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Abstract

In the past few years dynamic and recon�gurable systems have evolved and new strategy

and paradigms for the development of applications have been devised. In this thesis

we study mobile code based systems focusing on the importance of formalization and

investigation of the potential of code mobility. Mobile code paradigms have been used in

di�erent systems, however, as most of these are Java based, the potential of code mobility

are some-how lost behind the Java language capabilities, and design choices related to

mobility have been conditioned by implementation choices.

In this thesis we reason on code mobility systems at the design level in order to in-

vestigate novel powerful approaches. This thesis is composed of di�erent parts. We �rst

introduce a coordination based language and a model checker to reason on formalization

of mobile code based systems with automatic analysis. Properties of mobile agents, of

their interaction and behavior may be formally expressed and veri�ed against the system

speci�cation.

Then, in order to express code mobility potential and to formalize the basic constructs

for code migration, we describe a formal language for the speci�cation of very �ne-grained

mobility. Every line of code, and every variable declaration can be mobile, giving a very

high exibility in the range of application. A prototype of this model implemented in Java

is also presented to validate the implementability of the model.

Finally, we show a possible incarnation of the �ne-grained mobility approach based

on XML. The approach allows XML documents to be updated cutting, extending, or

replacing parts of the tree structure of the document. We exploit this idea to incrementally

update remote code. The approach can be used in di�erent domains; we describe possible

applications in graphic user interface management, document consistency checking and

management of application on thin clients like personal digital assistants (PDAs).
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Introduction

The increasing popularity of Java and the spread of Web-based technologies are contribut-

ing to a growing interest in dynamic and recon�gurable distributed systems. The ability

to relocate code over networks of workstations, on an Internet scale, yields exibility in the

design of new applications and shows new possible paths to be followed in the development

of the future systems.

Code mobility is viewed by many as a key element of a class of novel design strategies

which no longer assume that all the resources needed to accomplish a task are known in

advance and available at the start of the program execution. Know-how and resources are

searched for across the networks and brought together to bear on a problem as needed.

Often the program itself (or portions thereof) travels across the network in search of re-

sources. While research has been done in the past on operating systems that provide

support for process migration, mobile code languages o�er a variety of constructs sup-

porting the movement of code across networks. Java [Sun95], Tcl [Gra95], and derivatives

support the movement of architecture-independent code that can be shipped across the

network and interpreted at execution time. Obliq [Car95] permits the movement of code

along with the reference to resources it needs to carry out its functions. Telescript [Whi96]

is representative of a class of languages in which fully encapsulated program units called

agents migrate from site to site. Location, movement, unit of mobility, and resource ac-

cess are concepts present in all mobile code languages. Di�erentiating factors have to do

with the precise de�nitions assigned to these concepts and the operations available in the

language [FPV98].

Language design e�orts are complemented by the development of formal models. Their
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main purpose is to gain a better understanding of fundamental issues facing mobile compu-

tations. Of course, such models are expected to play an important role in the formulation

of precise semantics for mobile code languages and constructs, to serve as a source of

inspiration for novel language constructs, and to uncover likely theoretical limitations.

Motivation and Contribution

The aim of this work is to achieve a deep insight in mobile code based systems and to

investigate some possible developments in this �eld. Mobile code has been exploited in

di�erent technologies, however, as most of them are Java-based, the focus on the potential

of mobile code is somehow lost behind the capabilities of Java, and mobility design choices

have been conditioned by implementation constrains. The aim of the thesis is to abstract

from the current technologies investigating the real power of the migration of code across

the network. In particular, the idea is to use formalisms to achieve understanding of

mobile code systems. In this context, automatic analysis of speci�cation can be useful in

�nding conceptual mistakes in systems speci�cations, and prototyping of new mobile code

based paradigms can give insight into their potentials.

We will describe how a coordination language can be used to specify the dynamics of

mobile systems. On top of the language, a model checker will be used to analyze properties

of mobile code in an automatic way. We will then introduce a more programming-oriented

formalism to study the issues related with the granularity of the unit of mobility and its

decoupling from the unit of execution. In this approach we describe a prototype of the

language to give details of the implementability of the idea. The formal study succeeded

in isolating interesting future trends for mobile code. The last part of the thesis shows how

recently developed technologies and languages happen to incarnate interesting �ne-grained

characteristics that other existing mobile code languages lack and that can be applied in

domains such as distributed application management and mobile computing settings.

Outline of the Thesis

Chapter 1 recalls some background concepts related to code mobility. The chapter is

intended as an introduction to the basic notions used in the rest of the thesis. We also

describe some related work in terms of both existing mobile code technologies and formal

languages. The thesis is composed of three main parts.
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In Part I we show how mobile code speci�cations can be formalized and automatically

analyzed using a coordination languages and a model checker. The speci�cation and the

analysis of software architectures are also described and mobility architectural styles are

speci�ed. In particular, Chapter 2 introduces PoliS, a coordination based languages that

has already been used for the description of complex systems. PoliS has characteristics of

exibility that permit the formalization of complex systems. In particular, we show how

software architectures can be speci�ed in PoliS. Chapter 3 describes the logic (PTL) and

the model checker for PoliS developed at the University of Bologna. In this chapter we

use the model checker to prove properties on PoliS speci�cation of systems. Examples

of analysis of software architectures are shown. Chapter 4 introduces the use of PoliS

for the speci�cation of mobile code based systems. The model checker is used to perform

analysis of mobile systems. Chapter 5 contains the description of MobiS, an enhancement

of the PoliS language that is able to formalize mobile agents as �rst class elements in the

language. Chapter 6 contains a summary of the part.

In Part II we show how the granularity of mobility can be re�ned until a very �ne-

grained level. Chapter 7 describes a more programming language oriented formalism, an

enhancement of Mobile UNITY [MR98] for speci�cation of mobile code based systems. In

this model we adopt the view that every line of code and every variable can be mobile.

The unit of mobility is then decoupled from the unit of execution and dynamic system

recon�guration is possible at a very �ne-grained level. Chapter 8 contains an enhance-

ment of the model described in Chapter 7, with nested processes, while Chapter 9 shows

a design and a Java prototype of the model presented in the previous chapter, in order to

highlight the feasibility and the implementability of the approach. Chapter 10 contains

a summary of the part.

In Part III we show how to use XML [BPSM98a] for incremental code mobility. We

describe some applications in di�erent domains. In Chapter 11 we describe the use of

XML (i.e., the EXtensible Mark-up Language) plus Java class loading for display of formal

notation documents on the Internet. As follow-up of this work and of work in Chapter 7,

Chapter 12 shows the incremental code mobility approach based on XML and related

technologies. The approach can be applied to di�erent application domains, and we give

some examples. Chapter 13 contains a summary of the part.

The Conclusions chapter contains the summary of the work and a list of possible
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developments. Appendix A contains the grammar for the input notation of the prototype

shown in Chapter 9, and Appendix B its Application Programming Interface.

Related Publications

Part of this thesis has been taken from published papers, in particular in [Mas99b] an

outline of the thesis is presented. Chapter 2 and Chapter 3 on the PoliS language and

speci�cation of systems and software architectures are an evolution of di�erent papers;

in [CM98c] we use the language and the model checker to analyze some invoicing systems:

the invoice system was the case study o�ered in the International Workshop on Comparing

System Speci�cation Techniques held in Nantes, France in 1998. [CM99, CM98a] describe

the use of PoliS and the checker for software architectures. The papers [CFM98], and

[CFM00] introduce the use of PoliS for the speci�cation of mobile code based systems.

Chapter 5 re�nes a paper presented in [Mas99a], describing the MobiS language, an evolu-

tion of PoliS allowing �rst class formalization of mobile agents. MobiS has also been used

to specify software architectures with mobile components in [CM98b]. Chapter 7, 8 and 9,

where the �ne-grained model and prototype is presented, re�ne [MPR99], and [MPR00].

Chapter 11 extends [CMV98] and [CVM99], while Chapter 12 re�nes a paper published

in [EMF00] and in [MEF00].

During my Ph.D. I also published other papers, that, for sake of brevity, are not part

of this thesis. In [CCM96], and [CCM97] semantics for the Z language [Spi92] based on the

Chemical Abstract Machine is presented, and an animator of Z speci�cation based on the

semantics given is used to test speci�cations. In the same context we used the approach

to analyze dynamics of systems [CM96], and to describe architectural styles [CM97].

In [CM98d] an approach to the use of formal method for teaching software engineering

is presented: the approach focuses on the use of tools to improve the generation of software

speci�cation and design documents.



Chapter 1

Code Mobility: Technologies and Formalisms

Logical mobility is not a new concept. Data transfer have been used to exchange or

distribute information among di�erent people on a network. For a long time data have

been transmitted across network using e-mail and ftp protocols. With the spread of the

World Wide Web, HTML documents can be sent over the Internet using the http protocol.

The increasing popularity of Java is contributing to a growing interest in dynamic and

recon�gurable systems [MDEK95]. In particular, the ability to relocate not only data

but also code over networks of workstations, on an Internet scale, yields exibility in the

design of new applications.

From this starting point mobile code evolved, and more complicated mobile code

paradigms have been isolated [FPV98]: code on demand, remote evaluation, and mo-

bile agents. In particular it became feasible to send objects, with their status and their

code, from a location to another. Object serialization is the mechanism used for the

transmission across the network of objects in Java. When an object has some sort of

autonomous behavior and proactivity it is called a mobile agent [WPM99]. Java based

mobile code technologies developed very rapidly and many di�erent systems based on mo-

bile agents have been built in the last years. Mobile agents are able to travel carrying their

own status and code form location to location, following a itinerary or following some sort

of pattern. We will describe most of them in Section 1.1.

On the theoretical front, the growth of languages able to express mobile code character-

istics did not have the same power of growth than technologies. However some interesting

approaches have been adopted in this direction.

Language design e�orts are complemented by the development of formal models. Their
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main purpose is to gain a better understanding of fundamental issues facing mobile compu-

tations. Of course, such models are expected to play an important role in the formulation

of precise semantics for mobile code languages and constructs, to serve as a source of inspi-

ration for novel language constructs, and to uncover likely theoretical limitations. Basic

di�erences in mathematical foundation, underlying philosophy, and technical objectives

led to models very diverse in avor. In Section 1.2 we give an outline of the existing

formalisms used for specifying code mobility systems.

1.1 Mobile Code Technologies

Many di�erent technologies have been developed in the recent years based on code mobility

concepts. In this section we will introduce some of the most common technologies.

In [FPV98] a classi�cation of mobile code technologies is given. The paper distinguish

between weak and strong mobility. Weak mobility is the ability to move code and the

status of an object, and it is the most common kind of mobility provided by the systems

we are going to describe. Strong mobility is the ability to move not only the code and

the state of an object but also the execution status, that is, the program counter and the

registers of the executing object. Strong mobility is more complicated to achieve as it

o�ers a higher level of complexity.

Java

The Java programming language [Sun95] is an object-oriented language that allows classes

and objects to be serialized and written into a stream of bytes in order to be transmitted.

In this section we will only focus on mobility related aspects and not on the all language

as it would go beyond the scope of this thesis.

Java objects are instances of Java classes. Each class of object that needs to be

transferred over the network (i.e., serialized) needs to \implement" the serializable

interface. Serialization of object is a Java mechanism allowing the status of an object to

be written into a byte-stream. Once an object is serialized it may be shipped to remote

locations. The classes on which the object relies are however not serialized in the same

byte stream and therefore not implicitly transmitted with the object.
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Figure 1.1: The object shipping process in Java.

The Java class loader is responsible for the loading of classes of objects. The class

loader uses the CLASSPATH environment variable to know where to retrieve a class for an

object. Per se, the Java Class Loader throws an exception every time the needed class

cannot be found in the speci�ed directories of the CLASSPATH . However, the class loader

can be overridden and speci�c class loading policies can be used to load classes, even

remotely.

Figure 1.1 shows the transmission of an object and the class loading happening on the

remote site. The default class loader looks into the local CLASSPATH environment variable

to retrieve the class for the received object.

The Java API also provides a networking package for communication through sockets,

that is often used for migration purposes in the mobile code technologies based on Java

for mobile agents [WPM99].

Java provides weak mobility, as serialization of threads in Java is not possible. This is

one of the reasons why most of the common mobile agents systems, which are developed

on Java, are based on weak mobility.

Java Applets

Java can be used together with Web browsers in order to achieve code mobility on the

Internet. This was in fact the �rst use of Java for code mobility. Figure 1.2 shows the

idea. Java applets are pointed from HTML documents. After an HTML page containing

a Java applet is downloaded by a client browser, the browser class loader has to retrieve

the Java code for the applet from the location where the applet comes from, fetch it, and

load it.

Java applets are probably the most well known example of code mobility. Since Java
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Figure 1.2: The object shipping process in Java.

applets began to be used over the Web, code mobility issues have pop up, and research

began to investigate on this topic, and realizing that Java code mobility could actually be

Web independent.

Java RMI

Java RMI [RMI98] is part of the Java API, however it deserves particular attention in a

mobile code context. RMI stands for Remote Method Invocation; the RMI package allows

remote invocation of methods in distributed objects. The client invoking the remote

method can introduce parameters to the calls. The calls to the methods can be done by

value or by reference. In calls by reference the object a reference to the object is passed

during the call. The object needs to implement the Remote interface in order to be passed

by reference. In calls by value the objects passed as parameters are copied remotely. In

a mobility perspectives, calls by value allow to migrate objects (by copying and deleting

them) from one location to another. A method can be invoked remotely only if extending

the interface Remote , and an object can be passed as a parameter by value only if its

class extends the serializable interface (and not remote ). To allow remote invocations,

stubs and skeletons of the object on which the invocation needs to take place are provided,

on the client and server side, respectively.

Aglets

Aglets [LO98] is probably the most well known system for mobile agents. The Aglets

system is developed on top of Java. It exploits serialization and networking with sockets

for the mobility of agents. An aglet is an object able to move across the network. In

particular an aglet moves from \place" to \place". A place is a context in which aglets
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execute. Whenever an aglet needs to be moved, it is suspended, the Java serialization

mechanism is used to write the aglet into a byte-stream, and then the aglet is transferred.

On the other side, the aglet is received, deserialized and its execution is resumed with a

new thread of execution. Aglets, as based on Java, provides agents mobility at the weak

level, i.e., no mobility of the execution state. Whenever an aglet is received on a new host

the classes used by the agent are can be retrieved on the new host itself. The classes could

also be transferred together with the aglet itself, or retrieved from a remote server that is

supposed to store the class for that purpose. Aglets can communicate with each other on

the same place or among places in peer-to-peer or broadcast fashion. IBM's Aglets can

be downloaded at the web site: www.trl.ibm.co.jp/aglets .

Voyager

Voyager [Obj97] is an object request broker (ORB) that also provides mobile agents fa-

cilities. A voyager is a location on which di�erent agents can live. Agents in the same

voyager can communicate and exchange data. An agent can migrate from one voyager to

another, proactively.

Objects in voyagers have proxies that enable, like skeletons and stubs in Java RMI,

remote invocations. Voyager is again implemented in Java, and therefore provides weak

code mobility like Aglets.

A part from these mobility features Voyager is a middleware like CORBA [OMG95]

and COM [Gri97], providing a transparent and reliable communication layer on which

applications can be developed.

�-Code

�-Code [Pic98] will be used in Chapter 9 for the implementation of a �ne-grained mobility

prototype. We give here a brief description of its features.

�-Code is a Java based system providing weak mobility; it implements agents mobility

as well as code mobility at a class level. Unlike in other systems where classes are fetched

only following an agent migration, and in order to make the agent able to execute, in �-

Code migration of classes is an invokable operation of the system API. Groups, i.e. bags,

of objects, agents, and classes can be shipped and fetched across the network allowing a

high level of exibility. Application developers can then use groups to send things across



10 Chapter 1. Code Mobility: Technologies and Formalisms

the network and the dimension of the group and the nature of the entities depends on the

application requirements. The granularity of mobility is then system independent and can

go from a class to an agent carrying its status.

�-Code relies on Java sockets for the implementation of the communication even if its

API hides these detail from the programmer. �-Code is designed to be exible, extensible

and light-weight. It is composed of less than a thousand lines of code that generate less

than 40kbytes of byte-code.

Other Technologies

Many other technologies have been developed exploiting mobile code, however we described

the most signi�cant and the ones that we are going to mention in the following chapters.

Some other example of mobile code systems need however to be at least referenced. There

are a few interesting approaches to mobility that are not Java based: Emerald [LHM88],

Telescript [Whi96] and Agent-Tcl [Gra95]. In particular Telescript allows strong mobility,

that is, agents can move from place to place restarting execution from the exact point

they left it on the previous place. Strong mobility has also been achieved through a Java

approach in [Fru98], however the approach is quite complicated and most of the Java

based systems do not apply it. Details about other mobile agents systems are given in

[WPM99]. In [RPZ97],[RH98],[LM99], and [MK00] the proceedings of a newly established

mobile agents conference contains the description of other mobile code systems.

1.2 Mobile Code Formalisms

Many formalisms have been used or developed to be able to express mobile code based

systems. In particular process algebra is one of the most successfully used theory in this

respect. In this section we will briey describe some of them, as they will be compared to

the formalisms presented in this thesis later on. Formalisms have the important role to

abstract from technologies and specify characteristics of the behavior of systems, providing

useful background for investigation and analysis.
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�-calculus and Derived Formalisms

The �-calculus [Mil99] is probably the �rst formal language being exploited for the speci-

�cation of mobility aspects. In �-calculus, as in all the process algebra based models the

process is the unit of mobility and the unit of execution. Processes can be sent around,

they can perform computations, and communicate with each other . �-calculus [Mil99] is

based on the notion of channels. Processes can move along channels. Code mobility is

exactly represented as migration of processes. �-calculus has also been extended in several

direction in order to overcome for instance the lack of notion of location (Join calculus

[FGL+96]), or to add asynchronous mechanisms to the model [Ama97].

Klaim

Klaim [NFP98] is a process algebra based language that exploits coordination primitives

�a la Linda [CG92] to express the notion of location. Klaim has been implemented in Java

and the resulting API has been called KLAVA. Klaim allows the formalization of di�erent

paradigms of mobility, from the fetching and shipping of code to mobile agents moving

with their contexts.

Obliq

Obliq [Car95] is a lexically-scoped interpreted language. The Obliq environment consists

of sites, i.e., addresses spaces containing locations. Code and objects references can be

moved from site to site. Objects are not allowed to migrate, however they can be cloned

and put on remote sites. In addition it is possible to perform aliasing of the original

objects to redirect method invocations to the cloned objects.

Ambient Calculus

Mobile Ambients [CG00] is a process algebra based language allowing computation to move

with their contexts. The language is quite powerful, allowing the moving of computations

together with their environment. The language relies on the notion of ambient. An ambient

can contain other ambients, and it de�nes the scope of computations contained in it. On

top of the ambient calculus some security mechanisms based on capabilities, i.e., access
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rights, and types have been de�nes. Every ambient has a name that allows capabilities to

be de�ned on it in order to constrain access rights.

Mobile UNITY

Mobile Unity [MR98] will be used and re�ned in Chapter 7. We will give a general

outline here to leave the description of the details when we need them. Mobile Unity

is a state based language based on UNITY [CM88]. Mobile Unity allows the de�nition

of programs, and of their mobile behavior, assigning to each program a location variable.

The unit of mobility, as well as the unit of execution and of de�nition in Mobile Unity is

the program. Users write programs that can be instanced an migrated over the network

re-assigning the location variable. The Interactions section of a Mobile Unity document

de�nes the interactions and the movements of the components. The Components section

de�nes the instantiations of programs that are going to exist in the system. The set of

components is then �xed.

Mobile Unity has a well-de�ned proof system based on temporal logic that allows the

speci�cation and veri�cation of properties on mobile systems.

Other Formalisms

As in the previous section for technologies, in this section we only described some of

the relevant approaches to formalization of mobile code systems. Other approaches have

been developed, and some of them deserve to be at least mentioned, like [VC99], [PS99]

and [WF98], and the paper in [SMT98] presents a survey of existing formal approaches to

code mobility.

The research on distributed and recon�gurable systems and evolving architectures

is not focused on mobility but has similarities and common issues, like rapid evolu-

tion and constant changes. Some relevant work on this topic deserves to be mentioned.

