appearance of X,
this coefficient referred to a definite type of molecule does not
solely depend on quantities which are related to this type of
atom.

Here again simplifications are possible by limitation to
lower concentrations. In this case:

L
v S22
1
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is negligible compared with z?; if this is done, the volume of the
dissolved substance is considered negligible compared with the
total volume. Thus:

; x T
logi.'=6Dsz,-' 25+ -’—x (45)
=Nz

Finally we can find the limiting value of the activity coefficient
for increasingly diluted solutions. In this limit, where the
effect due to the dimension of the ion vanishes, we can put X= 1,
and obtain:

3 x| ’
logfs = SDET z- (45)

Since x depends on the properties of all ions (is affected by their
valency), the special coefficient f,* is, not even in this limiting
case, exclusively a function of the properties of the ith ion. We
shall not discuss this limiting law in detail, and only observe
that here again in the limit proportionality exists between log

f, and the square root of the concentration.

IX. Comparison of Freezing Point Depression
with Experimental Results

Figure 2 is a representation of the characteristic behavior of

*m,S50,

La(x0],
-

o4 ¢

al

o s
v

«

Figure 2
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strong electrolytes. A magnitude VY which measures the i?n ?on-
centration is plotted on the horizontal axis, where Y, as indicated
before, designates the concentration of the electrolyte in moles per
liter,™ while v = Zv,; represents the number of ions into which the
molecule of the salt dissociates. Four representatives KCIl, K,S0,,
La(NO5) ; and MgSO, were chosen from four types differing in the
valencies of their ions. KCl dissociates into two univalent ionms,
K,S0, in two univalent and one bivalent ion, La(NOg)a in three
univalent and one trivalent ion, and MgSO, in two bivalent ionms.

If we designate the freezing point depression expected from
classical theory for complete dissociation with A,, and the ob-
sarved freezing point depression with A, the expression:

4, — 4

6= a;

(46)

i.e., the percentage deviation from the classical value was found
and plotted as ordinate. According to section VII we can also put:

0—1—1/, (46"

thus represented, © measures the deviation of the osmotic coeffi-

cient from its limiting value 1. Since in a solution with water
as solvent:

Ay=vy- 1.860° (47)

a point on the abscissa corresponds, for all electrolytes, to a
concentration which should produce the same freezing point depres-
sion provided the mutual forces are disregarded. We plotted the
observed values and omitted to connect corresponding points by a
curve in order to avoid any preconceived interpretation. This
method, however, is possible only because recent and excellent
measurements by American research workers of the freezing point
depression at low concentrations are available. The measurements
in Figure 2 are taken from Adams and Hall and Harkins,®

It is evident that the deviation O does not increase for low
concentrations with the first or even higher powers of the concen-
tration as required by the law of mass action. Further the curve
demonstrates the strong effect of the ion valency.

*F'OI' the salts K,80,, La(NOy),, MgSO, the concentration Y' in moles
per 1000 g. water 1s substlituted for Yy, as glven by the authors
cited below, since in the absence of density measurements for
these salt solutions at 273°, a conversion to moles per 1iter
could not be carrled out; thls means only an insignificant devla-
tion for the low concentrations considered here.
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Our theory requires that, for very low concentrations, the
percentage deviation © be proportional to the square root of the
concentration and that the factor of proportionality depend strong-
ly on the valency of the ions. According to equations (39) and (40)
we have (assuming the molecule dissociates into VieeoVieaaVg ions °

with the valencies z,...z‘-...zs):

2 2
6=1 —'fo=w-6—D£7e—;,—.—,/ %urm (48)

with the valency factor:

we (T5t)" 49)

First we want to express the number of ions n per cc. as the con-
centration y measured in moles per liter. We take the value 6.06 X
102% for Loschmidt's number; then:

#=06.06-102y
It is further assumed that € = 4.77 X 1071%¢, g, u., & = 1.346 x 1071¢ erg,
and since the following deals with the freezing point depression of
solutions having water as a solvent, T = 273. The dielectric con-

stant of water is calculated from the interpolation formula® given
by Drude. We find for 0°C.:

