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1 Abstract

An introduction to the theory of knots is given. Properties of knots are discussed and certain
knot invariants are obtained. The emphasis lies on a particular type of knot invariant: a
knot polynomial, namely the Alexander polynomial. The Alexander polynomial is a Laurent
polynomial which can be assigned to a knot. It turns out that this assignment only depends
on the equivalence class of the knot, i.e. on the knot type. For this reason we speak of a
knot invariant. Otherwise formulated, if two knots have different Alexander polynomials they
cannot be equivalent. Therefore knot invariants such as the Alexander polynomial can be
used to distinguish between knot types. The aim is to understand the construction of the
Alexander polynomial, its geometrical meaning and to analyse some of its properties. Then
a connection is made between knots and physical particles who live in 2+1 dimensional space
time. These particles are called anyons and they have some interesting features. A model of
such particles is specified by three rules. By the consideration of a certain equation resulting
from an anyonic model, a knot polynomial called the Jones polynomial is obtained.

2 Populair wetenschappelijke samenvatting

Deze bachelorscriptie geeft een introductie in de wereld van knopen. Vrijwel iedereen heeft
in zijn of haar leven wel eens te maken met knopen. Zo hebben de meesten geleerd om een
knoop in de schoenveters te leggen om ervoor te zorgen dat de schoenen goed blijven zitten.
Ook zullen velen het ontwarren van bijvoorbeeld de iPod-oortjes herkennen nadat deze voor
de zoveelste keer in elkaar zijn geknoopt. Dit zijn allemaal voorbeelden van knopen in het
dagelijks leven. Echter, als iemand mij op dit moment zou vragen om een dubbele paalsteek
in een stuk touw te leggen, zou ik diegene het antwoord schuldig moeten blijven. Maar waar
gaat de knopentheorie in wiskundige en natuurkundige zin dan wel over?

Om te beginnen is het in de wiskunde van belang om objecten zoals knopen precies te
definiëren. We komen al een heel stuk verder door de twee uiteinden van een stuk touw
met een knoop erin, aan elkaar te verbinden. Een wiskundige knoop heeft dus geen begin- of
eindpunt. De triviale knoop, ook wel de onknoop genoemd, is een cirkel. Alle andere soorten
knopen zijn in feite vervormingen van de cirkel. Meer precies: manieren waarop de cirkel
kan knopen in de drie-dimensionale ruimte. De feitelijke definitie van een knoop is iets te
wiskundig om hier te noemen.

Nu is het heel goed mogelijk dat twee knopen op het eerste gezicht niet op elkaar lijken, maar
na een beetje trekken en buigen toch één en dezelfde knoop blijken. We zeggen wel dat twee
knopen equivalent zijn als zij door middel van trekken, buigen en duwen in elkaar over zijn te
voeren. Handelingen zoals knippen en plakken zijn niet toegestaan. Dit soort manipulaties
met knopen worden in wiskundige termen beschreven. De hamvraag in de knopentheorie is
of, gegeven twee knopen, zij equivalent zijn of niet.

In de praktijk blijkt het vaak erg lastig om knopen met veel kruisingen en lusjes te manip-
uleren zoals op bovenstaande manier beschreven staat. Daarom worden er eigenschappen aan
knopen toegekend. Vervolgens gaat men op zoek naar knoopinvarianten. Dit zijn eigenschap-
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pen van knopen die hetzelfde zijn voor equivalente knopen. Met behulp van deze invarianten
is het mogelijk knopen te classificeren. Als een knoopinvariant de vorm van een polynoom
aanneemt, spreekt men van een knooppolynoom. Het Alexanderpolynoom is een voorbeeld
van een dergelijk knooppolynoom. In deze scriptie heb ik enkele eigenschappen en de con-
structie van dit polynoom beschreven.

De knopentheorie kent veel toepassingen in de natuurkunde. In deze scriptie heb ik één
toepassing, in de vorm van anyonen, besproken. Anyonen zijn fysische deeltjes met bijzon-
dere eigenschappen. Natuurkundigen gingen er lange tijd van uit dat alle verschillende deeltjes
in twee hoofdsoorten konden worden onderverdeeld: de fermionen en de bosonen. Een bekend
voorbeeld van een fermion is een elektron en het foton is een typisch boson. Op theoretische
gronden is in de 20e eeuw het bestaan van andere soorten deeltjes geopperd, te weten anyonen.

Anyonen leven, in tegenstelling tot fermionen en bosonen, in een twee-dimensionale wereld.
Het wel of niet bestaan van deze deeltjes is enigszins controversieel. Niet iedere fysicus is ervan
overtuigd dat deze theoretische deeltjes daadwerkelijk in de natuur voorkomen. Toekomstige
experimenten zullen deze vete moeten beslechten. Desalniettemin zijn anyonen het bestud-
eren waard. Zo beschrijf ik in mijn scriptie een manier om een knooppolynoom te verkrijgen
na het analyseren van een bepaald systeem dat uit anyonen bestaat.

In conclusie kan ik stellen dat mijn scriptie slechts een kleine introductie geeft in een populair
onderzoeksgebied dat sinds zijn bestaan enorm in omvang is gegroeid. In het bijzonder heb
ik het Alexanderpolynoom uitgelicht omdat dat het eerste en wellicht best begrepen knoop-
polynoom is. De knopentheorie is echter nog lang niet af. Er zijn nog veel open vragen en
ik kan iedereen van harte aanbevelen zelf een beginnetje in de wereld van knopen te maken
door in de bijvoorbeeld zeer begrijpelijke boeken [1] en [15] te lezen.

Figure 1: Een kleine classificatietabel van knopen
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3 Introduction

In this paper an introduction to knot theory is given. Knot theory is a mathematical theory
that investigates properties of knots. But what precisely is a knot? Most people think of
knots as being tied up ropes which are used by sailors. Or they refer to the knot in their
shoelaces. If one now ties both ends of the shoelace or rope together, one gets the knot
that mathematicians study. One of the main questions in knot theory is whether or not two
given knots are the same. Though this question intuitively may seem very simple, it requires
hard work to overcome many technical difficulties and to provide an answer. There exists an
algorithm that solves the question [11]. Unfortunately it may take a very long time before
the algorithm can distinct two knots. This is because the algorithms complexity is unknown.

To distinguish between two knots, one assigns properties to knots in order to obtain knot
invariants. A knot invariant is a quantity that is the same for equivalent knots; in the first
part of this research the precise equivalence relation is described. That part also discusses a
few examples of knot invariants. The aim of this thesis is to examine the so-called Alexander
polynomial. That is; its mathematical definition, its properties and its geometrical meaning.
The Alexander polynomial turns out to be a knot invariant and is good in distinguishing knots
with not to many crossings. Two different methods that lead to this Laurent polynomial are
proposed. In order to fully understand the Alexander polynomial, tools from different areas
of mathematics are needed. They mainly come from algebraic and geometric topology. The
reader is assumed to have a knowledge of undergraduate level in mathematics. The second
part of the thesis is devoted to the Alexander polynomial.

Knot theory naturally lends itself to make graphs and diagrams. In order to prevent this
paper to become a picture book, they are only used when they improve clarity and when it
is necessary. Though these pictures often offer a helping hand, it is premature to make knot
theory out to be a straightforward and simple part of mathematics. As said, the tools used to
deal with knots come from many branches of mathematics and often they are very complex.
Although knot theory exists for over a hundred years, there are still many unsolved questions.
A lot of these questions can be understood with very little background information. This is
one of the motivations for this thesis. To understand where the difficulties in approaching
knot theory lie.

Another motivation for this thesis can be found in the applications of knot theory in physics.
As will be seen later, knots have something to do with physical particles with strange statis-
tics. It turns out that these particles live in 2+1 dimensional space time and that they behave
completely different than the well-known bosons and fermions. The connection between these
particles and knots will be studied in the third and last part of this research.

Finally I want to thank my supervisors. Eric Opdam for the intensive and fruitful sessions
without which this thesis could never have been realized in its present shape. Also the dis-
cussions about topics which are not directly related to knot theory have been very insightful.
Furthermore I am grateful to Jan de Boer for his explanation about anyons and pointing me
in the good direction.
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4 Knot equivalence

4.1 Ambient isotopy

Knot theory originally has a topological flavour. It is intended to deal with the possible
ways a circle can lie in three-dimensional Euclidean space. There exists a generalization of a
mathematical knot, namely a link. We will first give the formal definition of the link.

Definition 4.1 A link of n components is a subset of R3, or its one-point compactification
which is homeomorphic with S3, that consists of n disjoint, piecewise linear simple closed
curves. A knot is a link that consists of one component.

The simple closed curves have to be piecewise linear because we want to exclude certain links
which are hard to deal with. We restrict our attention to links and knots that are built
up of a finite number of straight line segments. Such knots and links are called piecewise
linear. There exists a more comprehensive definition of a knot in which a knot is defined as
an embedding of S1 in R3 (or S3). For a moment we will work with this definition. The
justification of this step will be given later on.

It may occur that two different embeddings represent the same knot if we allow for some
manipulations on the knot. The knot can be considered as a very elastic rope that can be
pulled tighter or may be stretched. Actions as splitting, cutting and pasting are forbidden.
Now recall the following definition from topology.

Definition 4.2 Let f, g: X → Y be homeomorphisms between topological spaces X and Y.
Then f is isotopic to g if there exists a homotopy H: X x I → Y such that H(x,0) = f, H(x,1)
= g and H(x,t) is a homeomorphism for all t∈I.

Where I denotes the unit interval [0,1]. So an isotopy is nothing more than a continuous
family of homeomorphisms. A naive attempt to define equivalence between two knots would
be that the two embeddings defining the knots must be isotopic to each other. Note that
an embedding is a homeomorphism between a topological space and its image. But such a
notion of isotopy turns out to be incorrect because it allows for the possibility that knotted
segments shrink to a point by ”pulling the string”, thus simplifying the knot type.

It is clear that additional requirements have to be placed on an isotopy as described above in
order to satisfy our geometrical intuition concerning the fact whether two knots are equivalent
or not. This leads to the following definition.

Definition 4.3 Two knots (K1 and K2) are said to be equivalent if there is an ambient
isotopy (in the piecewise-linear category) between the two embeddings (i1 and i2) of S1 in
S3. That is: there exists a piecewise linear map F: S3 x I → S3 such that F (x, 0) = idS3 ,
F (i1(S1), 1) = i2 and F(x,t) is a homeomorphism from S3 to itself for all t∈I.

Lemma 4.4 The relation “i1 is ambient isotopic with i2” is an equivalence relation on the
set of embeddings of S1 in S3.
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A knot can be given an orientation by specifying a direction to travel around the knot. It
follows from the definition of equivalence between knots that an ambient isotopy preserves
the orientation of a knot.

A knot is called tame if every point on the knot has a neighborhood which is isotopic to the
standard arc-ball pair. The standard arc-ball pair is a ball with an arc from the north pole to
the south pole of the ball. A knot which is not tame is called wild. An example of a wild knot
is the Alexander horned sphere. It turns out that a tame knot is equivalent to a piecewise
linear knot as defined in 4.1. That is, every tame knot can be represented by a piecewise
linear knot up to ambient isotopy. This justifies working with the alternative definition of a
knot earlier.

Considering the above, it is most convenient to work in the piecewise linear category. This is
called combinatorial knot theory. In this approach to knot theory not only the knot itself is
represented by a piecewise linear curve, but all spaces are simplicial complexes and all maps
are simplicial maps. For example, the ambient space S3 is represented by a three-dimensional
simplicial complex homeomorphic to S3. The embedded knot is an one-dimensional simplicial
subcomplex. There are other approaches to knot theory. Some authors prefer to work in the
differentiable or topological category. It is known that for tame knots all these approaches are
equivalent and all spaces and maps can be equipped with compatible piecewise-linear struc-
tures. However, the proof of this statement is far beyond the scope of this thesis. Neverthe-
less we will sometimes tacitly use these fundamental facts and work in these other categories
whenever this turns out to be more convenient.

4.2 Reidemeister moves

Now a start has been made, it is time to make things a little more geometrical. For each knot
a knot diagram can be given. A knot diagram is a projection of the knot on R2 in which the
crossings are marked. The precise projection will now be specified.

A piecewise linear knot consists of straight line segments. These straight line segments can
be changed by the aid of delta moves. A delta move can be explained as follows. If a planar
triangle intersects a link or a knot in one edge of the triangle, this part of the link is deleted
and it is replaced by the two other parts of the triangle. The straight line segments of a knot
can be arranged in such a way that each line segment projects to a line segment in R2. It is
required that two projected line segments intersect in at most one point. No three points of
the knot project to the same point and furthermore vertices of line segments of the knot do
not project to the same point as any other point of the knot.