In [IW95] the Chemical Abstract Machine [BB92] (CHAM), a formal model based a chem-

ical metaphor, is used to express software architectures. The CHAM allows to express

environment as chemical solution of molecules that evolve based on a set global rules. The

chemical metaphor allows the speci�cation of modular components and of the interactions

among them. In [GKC99] a process algebra based approach to dynamic software archi-

tecture is presented. A model checker is used to investigate behavioral properties on the
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speci�cations such as liveness and safety. In [WF99] and [OT98] di�erent approaches with

speci�c focus on recon�guration and dynamics analysis are presented.

1.3 Summary

In this chapter we have discussed some relevant related work. The chapter focused on

existing mobile code technologies and formalisms. Technologies have been developed very

quickly in this �eld, exploiting some new ideas. However the role played by formalisms

is very important as they permit to discover, at an abstract level, some possible future

developments in the �eld. In this thesis we combine formal speci�cation approaches and

analysis to implementation and prototyping in order to have on one hand the abstract

shape of the ideas, and on the other the validation of them with respect to the real

applicability.

In the following we will often mention the described related work presented in this

chapter and compare it with our approach in order to clarify the main contribution of this

work.
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Chapter 2

PoliS: a Coordination Approach to Formalization

This chapter describes the language, named PoliS, that we use for the speci�cation of

mobile code systems. PoliS is a coordination language based on a multiple tuple-spaces

model. PoliS can be used to specify and analyze systems based on logical mobility: code

mobility is represented as a �rst class concept. PoliS [CMP98] has already been used

to specify the architectures of complex systems in the past. The coordination media in

PoliS are multiple tuple spaces, which o�er a natural basis for describing mobile entities

and their dynamic recon�guration. The pattern matching mechanism adopted to access

the tuple spaces helps in abstracting away from low level addressing issues. Code can be

explicitly moved from one PoliS space to another, duplicated, and eliminated.

In Chapter 3 we show how we can use a model checking approach to analyze properties

on PoliS speci�cations, and in Chapter 4 we describe how we applied the approach to

mobile code based systems.

2.1 Overview of PoliS

PoliS is a coordination language whose coordination media are nested tuple spaces [CMP98].

A tuple space, or space for short, includes as coordinables both tuples and other spaces.

PoliS speci�cations are modular and hierarchically structured: a PoliS speci�cation de-

notes a tree of nested spaces that dynamically evolves over time. Figure 2.1.a shows a

structure of nested spaces (i.e., the nested circles); Figure 2.1.b shows the corresponding

tree whose nodes are the spaces in Figure 2.1.a. The two pictures represent the same con-

cept. The labels inside the spaces represent tuples. A space can contain other spaces or
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("r":R)
("q":Q)

("ab")

a. b.

("ab")

("q":Q)

("r":R)

(5,6)

(5,6)

Figure 2.1: PoliS nested spaces (a) and the corresponding tree interpretation (b).

tuples: ordinary tuples, which are ordered sequences of values, and program tuples, which

contain the coordination rules that manage activities inside the space they belong to.

In Figure 2.1 ordered sequences of values (for example (5; 6)) are ordinary tuples; the

tuples of the form (\r" : R) are program tuples. A program tuple (\r" : R) is composed

of an identi�er r and rule code represented by the placeholder R. The rule code de�nes

which reactions can take place. The quoted notation \ " is used to distinguish actual

parameters from formal ones (i.e., the non quoted ones). The execution of a program tuple

is an action which can modify a space tree by removing and adding tuples. However,

an action can only handle the tuples of the space it belongs to and the tuples of its

parent space. This precisely de�nes both the \input" and the \output" scope of any

action, as represented by a program tuple. Figure 2.2 shows the scope of a program

tuple (\r" : R). A space is modi�ed by reactions that transform multi-sets of tuples

into multi-sets of tuples (this is multi-set rewriting, common to most coordination models

based on generative communication [BL96]). A rule de�nes a reaction that reads and/or

consumes tuples in its scope, performs a sequential computation, and produces new tuples

in its scope. More precisely, a rule consists of a precondition, a local computation, and a

postcondition. The precondition is a multi-set of tuples to be found in the rule scope. The

local computation is any sequential computation which does not modify the tuple space;

it is encoded as a function that maps values of tuples of the precondition on values of

tuples of the postcondition. The postcondition is made up of a multi-set of tuples to be

produced in the rule scope. We remark that this is a very general de�nition; actually a
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("r":R)

Figure 2.2: The scope of a rule.

rule can lack of some components: a rule can have an empty precondition, can involve no

local computation, or can produce no tuples. The precondition can include formal tuples,

i.e., tuples whose �elds can be identi�ers (i.e., the non quoted �elds). In this case actual

values for those identi�ers are \matched" in the tuple space.

The tuples of the precondition must be read or consumed in the rule scope (Figure 2.2).

When a program tuple is enabled, i.e., its precondition tuples exist in the program tuple

scope, the reaction can take place: the tuples to be consumed locally are removed from

the space containing the program tuple, the tuples to be consumed externally are removed

from the parent space of the space containing the program tuple, the local computation

is performed, the tuples of the postcondition are produced. A tuple in the precondition

must be read if the symbol \?" is put in front of it and must be consumed otherwise; a

read or consume operation involves the parent space if the symbol \"" is put in front of

a tuple and involves the local space if the symbol is missing; a tuple in the postcondition

must be produced in the parent space if the symbol \ "" is put in front of it and must be

produced locally otherwise.

Rules are �rst class entities in PoliS: in fact, they are themselves part of spaces as

(program) tuples that can be read, consumed or produced just like ordinary tuples. A

program tuple has the form (\rule id": rule) where rule id is a rule identi�er and rule is

PoliS rule code. The identi�er simpli�es reading or consuming program tuples and allows

the existence of multiple copies of program tuples with the same code but di�erent rule

identi�ers.

Rules can also create and destroy tuple spaces. They can generate new spaces using

the primitive tsc (for tuple space creation) in the postcondition part. For example, the
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execution of a rule containing a tsc(M ) operation in its postcondition causes the space

M to be added as a child space of the space where the rule is executed. Spaces can also

be destroyed by particular rules called termination rules. Whenever a termination rule

is enabled the tuple space terminates and disappears. Termination rules can read tuples

only locally (i.e., not in the parent space, as the termination condition is meant to be

local to the space con�guration) and produce tuples in the parent space, as the local space

disappears. When the tuples to be read are in the space, the reaction speci�ed by the

termination rule takes place in the usual way. Local computation and tuple production are

used to communicate possible results to the parent space and then the space terminates.

Termination rules are given by means of special program tuples whose names are replaced

by the keyword terminate. In Figure 2.3.a a new space is created upon the activation of

rule R. In Figure 2.3.b a space is destroyed when the termination rule T is enabled.

A simple example helps in explaining both the syntax and the semantics of PoliS.

Let us consider a client-server system. A client emits requests and a server serves them.

Such a system can be described by two distinct spaces both included in the main space

representing the client and the server.

Table 2.1 contains the speci�cation of the system. The StartContext space is the main

space, that contains the program tuple (\create" : CREATE ). The name of the tuple

is create (as it is quoted, it is the actual name of the tuple); instead CREATE acts as

a \macro", expanded in the corresponding text below in the table. The rule denoted

by CREATE creates the spaces Client and Server that contain the tuples describing the

client and the server, respectively. The rule also consumes the program tuple (\create" :

CREATE ) in order to ensure this rule is only applied once in the initialization phase.

After that, the code of CREATE will disappear and it will not be possible to apply the

("r":R) ("r":R) (inv:R) (inv:R)

Figure 2.3: Creation (a) and Termination (b) of spaces.
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���
o

REQ =
n��� (\idle"; i)

���
o
���!

n��� "(\request"; i); (\wait"; i)
���
o

GET =
n��� (\wait"; i); "(\answer"; answ ; i)

���
o
��(j ) f (i)!

n��� (\idle"; j )
���
o

where f (x ) = (x + 1)

END =
n��� ?(\idle"; 10)

���
o
���!

n��� "(\done")
���
o

Server

Server =

8<
:

������
(\getreq" : GETREQ); (\idle");

(\serve" : SERVE ); (\put" : PUT )

������

9=
;

GETREQ =
n��� "(\request"; i); (\idle")

���
o
���!

n��� (\request"; i)
���
o

SERVE =
n��� (\request"; i)

���
o
���!

n��� (\answer"; answ ; i)
���
o

PUT =
n��� (\answer"; answ ; i)

���
o
���!

n��� "(\answer"; answ ; i); (\idle")
���
o

Table 2.1: Speci�cation of a Client-Server System in PoliS.

rule anymore.

Client is the client space and contains the tuple (\idle"; i) that indicates the state

of the client, the program tuple (\req" : REQ), (\get" : GET ), and the termination

rule (terminate : END) that contains the code of the rules REQ , GET , and END

(speci�ed below), respectively. The rule REQ emits a new request (tuple) in the main
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space: "(\request"; i), and changes the state of the client from (\idle"; i) to (\wait"; i)

where i is the number associated to the request. The rule GET waits for an answer in the

main space "(\answer"; answ ; i) where i corresponds to the number of the request (the

rule checks if the tuple (\wait"; i) is present). It emits a new state tuple with the number i

increased by one by the function f on the arrow in the rule (speci�ed in the where clause).

The Client space terminates as soon as it receives the 10-th answer. The termination rule

END checks if the Client space contains the tuple (\idle"; 10), that means that the client

has received ten answers from the server. The tuple (\done") represents a termination

message sent by the consumer to the main space before dying.

Server is the server space. It contains a tuple denoting its state and three rules: the

rule GETREQ checks if the state is idle and if a request is present in the main space,

then moves the request in the local space. The rule SERVE generates an answer to the

request. The rule PUT resets the state of the server to idle (emitting the tuple (\idle")

locally), and move the answer tuple to the main space.

The example above shows that the basic communication mechanisms of PoliS are

asynchronous. Rules are transactions and therefore execute in an atomic fashion. They

also o�er a basic mechanism for synchronization of operations: the rules can atomically

read/consume multiple tuples allowing quite complex evolutions. Tuples representing

messages are put in the environment by entities which have to communicate. Hence,

communication is decoupled because communicating entities do not necessarily know each

other; they access tuples by pattern matching. Messages have no destination address,

so their contents determine the set of possible receivers. Thus, a space represents at the

same time both a component performing computations and a persistent, multicast channel

supporting communication among components it contains. Any space communicates with

the parent space using a pattern matching mechanism, thus minimizing the assumptions

over the the rest of the system.

In the next section we describe the formal operational semantics of PoliS.

2.2 Abstract Syntax and Operational Semantics for PoliS

We describe the semantics of a PoliS speci�cation as the application of simple rewriting

operations on multisets. In Table 2.2 we show the abstract syntax for PoliS. A multiset
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MS ::= fj elem jg j MS � MS j MS n MS j (MS)

elem ::= tuple j MS

tuple ::= data j program

program ::= (\r" : Code)

data ::= (datalist)

datalist ::= \data" j value j \data", datalist j value, datalist

\r" 2 Ruleid , the set of rule identi�ers

Code 2 Rulecode, the set of rules code speci�ed in Table 2.4.

In the concrete syntax, Code is usually substituted with a macro that expands

in the code itself.

value 2 Values

data 2 String

Table 2.2: PoliS Abstract Syntax.

(MS ) is composed of elements that are tuples or multisets, or can be built as the union or

di�erence of multisets. A tuple can be a data tuple or a program tuple. A data tuple is a

sequence of values and strings, whereas a program tuple is composed of an identi�er and

of rule code. The semantics of PoliS is introduced in the Tables 2.3, 2.4, and 2.5. Table

2.3 shows the SOS (Structured Operational Semantics) axioms and rules:

- L is a rule describing the local computations. It formalizes the local and isolated

evolution of subspaces or subsets of tuples inside a space.

- The axioms RL, RI, and T de�ne the semantics of PoliS rules. These axioms show

the reaction taking place when a program tuple (\r" : R) is enabled in a space (M ).

The formalization of the code macro R is shown in Table 2.4 according to the type

of R (an example of use of these macro can be found in Table 2.1). R can be a local

rule (i.e., Rl ), or an interactive rule (i.e., Ri ), or a termination rule (i.e., Rterm). The

notation tc , tp , tec , tep denote the lists of tuples to be consumed locally, produced

locally, produced and consumed in the parent space, respectively. S is the list of

spaces to be created by the rule. vx and vy are the formal parameter lists to be

substituted by x and y .

Table 2.3 shows these three types of semantics rules:
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{ Local rules consume, test, and produce only local tuples, without involving the

parent space. The axiom RL shows the transition applied on the space M : if

the program tuple (\rl" : Rl ) is in M and if the rule Rl is enabled (condition

expressed by the predicate LocEnabled speci�ed in Table 2.5), the space M is

updated deleting the tuples that the rule consumes and adding the tuples (and

the new spaces) that the rule produces.

Table 2.4 contains the speci�cation of Rl .

{ Interaction rules interact also with the parent space. The speci�cation of the

axiom RI shown in Table 2.3 is similar to the one of RL just described. Besides

updating the space M1 it updates the space M2, parent of M1 as the rule acts

on it as well.

{ Termination rules, when enabled, cause the termination of the space they are

in. These rules have priority over the other rules. Moreover, a termination rule

can only test internal tuples and produce external ones; other operations do

L: MS �! MS 0

fjMS jg �! fjMS 0jg

Local Rule

RL:fj(\rl" : Rl)jg �M �!

((fj(\rl" : Rl)jg �M ) n fjtc[vx=x ]jg)� fjtp [vx=x ; vy=y ];S [vx=x ; vy=y ]jg

if LocEnabled(Rl ; \rl";M ; vx ; vy)

Interaction Rule

RI:fjfj(\ri" : Ri)jg �M1jg �M2 �!

fj((fj(\ri" : Ri)jg �M1) n fjtc [vx=x ]jg)� fjtp [vx=x ; vy=y ];S [vx=x ; vy=y ]jgjg

�(M2 n fjtec[vx=x ]jg)� fjtep [vx=x ; vy=y ]jg

if IntEnabled(Ri ; \ri";M1;M2; vx ; vy)

Termination Rule

T:fjfj(terminate : Rterm)jg �M1jg �M2 �! M2 � fjtep [vx=x ; vy=y ]jg

if TermEnabled(Rterm ;M1; vx ; vy ) ^ :9Rt ; v z ; vk jTermEnabled(Rt ;M2; v z ; vk )

Table 2.3: Structured Operational Semantics Rules and Axioms.
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Rl =

8>><
>>:

��������

tc;1; : : : ; tc;nc
;

?tt;1; : : : ; ?tt;nt
;

ask(boolexpr)

��������

9>>=
>>;
��(y) f (x)!

8<
:

������
tp;1; : : : ; tp;np

;

tsc(S1); : : : ; tsc(Sn)

������

9=
;

where f ((z )) = ((f1(z ); : : : ; fm(z )))

Ri =

8>>>>>>>><
>>>>>>>>:

��������������

tc;1; : : : ; tc;nc
;

"tec;1; : : : ; "tec;nec
;

?tt;1; : : : ; ?tt;nt
;

?"tet;1; : : : ; ?"tet;net
;

ask(boolexpr)

��������������

9>>>>>>>>=
>>>>>>>>;

��(y) f (x)!

8>><
>>:

��������

tp;1; : : : ; tp;np
;

"tep;1; : : : ; "tep;nep
;

tsc(S1); : : : ; tsc(Sn )

��������

9>>=
>>;

where f ((z )) = ((f1(z ); : : : ; fm(z )))

Rterm =

8<
:

������
?tt;1; : : : ; ?tt;nt

;

ask(boolexpr)

������

9=
;��

(y) f (x)!
n��� "tep;1; : : : ; "tep;nep ;

���
o

where f ((z )) = ((f1(z ); : : : ; fm(z )))

Table 2.4: Classi�cation of PoliS Rules Macro.

not make sense since the local space terminates. The axiom T shows how a

space terminates and how some tuples are added to the parent space.

The rule macros Rl , Ri , and Rterm in Table 2.3 expand as shown in Table 2.4.

The notation (tc;1; : : : ; tc;nc) denotes the tuples to be consumed locally, the nota-

tion (?tt;1; : : : ; ?tt;nt ) denotes the tuples that are tested locally, and (tp;1; : : : ; tp;np )

are the tuples that are produced. (tsc(S1); : : : ; tsc(Sn)) denotes the generated sub-

spaces. In the speci�cation of Ri , and Rterm the notation ("tec;1; : : : ; "tec;nec ) denotes

the tuples consumed in the parent space, while (? "tet;1; : : : ; ? "tet;net ) are the tuples

that are only read from the parent space. Finally, the notation ("tep;1; : : : ; "tep;nep )

denotes the tuples produced in the parent space. The PoliS construct ask checks the

values of tuples parameters. The general form of the ask predicate is ask(predicate)

and it is another condition to be added to the precondition set.

The predicates TermEnabled , LocEnabled , and IntEnabled used in Table 2.3 are

formally described in Table 2.5 to check if the rules are enabled. The TermEnabled

condition is true if the rule Rterm is enabled, that is, if the program tuple (term :

Rterm) is in the same space M as the tuples to be tested. The LocEnabled condition
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LocEnabled(Rl ; \rl";M ; v x ; vy)
�

=

fjtc[v x=x ]; t t [v x=x ]jg � fj(\rl" : Rl )jg �M

^ vy = f (v x )^boolexpr [v x=x ]

^ 8R; vx ; vy : ((terminate : R) 2 M )

:TermEnabled(R;M ; v x ; vy)

IntEnabled(Ri ; \ri";M1;M2; v x ; vy)
�

=

fjtc[v x=x ]; t t [v x=x ]jg � fj(\ri" : Ri )jg �M1

^ fjtec[v x=x ]; tet [v x=x ]jg � M2 ^ vy = f (v x )^boolexpr [v x=x ]

^ 8R; vx ; vy : ((terminate : R) 2 M1 )

:TermEnabled(R;M1; v x ; vy)

^ 8R; vx ; vy : ((terminate : R) 2 M2 )

:TermEnabled(R;M2; v x ; vy)

TermEnabled(Rterm ;M ; v x ; vy)
�

=

fjt t [v x=x ]jg � fj(terminate : Rterm)jg �M

^ vy = f (v x )^boolexpr [v x=x ]

Table 2.5: Precondition predicates.

is true if the rule Rl is enabled, that is, if the program tuple (\r" : Rl ) is in the same

space M as the tuples to be consumed and tested. Furthermore, no termination

rules (which have priority) should be enabled. The IntEnabled condition is true

if the interaction rule Ri is enabled, that is, if the program tuple (\r" : Ri ) is in

the space M1 and if the tuple it has to test and consume on the local and parent

spaces are respectively in M1 and in the parent of M1 (i.e., M2). Furthermore, no

termination rules should be enabled in M1 or M2.

For sake of brevity we do not describe the semantics for operator � and n; they have

their intuitive meanings of multiset union and di�erence, respectively. We are now ready

to de�ne a transition system for PoliS.

PoliSTransitionSystem = (MS ;�!MS )
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where the MS syntax is de�ned in Table 2.2 and �!MS� MS�MS is the minimal relation

satisfying the rules described above.

The transition system to be associated to a PoliS speci�cation Spec is formally de�ned

as a triple

("Spec;�!Spec ;StartContext) where:

� StartContext is the initial MS (called initial state)

� "Spec � MS is a minimal subset of MS such that:

{
MS1 2 "Spec MS1 �! MS2

MS2 2"Spec

� �!Spec � "Spec� "Spec is the restriction of �! to "Spec;

� StartContext 2 "Spec.

The transition system model and the operational semantics have been used for the con-

struction of a model checker for PoliS, that we present in Chapter 3.

2.3 Speci�cation in PoliS

PoliS can be used to specify complex systems. In this section we use it to specify an \In-

voicing System". The example was used as a case study in the International Workshop on

Comparing System Speci�cation Techniques (Nantes, 1998). two versions of the system

are shown. The �rst does not take into account any interaction with the \environment"

while the second considers some possible interactions showing a more complex behavior.