D = 88.23

Using these figures, we get (with Zv; = v):

'/ FEL 1
ﬁk_T'w_ 0.231-10%Y vra

and hence:
6 =o.z270wy vy (50)

Our quantity x becomes with the above numerical values:

2viz2 1
x=o0.231-10°Y »ry —— (51)
In Figure 3 observed values?® of © have been plotted against
a new abscissa Yvy, the experimental points have been interconnect-
ed by straight lines. Further, four straight lines starting at the
origin are presented, which illustrate the limiting law expressed
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/{n.. 50|

T

J_ps

e

Figure 3

by equation (50). The four types of salts in the figure have the
valency factors:

w=1, w=2Y2, w=3Y3 w=38

the straight lines correspond to these values. It will be seen

that for low concentrations the straight lines are actually approxi-
mated, so that, apparently, the limiting law involving the square
root of the concentration corresponds to the facts. Further the
absolute values of the slope —computed by means of the dielectric
constant equal to 88.23, and distinguished theoretically only by

the valency factor (as expressed in equation (50) by the factor
0.270 w) - are confirmed by experiment. However, Figure 3 indi-
cates that early deviations from the limiting law take place. This
is in agreement with the considerations in section III and equation
(51), according to which, even for uni-univalent electrolytes, the
characteristic length 1/x is of the order of magnitude of the ion
diameter already for y = 1, so that it is no longer permissible to
neglect it. We have further based our theory on the simplified
version, equation (21'), of the potential equation. This also may
have some effect. However, we pointed out (see footnote on page 227)
that this latter effect is theoretically comparatively insignifi-
cant. The experimental results also indicate that the deviations
from the limiting law are caused by the individual properties of
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the ions. To show this, we present Figure 4. Here observations

C.NO,

0 KNO,
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Ver
Figure 4

of uni-univalent ions, exclusively, are entered* as a function of
Y2y (since, here, v = 2). The straight line represents the limit-
ing law discussed above; all curves approach this line for low con-
centrations. The deviations vary greatly in magnitude, and, it
should be noted, are in the order Cs, K, Na, Li for the salts of
chlorine. This is the same order as is obtained if the alkali ions
are arranged according to decreasing mobility, an order which is in
contradiction with the assumed dimension of the ions, and which
was correlated only recently by Born!! with the relaxation time of
water for electric polarization following from dipole theory. To
afford orientation with regard to the work by Ghosh, the curve for
O, as evaluated by this theory, is given in the figure by a dashed
line. It should be valid for all salts, and, moreover, has a
vertical tangent at the origin.

*Resides the measurements already cited, we used Here measurements
by H. Jahn, Z. phys. Chem., 50, 129 (1905); 59, 31 (1807) (LiCl1,
CsCl): E. W. Washburn and MacInnes, J. Am. Chem. Soc., 33, 1688
(1911) (L1Cl, CsNOg); W. H. Harkins and W. A. Roberts, ibid., 38,
2658 (1916)(NaCl) (concentration partly in moles per liter, partly

moles per 1000 g. water).

106

253



ELECTROLYTES

i ved
The question now is: to what extent can our tveozy;dizgrgef

with regard to the ion dimensions, account for the ind VW sttt

viations. The conditions are illustrated in Figure 5. =

/ m, s

_'l..(lﬂ,l.