A knot diagram then is such a projection of a piecewise linear knot together with the infor-
mation where one strand goes under or over another. It is like a shadow of a knot. Of course,
it is also possible to give a link diagram. An orientation in the knot diagram is indicated by
drawing arrows. Furthermore, if a link is oriented, one can define a linking number. For a
crossing there are two possibilities and to each of them a sign is given in the following way.
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Figure 2: Signs

The linking number is then defined as follows.

Definition 4.5 The linking number of a link L with two components L1 and L2 is denoted
as lk(L1, L2) and is defined as half the sum of the signs in a diagram for the link L.

Notice that this definition implies that the linking number is symmetric in its argument.
Given one particular knot, the reverse knot is the same subset of S3 but with orientation al-
tered. The reflected or mirrored knot is the knot one obtains if the over-crossings are changed
in under-crossings and the other way around. In some situations the operations reversing and
reflecting change the knot, in other situations this is not the case. If a knot is equivalent to
its reflected image, the knot is called amphicheiral. The knot and link diagram may be very
useful in order to determine if two knots or links are equivalent. It points out to be that there
are three kind of manipulations of a diagram that can be carried out in order to transform
knots and links into others that are equivalent to it. These maneuvers are called Reidemeister
moves and they are pictured below.

Figure 3: Reidemeister moves

An equivalence relation generated by the second and third Reidemeister move is called a
regular isotopy. A regular isotopy, unlike an ambient isotopy, conserves the winding number
of a knot diagram. Kurt Reidemeister, a German mathematician, proved that two equivalent
knots are related by a sequence of Reidemeister moves. He proved this with the aid of the
earlier described delta moves.

Reidemeister’s result seems very useful. However, there is no bound on the number of moves
that takes one knot into another. In this way it is very hard to prove that two knots are not
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equivalent for we can not forever go on checking Reidemeister moves. In the next section is
explained how to deal with this problem. It is also quite hard to write down all Reidemeister
moves if two equivalent knots are given. For example, try do so for the following knot, which
is in fact the unknot in disguise.

Figure 4: An unknot in disguise

4.3 Knot and link invariants

As mentioned in the previous section, it is necessary to search for better ways for detecting
equivalence between knots and links. In order to do so, we have to assign new properties to
links and knots and see if they match for equivalent ones. This is a quest for invariants. So as
a start, let us study the behavior of the linking number under the Reidemeister moves. Ob-
viously, move I does not affect the number of crossings between two link components; it only
changes the number of self-crossings.Therefore the linking number does not change. Moves II
and III do change the number of crossings but in either case there is a plus one and a minus
one which cancel each other out. We conclude that the linking number is a link invariant; it
is not changed by ambient isotopy.

There is an important theorem concerning the linking number. It deals with homology theory.
As is known from algebraic topology, the fundamental group is a powerful tool to measure
holes of codimension two of a topological space. Due to the fact that the fundamental group
is defined in terms of homotopy classes of loops, one would not expect that it is very useful to
detect holes of higher codimension. There exists a theory of homotopy groups of higher order
but they have the disadvantage that they are very difficult to compute. On that account a
new theory has been developed, called homology theory.

In short the difference between the first homology group and the fundamental group is that
in homology one looks at ’sums’ of paths, which are called 1-chains, instead of loops. A
closed 1-chain is called a 1-cycle and two 1-cycles are said to be homologous if they differ by
a boundary of a 2-dimensional chain. This equivalence relation is called homology and the
set of homology classes of closed 1-chains of a topological space X is called the first homology
group H1(X). It is easy to extend this definition to the higher homology groups Hk(K).

There are different types of homology theories. All these theories must satisfy a list of ax-
ioms. One of the most important properties of homology theories is that they are invariant for
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homotopy: two homotopic maps f,g X: → Y, with X and Y being topological spaces, define
the same map Hk(f) = Hk(g) : Hk(X) → Hk(Y ) in any homology theory. It follows that
two spaces which are homotopy equivalent have the same homology groups in any homology
theory. Two theories are especially important in the present context: simplicial and singular
homology. Though the two theories are certainly different, for most of the theorems that will
follows it is indifferently which homology theory is being used. This should sound familiar to
the reader. It is presumed that some basis results from algebraic topology such as homology
groups and the Mayer-Vietoris sequence are known.

Back to knots. It is not hard to imagine that every knot in S3 has a regular neighbourhood
N that is a solid torus. Note that the knot itself is not a solid torus because it has no interior
points. The exterior X of a knot is defined as the closure of the complement of N in S3,
X = S3 \N . Observe that X is homotopy equivalent to the complement of the knot in S3.
The theorem says something about the first homology group of the exterior X of a knot in
S3. Moreover it relates the homology class of a simple closed curve c in X to the linking
number of c and the knot K. Its proof uses the Mayer-Vietoris sequence.

Theorem 4.6 Let K be an oriented knot and X its exterior. Then H1(X) is isomorphic to
Z and its generator is a simple closed curve µ in ∂N that bounds a disc in N that meets K at
one point. If c is an oriented simple closed curve in X, then the homology class [c] ∈ H1(X)
is lk(c,k).

Now a link invariant has been found, one is maybe tempted to think that the classification of
links is within reach. Nothing is further from the truth. Take a look at the link below, called
the Whitehead link. The mirror image of the Whitehead link is the logo of the International
Mathematical Olympiad.

Figure 5: The Whitehead Link

Its linking number is zero, just as for the unlink. An unlink consists of two unknots situated in
S3 in such a way that there are no crossings in the link diagram. However, the Whitehead link
is definitely not equivalent to the unlink. But for now, we are not able to tell the difference
between the Whitehead link and the unlink. Apparently a search must be made with the
aim to find other invariants. In the next chapter a new and very useful invariant will be
introduced.
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5 The Jones polynomial

The history of knot theory goes back to the nineteenth century. During a long period of
time, no big breakthroughs had been made. That all changed in the year 1984 when Vaughan
Jones introduced the Jones polynomial. It was a real milestone and in 1990 Jones received
the Fields medal for his discovery. The Jones polynomial is a Laurent polynomial assigned
to a link and turns out to be a link invariant. Some work must be done before giving the
definition of the polynomial.

5.1 The Kauffman bracket

We would like the Jones polynomial to satisfy some requirements. Therefore we first intro-
duce the Kauffman bracket for a link L, denoted as <L>. As a first rule we demand that the
Kauffman bracket of the unknot equals one: <O> = 1. Now consider the following diagram.

Figure 6: The Whitehead Link

If one travels, in arbitrary direction, on the upper strand the area before the crossing on the
right is denoted as A. The area on the left is marked as B. If the strands are cut open in
the centre of the crossing and are pasted in such a way that the areas denoted with A are
connected, a simpler figure with an A in front is obtained. Similarly this holds if the B areas
are joined. If a link is simplified in accordance with the above procedure, a linear combination
of the simpler figures is obtained in the following Kauffman bracket notation.

Figure 7: Rule 2

In addition, as a third rule is required that the adding of an unknot behaves like this.

Figure 8: Rule 3
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In the latter picture the L stands for a link, the circle represents the unknot and the U stands
for the union of both. We must get on with the task to find a relation between the variables
A, B and C. Let us explore the behavior of the Kauffman bracket under the Reidemeister
moves. After all, we are looking for a knot invariant. It is advantageous to start with Reide-
meister move II.

Figure 9: The effect of Reidemeister move II

Where the second equality is obtained by repeated use of the bracket rules. It follows that the
next relations must apply in order for the equality to hold: B = A−1 and C = −(A2 +A−2).
The third Reidemeister move leaves the Kauffman bracket unchanged, as a quick check will
tell. Only an inspection of the first Reidemeister move remains.

Figure 10: The effect of Reidemeister move I

The second equality is obtained by applying bracket rule three on the first term. The first
Reidemeister move seems to throw grit into the machine. To solve this problem an orientation
must be given to a link. Then a sign is associated to each crossing in the knot diagram alike
has been done to crossings in a link diagram. This gives rise to another definition.

Definition 5.1 The writhe of a link L, denoted as w(L), is the sum of all signs.

Note that the writhe of a knot is certainly not a link invariant as Reidemeister move I takes
care of one crossing more or less which changes the writhe. So this Reidemeister move causes
an extra plus or minus one for the writhe. The writhe of a link is however unaffected by a
regular isotopy as one can easily verify. Here comes the definition of the Kauffman bracket.

Definition 5.2 The Kauffman polynomial for an oriented link L is a Laurent polynomial in
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the variable A with integer coefficients and is defined by PL(A) = (−A)−3w(L)<L>.

It remains to check if this is a knot invariant.

Theorem 5.3 The Kauffman polynomial is a link invariant.

Proof. Because the writhe and the Kauffman bracket are unchanged by a Reidemeister move
II or III, it remains to show that a Reidemeister move I does not affect PL(A). By symmetry
it is enough to check this for the first variant of a Reidemeister move I as in figure 2.
We then find that w(L′) = w(L) + 1. For PL′(A) we find: PL′(A) = (−A)−3w(L′)<L′> =
(−A)−3(w(L)+1)(−A3<L>) = (−A)−3w(L)<L> = PL(A). So the Kauffman polynomial is
invariant under all Reidemeister moves and therefore it is a link invariant.

Definition 5.4 The Jones polynomial V(L) of an oriented link L is defined by V (L) =

(PL(A))
A−1=t

1
4

= ((−A)−3w(L)<L>)
A−1=t

1
4
∈ Z[t−

1
2 , t

1
2 ].

Because of theorem 5.3, the Jones polynomial is a link invariant (and thus a knot invariant)
as well. Furthermore it is well-defined and V (O) = 1. In the definition of the Jones poly-

nomial it is stated that V (L) lies in the ring Z[t−
1
2 , t

1
2 ], but why is this the case? Because

if the variable A in the Kauffman polynomial is replaced by t−
1
4 , it could be possible that

factors of t with powers like 1
4 occur in the Jones polynomial. We come to the following lemma.

Lemma 5.5 The Jones polynomial lies in the ring Z[t−
1
2 , t

1
2 ].

Proof. The lemma is proved by induction on the number of crossings in a diagram for an
oriented link. If an oriented link has zero crossings and consists of l components then by the
first and second rule for the Kauffman bracket we have <L> = (−(A2 + A−2))l−1<O> =
(−(A2 +A−2))l−1. Then V (L) = ((−A)−3w(L)<L>)

A−1=t
1
4

= ((−A)0(−(A2 +A−2))l−1

A−1=t
1
4

=

(−(t
1
2 + t−

1
2 ))l−1 ∈ Z[t−

1
2 , t

1
2 ].

Now assume the claim holds for n crossings in the diagram. Then for n+ 1 crossings we find
<Ln+1> = A<Ln>+A−1<Ln>, where Ln+1 represents a link with n+ 1 crossings in its link
diagram and Ln a link with n crossings. So V (Ln+1) = ((−A)−3w(Ln+1)<Ln+1>)

A−1=t
1
4

=

((−A)−3w(Ln+1)+1<Ln>− (A)−3w(Ln+1)−1<Ln>)
A−1=t

1
4
.

The writhe of an oriented link with n + 1 crossings differs by one with the writhe of an
oriented link with n crossings. Without loss of generality it is assumed that w(Ln+1) =
w(Ln) + 1. It follows that V (Ln+1) = ((−A)−3w(Ln)+2<Ln>+ (−A)−3w(Ln)<Ln>)

A−1=t
1
4

=

(A2(−A)−3w(Ln)<Ln>+ (−A)−3w(Ln)<Ln>)
A−1=t

1
4
. And the last expression lies in the ring

Z[t−
1
2 , t

1
2 ] because of the induction hypothesis and the fact that A2 = t−

1
2 .

5.2 A skein relation

In the previous section a first knot polynomial has been found. We know that two equivalent
knots have the same Jones polynomial. In other words, if two knots have different Jones poly-
nomials the knots are not equivalent. However, if two knots have the same Jones polynomial
this does not imply that the knots are equivalent. For example the Kinoshita-Terasaka knot
and the Conway knot are two non-equivalent knots with the same Jones polynomial. It was
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found that every knot with nine or less crossings in its knot diagram, has a distinct Jones
polynomial (see [1]).

There is a relation which the Jones polynomial satisfies and this relation provides us a different
method for obtaining the Jones polynomial. Such a relation for obtaining knot polynomials
is called a skein relation and it will appear another time in this thesis. We consider three
oriented links: L+, L− and L0 which are identical except in the neighborhood of some point
where they appear as below

Figure 11: Three oriented links

Then we have the following proposition.

Proposition 5.6 The Jones polynomial is a function V : {Oriented links in S3} → Z[t−
1
2 , t

1
2 ],

such that t−1V (L+)− tV (L−) + (t−
1
2 − t

1
2 )V (L0) = 0.

Proof. The second rule that defines the Kauffman bracket reads

Figure 12: Second bracket rule

Or in equivalent notation

Figure 13: Second bracket rule in equivalent form

Now multiplying the first equation with A and the second with A−1 and then subtracting the
second of the first gives
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Figure 14: New expression

Because the links L+, L− and L0 are identical besides from the indicated point, it follows that
w(L+)− 1 = w(LO) = w(L−) + 1. If we now multiply the third equation with (−A)−3w(LO))

we get: −A4V (L+) +A−4V (L−) = (A2 −A−2)V (LO).