An invoicing system should allow the customers to place orders. The orders are then pro-

cessed by the system, the requested products are provided and together with the invoices

sent to the customers. If a product is not available in stock in the ordered quantity, a

request is issued and the order is blocked. When the exact quantity becomes available

the order is processed. In the next chapter we will use the same example with the model

checker and we will prove properties on it.
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Startcontext

Startcontext =

8<
:

������
Stock ; (\Order"; 1; p1; q1; pending); (\Order"; 2; p2; q2; pending);

:::; (\Order"; k ; pk ; qk ; pending)

������

9=
;

Stock

Stock =

8<
:

������
(\Product"; p1; q1); (\Product"; p2; q2);

:::; (\Product"; pn ; qn ); (\invoice" : IN )

������

9=
;

IN =

8>><
>>:

��������

(\Product"; pi ; qi);

ask(qj � qi )

"(\Order"; j ; pi ; qj ; pending)

��������

9>>=
>>;
��(qm) f (qj ;qi )!

8<
:

������
(\Product"; pi ; qm);

"(\Order ; ; j ; pi ; qj ; invoiced)

������

9=
;

where f (q1; q2) = (di� (q1; q2))

Table 2.6: PoliS speci�cation of Case1

The PoliS speci�cation of the Invoicing System (Case 1)

In order to have a simpli�ed version of the system we suppose to have a closed world:

updating, input of new orders, and cancellation of orders have not to be taken into account.

Then the initial space will look like the one in Figure 2.4.

The main space contains the orders to be invoiced. Every order is de�ned by a number

(i.e. the id), the product reference, the quantity of the product ordered, and the state of

the order (pending/invoiced).

The Stock space is a sub-space of the main space (Figure 2.4). It is speci�ed in the

second part of Table 2.3: it contains the stocked products, their names and the stocked

quantities. The PoliS rule IN , in the Stock space, looks for an order in the parent space,

Stock

Product ,1, qu1

Product,2,qu2

Product,4,qu4

Order,1,p_1,q_1,pending

Order,3,p_3,q3,pending

Order,2,p_2,q2,pending

Product,3,qu3

Figure 2.4: Structure of the Invoicing System (Case1).
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Stock

Product ,1, qu1

Product,2,qu2

Product,4,qu4

Order,1,p_1,q_1,pending

Order,3,p_3,q3,pending

Order,2,p_2,q2,pending

Product,3,qu3

Get New Order
Get New Quantites

Send

Figure 2.5: Strcuture of the Invoicing System (Case2).

and, if a suÆcient quantity of the stocked product exists, it updates the stocked quantity

of the product and invoices the order.

Then some questions have risen from this speci�cation. As the rule IN checks if the

quantity of product stocked is larger than the quantity ordered (by the construct ask),

the question \What happens if an order asks for a quantity larger than the one present

in the stock?" We can ask the customer some details about this situation or proposing a

solution: adding a rule that cancel an order in case the asked quantity of product is larger

than the stocked one. This implies also the adding of the state canceled to the order states

invoice and pending. An other interesting question is \If an order asks for a non-stocked

product?". Again, we can choose to handle this case with a rule that cancels the order

when it asks for a non-stocked product.

The PoliS speci�cation of the Invoicing System (Case 2)

Now we specify a re�nement of Case1, taking into account also the input of new orders,

the cancellation of orders and the entries of new quantities in the stock.

In this version of the Invoicing System the main space accepts input from the environ-

ment exploiting the operation (") (see Chapter 2 for details on PoliS operators). Figure 2.5

shows the whole system.

Orders can now be in the state canceled, besides pending and invoiced.

The re�ned speci�cation allows the system to interact with the environment: new

orders and new quantities for the stock can be accepted, orders can be canceled (they

remain in the space as canceled).
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Startcontext

Startcontext =

8>><
>>:

��������

Stock ; (\Order"; 1; p1; q1; pending); (\Order"; 2; p2; q2; pending);

:::; (Order ; pk ; k ; qk ; pending)(\ordercounter";n); (\getord" : GET );

(\canc" : CANC ); (\newq" : NEWQUANT ); (\send" : SEND)

��������

9>>=
>>;

GET =

8<
:

������
("(\neword"; p; q);

(\ordercounter";n)

������

9=
;��

(nn) f (n)!

8<
:

������
(\ordercounter";nn);

(\Order";n; p; q ; pending)

������

9=
;

where f (n) = (n + 1))

CANC =

8<
:

������
"(\cancel"; idorder );

(\Order"; idorder ; p; q ; pending)

������

9=
;���!

n��� (\Order"; idorder ; p; q ; canceled)
���
o

NEWQUANT =
n��� "(\newq"; idprod ; q)

���
o
���!

n��� (\newq"; idprod ; q)
���
o

SEND =
n��� (\Order"; j ; pj ; qj ; invoiced)

���
o
���!

n��� "((\Order"; j ; pj ; qj ; invoiced)
���
o

Stock

Stock =

8<
:

������
(\Product"; p1; q1); (\Product"; p2; q2);

:::; (\Product"; pn ; qn ); (\invoice" : IN )(\update";UPDATE )

������

9=
;

IN =

8>><
>>:

��������

(\Product"; pi ; qi);

ask(qj � qi )

"(\Order"; j ; pi ; qj ; pending)

��������

9>>=
>>;
��(qm) f (qj ;qi )!

8<
:

������
(\Product"; pi ; qm);

"(\Order"; j ; pi ; qj ; invoiced)

������

9=
;

where f (q1; q2) = (di� (q1; q2))

UPDATE =

8<
:

������
"(\newq"; idprod ; q);

(\Product"; idprod ; qi)

������

9=
;��

(qnew) f (q;qi)!
n��� (\Product"; idprod ; qnew)

���
o

where f (qplus) = (plus(q1; q2))

Table 2.7: PoliS speci�cation of Case2

The main space now contains new rules for the handling of these situations; the counter

tuple introduced records the number of orders accepted (it is updated by the rule GET ).

The rule GET accepts a new order recording it as pending. The counter helps in assign

sequential identi�er to the input orders. The rule CANC cancels an order marking it as

canceled. The rule NEWQUANT simply accept a new quantity of a product as input from
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the environment. The rule SEND communicate to the environment an invoiced order. The

Stock space is now enriched with an UPDATE rule that updates the product quantities

in the stock with the new quantity received from the main space.

Some questions have risen also from this speci�cation. The question risen on the

speci�cation of Case1 \What happens if an order asks for a quantity larger than the one

present in the stock?" is no more a problem: the input of new quantity of product from

the environment allows an order of a larger quantity of product than the stocked one to

be invoiced in a future (i.e. when the stocked quantity is updated).

The other question on Case1 (\If an order asks for a non-stocked product?") still is a

problem, in fact an order of a non-stocked product will never be invoiced. The speci�cation

describes the input of new quantities but not the input of new products. "It is possible to

have input of new products?": some rules could be added th handle these situations.

Then a related question is \If a quantity of a non-stocked product arrives?": should

this case be considered as \input of new product" or simply \an error of non-stocked

product quantity input?". \If the environment asks to cancel a non-present order?" is an

other question risen from the speci�cation: the CANC rule checks if the order is present

and then cancel it. If the order is not present the CANC rule is not applied: we could

add, if needed, a rule to handle this kind of error signaling it to the environment (as an

output). In the next chapter we will analyze this speci�cation using our model checker in

order to be able to determine new questions on the speci�cation and to be able to reply

to some of them.

2.4 PoliS and Software Architectures

Research in the �eld of software architecture has led to the de�nition of several environ-

ments and languages for the de�nition and the design of architecture of software systems.

Some works face the problem of de�ning a general-purpose language for architectural

description, supporting system design by correct combination of given interacting subsys-

tems [S+95]. Other works aim to characterize systems design according to de�ned style

constraints, developing style speci�c environment to guide the building of speci�c sys-

tems [GAO94]. Other architectural description languages have been developed exploiting

well-known formalism as CSP [AG97] or � -calculus [MDEK95] providing also tools for
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animation and monitoring [L+95].

Software architectures speci�cation is an important phase in the life cycle of software

systems. It is universally shared the idea that software architecture speci�cation should be

put between the requirement de�nition and the design phase de�ning important aspects

of systems before actually going into the details of the design itself. In this phase the clear

de�nition of the interaction among di�erent components should be speci�ed.

We now show how PoliS can be used for the speci�cation of software architectures.

The basic entity of the PoliS language is the Tuple-Space: an architectural component

is speci�ed using a space. When necessary, a component can be seen as composition of

di�erent sub-components. We specify this kind of compositionality in PoliS exploiting the

multiple tuple spaces structure: each composed component is speci�ed with a PoliS space

containing other sub-spaces. For instance, a server component can be seen as a single

space (as in Table 2.1), or as composed of di�erent entities (i.e. sub-spaces) handling

di�erent kind of requests or providing di�erent services: Figure 2.6 shows a server with

two handlers for Data-Base queries and WWW services.

Server

DB queries 
Handler

Handler
WWW Services

requests

Figure 2.6: Architecture of a Server with two Handlers.

The coordination model is a good framework to abstract from communication details.

At the architectural level we would like to have an abstract view of the system: the tuple-

based communication mechanism let the focus be put on the structure. On the other

side, if the speci�cation of the connection is important, it is possible to associate with the

connector a space in order to de�ne its particular behavior. For instance, in the example

shown in Table 2.1 the client and the server communicate through the tuple space using

this coordination abstraction. We could modify the model adding an entity, with the
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function of connector (i.e. a Bu�er or a Router) in order to specify its particular behavior.

This connector can also be composed of di�erent sub-components, for instance a Layered

Router: the nested space model �ts the speci�cation of this layered structure (Figure 2.7).

Client
Server

Router

Figure 2.7: Architecture of a Client-Server System with a Layered Router.

The PoliS spaces model allows the speci�cation of context-free components as inde-

pendent spaces with their active rules. The PoliS mechanism of active rules scoping (see

Figure 2.2) helps in the de�nition of the components assumptions on the external envi-

ronment. For instance, consider a generic rule enabled only when a particular tuple is

present in the parent space ("(tuple)): the component containing that rule should be put

in a con�guration that will eventually provide that tuple, otherwise parts of the compo-

nent behavior will be unexploited (with consequences that can lead to the deadlock of the

system). In this way we can reason on the assumptions that components make on their

contexts and analyze how di�erent assumptions can match and how components can be

interconnected. We can predict which context allows a component to behave exploiting

all its functions.

These kinds of reasoning could help in the organization of the architectural con�gura-

tion as also stated in [GKC99]. Furthermore, the help of automatic tools for the testing of

these properties could be devised. In this direction we propose the use of our PoliS model

checker: we introduce this topic in the next chapter.
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Chapter 3

The PoliS Model Checker

In this chapter we introduce the model checker of PoliS that we will use to analyze mobile

code systems. We recalls the speci�cations presented in Chapter 2 to show how systems

and software architectures can be analyzed using the model checking approach.

3.1 Model Checking a Coordination Model

Theorem proving has been the most traditional method of system analysis [Bro96]. In

theorem proving a deductive system with axioms and derivation rules is usually de�ned.

Starting from the axioms and using the rules it is possible to prove new theorems. Such

a method can be applied to software systems as well: if the axiom set is enriched with

a formal de�nition of a software system, then the properties derived from the deductive

system are the properties that the system satis�es. In [CMP98] a mapping between the

PoliS operational semantics and TLA (Temporal Logic of Action) [Lam94] has been stud-

ied. This allowed us to use a theorem prover for formal reasoning on PoliS speci�cations.

However, theorem provers require human interaction in order to complete proofs while

model checking techniques provide completely automatic veri�cation frameworks. In this

paper we exploit a model checking technique to perform analysis on PoliS speci�cation

documents. Model checking was initially used for the veri�cation of hardware systems. A

landmark paper [CES86] suggested and studied a model checking approach for software

systems. Model checking aims at �nding an assignment (model) for system variables that

satis�es the formulae describing some system properties. Given a model of a software

system (derived from its operational speci�cation) a model checker makes an exhaustive
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analysis of variable values possible in the model. This method may seem trivial and

ineÆcient, but it is very powerful for systems with �nite state models.

Model checkers are completely automatic. An important feature of model checking is

the ability to �nd counter-examples (i.e., a path that leads to a scenario where the property

is false). Abstract model checking [CGL94] and deductive model checking [SUM96] are the

most often exploited techniques to deal with in�nite systems. The exponential explosion

of the number of system states can also be managed with symbolic model checking and

the use of BDD (Binary Decision Diagrams) [BCM+92].

The model checker we have built exploits PoliS modularity features (i.e., spaces de�ning

context boundaries) in order to reduce the space of the graphs built for a speci�cation. The

algorithm applied for the veri�cation of properties follows the one presented in [CES86].

The logic is based on CTL (Computation Tree Logic) [CES86]: the di�erences between our

logic and CTL are related to the spaces-based coordination model. We will give the details

of the graph construction, the logic and the model checking in the following sections.

3.1.1 The PoliS Graph Construction

In Section 2.2 we have described an operational semantics for PoliS. We now consider

the transition system de�ned by the Structural Operational Semantics (SOS); the graph

obtained from the unfolding of a transition system of a real system is something quite

similar to our model. The main di�erence between SOS unfolding and our model is that

in SOS a unique monolithic graph is built to represent a system, while here we associate

a graph to each sub-space de�nition. The nodes of the graph show how a space evolves;

instead, edges are labeled with tuples produced/consumed and tested in the parent spaces.

As an example consider the space Component in Table 3.1 and the graph built for this

space in Figure 3.1. The component can be idle or performing some critical actions (when

it obtains the token). It can also return the token (by rule PUT ). The three nodes in

Figure 3.1 indicate the possible states for the space Component , namely idle, critical , and

req . The arrows show the transitions due to the application of the rules REQ , GET , or

PUT . The labels on the arrows describe the tuples tested, consumed, and produced in

each transition. Our model checker works recursively starting from the more deeply nested

spaces, up to the main space.
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IN: ("idle")
OUT: ("req")

IN: ("req")
OUT: ("critical")

IN: ("critical")
OUT: ("idle")
OUT-UP: (token") CONSUMED-UP : ("token")

state 3

state 2state 1

("idle") ("req")

("critical")

Figure 3.1: Graph for the simple space Component.

We distinguish two kinds of spaces: spaces which do not contain other spaces and spaces

which contain subspaces. From hereafter we call simple spaces the former, and compound

spaces the latter. The graph for simple spaces is built according to the SOS transition

system. In graphs for compound spaces we exploit con�gurations. A con�guration is

a triple (graph; instance; state) that uniquely identi�es a state in a graph of a space: a

con�guration is a descriptor for a subspace instance. A graph for a compound space

contains a con�guration for each subspace. In Table 3.2 we describe the speci�cation for

a root space (named StartContext) including two instances of space Component given in

Table 3.1. The graph is built according to the SOS : a labeled transition for each rule

activation is built from the initial state (de�ned by an initial multiset). The �nal state

Component

Component =

8<
:

������
(\idle"); (\req" : REQ);

(\get" : GET ); (\put" : PUT )

������

9=
;

REQ =
n��� (\idle")

���
o
���!

n��� (\req")
���
o

GET =
n��� (\req"); "(\token")

���
o
���!

n��� (\critical")
���
o

PUT =
n��� (\critical")

���
o
���!

n��� (\idle"); "(\token")
���
o

Table 3.1: Speci�cation of a simple component.
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StartContext

StartContext =
n��� Component ;Component ; (\token")

���
o

Table 3.2: Speci�cation for StartContext .

represents the multiset with rewritten tuples. The transition label includes tuples to be

tested, consumed, or produced in the parent space. When a computation is performed

inside a subspace, everything in the state representing the parent space is unchanged, but

the con�guration of the subspace. In Figure 3.2 we show how we exploit con�gurations1:

the initial state of the graph corresponding to the main space (StartContext) contains

the tuple token and two con�gurations corresponding to the two instances of the two

components (C ; 1; 1), (C ; 2; 1), (C stands for Component) where the second parameter

denotes the instance id (i.e., Component1 and Component2), and the last parameter is a

pointer to the state of the graph of the Component space (i.e., the state 1 in both cases).

Our model is more useful and powerful than the SOS model mainly for two reasons:

�rst, we save space when there are several instances of some graph de�nition, as in the pre-

vious example; second, we can abstract a single space and analyze its model independently

from other spaces. However, building a graph independently from its context introduces

some problems. For example, the case in which a formal tuple has to be consumed in

the parent space has to be handled. Uninstantiated identi�ers can hold any value, so for

correctness, while building the graph, all the cases have to be considered (i.e., all values

for each domain). We handled this problem making a guess on a �xed range of natural

numbers given with the speci�cation of the system to be analyzed.

In the following we introduce the logic we use to reason on these graphs and then, the

details of the model checking tool.

1To avoid confusion the transition labels of the �gure do not contain the list of the tested, consumed,

or produced tuples; instead, we label the edges with the names of the rules applied.
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("critical")
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GETPUT
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(C,1,1)
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(C,2,2)
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(C,2,1)

state 1 state 2

state 3

Graph of StartContext

Graph of the space Component

(C,2,1)

Figure 3.2: Representation of con�gurations.

3.1.2 The PoliS Temporal Logic

The PoliS Temporal Logic (PTL) is a CTL [CES86] dialect. The main di�erences between

PTL and CTL depend on the de�nition of our model, that is based on spaces (multi-sets).

All the formulae are evaluated in a context (a space); moreover, we assume that formulae

without an explicit context are evaluated in the StartContext . An atomic proposition

atom is a tuple. atom is true in a context C if the tuple it represents belongs to a space C.

We have also added classical logic operators and some temporal operators. In Table 3.3

we sketch the PTL syntax.

- A ptf can be a temporal, a classic, a parenthesized ptf, an atom, a ptf can be univer-

sally or existentially quanti�ed over some variables;

- a context is a PTL formula that has a pattern like: ptf 2 C (space C), ptf 2 ?C (all
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ptf ::= context j temporal ::= ?Xptf j

temporal j &Xptf j

classic j ?(ptf Uptf) j

(ptf) j &(ptf Uptf) j

atom j ?3ptf j

8 i 2 [min,max] (ptf) j &3ptf j

9 i 2 [min,max] (ptf) ?2ptf j

context ::= ptf 2 C j &2ptf j

ptf 2 ?C j ptf ;ptf

ptf 2 &C j classic ::= ptf ^ptf j

ptf 2 %C ptf _ptf j

atom ::= tuple :ptf j

ptf )ptf

Table 3.3: PTL Syntax.

C spaces ), ptf 2 &C (at least one C space), or ptf 2 %C (exactly one C space),

these because in a speci�cation there can be more than one instance of the same

space;

- a temporal is a CTL formula: the canonical operators A (for all paths) and E (at

least a path does exist) for path quanti�cation are described respectively by symbols

? and &. X and U are PTL symbols for CTL operators Next and Until;

- ?3ptf is de�ned as ?(trueUptf ): it means \for all paths ptf will be eventually true";

- &3ptf is de�ned as &(trueUptf ): it means \for at least one path ptf will be eventually

true";

- ?2ptf is de�ned as :&3: ptf : it means that \for all paths ptf is always true";

- &2ptf is de�ned as :?3: ptf : it means that \for at least a path ptf is always true";

- ptf ;ptf' is de�ned as ?2(ptf ) ?3ptf' ): it means that \for all paths it is always

true that ptf implies that for all paths ptf' will be eventually true";

- a classic is a PTL formula with classical logic operators;

- an atom is simply a tuple.



Chapter 3. The PoliS Model Checker 41

3.1.3 The PoliS Model Checker

We now describe the details of our model checking tool. PoliMC is our model checker for

PoliS. The model checker gets two inputs: a system speci�cation written in PoliS, and a

set of properties to be veri�ed, written in PTL. PoliMC �rst parses the PoliS speci�cation

and builds up a model for it as described in Section 3.1.1; then, it parses the PTL formulae

and builds syntactic trees. Finally, it starts the model checking phase.

The model checking algorithm we apply follows the guidelines given by Clarke in [CES86].

