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Abstract

In the past few years fractional calculus appeared as an important tool to
deal with anomalous diffusion processes. An anomalous diffusion process can
be visualized as an ant in a labyrinth where the average square of the distance
covered by the ant is 〈x2(t)〉 ∝ t2µ where µ is a phenomenological constant; for
µ = 1/2 we have the ordinary diffusion processes. A more physical approach
of anomalous diffusion processes has several applications in many field such as
diffusion in porous media or long range correlation of DNA sequence. In this
short report we shall present an introductory view of the the mathematical
aspects of fractional calculus and its basic foundation.
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1 Elementary properties of fractional derivatives

The concept of derivative is traditionally associated to an integer; given a func-
tion, we can derive it one, two, three times and so on. It can be have an interest
to investigate the possibility to derive a real number of times a function. The
main idea is to examine the properties of the ordinary derivative and see where
and how it is possible to generalize the concepts. As often happen there is not
only a way to do that; we are going to use the most intuitive and, in a certain
sense, less rigorous way. Let us consider the general properties of the derivative
Dn

t for n ∈ N , where n is an integer. This operator is, in fact, defined to have
the following properties, all of which we would like the fractional derivative to
share. The first property of interest is that of association

Dn
t [Cf (t)] = CDn

t [f (t)] (1)

where C is a constant. The second property we would like to incorporate into
the fractional calculus is the distributive law

Dn
t [f (t)± g (t)] = Dn

t [f (t)]±Dn
t [g (t)] . (2)

The final property is that the operator obeys Leibniz rule for taking the deriva-
tive of the product of two functions

Dn
t [f (t) g (t)] =

n∑

k=0

(
n
k

)
Dn−k

t [f (t)] Dk
t [g (t)]

=
n∑

k=0

(
n
k

)
Dn−k

t [g (t)] Dk
t [f (t)] (3)

where
(

n
k

)
= n!

k!(n−k)! is the binomial coefficient. The above properties are

certainly retained for the nth derivative of a monomial tm with m ∈ N , so that

Dn
t [tm] = m (m− 1) (m− 2) · · · (m− n + 1) tm−n =

m!
(m− n)!

tm−n (4)

for m > n. Properties (1) and (2) establish that the operator Dn
t is linear and

(4) enables us to compute the n−th derivative of an analytic function expressed
in terms of a Taylor’s series.

We now extend these considerations to fractional derivatives. Looking at
Eq. (4) the most easy thing would be to replace the integer numbers with
real numbers. The main difficulty is how to replace the factorial function that
is defined for integer numbers. Fortunately it is exists a special function, the
gamma function, that has this property. The gamma function is defined as:

Γ(z) =

∞∫

0

tz−1e−tdt. (5)
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The integral (5) is defined for z > 0 (or Re[z] > 0 if z is a complex number)
and can be checked by elementary integration that for z integer this function
coincide with the factorial; more precisely it holds: Γ(n + 1) = n! We are ready
now to define a real-indexed derivative, or more generally, a complex-indexed
derivative Dα

t with α ∈ R (or α ∈ C), of a monomial tβ , as

dα

dtα
[
tβ

] ≡ Dα
t

[
tβ

]
=

Γ (β + 1)
Γ (β + 1− α)

tβ−α (6)

where β + 1 6= 0,−1, · · ·,−n. It can be proved, via Eq. (3) known as Leibniz
rule, that this equation can be generalized to fractional derivatives as

Dα
t [f (t) g (t)] =

∞∑

k=0

(
α
k

)
Dα−k

t [f (t)] Dk
t [g (t)]

=
∞∑

k=0

(
α
k

)
Dα−k

t [g (t)] Dk
t [f (t)] (7)

where we use the binomial coefficient
(

α
k

)
=

Γ (α + 1)
Γ (k + 1) Γ (α + 1− k)

.

and since α is not integer the upper limit of the sum in (7) is infinite. If one of
the functions in the product is a constant, say g (t) = C, then (7) reduces to

Dα
t [f (t) C] =

∞∑

k=0

(
α
k

)
Dα−k

t [f (t)] Dk
t [C]

= Dα
t [f (t)] C (8)

since only the k = 0 term survives in the series because the integer derivatives
of the constant vanish. Thus, property (1) is retained by the generalized Leibniz
rule (7).