Replace A−2 by t
1
2 to obtain the wanted expression.

There is another useful proposition that compares the Jones polynomial of a link with the
Jones polynomial of the mirror image of the link. It is an indicator for amphicheirality.

Proposition 5.7 Let L be an oriented link and let L∗ denote its mirror image. Then
V (L)t=t−1 = V (L∗)

Proof. It is clear that w(L∗) = −w(L). Furthermore we have that <L∗> = (<L>)A=A−1

because of the rules that determine the Kauffman bracket and the fact that all are changed
for a mirror image of a link. The statement then follows by the definition of the Jones
polynomial.

The proposition tells us that if a knot is amphicheiral, its Jones polynomial must be palin-
dromic.
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6 Seifert surfaces

The Jones polynomial turns out to be very good in distinguishing knots. An advantage of
this knot invariant is that it can tell the difference between a knot and its mirror image. It
must be said that Jones originally discovered his polynomial by studying certain operator
algebras and not by means of the Kauffman bracket as has been done in the last chapter.
The coming of the Jones polynomial put earlier work in knot theory in a new light. The fact
is, another knot polynomial had been found in the beginning of the nineteenth century [3].
It is nowadays called the Alexander polynomial and even though it had been found much
earlier than the Jones polynomial, its importance was not recognized until Jones came up
with his polynomial. A significant part of this thesis is devoted to the Alexander polynomial,
its properties and ways to acquire this knot invariant. However, a lot of preliminary work has
to be done. That is what this chapter is all about.

6.1 Knot factorisation

It is possible to add two oriented knots in a natural way. Intuitively, one cuts the two knots
at one place and glues the remaining parts together, such that orientations match, to form a
new knot . In a figure

Figure 15: The adding of two knots

Just as there are prime numbers in the set of natural numbers, there are some kind of irre-
ducible knots within the set of oriented knots.

Definition 6.1 A nontrivial knot K is said to be a prime knot if K = K1 +K2 implies that
either K1 or K2 is the unknot.

It will now be shown that for every oriented link in S3 there exists a surface , called a Seifert
surface, such that the link is the boundary of the surface. First the definition of a Seifert
surface will be given.

Definition 6.2 Let L be an oriented link in S3. A Seifert surface for L is an oriented,
connected and compact surface in S3 whose boundary is L, with induced orientation that
corresponds to the orientation of L.

A surface is non-orientable if it contains a subset that is homeomorphic with the Möbius strip.
The following theorem provides an algorithm for the construction of a Seifert surface if an
oriented link is given.

Theorem 6.3 Any oriented link in S3 has a Seifert surface.
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Proof. Let D be the link diagram of the oriented link. Now at each crossing in the diagram
there are two incoming and two outcoming strands. Cut each crossing open and connect the
incoming strand that goes to the right with the outgoing strand that goes to the left. Do like-
wise for the other strands. A modified diagram D∗ is obtained. D∗ is a set of non-intersecting
oriented circles, called Seifert circuits. So D∗ is the boundary of a set of oriented disjoint
discs. The discs inherit an orientation of the oriented circles. We continue by connecting
the discs with half twisted strips at the places where the crossings used to be. The strips
are twisted in such a way that they correspond to the type of crossing there was before. It
may occur that the resulting surface is not connected. In that case the surface can be made
connected by removing small discs from the larger discs and by inserting long tubes.

It is important to notice that there could exist different Seifert surfaces for one and the same
link in S3. In practice it is not convenient to deal with very exotic surfaces. What we are
searching for is the most economical Seifert surface. Therefore the following property is es-
tablished.

Definition 6.4 The genus g(K) of a knot is defined by
g(K) = min.{genus(F): F is a Seifert surface for K}

Recall that the (topological) genus of an orientable surface equals the number of handles
the surface has. For example the disc {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, z = 0} has genus zero.
Furthermore this disc is a Seifert surface for the unknot. It is easy to check that a knot K is
the unknot if and only if it has genus zero. The genus of a knot is also a knot invariant since
an ambient isotopy does not change the genus of a Seifert surface. The genus is a topological
invariant. The following very important theorem states that the genus is an additive function.
The proof is quite long and technical.

Theorem 6.5 Let K1 and K2 be knots. Then g(K1 +K2) = g(K1) + g(K2).

Proof. First the inequality g(K1 + K2) ≤ g(K1) + g(K2) will be proved. Suppose we have
two knots K1 and K2 with minimal Seifert surfaces F1 and F2 situated far apart in S3. Then
each Seifert surface is a connected surface with non-empty boundary by definition. It will be
shown now that F1 ∪ F2 does not separate S3.
Let U1 = S3 \ F1, U2 = S3 \ F2. Then U1 ∪ U2 = S3 and U1 ∩ U2 = S3 \ (F1 ∪ F2). We
have to show that U1 ∩ U2 is connected. From elementary homology theory we know that
H0(X) ∼= Z#p.c.c(X), where #p.c.c(X) means the number of path-connected components of X.
So we have to show that H0(U1 ∩U2) ∼= Z. First it will be proved that U1 is path-connected.
This will be done by investigation of the Mayer-Vietoris exact sequence for F1. The sequence
goes as follows
H1(F1 ∪ U1;Z)→ H0(F1 ∩ U1;Z)→ H0(F1;Z)⊕H0(U1;Z)→ H0(U1 ∪ F1;Z).
Now U1 ∪ F1 = S3 and U1 ∩ F1 = ∂F1 = K1. Therefore we have the sequence
H1(S3;Z)→ H0(K1;Z)→ H0(F1;Z)⊕H0(U1;Z)→ H0(S3;Z).
Inspection of the homology groups yields the following. By the Hurewicz theorem: H1(S3;Z) =
π1(S3, s0)/[π1(S3, s0), π1(S3, s0)] = (0). H0(K1;Z) ∼= Z because a knot, being an embedding
of the circle, is path-connected. H0(F1;Z) ∼= Z because F1 path-connected. For the same
reason also H0(S3;Z) ∼= Z. Then the sequence reduces to

(0)
α−→ Z β−→ Z⊕ Za γ−→ Z, with a ∈ Z the number to be determined.

16



Exactness of the sequence yields that β is injective and ker(γ) = im(β). So Za = Z⇒ a = 1.
Thus H0(U1;Z) ∼= Z and therefore U1 is path-connected. A similar argument holds for U2 so
U2 is also path-connected.
The Mayer-Vietoris sequence for U1 ∩ U2 is given by

H1(S3;Z) ∼= (0)
α−→ H0(U1 ∩U2;Z) ∼= Zb β−→ H0(U1;Z)⊕H0(U2;Z) ∼= Z⊕Z γ−→ H0(S3;Z) ∼= Z.

Because the sequence is exact ker(γ) = im(β) ⇒ im(β) ∼= Z ⇒ b = 1 ⇒ H0(U1 ∩ U2;Z) ∼=
Z⇒ U1 ∩ U2 is path-connected.
Now we can choose an arc α from K1 to K2 that never crosses F1 ∪ F2 such that it cuts the
2-sphere which separates K1 from K2 once. The arc α can be extended to a thin strip that
connects F1 and F2 and preserves the orientations of the Seifert surfaces. The constructed
surface is a Seifert surface for K1 +K2. The genus of the new surface is the sum of the genera
of the surfaces F1 and F2 ⇒ g(K1 + K2) ≤ g(K1) + g(K2). The last statement follows from
the fact that we at least have an upper bound for the genus of the knot by the constructed
Seifert surface.

Now the other inequality will be proved. Suppose F is a Seifert surface for K1 + K2 with
minimal genus. Let Σ be a 2-sphere that cuts K1 + K2 transversely in two points {1} and
{2}. This is another example of the earlier mentioned ball-arc pair. To visualize the situation
it is helpful to draw a picture. The 2-sphere Σ separates the knot K1 +K2 into two arcs α1

and α2. If β is an arc on Σ that unites {1} and {2} then α1 ∪ β and α2 ∪ β are copies of K1

and K2.
F and Σ are surfaces which are piecewise-linear embedded in S3. Because we are working in
the PL-category, S3 can be triangulated. Therefore F and Σ are sub-complexes of a certain
triangulation of S3. The sphere Σ can be oriented in such a way that its position is trans-
versely with respect to F . So Σ cuts F transversely in the points Σ∩F . This means that the
tangent spaces of Σ and F in a point in Σ ∩ F span the tangent spaces of S3 in that point.
Now without loss of generality we may assume that Σ∩F is a 1-dimensional manifold which
consists of a finite collection of simple closed curves and an arc β which connects the points
{1} and {2}. The surface F crosses the 2-sphere Σ only a finite number of times and each time
it crosses Σ, this yields a simple closed curve. The 2-dimensional variant of the Schönflies
theorem states that every simple closed curve in a plane separates the plane into two regions
one of which is homeomorphic with the inside of the standard circle. The other region is
homeomorphic with the outside of the standard circle in the plane. If the plane is replaced
by the 2-sphere then every simple closed curve in a 2-sphere separates the 2-sphere into two
discs. In our case only one of the two regions in Σ contains the arc β. We now choose a
simple closed curve c of Σ∩F such that it is innermost on Σ \ β. This means that the curve
c bounds a disc D in Σ the interior of which does not contain F .
The disc D can be used to do surgery on the Seifert surface F . The aim is to examine the
consequences for the genus of the Seifert surface. A new surface F̂ can be created from F by
removing a small annular neighborhood of c and replacing it by two copies of D. A copy is
placed on either side of D. This closes the new surface F̂ . If the simple closed curve c did
not separate F , the new created surface F̂ would be a new Seifert surface for K1 +K2 with a
lower genus than F has since the surgery has the effect of removing a hole. This contradicts
our assumption that F was a Seifert surface with minimal genus.
We can conclude that c separates F and that F̂ is disconnected by construction. One of the
components of F̂ contains the knot K1 +K2. This component is a Seifert surface for the knot
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with the same genus as F . However, the number of simple closed curves in the intersection
of this component and Σ is less than the number in Σ ∩ F for the simple closed curve c has
been removed. Because the number of simple closed curves in Σ∩F was finite, we can repeat
this process until we obtain a surface F ′ which is a Seifert surface for K1 +K2 with the same
genus as F and which intersects Σ only in β.
Then the 2-sphere Σ separates our new constructed surface F ′ in two surfaces which are
Seifert surfaces for K1 and K2. Because we started with a Seifert surface with minimal genus
for K1 +K2, it follows that g(K1) + g(K2) ≤ g(K1 +K2). Together with the first part of the
proof this proves the theorem.

This theorem has many consequences. A few are named here.

Corollary 6.6 Let K1 and K2 be knots. If K1 +K2 is the unknot, then K1 and K2 are the
unknot.

This just means that no nontrivial knot has an additive inverse.

Corollary 6.7 There are infinitely many distinct knots.

Corollary 6.8 A knot of genus one is prime.

Corollary 6.9 Every knot can be expressed as a finite sum of prime knots.

The last corollary can be proved by using induction on the genus. The corollary can even be
made stronger in the sense that every knot has a unique expression as a finite sum of prime
knots. No proof of this statement will be given here, but see for instance [18]. The theorem
implies that in our quest to classify knots, it is convenient to restrict attention to prime knots.
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7 The Alexander polynomial

In the last chapter the concept of Seifert surfaces has been introduced. We will soon find
out that they are crucial in the construction of the Alexander polynomial. Other ingredients
result particular from homology theory. This is the original approach that also will be taken
during this chapter. The Alexander polynomial is then described as being an invariant of a
homology module. It does not matter much whether one uses singular or simplicial homology
along the way. They can proven to be equivalent to each other. However, for the reason that
we consider knots and links as subsets of S3, which has a triangulation, it is convenient to
use the simpler variant of both, viz. simplicial homology.

There is another way to describe a particular normalized version of the Alexander polynomial,
namely by use of a skein relation just as has been done with the Jones polynomial. However,
such an approach does not contain the true essence of the knot polynomial and is not much
insightful. It just provides an easy method to compute the polynomial. In the following
section some necessary results from module theory are introduced.

7.1 The Seifert matrix

It is well known in group theory that if a group-ring R acts on a certain group, the group can
be considered as a module M over R. This situation will also be encountered in the construc-
tion of the Alexander polynomial. Given the module M , a matrix called the presentation
matrix can be associated to it. This is done in the following way.