As we have shown in Section 3.1.2 all formulae can be rewritten using these operators:

X,U(preceded by & or ?),^,:. Thus, the only temporal formulae to verify are of the form:

p^ q ; : p; &Xp; ?Xp; &(pUq); ?(pUq)

The quanti�ed formulae are handled like macros. A universally quanti�ed formula is

expanded in a logic conjunction of its sub-formulae while an existentially quanti�ed formula

is substituted by the logic disjunction of its sub-formulae. For instance:

8 i 2 [0; 3] (ptfi ) � (ptf0^ptf1^ptf2^ptf3)

9 i 2 [0; 3] (ptfi ) � (ptf0_ptf1_ptf2_ptf3)

The main di�erence with respect to the Clarke algorithm is in the handling of context

formulae. Each sub-formula is checked inside its context. When, during the checking,

PoliMC �nds a context formula like p 2 C , it leaves the current graph and it starts check-

ing the graph bound to C . This task is performed recursively. When the checking is

�nished the currently checked state of the parent graph which contains a con�guration

(state; graph; instance) where graph is bound to C and state is a state of the graph satis-

fying p, is labeled with the formula p 2 C .

The veri�cation of a formula of the form p 2 f%;&; ?gC is similar: a state of the

parent of the graph bound to C can be labeled if among all the con�gurations it contains,

which have the graph component bound to C , there is respectively only one con�guration,

some con�gurations, or all the con�gurations satisfying the formula p.

The veri�cation of a formula is performed bottom-up: if the length of the formula is

n, PoliMC �rst checks all the sub-formulae of length less than n, then it labels each state

according to the labeling of the sub-formulae.
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The veri�cation of atom formulae is trivial: an atom is a tuple and a state will be

labeled with this formula if and only if it represents a space which contains the tuple.

The veri�cation of formulae p^q , and :q depends on the veri�cation of p and q . &X p

and ?X p can be easily checked too: a state s is labeled with this formulae if some or all

the states s 0 in the transitions of type (s; s 0) are labeled with p.

The veri�cation of formulae that contain the until (U) operator is more complex.

The check for ?(p U q) is done forward, while the check for &(p U q) is done backward,

operating recursively. According to the U de�nition a state s can be labeled with ?(p U q)

if s is labeled with q , or if it is labeled with p and all its successor states are labeled with

?(p U q). On the contrary, a state s can be labeled with &(p U q) if it is labeled with q or

if it is labeled with p and one of its successor states is labeled with &(p U q). We remark

that if a speci�cation contains the creation of new spaces we could obtain in�nite graphs,

thus we use model checking on a constrained version of the speci�cation where we limit

the number of possible generated spaces. This implies that we cannot \prove" properties

on the model, as we do not explore all the possible paths. Therefore, we use the tool to

test the speci�cations, to see if formulas are satis�able, and to �nd counter-examples.

3.2 Analysis of the Invoice System

The PoliS speci�cation language allows the completely separated speci�cation of the coor-

dination aspects of a system from the computational ones: the speci�cation of functional

aspects is limited to functions f in the rules. For instance, the rule IN (Table 2.3) speci�es

the operation of invoicing an order de�ning the modi�cation of the tuple Order , and the

functional operation of calculating the di�erence between the quantity q of the product in

the stock and the required quantity q1 (indicated on the top of the arrow of the rule).

The multiple spaces based model encodes in a modular way the di�erent components

of the system (e.g. the Stock is a space). If the requirements had said it, a particular

space containing all the orders (i.e. an abstraction of a commercial oÆce) would have been

de�ned.

The input from the environment is seen in PoliS as inheritance of tuples by the main

space from an hypothetic external space. The parallel handling of tuples is suitable for this

study: it simulates the parallel handling of the orders (or of the updating of the product
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quantities) by di�erent employees in a company. It is possible to modify the speci�cation

creating di�erent agents (the employees) that handle orders (or updates the quantities).

The agents can be modeled in PoliS as spaces where the operations of invoicing orders can

take place. In this way the process of invoicing in a company can be speci�ed taking into

account the personnel availability and the di�erent roles. PoliS allows also the splitting of

the stock in di�erent sub-stocks containing di�erent kind of products (one single product

per stock or similar products in the same stock): multiple spaces would be added and

rules would help in the search of the right stock for an order.

The parser which is part of the model checking tool helps in �nding syntax errors

and wrong constructs or sentences. After having checked the speci�cation against these

errors the model checker tries to build the graph of the possible evolutions of the system.

Obviously, while using a model checker, you have to limit the scope of the variables to a

�nite set of values in order to generate �nite graphs [CES86].

We have tried to verify some liveness properties on the two versions of the Invoicing

System. The model checker helped us in detecting some errors in our reasoning. The

�rst error we found was in the speci�cation. The model checker revealed some diÆculties

in building the graph representing the system evolutions: it tried to generate negative

numbers for the quantities q of the products. The model checker helped us in debugging

the speci�cation and we found out that we did not put the constrain ask(qj � qi) on the

speci�cation of the rule IN (invoice) (Table 2.3). This condition checks that the quantity

of product in the stock is larger than the ordered one: only under this condition an order

can be invoiced. After having successfully built the graph of the two speci�cations we

tried to verify the property (3.1) on the �rst system:

8p; q ; id(\Order"; id ; p; q ; pending) 2 StartContext; (3.1)

(\Order"; id ; p; q ; invoiced) 2 StartContext

That is, if an order has to be invoiced, it will eventually be invoiced (; stands for

\leads to"). However, the model checker veri�ed that property (3.1) is false. In fact we

have to ensure that the product requested (p) is present in the stock at least in quantity
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q :

8id ; p; q ;9k((\Order"; id ; p; q ; pending) 2 StartContext^ (3.2)

(\Product"; p; q + k) 2 Stock);

(\Order"; id ; p; q ; invoiced) 2 StartContext

By the way, that condition is not enough yet: the model checker still found out that

it is false. The reason is that there can be other orders for the same product that can be

invoiced before the order id , and that do not leave in the stock enough quantity of product

p to let the order id be invoiced. Then, we rewrote the (3.2) as:

8id ; id 0; p; q ; q 09k((\Order"; id ; p; q ; pending) 2 StartContext (3.3)

^(\Product"; p; q + k) 2 Stock^id 6= id 0^

(:(\Order"; id 0 ; p; q 0; pending) 2 StartContext));

(\Order"; id ; p; q ; invoiced) 2 StartContext

Then, the model checker veri�ed (3.3). We then tried to verify a property on the

second system (Table 2.7). In this system input from the environment is accepted, so

we had to take into account the updating of the products stocked (see Table 2.7: rule

NEWQUANT ):

8id ; id 0; p; q ; q 09k((\Order"; id ; p; q ; pending) 2 StartContext^ (3.4)

(\Product"; p; q + k) 2 Stock^id 6= id 0^

?(:((\Order"; id 0 ; p; q 0; pending) 2 StartContext)U

:((\Order"; id ; p; q ; pending) 2 StartContext))

;((\Order"; id ; p; q ; invoiced) 2 StartContext

_(\Order"; id ; p; q ; canceled) 2 StartContext)

That is, if an order of product p is to be invoiced, and there is enough quantity of

product in the stock, and a new order for the same product is not accepted until (U

stands for until) the order id is to be invoiced, then, eventually the order will be invoiced

or canceled.
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In a previous proof session we tried to verify that, at these conditions, the order will

eventually be invoiced. However the model checker veri�ed that this property was false:

we had to take into account also order cancellations.

PoliS o�ers a di�erent approach with respect to languages like Z [Spi92] or VDM. These

languages are property oriented and have a declarative approach. Z is a very expressive

notation and strongly typed: type checking helps in dealing with large speci�cation doc-

uments where type errors are more frequent. PoliS is a type-less language, the parser and

the model checker detect syntax errors and verify temporal properties, however no type

checking can be performed on the speci�cation. On the other hand Z language hardly

speci�es dynamics of a system: many enhancements and integrations with other notations

have been tried in order to allow dynamic aspects to be speci�ed [Eva94, CCM97]. PoliS

emphasizes the behavioral aspects of a system, highlighting the rules con�guration.

The PoliS operational model helped in understanding the dynamics of the Invoicing

System: Case 1 consists of a simple speci�cation containing a single rule (IN ) that helps

in invoicing the orders decreasing the quantities of products in the stock. In Case 2 the

environment has a role and the input of new orders and new quantities of products are

considered. The speci�cation is more complex than in Case 1: there are new rules that

handle the input and the output with the environment.

Some questions have risen from both the speci�cations. from the Case 1 speci�ca-

tion: \What happens if an order asks for a non-stocked product? Or for a quantity of

product larger than the one stocked?". From Case 2: \What happens if a quantity of

non-stocked product arrives? Or if the environment asks to cancel a non-present order?".

The model checking technique helped us in inferring some properties on our speci�cations

and in increasing con�dence in the dynamics: trying to proving properties, helps in �nding

comprehension errors and features of the model.

3.3 Model Checking Software Architectures

In this section we outline a technique to check the behavior of components as isolated

from the context. We can also make interesting proofs on the properties of composed

architectures, where the components analyzed before are put in relation and interact. The

con�guration matching can be performed on multiple components.
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This sort of analysis is possible as the model checker works bottom-up on the spaces,

building graphs for the innermost ones and then going on recursively. Other key issues in

this sort of compositionality analysis are the assumptions that a space (i.e. component)

makes on the environment. The PoliS language provides a particular scoping mechanism:

the reactions contained in a space can make assumptions on the external space (i.e. the

parent of the local space) using the " operator and formal tuples (not instanced) (see

Chapter 2 for details).

A component (i.e a space) that is put in a context (i.e. an other space) uses pattern

matching mechanism to match the assumptions contained in its rules (i.e. the tuples with

\"") with the actual tuples contained in the environment. In this way we can easily state

when a component will be able to have an useful behavior exploiting its functionalities and

when not. If the environment does not provide the tuples that the component needs, the

behavior of the component will be constrained and its capabilities will not be completely

exploited. In a previous work [CMP98] a mapping between PoliS operational semantics

and TLA (Temporal Logic of Action) has been studied. This allowed us to use a theorem

prover for formal reasoning on PoliS speci�cations. In this work instead we exploit a model

checking technique to perform architectural analysis on PoliS speci�cation documents.

We show how the model checker can be used for the veri�cation of properties on

software architectures. We �rst analyze single components out of their context, considering

their interactions with the environment. Then we will be able to analyze con�gurations

and saying if they are feasible and convenient. The study of components as isolated entities

is useful when dealing with complex architectures where components are not elementary

objects but they are composed of many parts.

We now show how a single component can be analyzed out of its context. Consider the

Server in the Client-Server example (2.1): the Server makes only one assumption on the

external context, that is, it remains idle until a request is present in its context (i.e. the

father space) ("(\request"; i)), then a GETREQ reaction can take place and after some

steps an answer is generated in the environment ("(answer ; answ ; i)). The model checker

can be used to prove this property:

8i ; a;C ((\request"; i);Server) 2 C;(\answer"; a; i) 2 C (3.5)
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That is, if the context C of the Server guarantees the arrival of a request, then the

answer to the request will be provided. The Client can emit a request without checking

the context C , however it blocks if the context does not provide an answer (rule GET ).

Then, if an answer is provided the Client can go on making requests till the number of

requested services is ten.

8i ; a;C (Client ; (\answer"; a; i)) 2 C; (3.6)

(((\request"; i + 1) 2 C )_(\done") 2 C )

We can put together the assumptions of the two components and try to check if our

Client-Server con�guration is feasible.

(Client ;Server ; (\request"; i)^(i < 10)) 2 C; (3.7)

(\answer"; a; i) 2 C; (3.8)

((\request"; i + 1) 2 C_(\done") 2 C ) (3.9)

We can trivially reach a state satisfying (3.7) in fact the Client can emit a request

(with i < 10). The �rst \leads to" (;) property is satis�ed by (3.5) as just shown, and

the second \leads to" property is satis�ed by (3.6). Hence, we conclude that the two

components form a feasible con�guration and that the corresponding assumptions match.

The Client-Server is a simple example without recon�guration problems due to mobility

of components. The introduced approach of analysis can be very useful to know if a mobile

component could be introduced or not in a particular sub-architecture. For instance, if

we introduce an agent in our Client site (space) and want to send it to the Server site in

order to avoid heavy communication due to exchanging of requests-replies messages, we

could analyze the Agent space and its assumptions on the environment and see if they

match with the Server space contents.

In the next chapter we show how systems containing mobile components can be spec-

i�ed and analyzed using PoliS and the model checker.
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Chapter 4

PoliS Speci�cation and Analysis

of Mobile Code Systems

Modern network technologies including mobile computers and devices, and the program-

ming languages for the Internet, like Java, require novel software design techniques. An

important feature in network applications is mobility; however, it is still unclear which

entities can be mobile and especially why and when they should move over the network.

Mobility can range from mobility of data, as in client-server architectures, to mobility of

code, as in Java based applications, to mobility of agents, as in some applications for elec-

tronic commerce, to mobility of whole operating environments, as in platforms including

mobile hardware.

In this section we show how PoliS can be used for the speci�cation of systems containing

mobile components, and in the next sections we illustrate how we use our model checker

to analyze mobile systems.

The PoliS language allows the speci�cation of both data and code mobility as �rst

class operations. Mobility of data is denoted by rules able to consume tuples locally and

to produce tuples outside the local space (or vice versa). Code mobility is denoted by

rules able to consume and produce tuples containing code, i.e., other rules. The ability of

moving code and data and the creation/destruction operations acting on spaces allow the

speci�cation of mobility of complex agents carrying code and data as well.

Agents in this context are represented by spaces containing tuples and rules. Agent

mobility is coded by a combination of code and data mobility. In order to show how agent

mobility can be expressed in PoliS we modify the example in Table 2.1 by adding an agent

that is sent from the client to the server to perform some computations (Figure 4.1). The



50 Chapter 4. PoliS Speci�cation and Analysisof Mobile Code Systems

Server Client

Agent Agent

Figure 4.1: A simple Client-Server system with a Mobile Agent.

example shows how we specify mobility of data, code, and agents. Tables 4.1 and 4.2

contains the PoliS speci�cation of the system.

StartContext

StartContext =
n��� (\create" : CREATE )

���
o

CREATE =
n��� (\create" : CREATE )

���
o
���!

n��� tsc(Client); tsc(Server)
���
o

Client

Client =
n��� Agent ; (\get ready"); (\send" : SEND)

���
o

SEND =
n��� (\frozen"; t); (\agent" : a)

���
o
���!

n��� "(\agent" : a); "(\frozen"; t); (\wait")
���
o

Server

Server =
n��� (\getag" : GET ); (\data"; \d")

���
o

GET =
n��� "(\frozen"; t); "(agent : a)

���
o
���!

n��� (\frozen"; t); (agent : a); (\unfreeze")
���
o

Table 4.1: Speci�cation of a Client-Server System with a Mobile Agent: �rst part.

Client is the client space. It contains the subspace Agent , the tuple (\get ready"), and
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Agent

Agent =

8<
:

������
(\start" : START ); (\resume" : RESUME ); (\job" : JOB);

(terminate : READY ); (\agent" : AGENT )

������

9=
;

START =
n��� "(\get ready")

���
o
���!

n��� (\state"; \readytogo"; 0)
���
o

READY =

8<
:

������
?(\state"; s ; r); ?(\agent" : AGENT );

ask(s = \readytogo" or s = \afterjob")

������

9=
;��

(t) f (s;r)!

8<
:

������
"(\frozen"; t);

"(\agent" : AGENT )

������

9=
;

where f (state; result) = (freeze(state; result))

RESUME =
n��� "(\frozen"; t)

���
o
��(s;r) f (t)!

n��� (\state"; s ; r)
���
o

where f (tuple) = (\beforejob"; result(tuple))

JOB =

8<
:

������
(\state"; s ; r); "(\data"; d);

ask(s = \beforejob")

������

9=
;��

(r 0
;s0) f (d;r;s)!

n��� (\state"; s 0; r 0)
���
o

where f (data; oldresult ; \beforejob") = (calculate(data; oldresult); \afterjob"))

AGENT =
n��� (\unfreeze"); (\agent" : AGENT )

���
o
���!

n��� tsc(Agent)
���
o

Table 4.2: Speci�cation of a Client-Server System with a Mobile Agent: second part.

the program tuple (\send" : SEND). The data tuple (\get ready") tells the agent to get

ready to be sent. The code of the rule SEND actually sends the agent (once ready), i.e.,

the tuple frozen and a program tuple (\agent" : a), where a is a formal parameter that is

matched with a piece of code (in this case the code AGENT when present).

The Agent space is described in the same table. The rule START consumes the data

tuple (\get ready") from the client space (i.e., the parent space) and produces the tuple

(\state"; \readytogo"; 0) into the agent local space enabling the rule READY for execution.

The termination rule READY terminates the space saving the status of the agent, i.e., the

frozen tuple, and the activation rule (\agent" : AGENT ) in the client space. The predicate

ask checks if the value of s (contained in the state tuple) is either readytogo or afterjob, i.e.,

the agent is ready to be sent, or it has �nished a job. This enables the client's rule SEND ,

already described. The Agent space also contains the program tuples (\agent" : AGENT ),

(\resume" : RESUME ), and (\job" : JOB). The �rst acts as an \unfreeze" for the agent

space whenever the agent is \frozen" (i.e. it generates the new space). The rule RESUME

reacts when the agent space has been created, getting the frozen status of the agent
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and emitting the status tuple in the agent space. The rule JOB denotes the real code

for executing a job: it is used when the agent is at the server site and the \data" are

available. The where clause is abstractly speci�ed as a function f because in the spirit

of most coordination languages (which separate computation from coordination) we omit

computation details, however it could be re�ned de�ning the exact mechanism for the

computation of the result. The Server space contains the data that will be used by the

agent code JOB to compute a result, and the program tuple (\getag" : GET ), to gather

an agent from the environment. The rule GET gathers the frozen agent and the activation

code (i.e.,(\agent" : a), with the formal parameter a matching the real code), and emits

the tuple (\unfreeze") so that the agent can unfreeze itself.

As the example shows, code mobility can be modeled in PoliS consuming and producing

tuples representing code (i.e., containing rules). For instance, the rule SEND consumes

locally and produces in the environment the program tuple containing the activation code

for the agent, i.e., (\agent" : a), where a is a formal parameter matched with the code

AGENT when available. Agent mobility is depicted in Figure 4.2. An agent is \frozen"

and the code for the re-activation of the agent is moved together with its frozen status to

another location, where the agent will be reactivated.

This approach to agent mobility has several advantages. PoliS shows clearly that code

and state mobility are orthogonal concepts. For instance, we can specify the movement

of several agents sharing the same code simply using as many status tuples as agents and

a single code tuple. Another example is that we can rede�ne the behavior of an agent

changing its code but keeping its state. Another advantage is related to the performance

of the model checker we have implemented for the language (see Section 3.1): the con-

sideration of space (i.e., agent) mobility as �rst class in the language on one hand would

allow rules to consume and produce spaces as normal tuples. On the other this would lead

to an explosion in the number of states to be considered by the tool. Nevertheless, we are

exploring the possibility of enhancing the language with space mobility and studying how

we can still reason automatically on such a model.

The basic mobility mechanism we have in PoliS is constrained to be \step by step",

that is no general visibility on all the possible locations is considered. Agents can be

either \pushed" to known locations, or \pulled" inside a space by the space itself. A tuple

of data or code can be moved from one space to the parent, or pulled from the parent
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Figure 4.2: Agent Mobility in PoliS.

to the local space and a complex path composed of these steps can be generated. This

abstraction models a general network architecture including layered routers, hierarchical

LANs structure, and �re-walls [CG00]. The ability to dynamic re-arrange the hierarchy

of spaces allows a strong control on agent interactions. Moreover, from a model checking

perspective the \step by step" mobility mechanism permits a more constrained space

explosion than with a general \move to location" mechanism.

4.1 Speci�cation of an Architecture with Mobile Agents

We use PoliS to specify a \Meeting Scheduler System" including mobile agents. This prob-

lem was proposed as a case study in mobility for the International Workshop on Software

Speci�cation and Design [FFFv97]. We �rst give an informal description (Sect. 4.1.1),

then a PoliS speci�cation (Sect. 4.1.2).