S

Figure 5

again chosen the four electrolytes of the four types previously
mentioned, and plotted the observed values of © as a function of
VVY. According to equation (41) we obtain, taking into account

the dimensions of the ions (upon introduction of the numerical
values) :

Zv;z20;
6=1—f,=oz70wy vrw (52)

where o, designates the function of the argument X; = %xa; tabulated
in Table I and given by formula (33), and where a; denotes the
length which measures the size of the ith ion with respect to its
surroundings. At the present state of affairs,

it did not appear
advisable to us to study the separate ion dimensions, but to cal-
culate with an average diameter a equal for all ions of one elec-

trolyte. Then all 0; become equal, and the expression:

6 =o0.270w) vy 6(xa) (53)

is obtained for ©. For the determination of the
we chose, for the time, only one observed value,
ponding to the highest concentration,

magnitude of g,
the one corres-
and then plotted the curve -
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resulting from the theoretical formula (53) with the a thus ob-
tained-in the figure. Four dashed straight lines radiating from
the origin (tangents to the curves) represent the limiting law
(50) for strongly diluted solutions. Agreement with the observa-
tions is very good, particularly in view of the determination of
constants from a single observed value.* The figure is supple-
mented by the following tables:

Table III.
KCl(a = 3.76 % 107%cm)

(¢] e
2Y 2Y observed calculated

0.0100 0.100 0.0214  0,0237
0.0193 0.139 0.0295 0.0313
0.0331 0.182 0.0375 0.0392
0.0633 0.252 0.0485  0.0499
0.116 0.341 0.0613 0.0618
0.234 0.484 0.0758 s

In each first column is entered the ion concentration vy, in
the second column the value of the abscissa yvy in Figure 5, in

*The method for the determinatlion of a 1s explained in detall for
La(NOg)s &s an example. For y' = 0.17486, ©'= 0.2547 was ob-
served; since V = 4, the abscissa becomes (vy)* = 0.836. Accord-
ing to the limiting law (50) for extreme dilution, we would ob-
taln with w = 3y3 (corresponding to equation 49 for Vv; = 1, Vg =
%, zy = 3, z, = —1) a value of © = 1.173, the actually observed
value 1s obtained from this limiting value by multiplication with
0.216. According to equation (53) thils factor 1s equal to O.
From Figure 1 we find that an absclssa x = Xa = 1.67 belongs to
the ordinate 0 = 0.218; further from equation (51) by substi-
tuting YyVY' = 0.838, the value of ¥ = 0.336 X 10 ®%cm™ ', Conse-

quently, a dlameter

a = x/x = 4.97 X 107° cm.

corresponds to the observed data.
For the salts K,S04, La(NOs)s, M8SO4, the concentration y' is
given in moles per 1000 g. water and used for the determination of

© wnich 1s, therefore, designated by ©'. For the low concentra-
tions consldered here, the resulting devliations are very small;
a conversion of y' to Y would not glve a noticeable change in the

values for O' observed, ©' calculated, and a.)
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Table IV,
K,S04(a = 2.69 x 10°® cm)
— 0 0
Sy’ wy obsarved calculated
0.00722 0.0906 0.0647 0.0612
0.0121 0.110 0.0729 0.0724
0.0185 0.136 0.0776 0.0871
0.0312 0.176 0.101 0.108
0.0527 0.229 0.128 0.132
0.0782 0.280 0.147 0.152
0.136 0.369 0.178 0.183
0.267 0.516 0.220 0.217
0.361 0. 600 0.238 —-——
Table V.
La(N0s) o(a = 4,97 x 10-° cm)
(5] ($]
4y’ Vay' observed calculated
0.00528 0.0728 0.0684 0.0828
0.0142 0.119 0.110 0.121
0.0322 0.179 0:151 0.157
0.0343 0.185 0.158 0.161
0.0889 0.298 0.197 0.204
0.0944 0.308 0.201 0.207
0.173 0.418 0.223 0.230
0.205 0.453 0.229 0.235
0.346 0.588 0.243 0.248
0.599 0.836 0.255 .
Table VI.
MgS0,.(a = 3.35 % 107® cm)
3] 5]
2y Jay' observed calculated
0.00640 0,0800 0.160 0,147
0.0107 0.103 0.199 0.179
0.0149 0.122 0.220 0.203
0.0262 0.162 0.258 0.248
0.0534 0.831 0.306 0.311
0.0976 0.312 0.349 0.368
0.138 0.372 0.392 0.400
0.242 0.493 0.445 -
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the third column the observed value of ©,* and in the fourth
column the value of the same quantity computed from equations

(53) and (51). The figure corresponding to the highest concen-
tration is not entered here, since from it, in each instance, the
average diameter a, given in the title of the tables, was computed.