Let R be a commutative ring with identity and M a module over R. M can be regarded as
a vector space with the scalar elements lying in a ring R instead of a field. Not all modules
have a basis. If we have a basis for the module then M is called free if every element of
M can be expressed in a unique way as a linear combination of basis elements. This is well
defined because a commutative ring always satisfies the invariant basis number condition.
This means that all free modules over the ring R have a unique rank. Let E and F be two

such free modules over R with finite bases. Then the exact sequence F
α−→ E

φ−→ M → 0 is
called a finite presentation for M . The exactness of the sequence implies that φ is surjective.
Furthermore if f1, ..., fn is a basis for F and e1, ..., em a basis for E, then the map α can be

represented by a m×n matrix A in such a way that αfi =
∑
j

Ajiej . A is called a presentation

matrix for M . The images of e1, ..., em are generators for M and the images of f1, ..., fn act
as relations between the generators.

Theorem 7.1 If A and A1 are two representation matrices for a module M over a commuta-
tive ring R, then these two matrices are related by a sequence of matrix moves of the following
form and their inverses.
(i) Permutation of rows and columns

(ii) Replacement of the matrix A by

(
A 0
0 1

)
(iii) Addition of an extra column of zeros to the matrix A
(iv) Addition of a scalar multiple of a row (or column) to another row (or column)

19



Proof. Because A and A1 are presentation matrices for M , they correspond to maps α and
α1 in the following finite presentation

F
α //

γ

��

E
φ //

β
��

M

1
��

// 0

F1 α1

// E1
φ1
//M // 0

Because the module E has a free basis we can pick a basis element ei and fix φ(ei). We can
choose such a φ(ei) because there are no relations amongst the generators because E is a free
module. Now we pick e

′
i ∈ E1 such that φ1(e

′
i) = φ(e1). This is possible for the reason that

φ1 is surjective and E1 is a free module. Then we construct β such that β(ei) = e
′
i. It follows

that β is linear and that φ1β = φ.

In a similar way we can construct γ such that βα = α1γ. The maps β and γ are linear so they
can be represented by matrices B and C respectively with respect to the given bases. Then
BA = A1C. Now by means of symmetry the roles of α, α1, φ and φ1 could be interchanged
in order to produce linear maps γ1 and β1 with accessory matrices C1 and B1. Then the
following relation holds B1A1 = AC1.

Now we define that two matrices are equivalent, denoted by “ ∼ ”, if they differ by the matrix
moves named above. Then the following matrices are equivalent

A ∼
(
A 0
0 1

)
∼
(
A B1

0 I

)
∼
(
A B1 0
0 I 0

)
∼
(
A B1 B1A1

0 I A1

)
∼
(
A B1 0
0 I A1

)
∼(

A B1 0 0
0 I A1 0

)
∼
(
A B1 0 B1B
0 I A1 B

)
.

Because φ1β = φ and φβ1 = φ1 we have that φβ1β = φ. The exactness of the sequence
implies that im(β1β− idE) ⊆ im(α). The fact that E is free can be used to construct a linear
map δ : E → F such that αδ = β1β − idE . Then again a matrix D can be associated to δ,
satisfying AD = B1B − I. It follows that

A ∼
(
A B1 0 B1B
0 I A1 B

)
∼
(
A B1 0 I
0 I A1 B

)
∼
(
A1 B 0 I
0 I A B1

)
∼ A1

Where in the last step a symmetrical argument is used.

Recall that the minor Mij of a matrix element Aij of a matrix A is given by the determinant
of the matrix A that remains after removing all elements in the same row and column as Aij
A k × k minor of a m× n matrix A is the determinant of the k × k matrix obtained from A
after removing m− k arbitrary rows and n− k arbitrary columns.

Definition 7.2. Let M be a module over a commutative ring R with an m × n presenta-
tion matrix A. Then the rth elementary ideal εr of M is the ideal of R generated by the
(m− r + 1)× (m− r + 1) minors of A.

The properties of the determinant together with theorem 7.1 make sure that different presen-
tation matrices for one and the same module have the same elementary ideals. Furthermore,
if we are dealing with a square matrix, say an n × n-matrix, then ε1 is the principal ideal
generated by the determinant of the matrix. In that case the nth elementary ideal is the ideal
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generated by all elements of the n× n-matrix.

It is time to make things more concrete. Therefore we consider a connected compact, ori-
entable surface F with non-empty boundary. If this surface is now piecewise-linearly contained
in S3, so the “hollow handles” of F may be twisted or linked, we come to the following theorem.

Theorem 7.3 Let F be a surface as just mentioned. Then H1(S3 \ F ;Z) ∼= H1(F ;Z) and
there exists a unique non-singular bilinear form β: H1(S3 \ F ;Z)×H1(F ;Z) → Z such that
for two oriented simple closed curves c in S3 \ F and d in F , β([c], [d]) = lk(c, d).

Here the 1-cycles [c] and [d] are the homology classes of c and d. The proof that the two
homology groups are isomorphic makes use of the Mayer-Vietoris sequence. The bilinear form
β is defined by means of bases {[fi]} and {[ei]} for H1(S3\F ;Z) and H1(F ;Z) respectively. In
fact, β only relies on the linking number and hence it is independent of the chosen bases. The
homology groups are considered to be Z-modules. The map β is bilinear, which means that
it is linear in each of its components if the other component is held fixed. Being non-singular
means that the matrix which represents β is invertible.

It is important to note that a Seifert surface F for a link L meets the assumptions of theorem
7.3. A regular neighbourhood N of L is then a disjoint union of solid tori. The exterior X
of a link is the closure of the complement of N in S3, X = S3 \N . This in agreement with
the definition of the exterior of a knot in section 4.3. Now X ∩ F is a copy of F with a small
neighbourhood of ∂F = L removed. This can be seen intuitively by drawing a picture. We
will now treat X ∩ F as just being F . Then the following embeddings can be constructed
i± : F → S3\F , x 7→ x×±1. It follows that i−(F )∪i+(F ) = F×{−1, 1}. The last expression
is contained as a subset in the regular neighbourhood F × [−1, 1] of F in X. For an oriented
simple closed curve c, we denote c± = i±c.

Definition 7.4 Let F be a Seifert surface for an oriented link L. Then the bilinear form
α : H1(F ;Z)×H1(F ;Z)→ Z, ([c], [d]) 7→ lk(c−, d)
for two simple closed curves c and d in F is called the Seifert form for F .

Definition 7.5 Let α be a Seifert form associated to a Seifert surface F . Let {[fi]} be a
basis for H1(F ;Z). The matrix A which represents α is called the Seifert matrix. We have
Aij = α([fi], [fj ]) = lk(f−i , fj).

First of all the map α is bilinear and well defined by theorem 7.3. Further, the following holds
lk(c−, d) = lk(c, d+) because we can slide the curves with respect to the second coordinate of
F × [−1, 1] without changing the shape of the curves. In the next section it will be made clear
that this Seifert matrix A can be used to obtain a presentation matrix for a certain module.
After this has been done, the Alexander polynomial is within reach.

7.2 The Alexander polynomial

In this section the Alexander polynomial in all its glory will be presented. All the pieces
introduced earlier will fall into place. With a view to obtain the knot invariant, a particular
space has to be studied. Now the construction of this space will first be discussed.
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Let F be a Seifert surface for an oriented link L and let X be its exterior. We can cut X
along F to get a space Y . The cut edge splits into two edges which both are a copy of F . The
copies are called F− and F+. The compact space Y is homeomorphic with X \ (F × (−1, 1)).
Because F− and F+ are copies of F we have a homeomorphism φ : F− → F → F+. Let ∼φ
denote the equivalence relation generated by φ: x ∼φ y ⇐⇒ φ(x) = φ(y). Then X = Y/ ∼φ.
Geometrically we say that the space X can be recovered from the space Y by gluing F− and
F+ back together.

The next step is to take countably many copies of Y , denoted by the set {Yi : i ∈ Z}, and glue
them together in the following way. The spaces Yi can be thought of as puzzle pieces and the
collar F− of Yi is attached to the collar F+ of Yi+1. This is done for all i ∈ Z. The resulting
space is called X∞. More formally: let hi : Y → Yi be a homeomorphism. The subsets hiF−
of Yi and hi+1F+ of Yi+1 can be identified with the aid of the homeomorphism hi+1φh

−1
i , this

is done for all i. Then X∞ is the disjoint union of the Y ′i s divided by the equivalence relation
generated by hi+1φh

−1
i for all i. This is explained graphically in the picture below.

Figure 16: Construction of X∞

The space X∞ is found to be a covering space of X and in fact it is the universal cover of X.
This will be shown later on.

Now on X∞ there exists a self-homeomorphism t : X∞ → X∞. This homeomorphism maps
Yi to Yi+1 and can be seen as a translation of the puzzle pieces making up X∞. The pieces
are translated one unit to the right. So t|Yi = hi+1h

−1
i . It is also possible to apply t twice

or several times. Furthermore t−1 also is a self-homeomorphism which can be seen as a
translation to the left. The infinite cyclic group generated by t, <t>, acts on X∞ by home-
omorphisms. This induces an action of a homology automorphism on H1(X∞;Z). Namely,
homology groups are functorial. If we have a continuous map f : X → Y , this induces a
homomorphism, f?, between the free abelian groups generated by singular k-simplices of X
and Y. Therefore we have a homomorphism between the k-th homology groups of the spaces
X and Y for every k ∈ Z≥0. In the case that the f is a self-homeomorphism of a space X,
this induces an automorphism of the homology group of X. In this context it is common to
denote the induced automorphism also by t instead of t?.

It is a well-known fact in group- and module theory that the ring Z acts on any abelian group.
This is because any abelian group is a Z-module and a module is an action on an abelian
group by definition. Because the first homology group of a topological space is equal to the
fundamental group of the space with a certain base point, divided by its commutator sub-
group, the first homology group is abelian. Hence, Z also acts on H1(X∞;Z). This implies
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that the group-ring Z<t> acts on H1(X∞;Z). The group-ring Z<t> consists of elements

of the form
∑
i

aigi with ai ∈ Z and gi ∈ <t> and ni 6= 0 for finitely many i. Therefore

the group-ring Z<t> can be identified with the ring Z[t−1, t]. By means of the action just
described, H1(X∞;Z) can be considered as a module over the ring Z[t−1, t]. For this module,
a finite presentation with presentation matrix will be found.

Theorem 7.6 Let L be an oriented link in S3 with Seifert surface F . Let α be the Seifert
form associated to F and let A be a matrix for α with respect to a basis for H1(F ;Z). Then
the expression tA−Aτ is a presentation matrix for the Z[t−1, t]-module H1(X∞;Z).

Here Aτ represents the transposed matrix of A. The term tA just stands for the matrix A
with every element It follows directly from the theorem that the module H1(X∞;Z) has a
square presentation matrix. A proof of 7.6 may be found in [18]. Now finally the definition
of the Alexander polynomial can be given.

Definition 7.7 The rth Alexander ideal of an oriented link L is the rth elementary ideal of
the Z[t−1, t]-module H1(X∞;Z). The rth Alexander polynomial of L is a generator of the
smallest principal ideal of Z[t−1, t] that contains the rth Alexander ideal.

In this thesis only the first Alexander polynomial will be discussed. It is referred to as the
Alexander polynomial and is indicated as ∆L(t). The definition of the Alexander polynomials
seems quite complex. Besides that, there is the disadvantage that the ring Z[t−1, t] is not a
principal ideal domain, which has nice properties. On top the invertible elements of this ring,
called the units, are ±t±n with n ∈ N. Hence, the Alexander polynomial is defined only up
to multiplication by such a unit.

The calculation of the Alexander polynomial of an oriented link L amounts to the determi-
nation of the Seifert matrix A corresponding with a Seifert form associated, in turn, with an
Seifert surface F for L. If this A can be determined, theorem 7.6 says that a presentation
matrix for the module H1(X∞;Z) can be given. From that matrix the elementary ideals can
be calculated and ultimately the Alexander polynomial. Because the presentation matrix is
always square the first elementary ideal is the ideal generated by the determinant of the pre-
sentation matrix. Thus the first elementary ideal is principal and the Alexander polynomial
is given by

∆L(t)
.
= det(tA−Aτ ) (1)

Here the symbol
.
= means that the polynomial is equal to the expression on the right side of

the equation up to a multiplication by a unit of the ring Z[t−1, t].

A problem in the definition of the Alexander polynomial is whether or not the action of the
infinite cyclic group on X∞ is uniquely determined by the oriented link. This is necessary to
check for if it is not true, the Alexander polynomial cannot be a link invariant. If the statement
is true, then we have found our link invariant. Namely, it implies that the first homology
group H1(X∞;Z) is a link invariant. Furthermore it has been said before that theorem 7.1
together with the properties of the determinant function comprise the fact that the elementary
ideals of a module are invariants. They are independent of the chosen presentation matrix. It
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can thus be concluded that the Alexander polynomial is a link invariant. The question about
the action on X∞ being dependent on the oriented link or not will be answered in section
7.4 which deals with covering spaces. The next section contains a few properties of the
Alexander polynomial. From these properties the effectiveness of the Alexander polynomial
in distinguishing knots can be deduced.