Other properties of ordinary derivative that hold for the fractional derivative
can be found using Eq. (7); in particular:

Dα
t [h (t) + g (t)] =

∞∑

k=0

(
α
k

)
Dα−k

t

[
t0

]
Dk

t [h (t) + g (t)]

=
∞∑

k=0

(
α
k

)
Dα−k

t

[
t0

]
Dk

t [h (t)] +

∞∑

k=0

(
α
k

)
Dα−k

t

[
t0

]
Dk

t [g (t)]

= Dα
t [h (t)] + Dα

t [g (t)] (9)
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and, in similar way, we can show that:

Dα
t [f (at)] = aαDα

x [f (x)] , x = at. (10)

Thus, we see that the associative property is also true for the fractional deriva-
tive Dα

t . Further, Eqs. (8) and (9), taken together, establish that the fractional
derivative is a linear operator.

Now let us consider the case where the index of the monomial is negative
integer valued: β + 1 = 0,−1, · · ·,−n and we operate with the ordinary integer
derivative. Consider the monomial function f (t) = t−m with m a positive
definite integer, from which we obtain

Dn
t

[
t−m

]
= (−1)n

m (m + 1) · · · (m + n− 1) t−(m+n)

or using the properties of gamma functions

Dn
t

[
t−m

]
= (−1)n Γ (m + n)

Γ (m)
t−(m+n) (11)

with n ∈ N . If we restrict ourselves to real indices, then again proceeding by
analogy we write for 0 < α < 1,

Dα
t

[
t−m

]
= (−1)α Γ (m + α)

Γ (m)
t−(m+α), (12)

but we have to change the definition of the gamma functions when the argument
in the numerator is a negative integer. This new definition transforms real
functions into complex functions and vice versa, because there is the complex
factor (−1)α = eiαπ. We shall have occasion to use (12).

2 Constant functions

We define A (α) to be the set of constant functions under the real indexed
derivative Dα

t and C (α) is the generic constant of index α. So, for example, we
consider the two functions: f (t) = t−1/2 and f (t) = C and use the derivative
of the monomial (6) to obtain:

D
1/2
t

[
t−1/2

]
=

Γ (1/2)
Γ (0)

t−1 = 0 (13)

since Γ (0) = ∞. Thus, a particular function is effectively a ”constant” with
regard to a certain fractional derivative. In the second example

D
1/2
t [C] = C

Γ (1)
Γ (1/2)

t−1/2 =
C√
πt

(14)

where we see that a constant is not ”constant” with regard to fractional deriva-
tives. These two examples demonstrate that there are functions that, under
real-indexed derivatives, are additive constants and additive constants that,
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under real-indexed derivatives, are functions. This functions, that behave as
constant under fractional derivative, can destroy the composition property of
the index of derivation. In fact, let f (t) be a function having a power series
representation and assume that there exists derivatives Dµ

t [f (t)] , Dν
t [f (t)] and

Dα
t [f (t)] with α = µ + ν; if f (t) does not contain function that are constant

for the derivative operator Dµ
t and Dν

t then

Dα
t [f (t)] = Dµ+ν

t [f (t)] = Dµ
t [Dν

t [f (t)]] = Dν
t [Dµ

t [f (t)]] . (15)

In conclusion of this section we are going to check the intuitive idea that
D−1 is the integration operator; examine the C (−n) constant and in particular
the C (−1) constant. We first examine the operator D−1

t applied to a monomial

D−1
t

[
tβ

]
=

Γ (β + 1)
Γ (β + 1 + 1)

tβ+1 =
tβ+1

β + 1
(16)

from which we see that effectively this is the integral operator. Now again
using the linearity property of the operator we know that we can take a sum of
infinitesimals to obtain the standard definition of the integral and therefore in
general we can write

D−1
t [f (t)] =

∫ t

0

f (τ) dτ. (17)

3 Application to integral calculus

In the general situation the fractional derivative of a function is a series. How-
ever, there are some cases where it is possible to express the result in terms of
elementary functions. It is not our purpose here to provide an exhaustive list
of the fractional derivative of functions, but it may be useful to see how such
expressions are constructed from the definitions provided. An example is given
by the function f (t) = [a + bt]µ−1, where applying the fractional derivative (9)
we obtain