Finally, in Figure 6, is given a representation of the theory

i Wi

8 i KCl

Figure 6

and observation of KCl solutions with water as solvent. In dis-
cussing this figure, it is our principal intention to present a
few indications regarding the behavior of concentrated solutions;
incidentally, we intend to show how large the discrepancies are
between the separate results given in the literature in spite of
high accuracy claimed by the individual observers. For this pur-
pose the figure contains all observations on KCl solutions since
1900 that we found.?2? As abscissa is chosen, as before, Vay,
where y denotes, according to our definition, the concentration in
moles per liter solution. All information referring to concentra-
tions measured differently, is here calculated for these concen-
trations by means of the measured densities®® of KC1l solutions.
The ordinate is again designated by O, it does not, hovever, ex-
actly represent the ‘previous expression:

de— 4
Ay

In fact, not even the elassical theory prescribes proportionality
between freezing point depression and concentration for concentra-
ted solutions. First, this is so because log (1-c) and not the
concentration itself appears in the classical equation. Second,
the difference between the thermodynamic potentials of ice and
water is no longer given with sufficient accuracy by the first

*Bee previous footnote.
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term of the Taylor expansion, proportional to 8, the second term,
involving A2?, must be retained. Accordingly, in this instance,

we have to use the complete equation (34). For KC1 we ey, >
ma = n and zy = z, = 1, further we shall again replace the two ion
diameters a, and a, by an average value a. Then equation 34 may
be rearranged as follows:

1 [4 Q 4 (C,—C/ Q o _gx
zuv,[r.,RT,"T_,-( iR ‘k—f;)*'“g(‘ —“’] €DAT (54)

The term on the left-hand side was now computed for different con-
centrations. For this purpose C, - C,' was put equal to 3.6,
corresponding to an approximate value for C,' = 14.4, extrapolated
from Nernst's measurements!* of the specific heat of ice at 273°.
It is further required for the computation to know the relation
between the molar concentration ¢ and the volume concentration y.
By means of the observed density of the solution, this relation
can be readily given, however, here as well as in the derivation
of the equation, the molecular weight of water has a certain ef-
fect. Though this effect vanishes in the first approximation, it
can not be eliminated from the second-order terms. Inasmuch as
the effect is of second order only, its influence is considerably
reduced; we have, therefore, used the simple molecular weight 18,
throughout., Finally the quantity 2nve in the denominator can be
put equal to:

7
1000

21y, =22,

where {1, designates the molar volume of water. Provided no mutual
electric effect of the ions was present, the left-hand term should
give zero for substitution of the observed freezing point depres-
sion. Actually it gives a finite value, and we designate this
finite value by -0. Then, according to the theory, this differ-
ence O must be represented by the right-hand term so that:

£2x
P =6_D-FTo(za) =o0.270) 276(xa) . (53)

should hold. It can be ascertainedthat the definition for ©
obeyed here is, in the limit, identical with the one given above
for low concentrations.

The points entered in the figure have the ordinates calculated
from the observations in the manner indicated. The curve in the
figure represents the right-hand term of equation (55), under the
assumption that a = 3.76 x 107® cm. This value of a was deter-
mined from one observation by Adams, according to which the ex-
perimental value © = 0.0758 is associated with y = 0,117. The
straight line which is also given in the figure again represents
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the limiting law for extreme dilution corresponding to o = 1. It
may be stated that, up to concentrations of approximately one mole
per liter, the observations are well represented by the curve.

For higher concentrations, the observations show a maximum for ©.
The theoretical curve also has a maximum; this is so flat, however,
that it is hardly indicated, as shown by the figure. We are in-
clined to consider this discrepancy at high concentrations as

factual, and wish to present a few pertinent remarks in the next
section.