7.3 Properties

In chapter 5 the Jones polynomial has been introduced. This knot invariant is quite good
in distinguishing knots. That means that it can tell apart prime knots with a relative high
number of crossings in their knot diagram. All the prime knots with nine or less crossings in
their knot diagram have a distinct Jones polynomial [1]. The same holds for the Alexander
polynomial for prime knots with eight or less crossings in their knot diagram [18]. Now this
may cause one to think that the Alexander polynomial is useless compared with the Jones
polynomial. Wrongly thought; the Alexander polynomial is completely different from the
Jones polynomial. It has some nice properties and provides utile information about knots. A
few properties will now be explored.

Theorem 7.8 Let L be an oriented link and K be an oriented knot, then
(i) ∆L(t)

.
= ∆L(t−1)

(ii) ∆K(1) = ±1.

Proof. (i) Let A be an n × n Seifert matrix for L. Then we have ∆L(t)
.
= det(tA − Aτ ) =

det((tA−Aτ )τ ) = det(tAτ −A) = det(−t(t−1A−Aτ )) = (−t)ndet(t−1A−Aτ )
.
= ∆L(t−1)

(ii) Let F be a Seifert surface of K with genus g. Because F has one boundary component,
we have that H1(F ;Z) = ⊕2gZ generated by {[fi]}. Here the fi are simple closed curves as
shown below.

Figure 17: Generators of H1(F ;Z)

Now we can calculate the presentation matrix. ∆K(1) = ±det(A − Aτ ). By definition
7.5 the matrix elements are given by (A−Aτ )ij = lk(f−i , fj)− lk(f+

i , fj). By looking at the
picture for the Seifert surface we see that the diagonal elements of A−Aτ are zero. In fact only
the super- and subdiagonal entries are non zero. By inspection and recalling the definition of

the linking number we see that the matrix consists of g blocks of the form

(
0 1
−1 0

)
. The

determinant of this matrix is 1. So ∆K(1) = ±1.

Corollary 7.9 For a knot K we have ∆K(t)
.
= a0 + a1(t−1 + t) + a2(t−2 + t2) + ...,, where

ai ∈ N and a0 is odd.
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Proof. The Alexander polynomial of a knot can be multiplied with a positive power of t in
order to get rid of all terms with negative powers of t. Thus ∆K(t) = a0 + a1t + ... + ant

n.
Because of Theorem 7.8(i) we have that ∆K(t)

.
= ∆K(t−1). Therefore the coefficients must

obey the following relation: ar = ±an−r. The choice of the sign must be the same for
all r for it is not allowed to multiply some terms of the Alexander polynomial with one
unit and the other terms with the same unit with altered sign. Assume n is odd. Then
∆K(1) = a0 + a1 + ... + an = 2(a0 + a1 + ... + an−1

2
). This implies that ∆K(1) is even,

contradicting Theorem 7.8(ii). Thus n is even. Now assume ar = −an−r. Then an
2

= 0
and ∆K(1) = 0 which contradicts Theorem 7.8(ii) again. Hence ar = an−r. We may also
conclude that an

2
is odd for if otherwise, ∆K(1) is the sum of two even numbers and therefore

even. Returning to the more general form of the Alexander polynomial we then find ∆K(t)
.
=

a0 + a1(t−1 + t) + a2(t−2 + t2) + ...,.

The shape of the Alexander polynomial for a knot as given in corollary 7.9 with the nor-
malization ∆K(1) = 1 is the standard one. In tables of the Alexander polynomial for prime
knots only the coefficients a0, a1, ... are specified. The breadth of a Laurent polynomial in the
variable t is the difference between the highest degree of t and the smallest degree of t that
occur in the polynomial.

Proposition 7.10 If K is a knot with genus g, then 2g ≥ breadth∆K(t).

Proof. Let F be a Seifert surface for K with genus g and Seifert matrix A. Then tA−Aτ is a
2g×2g matrix by the same argument as in theorem 7.8(ii). Then the degree of the polynomial
det(tA−Aτ ) is at most 2g.

Proposition 7.10 says that the breadth of the Alexander polynomial for a knot gives a lower
bound for the genus of the knot. Therefore the Alexander polynomial gives geometrical
information about the knot. The proposition can easily be extended to a similar statement
for links with n components. A link with n components has a Seifert surface with n boundary
components. This is a surface which can be obtained by a surface with genus g with no
boundary. One has to remove the interior of n disjoint discs to obtain the n boundary
components. The genus of the constructed surface remains the same, g. The inequality then
becomes: 2g + n − 1 ≥ breadth∆L(t). This is because a link with n boundary components
has 2g + n − 1 simple closed curves which are the generators for H1(F ;Z), with F being a
Seifert surface for the link. The latter can be seen by inspection of a surface similar to the
one given in the proof of theorem 7.8 with n boundary components instead of one.

7.4 Covering spaces

In this section the formulation of the Alexander polynomial will be completed. This is done
by showing that the action of the self-homeomorphism t on X∞ is well defined, i.e: indepen-
dent of the choice of the Seifert surface for the oriented link that is considered. In order to
do so, an introduction in the theory of covering spaces is necessary.

First the definition of a covering map will be given. It will be assumed that B is a topological
space which is Hausdorff, locally path-connected and path connected.
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Definition 7.11 A continuous map p : E → B is called a covering map of the covering space
E if
(i) E is locally path-connected and non-empty
(ii) ∀b ∈ B there exists an open neighborhood V of b such that p−1(V ) is a disjoint union of
open sets in E. Each of these open sets must be homeomorphic with V by the map p.
E is said to be a universal covering space if it is simply-connected.

An easy example of a covering map is the map p : R → S1, x 7→ (cos(2πx), sin(2πx)). The
’line’ R can be wrapped around the circle like a helix. The full original of every open subset
of the circle corresponds to an infinite collection of open subsets of R. There is a nice con-
nection between the theory of covering spaces and classical Galois theory. This connection is
best described by Grothendieck. Classical Galois theory makes an one-to-one correspondence
between Galois extensions of a field and subgroups of the Galois group. In the theory of
covering spaces there exists a connection between the path-connected covering spaces of a
path-connected space X and the subgroups of the fundamental group of X. Grothendieck
formalizes this collective structure with the aid of what he calls a Galoiscategory. We will
however not go into further detail about this beautiful Galois connection. Instead some tech-
nical machinery will be discussed in order to come back on the Alexander polynomial.

Definition 7.12 Let X be a topological space and p : E → B be a covering map. Let
h : X → B be a continuous map. A continuous map h̃ : X → E such that h = ph̃ is called a
lift of h.

Lemma 7.13 Let X,E be topological spaces. Let F : X × I → E be a continuous map. We
write ft(x) = F (x, t). Let f̃0 : X → E be a lift of a map f0. Then there exists a unique lift
F̃ : X × I → E of F such that F̃ (x, 0) = f̃0(x) for all x ∈ X.

This lemma means that if we have a collection of continuous maps ft(x) and f0(x) is a lift,
we can lift all these continuous maps ft(x) to f̃t(x). There follow two important consequences.

Corollary 7.14 Let p : E → B be a covering map. Let eo ∈ E be a point with p(e0) = b0.
Then we have the following two properties
(i) Path lifting property. Let γ be a path in B with base point b0 ∈ B. Then there exists a
unique path γ̃ in E with starting point e0 which lifts γ, i.e: γ = pγ̃
(ii) Homotopy lifting property. Let γ0 and γ1 be paths in B with starting point b0 and let
F : I × I → B be a homotopy from γ0 to γ1 relative {0}. Then there is a unique lifting
F̃ : I × I → E of F with F̃ (0, t) = e0 for all t ∈ I.

Proof. (i) This statement follows directly from lemma 7.13 with the space X being a point.
(ii) We apply lemma 7.13 with X being the unit interval I. We have the homotopy F :
I× I → B and write γt(x) = F (x, t). Because of (i) there exists a unique lift γ̃0 : I → E of γ0

with starting point e0. From lemma 7.13 it follows that there exists a unique lift F̃ I × I → E
such that F̃ (x, o) = γ̃0(x). Then the map defined by t 7→ F̃ (0, t) is a path in E with starting
point e0 which is a lift of the constant path in B with value b0. Because of the unicity of (i)
we have that F̃ (0, t) = e0 for all t ∈ I.

The question arises in which cases it is possible to lift a certain map if a covering map is
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given. The next theorem gives the answer.

Theorem 7.15 Let p : E → B be a covering map with base points e0 ∈ E and b0 ∈ B such
that p(e0) = b0. Let X be a path-connected, locally path-connected topological space with base
point x0. Let f : (X,x0) → (B, b0) be a continuous map. Then there exists a continuous
g : (X,x0)→ (E, e0) ⇐⇒ f?(π1(X,x0)) ⊆ p?π1(E, e0).

Proof. ” ⇒ ” If g exists then (p ◦ g)? = p? ◦ g? = f? and it follows that f?(π1(X,x0)) =
p? ◦ g?(π1(X,x0)) ⊆ p?π1(E, e0).
” ⇐ ” Assume that f?(π1(X,x0)) ⊆ p?π1(E, e0). For x1 ∈ X choose a path α : I → X
with α(0) = x0, α(1) = x1. Then f(α) is a path in E with f(α(0)) = f(x0) = b0 and
f(α(1)) = f(x1). Now f(0) = b0 = p(e0) so because of corollary 7.14(i) there exists a lift

f̂(α) : I → E with ̂f(α(0)) = e0. If there exists a continuous g : X → E with g(x0) = e0 then

the following holds g(x) = ̂f(α(1)) = f̂(x1). This is due to the fact that the lift is unique by
corollary 5.14(i) because g(α) is a lift of f(α).

Define g(x) = ̂f(α(1)). We have to investigate if this function is well-defined. Let β be an
other path in X from x0 to x1. Then f?([α?β̄]) is the image of a homotopy class of a loop with
basis point x0. Here β̄ denotes the inverse path. It follows that f?([α ? β̄]) ∈ f?(π1(X,x0)) ⊆
p?(π1(E, e0)). So f?(π1(X,x0)) is a loop in B with basis point b0. Then there is a loop
γ : I → E with γ(0) = e0 = γ(1) such that p(γ) is homotopic with f(α ? β̄) relative {0, 1}.
The homotopy from p(γ) to f(α ? β̄) can be lifted relative {0, 1} in a unique way by the
homotopy lifting property. In this way we obtain a loop γ̂ : I → E with γ̂(0) = γ̂(1) = e0

which is homotopic relative {0, 1} with α̂ ? β̄ such that p(γ̂) = f(α ? β̄). This implies that

g(1) = ̂f(α(1)) = γ̂(1
2) = ̂f(β(1)). Where the second equality comes from the fact that

p(γ̂(t)) = f(α(2t)) ⇐⇒ f̂(t) = ̂f(α(2t)). We conclude that g is well defined.
It remains to check continuity of g. Take x1 ∈ X. Let U be an open neighborhood of f(x1) ∈ B
which has a lift Û ⊂ E which contains g(x1) such that p : Û → U is a homeomorphism. Such
an U exists because p is a covering map. Take a path-connected V ⊂ X of x1 such that
f(V ) ⊂ U . This is possible because X is locally path-connected. So the requirement of X
being locally path-connected really cannot be missed.
For paths from x0 to x2 ∈ V we can take the composition of the path from x0 to x1 (α) with a
path η from x1 to x2. There exists such an η because x1 and x2 lie in the same path-connected

subset. Then f(α) ? f(η) has a lift in B: f̂(α) ? f̂(α). We have that f̂(η) = p−1(f(η)) and
p−1 : U → Û is the inverse of p which exists for the reason that p is a homemorphism locally.
Now g(V ) ⊂ Û for f(V ) ⊂ U , thus p−1(f(V )) = g(V ) ⊂ Û because p is homeomorphism
locally. Furthermore g|V = p−1(f) which implies that g is continuous at x2 ∈ V due to
the fact that f and p−1 are continuous. Because x2 ∈ V was arbitrary it follows that g is
continuous on V . Therefore g is continuous because continuity is local on the domain.

The subgroup p?(π1(E, e0)) of π1(B, b0) is called the group of covering.

Proposition 7.16 Let p : (E, e0)→ (B, b0) and p′ : (E′, e′0)→ (B, b0) be two covering maps
of B with the same group of covering. Then p and p′ differ by a homeomorphism: there exists
a homeomorphism h : (E′, e′0)→ (E, e0) such that ph = p′.
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A proof of the last proposition is fairly easy ([18]) and relies on theorem 7.15. In section 7.2
it was said that the space X∞ is a universal cover of the exterior X of a link. The covering
map is p : X∞ → X. This map sends the infinite many copies of the Seifert surface F , for
each i ∈ Z this includes F− and F+, to F ⊂ X. Remember that we regarded F ∩X as being
F , so indeed F ⊂ X. What remains in X∞ are just copies of X \F , therefore the rest of X∞
is just projected on X \ F by p.