Dµ
t

[
(a + bt)µ−1

]
=

∞∑

k=0

(
µ
k

)
Dµ−k

t

[
t0

]
Dk

t

[
(a + bt)µ−1

]
(18)

so that in terms of the fractional derivative of a constant and the integer k
derivative of the function we have

Dµ
t

[
(a + bt)µ−1

]
=

∑∞
k=0

(
µ
k

)
tk−µ

Γ(k−µ+1) (µ− 1) (µ− 2) · · ·

· · · (µ− k − 1) bk (a + bt)µ−1−k
.

(19)

The multiplicative factors in (19) may be expressed in terms of gamma functions
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Γ (µ) = Γ (µ− 1 + 1) = (µ− 1) Γ (µ− 1)
= (µ− 1) (µ− 2) · · · (µ− k − 1) Γ (µ− k)

so that

Dµ
t

[
(a + bt)µ−1

]
= bµ

∞∑

k=0

(
µ
k

)
(bt)k−µ

Γ (k − µ + 1)
Γ (µ)

Γ (µ− k)
(a + bt)µ−1−k

. (20)

This expression may be further simplified by using the gamma function relation

Γ (µ− k) Γ (k − µ + 1) =
π

sin π (µ− k)

to obtain, using sin π (µ− k) = (−1)k sinπµ,

Dµ
t

[
(a + bt)µ−1

]
= Γ (µ)

[a + bt]µ−1 sin πµ

πtµ

∞∑

k=0

(
µ
k

)
(−bt)k

(a + bt)k
. (21)

We sum the series using the binomial relation

∞∑

k=0

(
µ
k

)
zk = (1 + z)µ

where z = −bt (a + bt)−1, to obtain

Dµ
t

[
(a + bt)µ−1

]
= Γ (µ)

[a + bt]µ−1 sin πµ

πtµ

[
1− bt

a + bt

]µ

=
aµ sin πµ

πtµ
Γ (µ)

(a + bt)
(22)

We can use the previous result to apply fractional derivative with respect to
a parameter to produce the possibility of new transformations. Consider, for
example, the integral

I (a, b) =
∫ ∞

0

tα
(
a + btβ

)γ−1
dt (23)

which is convergent for α > −1 and (α + 1) /β + γ < 1 (with a, b 6= 0). We
rewrite (23) in terms of parametric derivatives

I (a, b) = bγ−1

∫ ∞

0

tα
(
a/b + tβ

)γ−1
dt

= bγ−1D−γ
a
b

[
Dγ

a
b

∫ ∞

0

tα
(
a/b + tβ

)γ−1
dt

]
(24)
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in order to simplify its evaluation. We can use (22) in terms of the parametric
fractional derivative to obtain from (24)

I (a, b) = bγ−1 sin πγ

π
Γ (γ)D−γ

λ

[
λ−γ

∫ ∞

0

tα+γβ
(
λ + tβ

)−1
dt

]
(25a)

where λ = a/b. Making the further substitution z = tβ in (25a) we have:

I (a, b) = bγ−1 sin πγ

π
Γ (γ)D−γ

λ

[
λ−γβ−1

∫ ∞

0

z
α+1

β +γ−1

z + λ
dz

]
(26)

and using the calculus of residues to evaluate the simple pole in the remaining
integral we have

I (a, b) = bγ−1 Γ (γ) sin πγ

π

π

sin
[(

α+1
β + γ

)
π
]D−γ

λ

[
λ

α+1
β −1

]

so that we finally obtain

I (a, b) = bγ−1 Γ (γ) sin πγ

β sin
[(

α+1
β + γ

)
π
]

Γ (γ) Γ
(

α+1
β

)

Γ
(

α+1
β + γ

)
(a

b

)α+1
β +γ−1

. (27)

4 The generalized exponential function

We now turn our attention to the fractional derivative of the exponential func-
tion et, which when expressed in terms of an infinite series, yields

Dµ
t

[
et

]
= Dµ

t

[ ∞∑

k=0

tk

k!