X. General Remarks

From the preceding discussion it may be concluded that it is
inadmissible from a theoretical as well as from an experimental
point of view to consider the electric energy of an ionic solu-
tion to be essentially determined by the average mutual distance
of the ions. Rather, a quantity which measures the thickness of
the ion atmosphere or, to connect with something known better, the thick-
ness of a Helmholtz double-layer proves to be a characteristic
length. In view of the fact that this thickness depends on the
concentration of the electrolyte, the electric energy of the solu-
tion also becomes a function of this quantity. The fact that this
thickness is inversely proportional to the square root of the con-
centration is responsible for the characteristic appearance of
the limiting laws for highly diluted solutions. Though we must
decline to talk in terms of a lattice structure of the electrolyte
in the conventional sense, and though, as shown by the develop-
ment of the subject, taking this image too literally leads to in-
admissible mistakes, it still contains a grain of truth. To make
this clear, the following two imaginary experiments are carried
out. First, we take an element of space, and consider it placed,
repeatedly, at arbitrary positions in the electrolyte. It is clear
that, in a binary electrolyte, we shall find therein positive and
negative ions with equal frequency. Second, we take the same
spatial element, and again place it repeatedly in the electrolyte,
now not arbitrarily, but always such that it is, for instance,
located at a definite distance (of several angstrom units) from
an arbitrarily selected positive ion. Now we shall not find posi-
tive and negative charges with equal frequency, the negative
charges will prevail in number. In that the oppositely charged
ions, on the average, prevail in number in the immediate surround-
ings of each ion, we can see, correctly, an analogy to the crystal
structure of the NaCl type, where each Na ion is immediately
surrounded by 6 Cl ions and each Cl ion by 6 Na ions. However,
it is to be considered an essential characteristic of the electro-
lytic solution that the measure for this order is determined by
the thermal equilibrium between attracting forces and temperature
movement, while it is definitely predetermined for the crystal.
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The computations and comparison with experience were carried
out by taking the conventional dielectric constant for the sur-
rounding solvent. The success justifies this assumption. Though
this procedure is justifiable for low concentrations, it should
cause mistakes for higher concentrations. In fact, it follows from
dipole theory that for high field intensities, dielectrics must
show saturation phenomena similar to the known magnetic saturation,
The recent experiments by Herweg!® may be taken as an experimental
confirmation of this theoretical requirement. Since at a distance
of 1077 e¢m. from a singly charged ion, a field intensity of approxi-
mately 200,000 volt/cm. is to be expected, we should be prepared to
observe something of these saturation phenomena. It would, of
course, be very interesting if an attempt to separate this effect
in its consequences from the observations were successful, the more
so that nature puts at our disposal field intensities of a magni-

tude hardly attainable otherwise with conventional experimental
means.

In another respect concentrated solutions should show a
special behavior. If many ions are present in the surroundings of
each single ion, this can be regarded as a change of the surround-
ing medium with respect to its electrical properties, an effect
which has not been taken into account in the preceding theory. The
manner in which this may become effective may be indicated by the
following considerations. Let us consider one fixed ion and
another mobile ion, oppositely charged, and invest igate the amount
of work required to remove the mobile ion. This work may be re-
garded as composed of two parts: (1) the ion will require a certain
amount of work for its removal, and (x) we shall gain work by fill-
ing the space, previously taken up by the ion, with solvent. Ex-
periments concerning the heat of dilution actually provide an indi-
cation of the existence of such conditions. Let us take, for ex-
ample, a HNO; solution of initially low concentration and dilute it
with a large quantity of water (i.e., so much that further dilution
would not cause any heat effect), cooling will take nlace, i.e.,
work must be done in the sense of the previous considerations to
separate the ions from one another. If the initial solution has a
higher concentration, then, in the same experiment, heat is gene-
rated, i.e., work is obtained, if the surrounding of each ion is
freed o” a sufficient number of other ions which are replaced by
water molecules. In conventional language, it is said that a pre-
dominant hydration of the ions occurs, and that this is to be re-
garded as an exothermic process. Obviously the above considera-
tions intend an explanation of this so-called h
electric basis. In fact an approximate computation can be carried
through which gives theoretically Berthelot's rule, valid in this
connection for the dependence of the heat of dilution from the
initial concentration, and which makes plausible the order of magni
tude of the experimentally determined numerical coefficient of this
rule. These considerations have some bearing on the freezing point