4.1.1 The Meeting Scheduler System: an Informal Description

An organization manages meetings as follows. A meeting initiator asks all potential at-

tendees for the following information to be included in their personal agendas:

- a set of dates on which they cannot attend a meeting (exclusion set);

- a set of dates on which they would prefer a meeting to take place (preference set).

For simplicity, and without loss of generality, we assume that all days outside the

exclusion set and not yet �xed for a meeting are free and represent the preference

set.
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The proposed meeting date should belong to none of the exclusion sets and to as many

preference sets as possible. A date conict occurs when no date can be found. Conicts

can be resolved in two ways:

- some participants remove some dates from their exclusion set;

- some participants withdraw from the meeting.

The system should assist users in the following activities.

- Plan meetings consistently, using the constraints expressed by participants.

- Re-plan a meeting dynamically (to o�er exibility). Participants should be allowed

to modify their exclusion and preference sets before a meeting date is decided. A

meeting date initially found may need to be modi�ed; sometimes the meeting may

even be canceled.

- Support conict resolution according to some arbitrary resolution policies.

The meeting scheduler system must in general handle several meeting requests in

parallel. Meeting requests can compete by overlapping in time: concurrency must thus be

managed.

Admittedly, this problem can be solved with more conventional technologies: there is

no need of mobile agents if we centralize all data in some \meeting server". The main

advantage of using mobile agents is that an agent can exploit reliable links to travel and

perform local computations on a site avoiding movement when, for instance, the net is

congestioned. We use this case study only to show how PoliS can be used to deal with a

solution based on mobile agents.

4.1.2 A Speci�cation including Mobile Agents

The \Meeting Scheduler System" speci�cation document in PoliS is organized as follows:

every initiator of a meeting is associated to a multi-set of tuples representing a mobile

agent. Several agents (one for each meeting) can run in parallel. Each initiator agent

moves among the sites of participants collecting preferences and trying to decide a date

(see Fig. 4.3). For simplicity we assume that a meeting can take place only if all potential

attendees will participate. An agent collects information inside a participant space, then

it is frozen and moved outside the space:
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Figure 4.3: Agents System Architecture.

Tables 4.3, 4.4, and 4.5 show the speci�cation of three kinds of spaces. The StartContext

(Table 4.3) is the initial space: it includes p participants and n agents, one for each meet-

ing. Each Participant space (Table 4.4) has an initial state consisting of tuples representing

its agenda: some days are marked \free" and others are marked \exclusion", meaning that

these dates are in the participant exclusion set (we implicitly assume that the number of

meetings (n) is less or equal to the number of days in the agenda (m)). Agendas are repre-

sented by the multi-sets after the � operator in the StartContext de�nition of Table 4.3.

Tuples (\start";n) are consumed by agents to prepare themselves for the shipping, get a

self identi�er n and start migrating (see rule START in the Agent space).

The StartContext space includes just the program tuple (\end" : END): the code of

the rule END associated to the program tuple checks that all the potential attendees will

participate, that is the condition for the meeting to take place (the function fend checks if

the number of participants has reached a given number and outputs a date).

Each Participant space can accept incoming agents. It contains some program tu-

ples to activate the following rules. The rule GETAG allows the agent to enter in a

space. It consumes the tuples (\frozen"; h; s) and (\agent" : a) from the main space

and generates them locally. It also consumes the (\accept") tuple locally and generates
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StartContext

StartContext =

8>>>>>>>>>><
>>>>>>>>>>:

����������������

Participant � fj(\day"; 1; \free"); : : : ; (\day";m; \exclusion")jg;

Participant � fj : : : jg; : : :

Participant � fj(\day"; 1; \exclusion"); : : : ; (\day";m; \free")jg;

Agent ; : : : ;Agent ;

(\start"; 1); : : : ; (\start";n);

(\end" : END)

����������������

9>>>>>>>>>>=
>>>>>>>>>>;

END =
n��� (\frozen"; k ; s)

���
o
��(day) f (s)!

n��� (\end"; day ; k)
���
o

where f (x ) = (fend (x ))

Table 4.3: The Meeting Scheduler: the Main Space.

Participant

Participant =

8<
:

������
(\get" : GETAG); (\push" : PUSHAG);

(\extend" : EXTEND); (\accept")

������

9=
;

GETAG =

8<
:

������
"(\frozen"; h; s);

"(\agent" : a); (\accept")

������

9=
;���!

8<
:

������
(\frozen"; h; s);

(\agent" : a); (\agent")

������

9=
;

PUSHAG =

8<
:

������
(\frozen"; h; s);

(\agent" : a); (\go")

������

9=
;���!

8<
:

������
"(\frozen"; h; s);

"(\agent" : a); (\accept")

������

9=
;

EXTEND =

8<
:

������
(\day"; d ; \exclusion");

?(\accept")

������

9=
;���!

n��� (\day"; d ; \free")
���
o

Table 4.4: The Meeting Scheduler: the Participant Space.

the tuple (\agent"), meaning that the frozen agent has been entered in the local space.

The rule PUSHAG moves the agent out of a space. It moves the tuples (\agent") and

(\frozen"; h; s) to the main space. Fig. 4.3 shows the actions of the two rules. Participants

can extend the set of possible dates using the rule EXTEND , to solve conicts that can

arise. This rule simply decides to free a date removing the tuple (\day"; d ; \exclusion")
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Agent

Agent =

8>><
>>:

��������

(\resume"); (\start" : START ); (\resume" : RESUME );

("update" : U ); (terminate : EXIT ); (\withdraw" : WITHDRAW );

(\agent" : AGENT )

��������

9>>=
>>;

START =
n��� "(\start";me); (\resume")

���
o
���!

8<
:

������
(\done"); (\self ";me);

(\M "; 1; 0); : : : ; (\M ";m; 0)

������

9=
;

AGENT =

8<
:

������
(\agent" : AGENT );

?(\agent")

������

9=
;���!

n��� tsc(Agent)
���
o

RESUME =

8<
:

������
"(\frozen"; i ; s);

(\resume"); "(\agent")

������

9=
;��

(d1;::: ;dm) f (s)!

8>><
>>:

��������

(\M "; 1; d1); : : : ;

(\M ";m; dm);

(\self "; i); "(\go")

��������

9>>=
>>;

where f (x ) = (unzip1(x ); : : : ; unzipm(x ))

U =

8>>>>>>>><
>>>>>>>>:

��������������

"(\day"; 1; d1); : : : ;

"(\day";m; dm );

(\M "; 1; v1); : : : ;

(\M ";m; vm);

?(\self ";me)

��������������

9>>>>>>>>=
>>>>>>>>;

��(e;w) f (d;v;me)!

8>>>>>>>><
>>>>>>>>:

��������������

"(\day"; 1; e1); : : : ;

"(\day";m; em );

(\M "; 1;w1); : : : ;

(\M ";m;wm);

(\done")

��������������

9>>>>>>>>=
>>>>>>>>;

where f (x ; y ; z ) = (if (8jxj 6= z^k = minfj jxj = \free"g)then (x jxk=z ; y jyk=yk+1)

else (x ; y))

WITHDRAW =

8<
:

������
"(\day"; h;me); (\M "; h;n1);

?(\self ";me); ask(n1 > 0)

������

9=
;��

(n2) f (n1)!

8<
:

������
"(\day"; h; \free");

(\M "; h;n2); (\done")

������

9=
;

where f (x ) = (x � 1)

EXIT =

8>><
>>:

��������

?(\M "; 1; v1); : : : ;

?(\M ";m; vm);

?(\done"); (\self "; i)

��������

9>>=
>>;
��(s) f (v1;::: ;vm)!

8<
:

������
"(\frozen"; i ; s);

"(\agent" : AGENT )

������

9=
;

where f (x1; : : : ; xm) = (zip(x1; : : : ; xm))

Table 4.5: The Meeting Scheduler: the Agent Space.
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and emitting (\day"; d ; \free").

The Agent space (Table 4.5) contains some rules and a termination rule to make the

agent to freeze. The rule START �res an agent to build a calendar (i.e. the tuples

(\M "; d ; v) where d is a day and v is the number of potential attendees for day d , initially

all days are free then for all these tuples v is 0. The rule AGENT generates (by tsc) a new

agent space inside the participant space (Fig. 4.4). The �rst rule enabled in a new agent

space, inside a participant space, is RESUME : this rule is used to get and restore the

frozen state of the agent. It emits a tuple (\go") enabling rule PUSHAG for a next move.

An agent contains also rule U (Update) and rule WITHDRAW . The rule U updates

the agenda of a participant using the following policy: a participant takes the �rst free

date, if it exists, and books it; a participant cannot book more than one date. Rule U

also updates the internal agent table1, represented by tuples like (\M "; d ; v) as explained

above. In Fig. 4.4 an updating is shown: the participant agenda is updated booking day

\1" with the name of the meeting (i.e. the name of the agent): \Z", and increasing by 1

the counter of the meeting potential attendees for day \1" (that now is 2) in the Agent

Table. The rule WITHDRAW models a withdrawing from a meeting by a participant.

It consumes the tuple (\day"; h;me) and emits a tuple (\day"; h; free) in the Participant

space. It also decreases the number of supposed participants to the meeting h (i.e., it

consumes the tuple (\M "; h;n1) and emits the tuple (\M "; h;n2) where n2 = n1� 1. The

rule EXIT is a termination rule (see Section 2.1 for its semantics). It terminates the

agent space, by freezing the agent and moving it outside: this is performed producing a

tuple that represents the frozen state (\frozen"; i ; s) and a tuple (\agent" : AGENT ) for

regenerating an Agent space.

The model of mobility of the meeting agents is exactly the one speci�ed in Figure 4.2.

The meeting agent space is frozen when the agent has �nished collecting informations in the

participant site. Then, some tuples are emitted in the main space and other participants

can get the agent tuples and the agent is regenerated inside another participant site. When

the meeting agent has �nished, a tuple with the decided meeting date is emitted and the

agent is destroyed (by the rule END).

1Each agent tries to establish a single meeting and the table contains, for each date, the number of

participants that would accept that date.
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4.1.3 Analysis of the Meeting Scheduler System

We have used PoliMC to analyze some liveness properties of this system. We use the

model checker on �nite versions of the speci�cation. The properties we prove for these

versions are satis�able on the abstract speci�cation but we cannot say that such properties

are veri�ed in general. Since some components can move we are interested in studying the

dynamic behavior of the system. For instance, we would like to prove that an agent will

be able to establish a meeting date, or that some properties on the migration of an agent

inside/outside the components are true. Formally we can write:

End = (8agent(9day((\end"; day ; agent) 2 StartContext)))

Move = (((\done") 2 &Agent) 2 &Participant)

End states that each agent �nds a date for its meeting (i.e., all the meetings are arranged).

Move states that an agent is in a participant site (i.e., an agent space is inside a participant

space) and it has performed some actions (i.e., the tuple (\done") is produced). We study

a con�guration where the number of meetings to be arranged, namely the number of

agents, is smaller than the available days, otherwise, trivially, some agents will never �nd

a date. We would like to verify the following:

?2?3End (4.1)

That is: the End property (i.e., each agent �nds a date for its meeting) will be valid for

all the execution (i.e., all the execution paths lead to a state where the End condition is
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veri�ed). However, PoliMC shows that (4.1) is false. To understand this we can think of a

scenario where agents are not able to agree, choosing the same date and then withdrawing

it. Nevertheless, PoliMC also veri�es the falsity of:

?2?3Move (4.2)

Property (4.2) states that the Move property will be valid (i.e. agents move inde�nitely)

for all executions. The falsity of (4.2), veri�ed with the model checker, guarantees that

this cannot happen, so we are sure to have a scenario where all meetings are arranged.

PoliMC veri�es that this property is not true if the number of meetings (agents) is greater

than the number of the available days.

As (1) and (2) are proved false we can verify the following formula:

?2?3(End_Move) (4.3)

That is, in all the executions it is true that some agents move or all the meetings are ar-

ranged. This shows that the system cannot deadlock. In this example however, properties

(4.1) and (4.2) above cannot help us to guarantee progress. Therefore, to ensure that all

the meetings will be arranged we need a fairness condition in the form:

?2&3End)(4:1) (4.4)

that is:

?2&3End)?2?3End (4.5)

Property 4.5 states that if from all the states of all paths we can �nd at least one path in

which End is eventually valid, then End will be valid in all the paths. In other words if

we are always in a state that allows to arrange all the meetings, then this will eventually

happen. PoliMC veri�es successfully the hypothesis of Property 4.5:

?2&3End (4.6)

hence, Property (4.6) in conjunction with (4.5) leads to the veri�cation of (4.1).

Finally we remark that if we remove some rules used to resolve conicts (like rule

WITHDRAW or rule EXTEND), (4.6) is not veri�ed, that is, there are some states where
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no path leads to End . In other words, sometimes a system can reach a state in which it is

impossible to arrange some meetings, and some agents move inde�nitely. To avoid these

situations the withdrawing or the extension of the free dates by some participants should

be considered.

In order to verify properties using the model checker we have instantiated the speci�ca-

tion of the Meeting Scheduler System. Here we show a part of the speci�cation instantiated

with two possible meeting days (i.e. two agents), and two participants. The model checker

accepts as input two �les containing respectively the PoliS speci�cation of the system and

the formulae to be veri�ed. What follows is a part of the speci�cation �le for the Meeting

Scheduler:

startcontext={

Participant,Participant,

Agent,Agent,("start",1),("start",2),

("end":END)

}

rule END={

("frozen",k,(day1,num1,day2,num2)),

ask(num1=PART \/ num2=PART)

}

[(d)<--f(day1,num1,day2)]-->

{

("end",k,d)

}

where f(x,y,z)=(if (y=PART) then (x) else (z));

PART is a constant de�ning the number of participants. Notice that the state s of the frozen

agent (\frozen"; k ; s) consumed by the rule END (Table 4.3) has been expanded in order

to express the conditions on the where clause, (day1, num1, day2, num2): day1 and

day2 indicate the two possible meeting dates while num1 and num2 indicate respectively

the number of the participants to the two meetings.
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The check (ask) on the expanded state of the meeting agent has also been inserted:

it checks if one of the two dates has been chosen by both the participants. Here is the

speci�cation of property (4.3):

*[]*<> (

(forall agent in [1,2] (

exists day in [1,2] (

("end",day,agent) ))) \/

((("done") in & Agent) in & Participant))

The range of the agents and the days is explicitly set ([1,2]). At the moment the textual

speci�cations input for the model checker have to be written by the speci�er, but an

interface tool that translates PoliS-LATEX speci�cations into textual ones can easily be

designed. As the model checker works on �nite instances of the speci�cation, the user has

to de�ne the range of the parameters. Furthermore, she has to declare the abstract PoliS

functions after the where clause (i.e., where f(x,y,z)=(if (y=PART) then (x) else

(z)).

In order to further constrain the state explosion, we are researching techniques of con-

text constrains for compositional reachability analysis (CRA) [GS90, CK96]. As in PoliS

the components (namely the spaces) make assumptions on their external environment

(namely their parent space) using the rule scope (see Figure 7.1), this kind of analysis

can be applied in order to drastically reduce the number of states of the graph. An other

approach that could be followed to further reduce the state explosion is symbolic model

checking. In [EFT92] a technique for building BDD of parallel processes from basic BDD

is exploited. The bottom-up fashion of this approach is similar to our technique of building

compound spaces from simple spaces.



Chapter 5

MobiS: an Enhancement of PoliS

PoliS allows the speci�cation of mobile code systems. However, as shown in Chapter 4,

agent mobility has to be encoded using rules mobility plus removal and creation of spaces.

MobiS is an enhancement of PoliS allowing mobility of agents to be encoded in the language

as a �rst class operation. Agent mobility is encoded as mobility of a \space tuple", that

can be consumed and produced as regular tuples. The language therefore allows all ranges

of mobility, data, code, and agents to be formalized as basic primitives exploiting the

language constructs.

In this chapter we introduce MobiS, the semantics modi�cation needed for enhancing

PoliS to MobiS, and some examples.

5.1 MobiS

MobiS is an enhancement of PoliS. In MobiS not only data tuples and program tuples

can be contained in a tuple space but also spaces themselves are represented as tuples in

the parent spaces. This means that spaces become �rst class entities and that they can

be produced and consumed (i.e. also moved) by rules as regular tuples. When a space

is moved to an other place, all the sub-spaces it contains are moved too. This encodes

the movement of a component and of its sub-components. MobiS allows us to specify the

movement of agents in a software architecture and the recon�gurability of the system.

The following example shows a Client-Server system: the Client and the Server ex-

change requests and replies. However the architecture is recon�gurable and as the network

is supposed to be sometimes busy, the Client sends an Agent to the Server in order to

avoid continuous and maybe expensive communication on the link. Then, the Agent and
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the Server communicate in the local Server site. When the Agent has �nished it goes back

to the Client site. MobiS can model the behavior of the mobile agent and the dynamics

of the system.

In order to give the idea of how MobiS speci�cations can be written we show the

formalization of the Client component in Table 5.1. The notation looks very much like

PoliS except from the new \space tuples".

Client

Client =

8<
:

������
(\name"; k); (\put" : PUT ); (\reqlist"; r); (\get" : GET );

(\move" : MOVE ); (\create" : CREATE ); (\servername"; s)

������

9=
;

PUT =
n��� ?(\reqlist"; r); ?((\name"; k); (\idle")

���
o
��(t) f (r)!

n��� "(\req"; k ; t); (\wait")
���
o

where f (x ) = (head(x ))

GET =

8<
:

������
"(\reply"; i ; r); (\reqlist"; t);

?(\name"; i); (\wait")

������

9=
;��

(j ) f (t)!

8<
:

������
(\requlist"; j ); (\reply"; i ; r);

(\idle")

������

9=
;

where f (x ) = (di� (x ; head(x )))

CREATE =
n��� "(\networkbusy"); ?(\name"; i); (\reqlist"; r)

���
o
��(a) f (r;i)!

n��� (a �Agent)
���
o

where f (x ; y) = (z )

MOVE =
n��� (a �Agent); ?(\servername"; k)

���
o
��(j ) f (a;k)!

n��� "(j �Agent)
���
o

where f (x ; y) = (concat(x ; y))

GETAG =
n��� "(a �Agent); ?(\name"; k); ask(pre�x (a; k)

���
o
���!

n��� (a �Agent)
���
o

Table 5.1: Speci�cation of the Client component

The Client space contains an ordinary tuple indicating the name of the client (\name"; k)

where k is the formal parameter containing the name. It also contains the tuple (\reqlist"; r)

of the list of the requests for the server, the name of the server (\servername"; s), and

some program tuples that refer to rules speci�ed below in the table.

The rules PUT and GET handle the communication with the server when the network

is not busy. The rule PUT emits in the external space (the network) a request extracting

it from the requests list. The rule GET gets the reply from the Server (i.e. it checks if
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a reply directed to the Client is present on the network), and stores it in the local space

updating the requests list (it throws the �rst request in the queue as it has already been

served).

When the network is busy the rule CREATE generates an Agent space storing the

requests in it.

The di�erence with PoliS can be seen at this point. Space tuples are represented with

the \*". The symbol is put between the name of the space and the type of it. The type

represents the list of things in the space. For instance, the space tuple (\a 00 � Agent)

represents a space named a with content represented by the type Agent (that for brevity

we do not de�ne here but that looks similar to the de�nition of the type Client).

The rule MOVE moves the Agent into the network. It also changes the name of the

Agent appending the name of the Server to it in order to indicate the destination of the

Agent.

The last rule is GETAG that gets the Agent from the network when it come back after

having �nished its work on the Server site.

The Client can choose the communication protocol depending on its context: when

the network is not congestioned it sends requests and wait for replies, while when the

network becomes busy it builds an Agent and sends it to the Server site to exploit local

computation.

5.2 The semantics and the di�erence with PoliS

We now de�ne the semantics of MobiS. As the model is largely derived from PoliS we will

make references to the tables shown in Chapter 2 containing the semantics of PoliS and

illustrate the di�erences.

The di�erences with PoliS

MobiS spaces are represented as tuples in the form (spacename � S ), where spacename is

the space name and S is the shortcut for the the contained space. Every space contains

a mandatory tuple (\name 00;n), where n is the space name and is semantically bound to

spacename. In PoliS spaces do not have names. The names on top of the spaces de�nition

tables are only the shortcut used for the substitution in the code.
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2nd Step
1st Step 3rd StepEnvironment

Host1 Host2Agent

Host2

Agent

Environment

Host1

Agent

Host1 Host2

Environment

Figure 5.1: The movement of a space.