Theorem 7.17 Let L be an oriented link and denote p : X∞ → X for the covering map.
Then the covering space X∞ is independent of the choice of the Seifert surface F for L.
Furthermore the action of <t> on X∞ is independent of the choice of F .

Proof. By the path lifting property a loop α : I → X lifts to a path α̂ : I → X∞. If α̂(0) and
α̂(1) are in the same copy of Y then the loop α is lifted to a loop in X∞. By the construction
of X∞ it is clear that α̂(0) and α̂(1) lie in the same copy of Y if and only if α intersects F zero
times algebraically. Remember that the copies of F served as ’glue’ in the construction of X∞
so if α crosses F , its lift is moved from one copy of Y to an adjacent copy. By the definitions
of the linking number this means that α lifts to a loop if and only if the sum of the linking
numbers of α with each component of L is zero. Note that the last statement is independent
of the choice of a Seifert surface F . So now we have a criterion for loops α lifting to loops in
X∞. But this means that we have fully described the group of covering. Namely, the group
of covering, p?(π1(X∞)), consists of homotopy classes, relative {0, 1}, of loops α : I → X
that lift to a loop in X∞. This implies that the group of covering is independent of F . By
proposition 7.16 the first result follows.
For the second statement it is important to remember that the infinite cyclic group <t>
acts on X∞ by a sort of translation. Consider a path γ : I → X∞ from a to ta. Because
p(a) = p(ta), pγ is a loop in X which has linking number 1 with L. Now the other way
around: if γ′ : I → X is a loop with basis point a, then this loop lifts to a path from some
a to ta by the path lifting property. Suppose that we have another Seifert surface F ′ for L
which is used to construct another infinite cyclic cover X ′∞ with covering map p′ : X ′∞ → X.
Let h′ : X∞ → X ′∞ be the homeomorphism such that p′h′ = p, such a homeomorphism exists
by proposition 7.16. Then due to the fact that p′h′γ = pγ, h′γ lifts from the loop pγ with
respect to the covering p′ to the path in X ′∞ from a point a to ta. Thus th′(a) = h′(ta). This
means that h′ preserves an action by t. Therefore the action is independent of F .

Theorem 7.17 and the construction of the Alexander polynomial for an oriented link L imply
that the polynomial is a link invariant. To restate what this means: equivalent links have
the same Alexander polynomial and if two links have different Alexander polynomial, they
are certainly not equivalent. The knot polynomial turns out to be quite good in telling knots
apart [18]. Prime knots with eight or less crossings in their knot diagram have a different
Alexander polynomial. Moreover the polynomial has interesting features. It was seen that the
Alexander polynomial of a knot can be used to give a lower bound for the genus of the knot.
An important shortcoming of the polynomial is that it cannot tell the difference between a
link, the reflected link and the mirror link. This can be seen by the fact that if A is a Seifert
matrix for the link, −A is a Seifert matrix for the reflected link and Aτ is a Seifert matrix for
the mirror link. That means that the Alexander polynomial is the same, up to multiplication
by a unit, for all three links. Another property is that there are infinitely many non-trivial
knots with Alexander polynomial equal to one. We refer to [23] for an argument for this
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statement.

To obtain the Alexander polynomial it was necessary to pick an (arbitrary) Seifert surface for
the given link. Then one has to determine a matrix for the corresponding Seifert form. By
evaluating a simple determinant, the Alexander polynomial emerges. There are several other
approaches to the Alexander polynomial. One of them is introduced in the following section.

7.5 A skein relation

A disadvantage of the Alexander polynomial is that we cannot add two polynomials. This is
due to the fact that the Alexander polynomial is defined only up to multiplication by a unit
±tn. In contrary, two Jones polynomials can be added. Therefore it was possible to deduce
a skein relation for the Jones polynomial. It follows that we cannot give a skein relation for
the Alexander polynomial in its current state.

There exists a normalization of the Alexander polynomial which resolves the ambiguity con-
cerning the multiplication by a unit. This normalized polynomial is called the Conway poly-
nomial. For now, it requires too much work to give the formal definition of the Conway
polynomial but the polynomial can be regarded as just being the Alexander polynomial with
a small modification. The skein relation is given by the following relation.

Theorem 7.18 Let L+, L− and L0 be three oriented links which are identical except in the
neighbourhood of a point where they appear as in figure 10. Then the Conway-normalized
Alexander polynomial ∆L(t) ∈ Z[t−

1
2 , t

1
2 ] is characterized by

(i) ∆unknot(t) = 1,

(ii) ∆L+ −∆L− = (t−
1
2 − t

1
2 )∆L0.

By repeated use of this relation, one is able to determine the Conway polynomial for an
oriented link by use of a link diagram only. In the following chapter the Alexander polynomial
will be abandoned. An application of knot theory in theoretical physics will be presented.
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8 Anyons

In the previous chapters an elementary introduction to knot theory has been given. In par-
ticular the Alexander polynomial has been studied as a knot invariant. We now should have
a pretty good idea what the variable ‘t’ represents in the expression for the Alexander poly-
nomial, namely a homeomorphism from the space X∞ to itself. More geometrically it can be
seen as a translation: the pieces making up X∞ are slided one piece to the right. In contrary
to the Alexander polynomial, there is not yet a good explanation for what exactly the variable
‘t’ means in the expression for the Jones polynomial. This is because the Jones polynomial
originally has been discovered in a field outside knot theory, viz. by a representation of the
braid group, coming from a set of generators that satisfies the Temperley-Lieb algebra [14].

In this section a relative new application of knot theory in theoretical physics is presented.
We study particles with strange statistics: so-called anyons. It turns out that the Jones poly-
nomial arises from one specific anyonic model. This supplies an alternative way to look at the
Jones polynomial. In order to describe these anyons, a very short introduction to yet another
branch of mathematics, braid theory, will be given.

8.1 Braids

If one cuts every piecewise linear simple closed curve making up a link at one place and rear-
ranges the obtained strands a bit, one gets a braid. This mathematical braid does not differ
much from for example the braid in the hair of a girl. Here comes the definition, as given in
[21], of a braid.

Definition 8.1 A braid on n strings is given by the following properties:
(i) n points P1, P2, ...,Pn in R3 with the same z-coordinate, z = a. Furthermore the x-
coordinate strictly increases if one goes from Pi to Pi+1 along the line segment PiPi+1, for
each i ∈ {1, 2, .., n− 1}.
(ii) n points Q1, Q2, ..., Qn in R3 with the same z-coordinate, z = b with a > b. Furthermore
the x-coordinate strictly increases if one goes from Qi to Qi+1 along the line segment QiQi+1,
for each i ∈ {1, 2, .., n− 1}.
(iii) For all j ∈ {1, 2, .., n} there is a finite piecewise linear curve that joins Qj and Pjk , with
jk a permutation of 1, 2, ..., n. If one travels along this curve from Qj to Pjk the z-coordinate
strictly increases.
(iv) No two distinct piecewise linear curves intersect.

These conditions seem rather restrictive but it turns out that they are necessary to avoid
complicated and undesirable situations. For example the demand that the piecewise linear
curves are finite, i.e: they are made up of a finite number of straight line segments, is needful
to avoid ever smaller becoming strings. There are other ways to define a braid. For instance
a braid can be defined as an embedding of a collection of disjoint strands, with initial and
end points just as stated above, in R3 [16]. The individual strands are not permitted to knot.
Two braids are said to be equivalent if they are ambient isotopic. That means that for two
equivalent braids there is an ambient isotopy from the one embedding to the other.

Lemma 8.2 The relation “braid one on n strings is ambient isotopic with braid two on n
strings” is an equivalence relation on the set of braids on n strings.
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There is an operation on braids. If σ1 and σ2 are n-braids, then σ1σ2 is a n-braid. The
product is constructed as follows: one takes σ1 and attaches σ2 on it in such a way that the
end points of the strings of σ1 are the initial points of σ2. The composition of these n-braids
is well-defined on the ambient isotopy classes. This is a fact we will not verify here. We then
come to the following theorem.

Theorem 8.3 Fix n initial and n end points in R3. The set of ambient isotopy classes of
braids on n strings with respect to the fixed points, with an operation being the composition of
n-braids as formulated above, forms a group. This group is called the Artin braid group and
is denoted by Bn.

The Artin braid group can be described completely by a set of generators and relations be-
tween the generators. The generators are σ1, σ2,...,σn−1 and their inverses σ−1

1 ,σ−1
2 ,...,σ−1

n−1

and they are easy to picture.

Figure 18: The trivial braid and the generators of the Artin-Braid group

The diagrams above are called braid diagrams, in these diagrams it is made clear how the
strings cross. The leftmost braid is called the trivial braid. The relations, called Artin rela-
tions, among the generators are the following
(i) σiσ

−1
i = 1, for i = 1,2,...,n-1

(ii) σiσi+1σi = σi+1σiσi+1, for i = 1,2,...,n-1
(iii) σiσj = σjσi, for |i− j| > 1.

The second relation being the Yang-Baxter equation which plays an important role in statis-
tical mechanics. In his paper [4], Emil Artin assumed that these generators and the relations
define the group. He did not give a proof of this statement. A proof, which is quite hard,
can be found in [21]. It is important to notice that the Artin braid group can be obtained
by different means. The description in theorem 8.3 is a topological one (Btop

n ). The charac-

terization just given above is algebraic. The braid group on n strings, Balg
n , is now defined

as the free abelian group on the σ1, ..., σn−1 and their inverses subject to the Artin relations.
Another way to construct the braid group is by the use of configuration spaces.

The configuration space of n points is given by Cn = {D ⊂ C|#D = n}. So D =
{z1, z2, ..., zn|∀i : zi ∈ C and zi 6= zj if i 6= j}. Consider now the following set FC,n =
Cn \ ∪i 6=j∆ij , where ∆ij denotes the set {z1, z2, .., zn|∀i : zi ∈ C and zi = zj}. An element of
FC,n can be seen as a n-tuple with distinct coordinates. The symmetric group Sn acts freely on
FC,n by permuting the coordinates of the n-tuple. This gives rise to an orbit space projection
µ. It follows that the orbit space equals the configuration space, Cn = Sn \ (Cn \ ∪i 6=j∆ij).
Because the action is also fixed point free, µ is in fact a covering map. The braid group on n
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strings can now be defined by π1(Sn \ (Cn \ ∪i 6=j∆ij), p0) = Bconfig
n , with p0 = (1, 2, ..., n).

It is not immediately clear what this fundamental group has to do with the topological
and algebraic braid group. A very short explanation is given. An element in Bconfig

n is a loop
that lifts uniquely to a path in Cn \∪i 6=j∆ij , because µ is a covering map. This path consists
of n coordinate functions z1(t), ..., zn(t) that map n initial points at t = 0 to n end points at
t = 1. The graph of these coordinate functions represents a geometrical braid. There are two
theorems, one by Artin and one by Fox and Neuwirth, that, together, state that the braid
groups obtained in various ways are isomorphic as groups: Bconfig

n
∼= Balg

n
∼= Btop

n ([4], [9]).

Next we want to say something about closed braids. One can take the closure of a braid
by connecting the initial points to the end points with the aid of parallel strands. This is
shown schematically below.

Figure 19: The closure of a braid

The closure of this braid in B2 is ambient isotopic with the trefoil knot. By taking the closure
of a braid one gets a knot or a link. The mathematician James Alexander, the same Alexander
as the polynomial, proved in 1923 that every link in S3 is ambient isotopic to a link obtained
by a closed braid [2].

8.2 Anyons

All cards are now on the table. It is time to play the anyon game. From quantum statistical
mechanics it has been known for a long period of time that in four-dimensional spacetime
there are two classes in which every particle can be put depending on its nature. On the one
hand there are fermions, particles that obey Fermi-Dirac statistics. On the other hand there
are bosons, particles that obey Bose-Einstein statistics. In order to get a feel for the theory
of anyons, it is important to understand why particles in four-dimensional spacetime come in
two different types.

Imagine we have n identical particles with a wave vector |ψ〉 in the complex Hilbert space de-
scribing the quantum state of the particles. Since the particles are identical, the physics does
not change if we permute the particles. This is translated into the fact that a permutation
causes an extra phase with modulus one to the wave vector: P |ψ〉 = eiθ|ψ〉, for the reason
that an extra phase does not change the physical properties of the system. It follows that
we must have an one-dimensional representation of the symmetric group Sn on the complex
Hilbert space. The representation is one-dimensional because eiθ ∈ C, so we choose our base
field to be C. Then we are looking for homomorphisms ρ: Sn → GL(1,C) ∼= C∗. Due to the
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fact that all elements of Sn have finite order, ρ(σ) is a root of unity. Because if an element
of the symmetric group has order k, then ρ(σ)k = ρ(σk) = ρ(e) = 1. This implies that
|ρ(σ)| = 1 for all σ ∈ Sn. Furthermore every permutation on the n identical particles must be
a homothety, i.e a permutation must be mapped to a scalar multiple of the identity. There
are two such representations: the trivial representation and the sign representation. So we
have P |ψ〉 = a|ψ〉, with a ∈ Z and |a| = 1, so a = ±1. If a = 1 the wave vector does not
change under a permutation of the particles, this particle type is called a boson. In the other
case, if a = −1, the corresponding particles are called fermions.