ydration on a purely
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observations inasmuch as they suggest the possibility of computing
why and to what extent the curves found for the percentage devia-
tion © (compare the case of KC1l) bend downward for higher concen-
trations and may even cross the abscissa provided the concentration
is high enough. 1In this instance, the freezing point depression
exceeds the one expected from classical theory (also, as may be
stated explicitly, if the classical theory is used in its unabbre-
viated form). Until now, one has been resigned, in such cases, to
talk about hydration.

However, before conditions for concentrated solutions can be
investigated, it must be sho'm that the irreversible process of
electric conduction in strong electrolytes can also be understood
quantitatively from our point of view. We reserve the detailed
presentation of this subject for a future article. Here only the
basic ideas, which will be discussed more thoroughly in that paper,
may be indicated. If an ion moving in a liquid is subjected to the
influence of an external field, the surrounding ions will have to
move constantly in order to form the ion atmosphere. If we now
assume for a moment that a charge is suddenly generated in the
electrolyte, an ion atmosphere will have to appear which requires
a certain time of relaxation for its formation. Similarly, for a
moving ion, the surrounding atmosphere will not attain its equili-
briumdistribution and thus cannot be computed on the basis of the
Boltzmann-Maxwell principle. However, the determination of its
charge distribution can be carried through on the basis of an ob-
vious interpretation of the equations for the Brownian movement.
It can be estimated qualitatively in which direction this effect,
caused by the presence of a finite relaxation time, will be opera-
tive. At a point in front of the moving ion (i.e., a point toward
which it moves) the electric density of the ion atmosphere must in-
crease with time: it must decrease for a point behind the ion. As
a consequence of the relaxation time, the density in front of the
jon will be slightly smaller than its value at equilibrium; behind
it, however, it will not yet have decreased to its equilibrium
value. Consequently, during the movement there always exists a
slightly larger electrical density of the ion atmosphere behind
the ion than in front of it. Since charge density in the atmos-
phere and charge of the central ion alwavs carry opposite signs,

a force braking the ion movement will occur, independent of its
sien, and obviously this force will increase with increasing con-
centration.

This is one effect which operates in the same sense as a de-
crease in dissociation calculated on the basis of Ostwald's dilu-
tion law. However, still another effect is present which must be
taken into consideration. In the vicinity of an ion are pre-
dominently ions of the opposite sizn, which under the influence
of the external field will, of course, move in the opposite direc-
tion. These ions will, to & certain degree, drag along the sur-
round ing solvent, thus causing the considered single ion not to

114

261



ELECTROLYTES

move relative to a stationary solvent but relative to a solvent
moving in the opposite direction, Since, apparently, this effect
increases with increasing concentration, we have a second effect
operating in the same sense as a decrease in dissociation. The
effect can be calculated quant itatively according to the principles
used by Helmholtz for the treatment of electrophoresis.

The common factor of the two effects just mentioned consists,
as is shown by the computations, in the fact that both are closely
related to the thickness of the ion atmosphere, and that, therefore,
the generated forces are pProportional to the square root of the
concentration of the electrolyte, at least in the limit for very
low concentrations. Thus we obtain a law, found by Kohlrausch?®
according to which for low concentrations the percentage deviation
of the molecular conductivity from its limiting value at infinite
dilution is proportional to the square root of the concentration.

Also the proportionality factor thus finds a molecular interpreta-
tion.

Anticipating the detailed representation of electrolytic con-
ductivity in prospect for a following article, we can state as an
over-all result that the view, according to which strong electro-
lytes are completely dissociated, is entirely supported.
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