]
=

∞∑

k=0

tk−µ

Γ (k + 1− µ)
≡ Et

µ (28)

where we define the generalized exponential function, Et
µ, by the series.

Let us consider, for example the situation when the real-valued index in (28)
is a negative integer µ = −1,−2, · · · . Starting from the definition (28) we have
for µ = −1

Et
−1 = D−1

t

[
et

]
=

∞∑

k=0

tk+1

Γ (k + 2)

so that reindexing the series we have

Et
−1 =

∞∑

j=1

tj

Γ (j + 1)
= et − 1. (29)

Of course, we can also write the negatively indexed generalized exponential as
the first-order integral
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Et
−1 = D−1

t

[
et

]
=

∫ t

0

eτdτ = et − 1. (30)

as it was expected because of Eq. (17).
Now let us consider the fractional derivative of the negative exponential

function, e−t. We do this by considering the fractional derivative

Dµ
t

[
eat

]
= Dµ

t

[ ∞∑

k=0

(at)k

k!

]
= aµ

∞∑

k=0

(at)k−µ

Γ (k + 1− µ)
≡ aµEat

µ (31)

where a is an arbitrary constant. If we choose a = −1 we can use (31) to write

Dµ
t

[
e−t

]
= (−1)µ

E−t
µ = eiπµE−t

µ (32)

which we can further use to define another generalized exponential function

∗E−t
µ ≡ eiπµE−t

µ . (33)

In series form we write this new generalized exponential function as

Dµ
t

[
e−t

]
=∗ E−t

µ =
∞∑

k=0

(−1)k
tk−µ

Γ (k + 1− µ)
. (34)

Both (33) and (34) make it abundantly clear that the function ∗E−t
µ is not Et

µ

calculated with −t; the new function differs from the old by the phase factor
eiπµ. Using the property of Eq. (10) we have:

Dµ
t

[
e−t

]
= (−1)µ

Dµ
x [ex]x=−t = eiπµE−t

µ (35)

just as we obtained in (32) and here E−t
µ is a function in the complex field. For

real functions it is convenient to define ∗E−t
µ as Et

µ calculated with −t, but in
order to do this we need to define the generalized exponential as

Et
µ = |t|−µ

∞∑

k=0

tk

Γ (k + 1− µ)
(36)

where it is possible to evaluate this function for both positive and negative
values of the independent variable. In general, however, when we are dealing
with complex functions we use the first definition of the generalized exponential
given by (28).

For completeness we define the inverse of the generalized exponential func-
tion as the generalized logarithm, which is to say the function that satisfies the
relation

lnµ Et
µ = t. (37)
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5 Generalized trigonometric functions

Now that we have a generalization of the complex exponential function, it
should, of course, be possible to construct a generalization of the Euler rela-
tion, that being,

Eit
µ = cosµ t + i sinµ t. (38)

From the real part of (38) we obtain the equation for the generalized cosine
function

cosµ t =
1
2

(
Eit

µ + E−it
µ

)
(39)

and from the imaginary part of (38) we obtain the equation for the generalized
sine function

sinµ t =
1
2i

(
Eit

µ − E−it
µ

)
. (40)

2 4 6 8 10 12

-4

-3

-2

-1

1

Figure 1: The dashed line is sinα x with α = 0.3, the dotted line is sinα x with
α = −0.3 and the continuous line is the ordinary trigonometric function sin x.
Clearly after a period the three function assume the same values.

We can then extend these definitions even further and construct the gener-
alized tangent function as well

tanµ t ≡ sinµ t

cosµ t
. (41)

We can also express the generalized sine and generalized cosine functions in
series form using the series definition of the generalized exponential. The gen-
eralized cosine function is given by
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cosµ t =
1
2

(
Eit

µ + E−it
µ

)

=
∞∑

k=0

tk−µ

Γ (k + 1− µ)
ei(k−µ)π/2 + e−i(k−µ)π/2

2

=
∞∑

k=0

tk−µ

Γ (k + 1− µ)
cos [(k − µ) π/2] (42)

and the generalized sine function is given by

sinµ t =
1
2i

(
Eit

µ − E−it
µ

)

=
∞∑

k=0

tk−µ

Γ (k + 1− µ)
ei(k−µ)π/2 − e−i(k−µ)π/2

2i

=
∞∑

k=0

tk−µ

Γ (k + 1− µ)
sin [(k − µ) π/2] . (43)

From (42) and (43) we can see that for integer µ the generalized trigonometric
series sinµ t and cosµ t become the ordinary trigonometric functions sint and
cos t.