The situation described above is the four-dimensional case. In three-dimensional spacetime
(two spatial dimensions and one dimension of time) however, it is a different story. For in-
stance, if we have two identical particles and interchange them a couple of times, the world
lines of the particles form a 2-braid. So not only the initial and end state of the system are
important, but also the manner in which the particles are interchanged. This in contrary
to the four-dimensional situation. The role that Sn played before, is now taken over by the
Artin-Braid group Bn. This is because the possible permutations on the n identical particles
correspond one-to-one with the homotopy classes of braids. In fact the only requirement that
is abandoned in the 2+1 dimensional case is that σ2

i = 1.

This subtle difference has far reaching consequences. For instance, we have many more one-
dimensional representations of the braid group on the Hilbert space. The one-dimensional
representations correspond with an extra phase eiθ in front of the wave vector. Each θ ∈ [0, 2π)
gives a different type of particle. These possible particles, except for θ = 0, π, are called anyons
and in the case of θ = 0 we just get a boson, for θ = π we have a fermion. One must distinguish
between so-called abelian and non-abelian anyons. Anyons that match with one-dimensional
representations of the braid group are always abelian, because the phases in front of the wave
vector commute. This does not have to be the case for higher dimensional representations.
For instance, by permuting non-abelian anyons it is possible that the wave vector is multi-
plied by an unitary matrix. And matrices in general do not commute. Non-abelian anyons
find their application in the construction of topological quantum computers. A good and
understandable article about topological quantum computation can be found here [22].

8.3 Anyonic models

In the last section we saw that 2+1 dimensional space time permits the existence of indistin-
guishable particles, other than bosons and fermions, which are called anyons. Anyons obey
other types of statistics than bosons and fermions do. They arised from a theoretical consid-
eration of identical particles in three dimensional space time but do anyons really exist? It
turns out they do. They appear for instance in a physical phenomenon that is called the frac-
tional quantum Hall effect [17]. We shall not go into the details of this effect but it certainly
justifies the investigation of other properties of anyons.

The following step is to examine how anyons behave in groups and how they interact. Just
as for ordinary bosons and fermions, anyons come with an antiparticle. Together they may
annihilate to form a vacuum state, a state with no particles in it. There is also the possibility
that a couple of anyons form a new particle. Moreover, the opposite reaction, where a num-
ber of particles is created out of one particle, may occur as well. Finally the consequences of

33



braiding, the interchanging of anyons, must be specified. The foregoing translates into the
fact that an anyonic model is defined by three properties.

An anyonic model is described first of all by a list of particles, including the unique triv-
ial particle (vacuum state) and a unique antiparticle for each particle. Such a list can be
denoted by L = {a, b, c, ...}. On top, rules for fusion and splitting should be given. If two
particles a and b are combined to fuse to an arbitrary particle c, this is indicated as follows:

a× b =
∑
c

N c
abc, where N c

ab ∈ Z≥0 represents the number of possible manners in which a and

b can form c. Read backwards this gives the splitting of a particle c. In the case that N c
ab = 0,

a and b cannot fuse into c. If N c
ab = 1, the fusion happens in precisely one way. When N c

ab>1
this gives rise to non-abelian anyons.

The fusion of particles must be associative and commutative, i.e a × (b × c) = (a × b) × c
and a× b = b× a. It follows that N c

ab = N c
ba. For the trivial particle, denoted by e, we have

a×e = a. Fusion of a particle a and its antiparticle ā gives a× ā = e+
∑
c 6=1

N c
aāc. Now one can

construct a vector space, called the fusion space, by taking as a basis for the vector space the
set {|(ab)c, µ〉, µ = 1, 2, ..., N c

ab}. So to each label set {a, b, c} a vector space is assigned. The
basis vector |(ab)c, µ〉, representing a fusion, and its dual 〈(ab)c, µ|, representing a splitting,
can be pictured as follows

Figure 20: Fusion and splitting of particles

The fusion space is referred to as V c
ab and we have dim(V c

ab) = N c
ab. The basis of the space is or-

thonormal 〈(ab)c, µ|(ab)c, µ′〉 = δµµ′ . Moreover one can consider a general fusion space where
the outcome of a fusion between two particles a and b is not fixed. This space is the direct

sum of all subspaces which do have a determined fusion outcome, so dim(
⊕
c

V c
ab) =

∑
c

N c
ab

and V c1
ab ∩ V

c2
ab = e for distinct c1, c2 ∈ L. If

∑
c

N c
ab>1, then the theory is called non-abelian.

This means that the outcome of a fusion is not unique. When the outcome of a fusion is

unique this implies that
∑
c

N c
ab = 1, i.e ∃c1 for which

⊕
c

V c
ab
∼= V c1

ab and this representation

space is irreducible because it is not the direct sum of two representations, other than the
trivial decomposition.

A vector in the fusion space V c
ab can be regarded as a linear combination of ways in which

particles a and b can form another particle c. The dual space of V c
ab, the splitting space, is

V ab
c = Hom(V c

ab) and consists of vectors that are linear combinations of ways in which a par-
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ticle c can split in two particles a and b. A basis can be given by {〈(ab)c, µ|, µ = 1, 2, ..., N c
ab}.

Similar expressions for the dimension hold for the splitting space. Furthermore one can verify
that 〈(ab)c, µ|(ab)c′, µ′〉 = δcc′δµµ′ .

The fusion of two particles can be extended to a fusion of n particles. First two particles
are fused into an intermediate particle, which in turn fuses with one of the remaining parti-
cles. This process continues until all original particles have been used. Schematically

Figure 21: Fusion of n particles

In similar fashion as before a fusion space can be assigned to the label set {a1, a2, ..., an}.
Because fusion is an associative action, this space can be regarded as the direct product of
the tensor product of some subspaces. As a result of the fact that the order of fusion is not
important, such a decomposition of the fusion space is unique up to isomorphism. In summary

V c
a1a2...an =

⊕
b1,...,bn−2

(V b1
a1a2 ⊗V

b2
b1a3
⊗ ...⊗V c

bn−2an) ∼=
⊕

b1,...,bn−2

(V c
a1bn−2

⊗V bn−2

a2bn−3
⊗ ...⊗V b1

an−1an).

Where b1, b2, ..., bn−2 stand for the intermediate particles as discussed. Note that only two of
the many possible decompositions are named. The left one is obtained by repeatedly fusing
the two left most particles. Likewise, the right one is obtained by repeatedly fusing the two
right most particles. A basis for the new fusion space can be given by the sum of the product
of the bases of the subspaces that appear in the decomposition, hence a consideration of the

dimension yields dim(V c
a1a2...an) =

∑
b1,...,bn−2

N b1
a1a2 ·N

b2
b1a3
· ... ·N c

bn−2an .

Now that the rules for fusion have been formulated, it remains to investigate the rules for
braiding. This last defining property of an anyonic model consists of rules that specify what
happens when two or more particles are exchanged. In case two particles are fused, the order
is irrelevant because the fusion is commutative. Therefore we must have V c

ab
∼= V c

ba. This
implies that there exists a unitary transformation R, called the braid operator, between the
two Hilbert spaces. In terms of the bases we have R: |(ab)c, µ〉 7→ |(ba)c, µ′〉. For the reason
that the operator R does not have physical consequences for the anyons, it can be seen as an
intrinsic or innate freedom of the system. The transformations can be represented by unitary
matrices. In general such transformations can be described as actions of the generators of
the braid group on fusion spaces. Thus, geometrically the particles are just twined. Such an
intertwining is called a R-move.

The same reasoning applies when three particles fuse. Three particles, if not interchanged,
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can fuse in two different ways: (a × b) × c → d and a × (b × c) → d. For each of these
possibilities there are many decompositions of the total fusion space V d

abc, depending on the
potential particle that may be formed. Because all these decompositions are isomorphic, they
are related by unitary transformations called F-moves, in analogy with R-moves in the case of

two particles. So F : V d
abc =

⊕
e∈L

(V e
ab⊗V d

ce)→
⊕
f∈L

(V d
af ⊗V

f
bc) = V d

bca,
∑
e

|(ab)e, µ〉|(ce)d, ν〉 7→∑
f

|(af)d, µ′〉|(bc)f, ν ′〉.

With the specification of the R-, and F-moves our description of an anyonic model is almost
complete. For sake of consistency there are two relations which the unitary transformations
must satisfy. Consider the fusion of four particles. This process can proceed in five manners.
The fusion spaces are related by F-moves as pictured in the following diagram

Figure 22: The hexagon diagram

The following rule is imposed on this diagram. If one goes from one pattern in the above
diagram to another by a sequence of F-moves, this must yield the same answer irrespective
of the path chosen. Therefore the consistency relation, called the pentagon relation, becomes

(F eab3)4
1(F e1cd)

3
2 =

∑
5

(F 4
bcd)

3
5(F ea5d)

4
2(F 2

abc)
5
1. This should be read as follows: (F gabc)

f
e represents

the move where particle e is removed and in stead f is formed out of b and c. Then a fuses
with f to particle g. Graphically

Figure 23: An F-move

There is one more equation that the R-, and F-moves must obey. It is called the hexagon

equation and is given by R3
ac(F

d
bac)

3
1R

1
ab =

∑
2

(F dbca)
3
2R

d
a2(F dabc)

2
1. Here the convention is that

Rcab represents a move from a space where particles a and b, in this order, fuse into c, to a
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space where b and a form c.

A lot of effort has been made to introduce the concept of an anyonic model. Now we can
reap the fruits of our labor. In the next section a bridge is build to the Jones polynomial
by regarding a specific anyonic model that originally has been described by the renowned
mathematician and physicist Edward Witten [26].

8.4 The Jones polynomial

In stead of first investigating the properties of an uncomplicated anyonic model, this step is
skipped by means of time. In this chapter a particular type of Chern-Simons theory will be
studied in the light of anyonic models. Chern-Simons theory is a topological quantum field
theory that is used in different branches of both mathematics and physics. In our case it
is necessary to pick a certain Lie group, in this context also referred to as a gauge group,
on which Chern-Simons theory is applied. By taking SU(n) as a gauge group, several knot
invariants can be calculated. It turns out, as we will see later, that for n = 2 the Jones
polynomial appears. So we will study SU(2).

First of all a list of particles must be given for our anyonic model. Let k ∈ N be a fixed
number. Then the irreducible representations of SU(2) of dimension k or lower, act as par-
ticles. This anyonic model is referred to as SU(2)k. Just as in four-dimensional space time
the trivial representation of Sn was associated with a boson and the sign representation with
a fermion, the irreducible representations of a group again impersonate particles. A prob-
lem that one has to deal with is the fact that SU(2) is not a finite group. Therefore it is
quite hard to apply representation theory on it. Luckily, SU(2) is a compact Lie group so
the Peter-Weyl theorem holds for this group. That SU(2) is compact can be seen by the

map ϕ : S3 → SU(2), (x, y) ∈ C2 with |x|2 + |y|2 = 1 7→
(

x y
−ȳ x̄

)
which establishes an

isomorphism between S3 and SU(2) as manifolds.

Now because SU(2) is compact we have µH(SU(2))<∞, with µH being the Haar-measure.

Therefore we can normalize the Haar-integral, vol(SU(2)) =

∫
G=SU(2)

dµH(g) = 1. Recall

that a representation ρ : G → GL(V ) can be characterized by a complex valued function χ,

called the character of a representation, given by χρ = Tr(ρs) =
∑
i

aii, with s ∈ G and

ρs = ρ(s) = (aij) ∈ GL(V ). So χ : G→ F with F the base field of the vector space and in our
case F = C. If a character satisfies the relation χ(tst−1) = χ(s) ∀s, t ∈ G then χ is called a
class function. Given a group G, a class function on G is a function f : G→ C with the prop-
erty that f(tst−1) = f(s) ∀s, t ∈ G. All characters of finite dimensional representations are
class functions due to the fact that Tr(st) = Tr(ts) if the products st and ts are well-defined.

Given two class functions χ and η, a product can be defined by (χ, η) = 1
|G|

∑
g∈G

χ(g)η(g),

where |G| stands for the order of the group. There is a useful proposition called Schur’s
lemma which will be needed in order to prove an important theorem about the irreducibility
of representations.
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Proposition 8.4 (Schur’s lemma) Let V ,W be finite dimensional complex vector spaces
which are irreducible representation spaces. If V ∼= W then HomG(V,W ) is one-dimensional.
If V �W then HomG(V,W ) is zero-dimensional.

The proposition implies that in the case of V and W being isomorphic finite-dimensional com-
plex vector spaces, there exists an isomorphism f : V → W such that for all g ∈ GL(V ) and
v ∈ V we have that f(gv) = gf(v). Then this isomorphism is the generator of HomG(V,W ).