With the additional space names, nothing prevents the shipping of space names across

the network allowing remote spaces to have knowledge on what is here.

PoliS operators such as tsc (tuple space creation) and terminate (space termination)

are not necessary anymore as spaces can be consumed and produced in the same way as

regular tuples are. MobiS spaces therefore can be mobile as code was mobile in PoliS.

Figure 5.1 shows the idea.

A space (that we can call an agent) can be moved from one host to another is three

steps. PoliS and MobiS rules have a speci�c scope that drives the movement of tuples

(Figure 7.1). The �rst step of the movement of a space that needs to be transferred from

Host1 to Host2 is to be moved up in the common environment and then be picked up by a

rule in Host2. We already showed a small example of MobiS speci�cation. In Section 5.3

we show a more complex example.

MobiS Semantics

The di�erences outlined in the previous section between PoliS and MobiS lead to a set

of modi�cation both in syntax and in the semantics. In Table 5.2 we show the syntax of

MobiS. The main syntactic di�erence with PoliS is the introduction of space tuples and

the mandatory binding of the name to a tuple name inside the space.

Table 5.3 show the modi�ed rules with respect to Table 2.3. The terminate rule does

not exist in MobiS and the space are added and consumed as the other tuples.

In Table 5.4 the terminate rule is not shown unlike in Table 2.4 as it does not exist

anymore and the tsc operators to generate space are abolished.

Table 5.5 shows the enabling conditions for the rules de�ned in Table 5.4. The condition

check that the name of the spaces are not consumed.
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MS ::= fj tuple jg j MS � MS j MS n MS j (MS)

tuple ::= data j program j space

space ::= (sname* ((\name",sname) � MS)

program ::= (rname : Code)

data ::= (datalist)

datalist ::= data j value j data, datalist j value, datalist

sname 2 Spaceid , the set of space identi�ers

rname 2 Ruleid , the set of rule identi�ers

Code 2 Rulecode, the set of rules code speci�ed in Table 5.4.

In the concrete syntax, Code is usually substituted with a macro that expands

in the code itself.

value 2 Values

data 2 String

Table 5.2: MobiS Abstract Syntax.

Local Rule

RL:fj(\rl" : Rl)jg �M �! ((fj(\rl" : Rl)jg �M ) n fjtc [vx=x ]jg)� fjtp [v x=x ; vy=y ]jg

if LocEnabled(Rl ; \rl";M ; vx ; vy )

Interaction Rule

RI:fjfj(\ri" : Ri)jg �M1jg �M2 �! fj((fj(\ri" : Ri )jg �M1) n fjtc[vx=x ]jg)� fjtp [vx=x ; vy=y ]jgjg

�(M2 n fjtec[vx=x ]jg)� fjtep [vx=x ; vy=y ]jg

if IntEnabled(Ri ; \ri";M1;M2; vx ; vy)

Table 5.3: MobiS Structured Operational Semantics Rules and Axioms.

5.3 Using MobiS for Agent Mobility across a Network

In this section we show how MobiS can be used to specify a scenario where agents move

over a network. The hierarchical organization of spaces in MobiS reects a real network

organization, composed of layered domains. Figure 5.2 shows the structure of the network.

The main space we consider is a WAN and it is an abstraction of a wide area network

in which LANs (local area networks) are contained. The LANs are composed of many

Hosts that represent the di�erent sites. We can imagine that di�erent agents move on the
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Rl =

8<
:

������
tc;1; : : : ; tc;nc

; ?tt;1; : : : ; ?tt;nt
;

ask(boolexpr)

������

9=
;��

(y) f (x)!
n��� tp;1; : : : ; tp;np

���
o

where f ((z )) = ((f1(z ); : : : ; fm(z )))

Ri =

8>><
>>:

��������

tc;1; : : : ; tc;nc
; "tec;1; : : : ; "tec;nec

;

?tt;1; : : : ; ?tt;nt
; ?"tet;1; : : : ; ?"tet;net

;

ask(boolexpr)

��������

9>>=
>>;
��(y) f (x)!

8<
:

������
tp;1; : : : ; tp;np

;

"tep;1; : : : ; "tep;nep

������

9=
;

where f ((z )) = ((f1(z ); : : : ; fm(z )))

Table 5.4: Classi�cation of PoliS Rules Macro.

LocEnabled(Rl ; \rl";M ; v x ; vy)
�

=

fjtc[v x=x ]; t t [v x=x ]jg � fj(\rl" : Rl )jg �M

^ vy = f (v x )^boolexpr [v x=x ] ^ 8n : (\name 00;n) =2 tc [vx=x ]

IntEnabled(Ri ; \ri";M1;M2; v x ; vy)
�

=

fjtc[v x=x ]; t t [v x=x ]jg � fj(\ri" : Ri )jg �M1 ^ fjtec[v x=x ]; tet [v x=x ]jg � M2

^ vy = f (v x )^boolexpr [v x=x ] ^ 8n : (\name 00;n) =2 (tc [v x=x ]_ tec [v x=x ])

Table 5.5: Precondition predicates.

Agent

Host Host

Host

Host

Lan

Lan

Lan

Wan

Agent

Host

Figure 5.2: The Network.

network from host to host, not necessarily in the same LAN.

Hosts can generate agents and send them over the network in order to perform compu-

tations remotely. We now describe in details the MobiS speci�cation contained in Tables

5.6, 5.7, and 5.8. Table 5.6 contains the speci�cation of a wide area network (WAN ): it
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WAN

WAN =
n��� (\name"; id); (\l1" � LAN ); : : : ; (\ln" � LAN )

���
o

LAN

LAN =

8<
:

������
(\name"; id); (\h1" �HOST ); : : : ; (\hm" �HOST );

(\g" : GETAG); (\m" : MOVEAG)

������

9=
;

GETAG =

8<
:

������
"(a �AGENT ); (\name"; k);

ask(pre�x (k ; a))

������

9=
;���!

n��� (a �AGENT )
���
o

MOVEAG =

8<
:

������
(a �AGENT ); (\name"; k);

ask(:pre�x (k ; a))

������

9=
;���!

n��� "(a �AGENT )
���
o

Table 5.6: Speci�cation of the Network with Agents System: the WAN and LAN spaces.

contains some spaces tuples that refer to space LAN ((li � LAN )). It also contains its

name (i.e a domain identi�er).

A LAN space contains its identi�er, some hosts ((hi � HOST )), and some program

tuples referring to the following rules. The rule GETAG gets an agent from the WAN

space if the destination address of the agent is a host in its domain. The check is performed

considering the names of the spaces as hierarchically structured: we check if the LAN ID

is a pre�x of the destination name. The rule MOVEAG moves the agent space out of the

LAN space in case the destination of the agent is not in the LAN domain.

Table 5.7 contains the speci�cation of the HOST space. The HOST space contains an

identi�er tuple (\name"; id), and a program tuple that refers to a rule able to generate

agents ((\g" : GENERATE )). It also contains the tuple (\resources"; r) indicating the

resources of the host. The rule GENERATE , when applied generates a new agent in the

local space. It tests the identi�er of the host (?(\name"; id)) and generates a space tuple

(a � AGENT ) that refers to the speci�cation of the space AGENT shown in table 5.8.

The name a of the agent space refers to the host ID with an appended random ID (it is

computed by the function speci�ed on the rule arrow and de�ned after the clause where).

The rule RECOGN gets the agent id-tuple emitted by the agent (see table 5.8), performs
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HOST

HOST =

8>><
>>:

��������

(\name"; id); (\g" : GENERATE ); (\resources"; r);

(\rec" : RECOGN ); ("kill" : KILL);

(\get" : GET ); ("m" : MOVE )

��������

9>>=
>>;

GENERATE =
n��� ?(\name";n)

���
o
��(a) f (n)!

n��� (a �AGENT )
���
o

where f (i) = (concat(i ; random(i)))

RECOGN =
n��� (\idagent"; k); ask((k � 100)

���
o
���!

n��� (\go")
���
o

KILL =
n��� (\idagent"; k); ask((k > 100); (a �AGENT )

���
o
���!fjjg

GET =

8<
:

������
"(a �AGENT ); (\name"; k);

ask(k = a)

������

9=
;��

(b) f (k)!
n��� (b �AGENT )

���
o

where f (id) = (concat(id ; random(id)))

MOVE =

8<
:

������
(a �AGENT ); (\dest"; addr);

(\move")

������

9=
;���!

n��� "(addr �AGENT )
���
o

Table 5.7: Speci�cation of the Network with Agents System: the Host Space.

some checks (we only check that the tuple-id is a number smaller than 100), and emits

the tuple (\go"). This rule is used whenever an agent arrives to the destination host and

has to be authorized to execute. If the agent tuple-id emitted is a number larger than 100

the rule KILL kills the unauthorized agent.

The rule MOVE , when enabled (by the tuple (\move") put in the local space by the

agent), moves the agent out of the host space. It also changes the agent space name into

its destination address.

The rule GET simply gets the agent when it corresponds to its destination space

consuming it from the parent space and producing it locally. It checks by the ask clause

if the name of the agent is its name.

The AGENT space contains a name tuple, the code, the state and the store. The

rule EXE performs some computations emitting a result tuple. It is enabled when the

authorization phase in the destination site is �nished: the tuple (\go") is emitted by the

Host.
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AGENT

AGENT =

8<
:

������
(\name"; k); (\idle"); (\code"; c); (\state"; s); (\store"; st);

(00r" : READY ); (\exe" : EXE ); (\aut" : AUTHORIZE )

������

9=
;

READY =

8<
:

������
?"(\dest"; addr);

(\idle")

������

9=
;���!

8<
:

������
"(\move"); (\name"; addr);

(\moving")

������

9=
;

AUTHORIZE =

8<
:

������
(\arrived");

(\name"; k)

������

9=
;��

(j ) f (k)!
n��� "(\idagent"; j )

���
o

where f (k) = (getid(j ))

EXE =

8>><
>>:

��������

"(\go"); (\code"; c);

(\state"; s); (\store"; st);

"(\resources"; r)

��������

9>>=
>>;
��(res) f (c;s;st;r)!

n��� (\result"; res)
���
o

where f (cod ; state; store; resou) = (result)

Table 5.8: Speci�cation of the Network with Agents System: the Agent space.

The AUTHORIZE rule emits the id-tuple of the agent in the host space letting the

rule RECOGN of the host to do its job.

When the agent is ready to move it gets its destination address from the host space

and emits in the host space the tuple (\move"), enabling the rule MOVE , by the rule

READY . This rule also changes the state of the agent from idle to moving, and its name

to the name of the destination.

In the speci�cation shown the agent is generated by an host, that also assigns to it a

destination (a site to reach). The mobility imposed by the model is \controlled": when

the agent wants to move it signals this intention to its host that moves the agent space

out of its site. The exit from a LAN (when the destination host is in an other domain), is

speci�ed in a similar way: a rule of the LAN space expels the agent when its destination

address is not one of the hosts addresses contained in the LAN. When an agent is in the

general WAN, special rules in the contained LAN spaces check for agents in the WAN

with destination address members of their domains. If they �nd these kind of agents,

they move them in their local spaces. The host itself does the same: when an agent
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destined to its site is found in the LAN it moves it into its local space. This controlled

mobility can simulate the autonomous mobility where the object simply moves, exploiting

the mechanisms of synchronizations among rules. By the way, controlled mobility also

allows an host to move an object without its willing (it is not the case of our speci�cation

but it could be possible).

We think that many security aspects can be analyzed on the basis of this kind of

controlled mobility. The fact that a parent space cannot look into its sub-spaces is, on

one hand an advantage: an object inside an host is secure, the host cannot, for instance,

modify its code. On the other hand, the agent can lie to the host and get an authorization

to execute exploiting and damaging the resources of the host.

5.4 Speci�cation of Architectural Styles for Mobility

MobiS ability to specify data, code and agent mobility as �rst class allows the formal

de�nition of di�erent mobility paradigms that can be reused in the design of applications.

In this section we show the formalization of the paradigms and the use of them to de�ne

an architecture.

An architectural style is an abstract skeleton which helps in designing, understanding,

and analyzing actual software architectures, said instances of such a style.

There are at least three reasons why it is important and useful to systematically study

architectural styles:

- to help designers to choose a speci�c style in a given design situation; the de�ni-

tion and classi�cation of common architectural styles with clearly de�ned properties

supports both design and code reuse;

- to build a library of styles, so that software designers can choose the most appropriate

one;

- to support analysis methods and tools suitable to deal with style instances, namely

concrete software architectures, understanding and reasoning on their properties.

We have de�ned a basic set of architectural styles for mobility. We catalog these mobile

architectural styles in terms of what is moving, namely which entities move with respect to

an infrastructure including at least two immobile entities: a requester entity and a supplier

entity. The requester asks the supplier for a service, and the supplier provides the service.
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These two entities are actually part of the styles as they characterize the structure of

the environment. Both these immobile entities can be thought of as two Internet sites

connected by some channel able to transport mobile entities from a site to another.

1. Data Style: This is the simplest kind of mobility to understand. The mobile

entities are data from a supplier to a requester. A typical example is a client-server

architecture based on a protocol like HTTP: HTTP servers send to HTTP clients

data in form of HTML pages (HTML being a not Turing complete language).

2. Code Style: in this case some executable code can move from a site to an other.

Java applets are based on code mobility.

3. Ambient Style: this style describes the moving of the whole ambient involved in

a computation. Ambients can contain other ambients that are moved too. In this

way it is possible to model, for instance, the moving of a set of programs from a

workstation to a laptop. At the moment no languages exist allowing this kind of

mobility. However, Cardelli and Gordon have proposed a programming language

based on this paradigm [CG98].

MobiS allows the speci�cation of architectural styles for mobility. Architectural styles

are abstractions including components, connectors [SG96]. Components are computation

loci, while connectors de�ne the interactions among components. In MobiS components

can be speci�ed as spaces (that can also be nested): new components can be generated

(i.e. spaces can be created), eliminated (i.e. spaces can be consumed), or can migrate

(i.e. spaces can be consumed and recreated elsewhere). The way in which MobiS models

software architectures [CM98b] is similar to the one described in [IW95] where the CHAM

coordination model is used. The coordination allows exible moving of components and

extensibility of the model. Our model, where rules and spaces as �rst class entities, pro-

vides a framework in which encoding all the di�erent styles listed above. The concept of

connector in MobiS is in some sense implicit (as in [MK96, IW95]): components interac-

tions are de�ned by the coordination model, whereas communication is speci�ed using the

asynchronous mechanism of multiset rewriting.

We now specify some mobility styles using MobiS. Table 5.10 contains the speci�cation

of the Data style. The main space contains two spaces, a \Requester" and a \Supplier".
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Environment

Environment =
n��� (\R" �Requester); (\S" � Supplier)

���
o

Requester

Requester =

8<
:

������
(\name"; k); (\codereq"; req); (\request" : CODEREQ);

(\get" : GET ); (\store"; st); (\state"; s)

������

9=
;

CODEREQ =
n��� ?(\codereq"; req)

���
o
���!

n��� "(\codereq"; req)
���
o

GET =
n��� "(\serializedcode"; sc); (\codereq"; req)

���
o
��(c) f (sc)!

n��� (\code"; c)
���
o

where f (x ) = (fcode(x ))

Supplier

Supplier =
n��� (\name"; k); (\c" : CODE ); (\put" : PUT ); (\getreq" : GETREQ)

���
o

GETREQ =
n��� "(\codereq"; req); ?(\code"; c)

���
o
���!

n��� (\codereq"; req)
���
o

PUT =
n��� (\codereq"; req); ?(\code"; c)

���
o
��(sc) f (c)!

n��� "(\serializedcode"; sc)
���
o

where f (x ) = (serialize(x ))

CODE =

8<
:

������
?(\store"; st);

?(\state"; s);

������

9=
;��

(s0
;st) f (s;st)!

8<
:

������
(\state"; s 0);

(\store"; st 0)

������

9=
;

where f (store; state) = (nstate(store; state))

Table 5.9: MobiS speci�cation of Code Paradigm

The Requester space contains a data reference request tuple, the code, and the state. The

rule DATAREQ sends a data request to the main space. The rule GET gets from the

main space the data. The rule CODE formalizes the execution of the requester code using

the data. Notice that as the spaces are organized in a tree it is quite easy to specify the

access to the data: spaces have names in form of paths.

Table 5.9 contains the formalization of the Code style: The Requester space contains

a code-request tuple, the state, and the store. The rule CODEREQ sends a code request
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Environment

Environment =
n��� (\R" �Requester); (\S" � Supplier)

���
o

Requester

Requester =

8<
:

������
(\name"; k); (\datareq"; req); (\request" : DATAREQ);

(\get" : GET )(\code" : CODE ); (\data"; d); (\state"; s)

������

9=
;

DATAREQ =
n��� ?(\datareq"; req)

���
o
���!

n��� "(\datareq"; req)
���
o

GET =
n��� "(\data"; rd); (\datareq"; req)

���
o
���!

n��� (\data"; rd)
���
o

CODE =
n��� ?(\data"; rd); ?(\state"; s);

���
o
��(s

0) f (s;rd)!
n��� (\state"; s 0)

���
o

where f (data; state) = (nstate(data; state))

Supplier

Supplier =
n��� (\name"; k); (\data"; d); (\put" : PUT ); (\getreq" : GETREQ)

���
o

GETREQ =
n��� "(\datareq"; req); ?(\data"; d)

���
o
���!

n��� (\datareq"; req)
���
o

PUT =
n��� (\datareq"; req); ?(\data"; d)

���
o
���!

n��� "(\data"; d)
���
o

Table 5.10: MobiS speci�cation of the Data Paradigm.

in the main space. The rule GET gets from the main space the serialized code sent by the

supplier. The rule CODE formalizes the execution of code updating the values of the state

and the store. The Supplier space contains the code and two rules. The rule GETREQ

accepts a request of code from the main space, and the rule PUT emits the serialized code

in the main space.

Table 5.11 contains the speci�cation of the Ambient style. The Supplier space

contains two rules and an Ambient subspace. The rule PUT transfers the ambient space

outside. It changes the location of the ambient as in the Closure style. The Ambient space

contains the code, the state, the store, and some resources.The rule CODE executes the
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Environment

Environment =
n��� (\R" �Requester); (\S" � Supplier)

���
o

Supplier

Supplier =
n��� (a �Ambient); (\name"; k)(\put" : PUT )

���
o

PUT =

8<
:

������
"(\req"; req); ?(\name"; i);

(a �Ambient)

������

9=
;��

(z) f (a;i)!
n��� "(z �Ambient)

���
o

where f (x ; y) = (di� (x ; y))

Ambient

Ambient =

8<
:

������
(\name"; k); (\data"; d); (\state"; s);

(\c" : CODE ); (\resources"; r)

������

9=
;

CODE =

8<
:

������
?(\store"; st);

?(\state"; s); (\resource"; r)

������

9=
;��

(s0
;st0) f (r;s;st)!

8<
:

������
(\store"; st 0);

(\state"; s 0)

������

9=
;

where f (res ; store; state) = (nstate(res ; store; state);nstore(res ; store; state))

Requester

Requester =
n��� (\req"; req); (\request" : REQ); (\get" : GET ); (\name"; k)

���
o

REQ =
n��� ?(\req"; req)

���
o
���!

n��� "(\req"; req)
���
o

GET =

8<
:

������
"(a �Ambient); (\req"; req);

?(\name"; z )

������

9=
;��

(j ) f (z ;a)!
n��� (j �Ambient)

���
o

where f (x ; y) = (concat(x ; y))

Table 5.11: MobiS speci�cation of the Ambient style

code using the local resources to the ambient, no matter where the ambient is located.

The Requester rule GET gets the Ambient space from the parent space and updates its
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location name. This last paradigm can be used to model agent mobility where the agent

is identi�ed with an ambient.

5.5 Application of the Styles to the Architecture of a Mobile

System

We consider the software architecture of a system and apply these styles to see how these

paradigms can be used.