It is useful to study the derivatives of the generalized trigonometric functions
in order to understand how these periodic functions differ from those in the
standard form. Consider the first-order time derivative of the generalized cosine
function

Dt [cosµ t] =
∞∑

k=0

(k − µ) tk−µ−1

Γ (k + 1− µ)
cos [(k − µ)π/2]

=
∞∑

k=0

tk−µ−1

Γ (k − µ)
cos [(k − µ) π/2] (44)

where by reindexing the series, k = j + 1, we can write

Dt [cosµ t] =
∞∑

j=−1

tj−µ

Γ (j + 1− µ)
cos [(j + 1− µ)π/2] . (45)

Separating the j = −1 term from the series and using the trigonometric identity
cos (j + 1− µ)π/2 = − sin (j − µ)π/2 yields

Dt [cosµ t] = − sinµ t +
cos (µπ/2)
Γ (−µ) tµ+1

(46)

where we have used (43) to replace the series. We see that the formal relation
resulting from the derivative of the generalized cosine differs from that of the
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derivative of the cosine by a term that decays as an inverse power law in the in-
dependent variable. Thus, as t →∞, the formal relation for the two derivatives
approach one another:

lim
t→∞

Dt [cosµ t] = − sin t. (47)

The inverse power-law form of the term in (46) is quite suggestive, since the
memory in dynamical processes that make it impossible to join the microscopic
and macroscopic descriptions of complex phenomena are exactly of this inverse
power-law form.

Let us now examine the derivative of the generalized sine function

Dt [sinµ t] =
∞∑

k=0

(k − µ) tk−µ−1

Γ (k + 1− µ)
sin [(k − µ)π/2]

=
∞∑

k=0

tk−µ−1

Γ (k − µ)
sin [(k − µ)π/2] (48)

where by reindexing the series, k = j + 1, we can write

Dt [sinµ t] =
∞∑

j=−1

tj−µ

Γ (j + 1− µ)
sin [(j + 1− µ) π/2] . (49)

Separating the j = −1 term from the series and using the trigonometric identity
sin (j + 1− µ) π/2 = cos (j − µ) π/2 yields

Dt [sinµ t] = cosµ t− sin (µπ/2)
Γ (−µ) tµ+1

(50)

where we have used (42) to replace the series. We see that the formal relation
resulting from the derivative of the generalized sine differs from the derivative
of the sine by a term that decays as an inverse power law in the independent
variable, just as it did for the generalized cosine. Thus, as t → ∞ the formal
relations for the two derivatives approach one another:

lim
t→∞

Dt [sinµ t] = Dt [sin t] = cos t. (51)

Here again, the inverse power-law form of the term in (50) is quite suggestive.
We have examined what happens to a generalized trigonometric function

when we take an ordinary derivative. Now let us examine what happens to an
ordinary trigonometric function when we take a fractional derivative. Consider
the fractional derivative of the sine function

Dµ
t [sin t] =

1
2i

(
Dµ

t

[
eit

]−Dµ
t

[
e−it

])

=
1
2i

(
eiµπ/2Eit

µ − eiµπ/2Eit
µ

)

51



so that using the Euler relations for both the exponential and generalized ex-
ponential and combining terms we obtain

Dµ
t [sin t] = sin (µπ/2) cosµ t + cos (µπ/2) sinµ t. (52)

Equation (52) is reminiscent of the trigonometric expansion of sin (t + µπ/2) .
In the same way we take the fractional derivative of the cosine function

Dµ
t [cot t] =

1
2

(
Dµ

t

[
eit

]
+ Dµ

t

[
e−it

])

=
1
2

(
eiµπ/2Eit

µ + e−iµπ/2E−it
µ

)

so again using the Euler relations and combining terms we obtain

Dµ
t [cot t] = cos (µπ/2) cosµ t− sin (µπ/2) sinµ t. (53)