Theorem 8.5 Let V , W be n-dimensional complex vector spaces with V � W . Let χV be a
character of the representation space V and χW a character of the representation space W.
Then
(i) V is irreducible ⇔ (χV , χV ) = 1
(ii) V, W are irreducible ⇔ (χV , χW ) = 0.

Proof. (i) “⇒ ” Let ρ be an n-dimensional irreducible representation of G with character χV .

Then ρs = (aij(s)) and χV (s) =
∑
i

aii(s), for s ∈ G. Define <φ,ψ> = 1
|G|

∑
s∈G

φ(s)ψ(s−1)

and define ψ̂(s) = ψ(s−1). Then (φ, ψ) = 1
|G|

∑
s∈G

φ(s)ψ̂(s−1) = <φ, ψ̂>. Now because ρ is

n-dimensional, ρs has finite order and so do the eigenvalues λ1, λ2, ..., λn of ρs. Therefore
the absolute value of each eigenvalue equals one and we have λi = λ−1

i for each i. Given a

character χ of ρ then χ(s) = Tr(ρs) =
∑
i

λi =
∑
i

λ−1
i = Tr(ρ−1

s ) = Tr(ρs−1) = χ(s−1). It

follows that ψ̂ = ψ and (φ, ψ) = <φ,ψ> for characters ψ. Therefore (χV , χV ) = <χV , χV> =∑
i,j

<aii, ajj>. Now it follows from Schur’s lemma, see [24], that <aii, ajj> =
δij
n . Thus

(χV , χV ) = 1
n

∑
i,j

δij =
n

n
= 1.

(ii) “⇒ ” The argument for (ii) is analogous to (i). The only difference is that we now have
(χV , χW ) = <χV , χW> = 0, which also follows from Schur’s lemma.

For the other implications we refer to [24]. Next, we define an equivalence relation on the
set of representations of a group G on a vector space V by saying that ρ1 is equivalent to ρ2 if
they have the same character. It follows from a theorem that equivalent representations are
isomorphic. We now come the Peter-Weyl theorem.

Theorem 8.6 (Peter-Weyl) Let G be a compact group not necessarily abelian. Then
(i) All irreducible representations of G are finite dimensional.
(ii) The characters {χS}, where S runs through a full system of representatives of equivalence
classes of irreducible representations of G, form an orthonormal basis for L2(G,µH).

Here L2(G,µG) represents the infinite dimensional Hilbert space of square integrable functions

ϕ with

∫
G
|ϕ(g)|2dµH<∞. The Peter-Weyl theorem asserts us that the irreducible representa-

tions of SU(2) can indeed act as particles, as will be seen later. However, it does not provide
a way to obtain these representations.
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Consider the following space Pn = {binary polynomials of homogeneous degree n in two

complex variables x and y}. So an element of Pn can be written like f(x, y) =
n∑
i=0

anx
n−iyi.

A basis for this space is {xn, xn−1y, xn−2y2, ..., xyn−1, yn}. Thus dim(Pn) = n+1. The group

SU(2) acts on this space by π : SU(2)×Pn → Pn, π(

(
a b
c d

)
, f(x, y)) = f((x, y)

(
a b
c d

)
) =

f(ax+ cy, bx+dy). In this context we will also denote π as πU , with U ∈ SU(2) if U is given.
This gives rise to a homomorphism αn : SU(2) → Aut(Pn), U 7→ πU . The map αn is a
homomorphism because (x y)(U1U2) = ((x y)U1)U2, so αn(U1)αn(U2) = πU1πU2 = πU1U2 =
αn(U1U2). As a consequence αn is a representation of SU(2).

The α′ns turn out to be irreducible and they are the only irreducible representations [7]. The
argument goes as follows. Every character associated with a representation is a class function.
One can show that the product, (χ, χ), of such a character with itself is one. This amounts to
the calculation of an integral. By theorem 8.5 the representation is irreducible. Furthermore
it can be shown that the characters of the representations αn form an orthonormal basis for
L2(G,µH). Therefore there are no other irreducible representations. The last statement can
also be seen with an argument from the absurd. Take an irreducible representation other than
αn for all n. This representation must be finite dimensional by the Peter-Weyl theorem. A
calculation will show that the product of the associated character with itself gives zero. This
contradicts the assumption by theorem 8.5.

By now we have concreted a list of particles for the anyonic model SU(2)k. The next step
is to specify the fusion rules. However, there is a natural way to formulate the fusion rules.
Namely, if one takes the tensor product of two irreducible representation spaces of SU(2),
there is a decomposition of the obtained space as the direct sum of irreducible representations.

This is called the Clebsch-Gordan decomposition and is given by Vn ⊗ Vm =

n+m⊕
j=|n−m|

Vj , with

the step size of j being two. Furthermore one requires that j + n + m<k with k ∈ N the
specified number for the anyonic model SU(2)k, for every representation has to k-dimensional

or lower. Translated into the fusion of two particles a and b we have: a× b =

k∑
j=|a−b|

j, again

with step size two and j + a+ b<k.

The braiding rules also follow from theory [8]. They correspond to definite phases and

are given by: Rcab = (−1)
a+b−c

2 A−
(a(a+2)+b(b+2)−c(c+2))

2 and for the F-move we have (F dabc)
f
e

=

[
a b f
c d e

]
. The variable A is the same one that appears in the derivation of the Jones

polynomial. The matrix in square brackets denotes the 6j-symbol. The description of our
anyonic model is now complete.

To obtain the Jones polynomial, we analyse a particular equation and try to solve it. As said,
the irreducible representations of SU(2) act as anyons. In addition these anyons may inter-
twine in 2+1 dimensional space time while satisfying the braiding rules. Their word lines form
braids and by closing these braids a link is constructed. Therefore we can say that every com-
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ponent of such a link can be associated with a state in two-dimensional Hilbert space, because
that is the space where the anyons live in. Considering this, take a look at the following states

Figure 24: The states

The equation that is to be analysed is the following

αψ + βψ1 + γψ2 = 0 (2)

with α, β, γ ∈ C. This equation has a non-trivial solution because there always exists a relation
of linear dependence between three vectors in a two-dimensional vector space. It can be seen
that ψ,ψ1 and ψ2 obey another equation that relates them to each other [20]. It turns out
they only differ by the braid operator R. We have: ψ1 = Rψ and ψ2 = R2ψ. Remember that
this R-move is a unitary transformation acting, in this case, in a two-dimensional space. We
can therefore also regard R as a unitary 2× 2 matrix. It is a two-dimensional representation.
The Cayley-Hamilton theorem implies that R satisfies its own characteristic equation: R2 −
Tr(R)R + det(R)R = 0. Multiplying by ψ reduces the equation in

ψ2 − ψ1Tr(R) + det(R)ψ = 0 (3)

The last equation is precisely the one wherewith we started. The problem then reduces to
the determination of the eigenvalues of R. This is first done by Moore and Seiberg in [20]
and also, in the light of our approach, by Witten in [26]. That R has two distinct eigenvalues
is not very trivial to deduce. Moore and Seiberg originally derived these eigenvalues because
they wanted to prove a conjecture of Verlinde stated in [25]. We will not go into the detail of
this but for those interested Verlinde conjectured that ‘the modular transformation S(0) of
one-loop vacuum characters diagonalizes the fusion rules’ [20].

The eigenvalues, in the case of an anyonic model SU(n)k, are given by

λ± = ±exp( iπ(1∓ n)

n(n+ k)
) (4)

Now α, β and γ can be derived. Yet one has to make a few corrections due to technical issues
depending on the framing of the knot. The framing of a knot is a way of looking at the knot
by determining to what extent the knot is linked with the ribbon I ×S1. The corrections are
taken along in the calculation below. Eventually the following values are obtained

α = det(R) = λ+λ− = −exp( 2πi

n(n+ k)
) (5)

β = −exp(−2πi(n2 − 1)

2n(n+ k)
)Tr(R) = exp(

πi(2 + n− n2)

n(n+ k)
)− exp(πi(2− n− n

2)

n(n+ k)
) (6)
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γ = exp(
−2πi(n2 − 1)

n(n+ k)
) (7)

The numbers are filled in equation (1) and then (1) is multiplied by a factor exp(πi(n
2−2)

n(n+k) ).

We substitute t = exp( 2πi
n+k ) to get

t−
n
2 V (L+)− t

n
2 V (L−) + (t−

1
2 − t

1
2 )V (L0) = 0 (8)

Here L−, L0 and L+ stand for the links one gets by closing the braids ψ,ψ1 and ψ2. This
equation reduces to the skein relation for the Jones polynomial for n = 2.

The conclusion is that the variable ‘t’ in the Jones polynomial is a sort of a permutation
of anyons in a system of anyons. In the construction of the Jones polynomial, crossings
appearing in the knot diagram are cut open and pasted back together in two ways. This
matches with the permutation of two anyons in a certain anyonic model. However, because
R is a two-dimensional representation, the anyons may be non-abelian. This means that a
permutation of the anyons could change the particles and sometimes also the way they move.
In special cases, the wave vector just gains a complex phase.
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9 Conclusion

This thesis can be divided in three parts. The first part consists of an introduction into the
world of knots and links. After this introduction the Alexander polynomial is accentuated.
That is the second part of this thesis. The last part is devoted to an application of knot theory
in theoretical physics, in the form of anyons. The last part also comprises an introduction in
braid theory and a connection to the Jones polynomial.

The key question in knot theory is to tell whether two given knots are equivalent or not. By
looking at the knot diagram it is possible to relate equivalent knots by a sequence of Reide-
meister moves. Since this is a painful process, better ways in distinguishing knots had to be
found. The hunt for knot invariants was opened.

The Jones polynomial turned out to be a very useful invariant. It is easy to determine, it
tells knots from their mirror images apart and their exists a skein relation for this Laurent
polynomial. Furthermore prime knots with nine or less crossings in their knot diagram have
distinct Jones polynomials [1]. However, a full understanding of the Jones polynomial misses.
The unknown meaning of the variable ’t’ makes the Jones polynomial not very intuitive. An
important unsolved question is whether there exists a non-trivial knot which has a Jones
polynomial of one.

A second knot polynomial is given in the second part: the Alexander polynomial. This knot
invariant has a long history and there are several ways to approach it. The approach in terms
of homology theory was taken in this thesis. The Alexander polynomial is mainly build upon
results coming from geometric topology and algebraic topology. This resulted not only in
a quite complex definition for the polynomial but also in nice properties. One of the most
important consequences is that the breadth of the Alexander polynomial for a knot gives a
lower bound for the genus of the knot. Further, the Alexander polynomial can tell prime
knots with knot diagrams up to eight crossings apart. Compared with the Jones polynomial,
the geometrical meaning of the variable ’t’ in the Alexander polynomial is clear. It is a self-
homeomorphism of the space X∞. The variable can be seen as a translation function of the
topological spaces making up X∞.

The Alexander polynomial also has a downside. Unlike the Jones polynomial it cannot differ-
entiate between a knot and its mirror knot. There turn out to be infinitely many non-trivial
knots with Alexander polynomial equal to one [23]. Furthermore the Alexander polynomial
is only defined up to multiplication with a unit ±tn. This gives rise to a normalized version
of the Alexander polynomial called the Conway polynomial. The latter has the advantage
that there can be deduced a skein relation for it which makes computations much easier.

The last part of the thesis deals with braids, anyons and anyonic models. A braid can be
seen as an embedding of a collection of disjoint strands in three-dimensional Euclidean space.
Such a braid can be closed to obtain a link. The connection with physics now goes as follows.
It points out to be that in 2+1 dimensional space time there are particles other than bosons
and fermions, called anyons. These particles may intertwine in time and their world lines
form a braid. The effect of anyons has been measured in experiments [17].
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An anyonic model is a described by three properties: a list of particles, fusion rules and
braiding rules. The penultimate rules specify what happens when two anyons fuse into a new
particle. The last property describes the effect of the braiding of two or more anyons. By
considering a particular type of anyonic model certain knot invariants can be derived [26].
The model that is investigated goes under the name of SU(2)k. After solving an equation
coming from this model the skein relation for the Jones polynomial appeared.

In conclusion it can be said that knot theory is a very promising field. It has its roots in
mathematics but it has also many important applications in mathematical and theoretical
physics. The interplay between these different fields through knot theory is fascinating. New
discoveries follow each other rapidly.

Knot theory has the advantage that it naturally lend itself to make pictures. This is a
great help to simplify matters. However one may never forget that the technical machinery
to deal with knot theory is very complex. There are many subtleties that may be overlooked
but which require a lot of work.

The last remark is also expressed by the fact that there are still many unsolved questions
in knot theory, see for instance [1]. Questions that every layman can understand, like Fermat’s
last theorem, but which turn out to be extremely hard to solve. In these questions lies a great
challenge for the future generation of mathematicians and physicists.
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