As a case study we consider an electronic commerce application. With the advance-

ments in the network technology new kinds of applications are now possible. A purchaser

is trying to buy items at the best available prices on the network. The purchaser travels on

the network looking for the best selling-price. We have simpli�ed the problem supposing

that the purchaser is looking for the best price of a single object. We exploit the mobility

styles de�ned in Section 5.4 to specify the software architecture of the Purchasing System.

Using the Data style the purchaser can be seen as a requester that asks for the items

prices from di�erent stores. The stores send prices of the items to the purchaser that can

remotely check the prices and choose the lower one. The purchaser still does not move, and

it can remotely check the prices on the catalogs. In the Code style solution we imagine

the purchaser migrating from a store site to an other moving its code. Every store puts

an advertisement request tuple, (\newsellingprice"; reqselling), in the main space. The

store containing the code of the purchasing agent emits the code tuple in the main space

and the store that puts the advertisement can obtain the purchasing code. However this

solution is not suitable for the purchasing system, because the purchaser has to remember

the best price found every time it moves. This solution �ts better the purchasing system

than the one with the Code style, in fact it allows the store (the best price found) to

be moved with the code, letting the purchaser do its job. The new CODE rule (that has

to instance the rule CODE of the code&store style) updates the store of the purchaser,

with a new best price, if the price o�ered by the local space is better than the one in the

previous store. Using the Ambient style we imagine a mobile \agent" traveling with all

its data and exploiting its resources (printer, modem, cellular phone, : : : ) on di�erent

selling-stores looking for the best price for an item. The purchaser could, for example, use
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Environment

Environment =
n��� (\s1" � Shop); (\s2" � Shop); (\agent" �Ambient)

���
o

Shop

Shop =

8<
:

������
(\name"; k)(\put" : PUT ); (\req"; req);

(\request" : REQ); (\get" : GET )(\catalog"; l)

������

9=
;

PUT =
n��� "(\req"; req); ?(\name"; i); (a �Ambient)

���
o
��(z) f (a;i)!

n��� "(z �Ambient)
���
o

where f (x ; y) = (di� (x ; y))

REQ =
n��� ?(\req"; req)

���
o
���!

n��� "(\req"; req); (\wait")
���
o

GET =

8<
:

������
"(a �Ambient); (\wait");

?(\name"; z ); ?("catalog"; l)

������

9=
;��

(j ) f (z ;a)!
n��� (j �Ambient)

���
o

where f (x ; y) = (concat(x ; y))

Ambient

Ambient =

8<
:

������
(\name"; k); (\state"; s); (`bestpricefound `"; b);

(\printer 00; p); (\update" : UPDATE ); (\print" : PRINT )

������

9=
;

UPDATE =

8>>>>><
>>>>>:

�����������

?(\bestpricefound"; b);

?(\state"; s);

"(\catalog"; l);

ask(l < b)

�����������

9>>>>>=
>>>>>;
��(s

0
;b0) f (s;l)!

8<
:

������
(\bestpricefound"; b0);

(\state"; s 0)

������

9=
;

where f (s ; l) = (compute(s 0; l); l))

PRINT =
n��� ?(\bestpricefound"; b); "(\printer"; p)

���
o
���!

n��� (\outonprinter"; b)
���
o

Table 5.12: Speci�cation of the Purchasing Architecture in the Ambient Style

its printer to print the temporary best price found till that moment.

We give the speci�cation of the architecture of the Purchasing System in the Ambient

style in table 5.12. The Shops are Requester and Supplier at the same time. The resources

in the Ambient Style shown in Table 5.11 are now portable resources (i.e. a printer, a
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scanner, : : : ). The rules PUT , REQ , and GET do the same operations. The Ambient

stores the best price found and contains two rules re�ning the CODE rule in Table 5.11:

the rule PRINT prints the best price temporary found on the portable printer.

These paradigms could also be composed. For instance in Table 5.11 we allows the

agent to read from the shop catalog (i.e to access to some external resources). Therefore,

the resulting architecture is a mixture among Code,State&Store style and Ambient style.

The UPDATE rule updates the best price found if the catalog of the shop o�ers a better

price. These architectures o�er di�erent advantages and some of them are better than the

other for particular requirements. The designer knows the requirements of the systems

that she wants to implement and can choose on the basis of these requirements the most

suitable style of mobility. The resulting architecture could also be an integration among

di�erent paradigms.
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Chapter 6

Summary

Traditional languages, models, and methods used to specify and design applications on a

single computer usually lack of abstractions to appreciate and understand the problems

raised when the computing platform is a \network computer". Mobility is an obvious

example: even if admittedly we could de�ne \mobile code" an application going around

on a oppy disk, it is a concept that is especially interesting and complex when a networked

programmable infrastructure is available, like an intra-net or even the whole Internet.

In this chapter we have studied how a coordination language can be used to specify and

analyze systems including mobile components. The idea consists of having a coordination

language that can express a dynamic topology of components and the mobility of code

and data.

PoliS and MobiS are not the �rst formal language used to study systems including

mobile entities, as we mentioned in Chapter 1. With PoliS and the model checker, we

have built an automatic framework to analyze properties on speci�cations of mobile code

based systems. With MobiS we also o�er the ability to model agent mobility as �rst class

in the language so that di�erent mobility paradigms can be speci�ed.

In general, process algebra based languages, like the ones presented in Chapter 1

focus on the notion of process, and do not provide the notion of \environment" of the

computation. More sophisticated languages o�er a concept of environment that we provide

with tuple-spaces.

The Chemical Abstract Machine (CHAM) [BB92] has membranes that are very similar

to our spaces, however the CHAM does not support code mobility as the rules are globally

de�ned outside the \chemical solution" (i.e., the global tuple space).
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The ambient calculus [CG98] (briey described in Chapter 1) provides the notion of

ambient, which is the mobility unit of the language. Ambients are like our spaces, and, like

in MobiS, their mobility is �rst class in the language. The ambient calculus introduces a

concept of \step by step" mobility as well. The complexity due to the �rst class ambients

mobility make it quite diÆcult to reason, in particular with tools, on the speci�cations.

We also have to cope with this problem in the case of MobiS, however it is in our future

work list the idea of extending the model checker to try to deal with spaces mobility.

Mobile UNITY [MR98] has been used for the speci�cation of physical and logical

mobility. It provides a temporal logic that allows reasoning. However no automatic tools

exist supporting Mobile UNITY. In [PRM97] Mobile UNITY has been used to formalize

some common mobile code paradigms (i.e., Code on Demand, Remote Evaluation, and

Mobile Agents). All these paradigms can be also encoded in PoliS and MobiS, and we are

looking in the possibility of reason with our automatic tool on them (in the case of PoliS).

Furthermore, in Mobile UNITY the dynamic replication of components is not allowed.

Therefore, in the Code on Demand paradigm the used code needs to be sent back to the

server to be sent again. In PoliS and MobiS the dynamic cloning of code is allowed and

the Code on Demand paradigm can be formalized more directly.

Security issues are important in a mobile code setting. Languages such as Klaim

[NFP98] and the Ambient calculus [CG98] use \capabilities" on operations, or type systems

to face security aspects. Ambient calculus and Seal calculus are based on a \step by step"

movement mechanism where components only can move from one domain to another

crossing one boundary at a time, instead of on a global location name oriented mobility

strategy. Security features are based on this constrained mobility mechanism. Klaim

[NFP98] relies on a type system added on top of the model in order to perform static

checks on access rights and operations of the system components. In term of language

interface improvements we are studying a visual notation for PoliS/MobiS in order to

simplify the impact on the users. We are interested in the development of an XML-

based abstract syntax [BPSM98b] in order to make PoliS speci�cations more portable and

possibly to be able to be integrated with other XML-based frameworks, like the UML

notation [BJR99].

Model checking can be successfully used applied to dynamics of software architectures

as proven in [GKC99]. In our approach with PoliS we investigated the use of a model
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checker tool for studying mobility aspects of systems. We believe the use of the tool on

speci�cations for mobile code based systems can help in understanding the dynamics of

these systems and to avoid mistakes in the design and implementation phase.

In the next parts of this thesis we will take a di�erent perspective on mobile code

systems trying to reason on minimal unit of mobility, unit of execution, and basic mo-

bile primitives. This approach will lead us to a prototype system and to the use of

XML [BPSM98a] for incremental code mobility.
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Chapter 7

A Fine-Grained Model

The work reported in this part is closely aligned with the investigative style of the for-

mal models community but directed towards identifying opportunities for novel mobility

constructs to be used in language design. We are particularly interested in examining the

issue of granularity of movement and in studying the consequences of adopting a �ne-

grained perspective. Simply put, we asked ourselves the question: What is the smallest

unit of mobility and to what extent can the constructs commonly encountered in mobile

code languages be built from a given set of �ne-grained elements? Proper choice of mobil-

ity operations, elegant and uniform semantic speci�cation, formal veri�cation capabilities,

and expressive power are several issues closely tied into the answer to the basic question

we posed.

In the model we explore here the units of mobility are single statements and variable

declarations. Location is de�ned to be a site address and units can move among sites, can

be created dynamically, and can be cloned. Complex structures can be constructed by as-

sociating multiple units with a process. The process is the unit of execution in our model.

In the simplest terms, a process is merely a common name that binds the units together

and controls their execution status|more complex structures can be built but they are

outside the scope of this paper. All the mobility operations available for units are also

applicable to processes. In addition, processes have the means to share code and resources

via a referencing mechanism limited strictly to the con�nes of a single site. A reference

can be thought of as a name that allows one process to access some code or data in some

other process. References across sites are not permitted but they survive movement, e.g.,

access is restored when the two processes meet again. As such, unit reference and unit
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containment have distinct semantics with respect to both scoping rules and mobility.

Mobile Unity provides the notational and formal foundations for this study. The new

model can be viewed to a large extent as a specialization of Mobile Unity. This enables

us to continue to employ the coordination constructs of Mobile Unity and its proof logic.

The result is a small set of macro de�nitions that map the �ne-grained model proposed

here to the standard Mobile Unity notation, and a semantics speci�cation of the mobility

constructs in terms of the coordination language that is at the core of Mobile Unity.

This application of Mobile Unity is novel. Mobile Unity has been used previously in

the de�nition of high level transient interactions (e.g., transiently and transitively shared

variables) in both a physical and logical mobile setting [MR98], in formal speci�cation and

veri�cation of Mobile IP [MR99], and in the speci�cation and veri�cation of mobile code

paradigms (e.g., code on demand, remote evaluation, and mobile agents) [PRM97].

7.1 Model Overview

We now give an informal overview of our model. We consider a network composed of sites.

They are the physical locations on which computations take place. Sites may represent

physical hosts or separate logical address spaces within a host, e.g., an interpreter. Sites

may contain units that represent code or data. A code unit need not contain a complete

speci�cation of a code fragment, it may even be a single line of code. The variables used

in the code units are considered \placeholders" and they do not carry a value (i.e., their

value is unde�ned). Units representing data contain a single variable declaration and they

carry the actual value of the variable. The model provides a sharing mechanism between

values of variables with the same name in code and data units, thus code can change

values of variables in data units during execution.

Because code and data can be split across units, we need to include some notion of

composition and scoping. For this purpose we introduce the concept of process. Processes

are unit containers that reside on the sites. Processes de�ne restricted scopes for the units

on the sites. Units can be placed inside a process, i.e., in its \private space". Such units
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Figure 7.1: Processes, units, and scoping rules.

are said to be contained by the process1. The scope of a unit contained by a process is

the private space of that process, i.e., the space on which the unit is located. The binding

mechanisms de�ned by the model allow sharing among variables with the same name in

the same scope. The scope of a unit that is not contained in any process (i.e., located

directly on the site space) is restricted to the unit itself. In Figure 7.1.a we show an exam-

ple2. The scope of unit v contains also unit w , and vice versa, as they are both contained

in process P , while unit u is not contained in any process and its content is not shared

with anyone else.

Because it is often necessary to have sharing of units among processes at the same

location (e.g., to specify the sharing of a common resource), we allow a process to reference

a unit contained in another process at the same location. In such a case, the referenced

unit is considered to be in the scope of both processes. Processes can also reference units

not contained in any process (i.e., located directly in the site). These units can be thought

of as library classes or resources provided by the site to all processes located there. Fig-

ure 7.1.b shows an evolution of the system from Figure 7.1.a: here unit u is referenced by

process P , and units u, v , and w are in the same scope. Unit w is referenced by process

Q : since units x , y , and w are in the same scope, sharing applies. Notice that units x and

y are not in the scope of unit v .

A process is a unit of execution in the sense that its status constrains the execution

of the code belonging to units inside its scope. A process has an activation status that

can be manipulated by speci�c operations. The code units inside the scope of the process

1The model presented in this paper is kept simple by not allowing processes to contain other processes.

We are investigating this enhancement at the present.
2Solid lines represent the containment relation among sites, processes, and units, while dotted lines

represent references to units. Dashed rectangles represent a common scope for units.
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can only be executed when the process is active. Processes constrain the mobility of units

as well: the movement of a process implies the movement of all the units contained in it.

Referenced units however, are not moved along with the process that refers to them as

they are not part of its private space. Furthermore, the binding mechanism inhibits the

access to referenced units whenever the referencing process and the referenced unit are

not on the same site. It is important to notice, however, that references to units are not

discarded at the time of the move; when a referenced unit and the corresponding process

become colocated on any site the binding is re-established.

The model also provides mechanisms to generate and duplicate components, to ex-

plicitly terminate processes, and to establish or sever a reference between a process and a

unit. In the next section we present the structure of the model in some detail.

7.2 Mobile Unity

In this section we provide a more formal treatment of the manner in which the model

is built. Along the way, we also describe the Mobile Unity notation. A Mobile Unity

speci�cation consists of several programs, a Components section and an Interactions

section. The program is the basic unit of de�nition and mobility of the Mobile Unity

system. Figure 7.2 shows a Mobile Unity solution for the leader election problem. N

nodes are arranged in a ring each holding a value x . A mobile agent moves around the

ring carrying a token that it is used to compute the lowest value of the variables x stored on

each node. The token value is updated at each node by comparing it with the local value

of x . The algorithm is guaranteed to �nd the leader in exactly one round but for simplicity

we allow the agent to circulate inde�nitely around the ring. Distribution of components

is taken into account through the distinguished location attribute � associated to each

program. Changes in the value of � denote movement.

The system shown in Figure 7.2 contains two programs, NodeValue and Agent. The

declare section of each program contains the declaration of its program variables. The

symbol [] acts as a separator. The initially section constrains the initial values of the

variables. In program NodeValue of Figure 7.2, x is initialized using an abstract function

id which, given an index i, returns a unique value less that 1000. In the program Agent

two variables (token, and x ) are declared. The variable token is initialized to 1000 and
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System ElectionAgent

Program NodeValue(i) at �

declare

x : integer

initially

x = id(i) < 1000

assign

skip

end

Program Agent(i) at �

declare

x : integer [] token: integer

initially

x = ? [] token = 1000

assign

poll : token := min(x ; token) if x 6= ?^ token 6= ? k � := next(�)

end

Components

h [] i : 0 � i < N ^ N < 1000 :: NodeValue(i):� = location(i)i [] Agent(1):� = location(0)

Interactions

NodeValue(i):x � Agent(j):x when NodeValue(i):� = Agent(j):�

engage NodeValue(i):x

disengage NodeValue(i):x ; ?

end

Auxiliary de�nitions: next(n) � the node following n in the ring

Figure 7.2: A Mobile Unity system :distributed computation of the minimal value of x .

x is left unde�ned, i.e., ?. In the assign section of program Agent the statement named

poll sets the value of token to the minimum between its value and that of x (if x is not

?) and moves the agent to the next node by changing the value of the location attribute

�. The function next returns the next node of the ring, and the symbol k makes the two

statements on its left and right to be executed synchronously.

The Mobile Unity Components section de�nes the components existing throughout

the life of the system. Mobile Unity does not allow dynamic creation of new components.

In Mobile Unity a program de�nition may contain an index (i.e., i) after the name of

the program (i.e., NodeValue, or Agent). This allows for multiple instances of the same

program to be de�ned in the Components section. In Figure 7.2, for instance, N di�erent

instances of program NodeValue are instantiated and placed at various initial locations
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based on their index value3, initialized using the function location, while only one instance

Agent(1) of program Agent is created.

All the variables of a Mobile Unity component are considered local to the component.

No communication takes place among components in the absence of interaction statements

spanning the scope of multiple components. The Interactions section contains statements

that provide communication and coordination among components. In this example, the

Interaction section allows the sharing of values between the two variables named x in the

programs NodeValue(i) and Agent(j) when they happen to be at the same location: the

\." notation is used here to address the variable in the program, and the index i and j are

supposed to be universally quanti�ed. Only some of the program instances end up sharing

the values of variables x , depending upon their initial location (see function location and

subsequent moves). The Mobile Unity construct � de�nes transient sharing of variables

for as long as the when condition holds. The engage statement de�nes a common value

to be assigned (atomically) to both variables as the when condition transitions from false

to true. In this example the value assumed by the two variables is the value of the x on the

node (NodeValue(i):x ). It contains the actual value to be used for computing the leader

. It is possible to specify also a disengage statement that de�nes the values assumed by

the two variables, respectively, the when predicate transitions to false. If no disengage is

speci�ed the variables retain the values they had before the when condition became false.

In the example, the disengagement value for the x variable on the node (NodeValue(i):x )

is its current value, while the value of the x carried by the agent (Agent(j):x ) is set to ?

as it has to carry no value.

The Mobile Unity execution consists of a fair interleaving of statement executions,

including the statements present in the Interactions section. The sharing constructs

have higher priority and are executed any time a change in the values of the variables

involved in sharing happens.4

3The three-part notation hop quanti�ed variables : range :: expressioni will be used throughout the

paper. It is de�ned as follows: The variables from quanti�ed variables take on all possible values permitted

by range . If range is missing, the �rst colon is omitted and the domain of the variables is restricted by

context. Each such instantiation of the variables is substituted in expression producing a multiset of values

to which op is applied.
4This is not true for all Mobile Unity coordination constructs in general but it holds for transient

variable sharing, (i.e., for �).
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7.3 Reinterpretation of the Mobile Unity syntax

Mobile Unity considers a program to be the smallest unit of mobility. In Mobile Unity

every program has a location attribute and the modi�cation of this attribute is denotes

the movement of all the code and data in the program. We seek to introduce a �ner

granularity, one that allows the movement of lines of code or variables as isolated entities.

For this purpose we set out to reinterpret the syntax of a standard Mobile Unity program

such that every variable declaration and every labeled statement is interpreted as a stand-

alone program, henceforth called a unit. A program now becomes only a static unit of

de�nition. Statements and declarations become units of mobility. The Mobile Unity

syntax of a system is preserved. Units generated from the system are formalized using the

Mobile Unity syntax as well. Figure 7.3 shows a possible syntactic transformation for

the Mobile Unity program in Figure 7.2. The small programs shown in Figure 7.3 are,

from now on, called units.

Some of the variables declared in Figure 7.2 are interpreted as data units in Figure 7.3.

One can imagine adding a tag var in the Mobile Unity code of Figure 7.2 to specify

which variables should be interpreted as data units and which should not. Let us suppose,

for instance, that variable x in program NodeValue(i) and variable token in program

Agent(i) of Figure 7.2 are treated as data units, i.e., tagged by the keyword var. The data

unit p('x,'NodeValue, i) in Figure 7.3 is generated from the declaration of x in program

NodeValue(i) (Figure 7.2). The name of all the units is now the constant p, while the

three indices after p characterize the unit. Each unit is indexed by its name, the name of

the program in which it is de�ned, and by its instance discriminator. This representation

is designed to facilitate the search for units present at some location using the name

and/or place of de�nition. We use a quote to distinguish the actual components from

their names, in particular for the �rst two indices which range over �nite enumerations.