Equation (53) is reminiscent of the trigonometric expansion of cos (t + µπ/2) .
A geometrical interpretation of the derivative relations in (52) and (53) can

be obtained by introducing the rotation matrix

R =
(

cos (µπ/2) sin (µπ/2)
− sin (µπ/2) cos (µπ/2)

)

and the vector

vµ =
(

sinµ t
cosµ t

)

so that we can write

Dµ
t [v0] = Rvµ. (54)

Both the above fractional derivatives are included in the rotation equation given
by (54) since we know that the generalized functions reduce to their ordinary
counterparts when µ = 0

v0 =
(

sin t
cos t

)
.

The existence of (54) allows us to infer that the vectors vµ and w have the same
length, where

w ≡Dµ
t [v0] ,

since the ”length” of the rotation matrix is unity.
A similar kind of analysis can be done for the generalization of the hyperbolic

sines and cosines.
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6 Certain fractional integrals

We now consider how to construct the definite integrals of certain functions
using the properties of the fractional derivatives discussed in the previous sec-
tions using negative values of the µ−index and the series representations of the
generalized functions. Consider an integral of the form

Iα (t) =
∫ t

0

ταe−τdτ (55)

where α > −1. Using the fractional calculus formalism we write

Iα (t) = D−1
t

[
tαe−t

]
(56)

and applying the generalized Leibniz rule (7) to (56) we obtain

Iα (t) =
∞∑

k=0

( −1
k

)
D−k−1

t [tα]Dk
t

[
e−t

]

= Γ (α + 1)
∞∑

k=0

(−1)k (−1)k
tk+α+1

Γ (k + α + 2)
e−t. (57)

Introducing the series definition of the generalized exponential into (57) we have

Iα (t) = Γ (α + 1) e−tEt
−(α+1) (58)

for the integral (55). We can extend (58) to α < −1 with α 6= −1,−2, · · ·.
Equation (58) can be used to determine the integral for the gamma function

lim
t→∞

Iα (t) = Γ (α + 1) (59)

since Et
−(α+1) → et as t →∞. In general we use the same logic to obtain

∫ t

a

ταe±τdτ = Γ (α + 1) e±t ∗E∓t
−(α+1) + c (60)

where c is a constant dependent on the lower limit of the integral. We can now
use (60) to again obtain the derivative of the generalized exponential.

We now consider the integrals of trigonometric functions of monomials such
as

Iα (t) =
∫ t

0

cos (τα) dτ. (61)

that appear in several field of physics. For example for α = 2, the integral (61)
is basically the Fresnel cosine integral C(τ), well known in optics. Making the
change of variables y = τα so that dy = ατα−1dτ and (61) becomes
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Iα (t) =
1
α

∫ t

0

dyy
1
α−1 cos y = Re

[
1
α

∫ t

0

dyy
1
α−1e−iy

]
(62)

and using (60) we obtain

∫ t

0

cos (τα) dτ = Re
[
Γ (1/α)
αi1/α

e−iy Eiy
−1/α

]∞

0

=
Γ (1/α)

α
cos (π/2α) . (63)

In a similar way we obtain for the integral of the sine function

∫ t

0

sin (τα) dτ = Im
[
Γ (1/α)
αi1/α

e−iy Eiy
−1/α

]∞

0

=
Γ (1/α)

α
sin (π/2α) (64)

where we have used the property that for ”t = ∞” the generalized exponential
function becomes the ordinary exponential function.

7 Concluding Remarks

This short review showed as the fractional calculus is a very helpful tool to
perform calculation specifically dealing with power law[1, 2]. Despite to the
mathematical examples presented, many physical application can be faced[3]; let
us, for example, consider the ordinary diffusion equation, ∂

∂tP (x, t) = ∇2P (x, t)
that leads to gaussian processes. A possible generalization of the diffusion equa-
tion is the fractional diffusion equation ∂

∂tP (x, t) = ∇αP (x, t) where the second
derivative is substituted by a non integer order of derivation α. The solution
of this new diffusion equation (fractional diffusion equation) leads to Levy pro-
cesses that are considered as possible source of anomalous diffusion processes.
Finally a brief and absolutely not exhaustive bibliography is reported.
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