This notation allows the same names to be present in di�erent program contexts. It is

possible, for instance, to de�ne two statements labeled poll in two di�erent programs of

the same system. The two code units derived will have the same name (i.e., poll, the

�rst index), but the second index would be instantiated to di�erent program names. The

declaration of x in program Agent(i) of Figure 7.2 is assumed not to denote storage, i.e.,

it is not tagged by var. It is only a placeholder needed to accompany the code in the
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System ElectionAgent

Program p('x,'NodeValue, i) at �

declare

x : integer

initially

x = id(i) < 1000

assign

skip

end

Program p('token,'Agent, i) at �

declare

token: integer

initially

token = 1000

assign

skip

end

Program p('poll,'Agent, i) at �

declare

x : integer [] token: integer

initially

x = ? [] token = ?

assign

token := min(x ; token) if x 6= ?^ token 6= ? k � := next(�) k

p(0token;�nd(0token; �) " 1;�nd(0token; �) " 2):� = next(�)

end

Components

h [] i : 0 � i < N ^N < 1000 :: p('x,'NodeValue, i):� = location(i)i

[] p('token,'Agent, 1):� = location(0) [] p('poll,'Agent,1):� = location(0)

Interactions

p('x, i, j):x � p('poll,h, k):x when p('x,i, j):� = p('poll,h, k):�

engage p('x,i, j):x

disengage p('x,i, j):x ; ?

p('token,i, j):token � p('poll,h, k):token when p('token,i, j):� = p('poll,h, k):�

engage p('token,i, j):token

disengage p('token,i, j):token; ?

end

Auxiliary de�nitions: next(n) � the node following n in the ring

Figure 7.3: Fine-grained restructuring of the ElectionAgent System.

statement poll . Therefore, the declaration of the x in Agent(i) is not translated as a data

unit in Figure 7.3. The computation in poll will actually use the data in the x variable

located on each node. This is made possible by the sharing mechanism de�ned in the

Interactions section. Notice that a unit capturing a variable declaration also contains
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the corresponding initialization statement for the declared variable. The assign section of

a data unit does not contain any statement as the unit only declares a variable.

In order to overcome the diÆculty of dynamically creating components in Mobile

Unity we assume to have a suÆciently large number of instances of components ini-

tially located in a sort of \ether". We formalize this by saying that they reside at an

unde�ned location � = �. In this manner, whenever we need to duplicate or instantiate

a new component, we simply change the location of some component in the ether from

unde�ned to an actual location.

The code unit p('poll,'Agent, i) of Figure 7.3 is generated from the statement poll in

Figure 7.2. The �rst index of the code unit is the label of the statement. The second index

is instantiated, like in data units, i.e., the name of the program the unit comes from, and

the third is the index that allows multiple instances of the same unit. The code of the

poll statement is part of the assign section. All the variables used in the statement are

declared (in the declare section) and initialized as unbound, i.e., ?. This initialization

underlines the fact that this unit only contains code and that the variables are merely

placeholders (i.e., they do not contain real values until placed in a context that provides

sharing with data units).

As we want the token unit and the poll unit to move together, like in the example

in Figure 7.2 where they move within the program context, we now have to modify the

poll code by adding an explicit command for the movement of the unit token as well.

The function �nd returns, given the �rst index of a unit, the last two indices for a unit

present at a given location (the notations " 1 and " 2 are used to address the �rst and

second �eld of the returned value of �nd). The search can be done in two ways, by name

or by name and place of de�nition: looking for the last two indices (i.e., the name of the

program the unit is derived from and the index for multiple instances), or only on the last

index giving the name of the program containing the unit. The example shows a generic

�nd that returns both last indices (as the system contains only one de�nition of the data

unit token). The semantics of �nd will be de�ned in Section 7.5. The statement in unit

poll uses the value of the x present at each site to perform its computation. The sharing

mechanism in the Interactions section allows the sharing of the value of x (and of token)

between the data unit carrying the value and the placeholder variable in the code unit

p('poll,'Agent,i). The Components section in Figure 7.3 places the units in the same
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location as those of Figure 7.2.

The re-interpretation of the Mobile Unity system as a �ne-grained mobile system

allows units to move as separate entities and code and data to be stored in di�erent com-

ponents. In the resulting model we lose the notion of scoping previously associated with

the individual programs. It may appear that since, data and code are separated, their

simultaneous movement and value sharing among variables have to be programmed ex-

plicitly, in the code and in the Interactions section. These diÆculties can be avoided,

however, if we introduce the notion of a container which can be constructed dynamically,

can move its entire contents of data and code units as a whole, and provides for auto-

matic sharing of like-named variables appearing in data and code units placed inside the

container. We will refer to this kind of container as a process because we intend to use

such components not only as dynamically structured programs but also as basic units of

execution. As a matter of fact, as shown in the next section, code units will be prevented

from executing whenever they reside outside the con�nes of a process. A process is seen as

a program and therefore formalized as p(name,prog,i), where the �rst index is the name

of the process, the second is the name of the program from which the initial contained

units are de�ned into, and the third index is the one allowing multiple instances.

The three indices de�ning a process are also used as a location name and used in the

de�nition of location for units inside the processes: while the location attribute of a process

is always set to a name of a host (as processes reside directly on the hosts), units location

attributes can be strings composed of the concatenation of the name of the host they reside

on and of the three process indices they are in (if they are in a process). In this model

processes cannot contain other processes while in Chapter 8 we show an enhancement of

the model that allows process and unit locations to be complex concatenation of strings

(a host and several process indices tuples).

With the introduction of processes we are now able to move lines of code, single vari-

ables, or complex groups of units and not only programs like in the example in Figure 7.2.

The notion of scope introduced by processes also helps in the simpli�cation of the sharing

mechanisms between variables. Variables with the same name in the scope of the same

process may be considered as sharing their values. The explicit sharing mechanism avail-

able in Mobile Unity can then be avoided by exploiting scoping. By providing a standard

set of sharing rules designers do not need to touch the Interactions section. For instance,
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Figure 7.4: A node in the leader election solution with processes.

the sharing among the token variable in the data unit token and the same variable in the

code unit poll had to appear explicitly in Figure 7.3. Further re�nement of our new model

will allows binding by name to be established automatically between two variables within

the same scope.

The explicit sharing between the variable x on the node and its counterpart in the

poll code can also be eliminated if somehow we are able to pull within the scope of poll

the variable x residing on the same node. This can be accomplished in two ways. First,

we can explicitly move the variable x (on the node) within the scope of the process P

(Figure 7.4.a) embodying the agent. Second, we can add a new construct called external

reference (or simply reference), which extends the scope of the agent process to include

x without moving it (Figure 7.4.b). In the next section we introduce the use of these

constructs for the speci�cation of the leader election problem.

7.4 Mobility Constructs

The previous section hinted at the key points of departure from Mobile Unity, and at

the manner in which we will ultimately reduce a notation for �ne-grained code mobility

back to the essence of Mobile Unity. Central to our model is the interplay among the

notions of execution, scoping, containment, and location. Mobility not only determines

the set of resources that are available at a given location, but also allows the dynamic

recon�guration of the code and data associated with a given process. In this section we

describe in more detail the set of constructs available in our model. In the next section,

we will use Mobile Unity to provide formal semantics to these constructs.
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In Section 7.3 we have shown a mobile agent solution for the leader election prob-

lem. We used the example to explain the re-interpretation of the Mobile Unity system

in terms of units. In this section we re�ne the solution to the leader election problem

given in Section 7.3 exploiting more fully than before the features and the constructs of

our model: code, data and agents mobility, as well as built-in scoping rules. The solution

assumes that no nodes are initially able to take part in a leader election. The distributed

algorithm is started by injecting into the ring a process that contains the necessary knowl-

edge about the distributed computation|a voter. This process clones itself repeatedly

until the whole ring is populated with voters. Interestingly, voters do not contain the

logic associated with the token, i.e., they do not know how to compare the node's value

with the token's value|the poll strategy. The knowledge about this key aspect of the

algorithm is injected into the ring in a separate step of the computation in the form of a

code unit which is placed on an arbitrary node of the ring. Each voter is able to detect the

presence of the poll code unit on its node and move it into its own scope, thus e�ectively

enabling the execution of the unit. The poll code unit has access to a node-level data unit

that contains the node value. This enables the comparison needed to vote. Again, a self

replicating scheme is employed, where each voter passes on a copy of the unit to the next

node in the ring. This structure of the system, where the poll strategy is kept separate

and is loaded dynamically into the voter, enables the dynamic recon�guration of the ring.

This happens when a new code unit that contains a di�erent poll strategy is injected in

the ring. Again, voters detect its presence on their sites and replace the old strategy with

the new one. Finally, when the token is injected into the ring the actual leader election

starts.

Our example, despite its simplicity, highlights many of the leitmotifs of mobile code:

simultaneous migration of the code and state associated with a unit of execution, dynamic

linking (and upgrade) of code, and location-dependent resource sharing. For instance, our

solution can be easily adapted to an active network scenario where a new service (in our

case the ability to perform leader election) is deployed in the network, and some of its

constituents (in our case the poll strategy) are dynamically upgraded over time.

A formal speci�cation of our leader election algorithm is shown in Figure 7.5, while

Figure 7.6 shows its graphical representation. The speci�cation uses the �ne-grained mo-

bile code constructs of our model.
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System LeaderElection

Program NodeDe�nition

declare

x : var integer

end

Program TokenDe�nition

declare

token: var integer

end

Program PollActions

declare

token: integer [] x : integer [] voted : boolean

assign

poll : token; voted := min(x ; token); true

end

Program VoterActions

declare

voted : var boolean [] startup: var boolean [] token: integer [] x : integer [] k : integer

initially

voted = false [] startup = true

assign

startVoter : h put(voter ; thisNode; next(thisNode)) if next(thisNode) 6= node(0)

k reference(x ; thisNode) k startup := falsei if startup

[] linkCode: h move(poll ; thisNode; here)

k put(poll ; thisNode; next(thisNode)) if next(thisNode) 6= node(0)

k destroy(poll ; here)i if exists(poll ; thisNode)

[] passToken: move(token; thisNode; here) if exists(token; thisNode)

k h move(token; here; next(thisNode))

k voted := falsei if voted ^ exists(token; here)

end

Components

h[] i : 0 � i < N :: newData(NodeDe�nition; x ; node(i); i)i

[] newData(TokenDe�nition; token; node(0);?)

[] newCode(PollActions; poll ; node(0))

[] newProcess(VoterActions; voter ; node(0); active)

end

Auxiliary de�nitions:

here � �

thisNode � head(�)

next(n) � the node following n in the ring

Figure 7.5: Leader Election in Mobile Unity extended with �ne-grained mobililty con-

structs.
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Figure 7.6: Leader election with mobile code.

The upper part of the speci�cation contains three program de�nitions. The programs

in Figure 7.6 are not indexed with an i unlike in Figure 7.2 as with the introduction of

processes programs are only units of de�nition and they are not instantiated.

NodeDe�nition speci�es a single data unit x associated with a node. The type decla-

ration for this integer variable is prepended by the keyword var which characterizes the

variable as a data unit. The initialization of the variable is not de�ned here: the predicate

newData, used in the Components section will provide the initial value to be assigned

when the unit is instantiated. In this way we allow di�erent instances of the same unit to

be initialized with di�erent values. The �rst parameter of newData is the name of the

variable, the second is the name of the program in which the unit is de�ned, the third

is the location where the unit has to be placed, and the forth is the initial value. The

program TokenDe�nition speci�es a data unit associated with the variable token. The

values of these two variables are accessed (through sharing) by code units speci�ed by

the program PollActions. The latter contains a single statement poll, which describes

the polling strategy. As discussed in the next section, the formal semantics of the model

prescribes the execution of this statement to be prevented when the corresponding code

unit is not within the scope of any process. Thus, the comparison in poll is performed only

when the corresponding code unit is co-located in a voter process that also contains the
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data unit corresponding to token. In this case, the binding rules of the model, expressed

using the transient variable sharing abstraction provided by Mobile Unity, e�ectively

force the same value in both token variables, hence enabling the comparison speci�ed by

poll. Simultaneously, an additional auxiliary boolean variable voted is set to signal to the

enclosing voter, again by means of sharing of the variable voted, that the token needs to

be passed along the ring.

Voters are speci�ed by the program VoterActions, that declares the variables men-

tioned so far and an additional boolean startup that is used to determine whether it is

necessary to perform some initialization tasks, i.e., cloning the voter itself on the next node

to perform the initial deployment of processes in the ring, and acquiring a reference to

the node's value. These tasks are performed simultaneously by the statement startVoter,

which also resets startup to prevent the creation of multiple clones of the voter.

In startVoter, cloning is performed by the put operation. It executes only if the voter

that is invoking the operation does not immediately precede in the ring node(0) where

the whole computation started. This guarantees that each node hosts a single voter. The

statement uses some of the auxiliary de�nitions shown at the bottom of the �gure. In

particular, here and thisNode are just renamings of the location variable � in the voter

and of the head function that operate on it, respectively. They serve the sole purpose

of improving readability. While the location of a process is always set to the name of a

site (as processes reside directly on the site), unit location can refer to sites or to pro-

cesses. In the latter case, the location is de�ned as the concatenation of the name of the

site the unit reside on and of the name of the process that holds it. This is useful in

invoking the put operation whose most general form is put(name; prog ; id ; locationdest )

where the �rst three parameters are the three indices of the component to be copied

and locationdest is a location that represents the destination of the copy. Another form,

put(name; locationcur ; locationdest ), is also provided. It is actually used in the example to

\query" the scope de�ned by locationcur for the second and third indices of the component

given the name (i.e., �rst index).

As will become clear in the next section, copying takes place behind the scenes by

picking a fresh component from the ether and setting its location to the one passed as

a parameter. Like most of the operations provided in our model, the put operation is

de�ned on components, i.e., both on processes and units. Hence, in the case of processes
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the copying is performed recursively on the process and on all its constituent units. In

the case of put, the bindings that a process may have established are not preserved as a

consequence of this copy operation, i.e., all the variables are restored to their initial values.

This represents a \weak" form of copying. Our model provides also a stronger notion with

the clone operation, which preserves all the bindings owned by the process.

The statement startVoter establishes also a reference to the variable x, whose value

is contained in a data unit instantiated on each site. To understand in more detail this

latter aspect, let us take a brief detour and jump temporarily to the Components sec-

tion, to look at the initial con�guration of the system. The �rst statement uses the macro

newData to indicate the creation of a data unit named x using the de�nition provided in

the program NodeDe�nition, assigns to it the value i, and places it on the i th node. Since

the statement is quanti�ed over the number N of nodes in the system, each node hosts an

instance of this data unit as a result of the operation.

Similarly, the other three statements in the Components section create on the �rst

node respectively the data unit for the token, the code unit for the poll strategy, and the

voter process. Given the nature of our model, which enables movement to the level of

a single Mobile Unity variable or statement, it is interesting to note how VoterActions

actually represents the unit of de�nition for a number of units, namely, the data units cor-

responding to voted and startup, and the code units corresponding to startVoter, linkCode,

and passToken. In principle, each of these could be moved or copied independently. Since

this is not the case in this example, they have been grouped together under VoterActions.

This simpli�es the text of the speci�cation by minimizing the number of Program dec-

larations, and also enables the creation of a single process that automatically contains

instances for all the aforementioned units by using newProcess. Finally, note how the

value of a process is its activation status, i.e., either active or inactive.

Now, let us return to the reference operation in startVoter. Thanks to the binding

rules, this operation establishes a transient sharing between the variable in the data unit

x de�ned in NodeDe�nition and the declaration in the voter. Note how, similarly to what

was described for put, only the name of the data unit x is speci�ed, while its indices is

determined by implicitly querying the node. The model provides also the inverse operation

unreference.

The statement linkCode takes care of replicating the poll strategy and, possibly, of
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substituting the new poll code for the old one. It executes only when the exists function in

the guard evaluates to true. The function exists, formally introduced in the next section,

e�ectively models the aforementioned query mechanism, and enables linkCode to execute

only when a code unit with name poll is found on the node. If the unit is found, the move

operation brings it within the process, thus enabling its execution. Simultaneously, a copy

of the unit is sent to the next node in the ring via a put, provided that the next node

is not node(0). At the same time, if a pre-existing poll unit is found in the process the

destroy operation removes it from the system.

Finally, passToken handles the movement of the token. Again, the query mechanism is

used to get implicitly the identi�er of any token data unit present on the node and move

it within the process to establish the proper bindings. After the poll is performed, i.e.,

voted is set to true, the token is moved from the scope of the voter to the next node in the

ring.

7.5 Formal Semantics

Our general strategy is to reduce the new model for code mobility to a specialization of

the standard Mobile Unity notation and proof logic. The �rst step, explained in the pre-

vious sections, shows how we reinterpret a notation which looks very close, if not identical,

to that of Mobile Unity by simply treating each variable declaration and statement as

a separate, independent program. Multiple instantiations of each such �ne-grained pro-

gram, called a unit, are de�ned in the Components section. Once this transformation

from a concrete to an abstract syntax is completed, the parts of the model still missing

are the mechanics of data sharing within the con�nes of each process, the control over

the scheduling of statements for execution, and the de�nition of the various mobility con-

structs. Our strategy is to capture all these semantic elements as statements present in

the Interactions section of the Mobile Unity system and to disallow the designer from

adding anything else to the Interactions section. The result is a specialization of Mobile

Unity to the problem of �ne-grained mobility. The fact that the entire semantic speci�-

cation can be reduced to a small set of coordination statements attests to the exibility of

Mobile Unity. In the remainder of the section we consider in turn the topics of scoping,

statement scheduling, mobility constructs, and creation predicates. From now on we use
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�nd(u; l) � hmin i; j : ui;j :� = l :: (u; i; j )i

�nd(u; i ; l) � hmin j : ui;j :� = l :: (u; i; j )i

exists(u; l) � h9i; j :: ui;j :� = li

exists(u; i ; l) � h9j :: ui;j :� = li

Figure 7.7: Speci�cation of the functions �nd and exists.

the compact notation ci;j to mean p(c; i ; j ), i.e., the instance j of the component named

c extracted from program i . Throughout this section we also assume that:

� Each component, (i.e., data unit, code unit, or process) ci;j is characterized by its lo-

cation (ci;j :�), request �eld (ci;j :�) designed to hold mobility commands the system is

expected to execute on its behalf, and type (ci;j :� 2 fdataUnit;codeUnit;processg).

� Each process qi ;j is also characterized by an implicitly speci�ed set of contained

units (those located within the process), a set of referenced units (qi;j :), and its

activation status (qi;j :! 2 factive; inactive;terminatedg).

The designer does not need to refer to any of these attributes even though they are essential

to the formal semantic de�nition.

When writing code, the designer will typically refer to a component's name (e.g., c)

rather than its fully quali�ed name (e.g., ci;j ) consisting of the three indices (i.e., c, i ,

j ) de�ning the component name, program, and index, respectively. Given the name, the

other identi�ers can be extracted easily by employing the functions �nd and exists de�ned

in Figure 7.7.

The �nd function �nds an instance of the component named u on the location l . The

name of the program the unit is derived from (i.e., i) can be added as a parameter in

order to constrain the search only to units derived from a particular program de�nition;

the same is true for the function exists. Processes, like other units, also have three indices:

the �rst index is the name of the process, the second is the name of the program the units

in the process are derived from (e.g., the process voter created with newProcess in the

Components section of Figure 7.5), and the third is the instance discriminator.
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7.5.1 Scoping Rules

Since a code unit can only access its own variables, the mechanism by which we establish

scoping and access rules is that of forcing variables with the same name and present in

the same scope (i.e., contained in the same process) to be shared. This can be readily

captured by employing one of the high level constructs of Mobile Unity, transient variable

sharing across programs (A:a � B :b when p). The predicate p controlling the sharing

simply needs to capture the scoping rules. Figure 7.8 shows how these rules can be stated

as two Mobile Unity coordination statements. Statement 7.1 handles sharing between

a variable in a data unit and a variable in a code unit, while statement 7.2 de�nes the

sharing between two variables in data units.

Statement 7.1 states that variables5 ui;h :x and wj ;k :x share the same value when ui;h

is a data unit and wj ;k is a code unit, and the two units are within the same process, or

either the data unit or the code unit is referenced by the process owning the other unit

and the two units are on the same site. The engage value is the value of the variable in

the data unit. The two disengage values are the actual value shared for the data unit

variable, and the unde�ned value for the code unit variable, respectively|variables in code

units are not supposed to carry a value unless they are sharing it with a data unit. The

function sharing tells if two units have a common \parent" (a parent can be the process

within which they are located or the one which references them), i.e., the units are in the

same scope. In turn, sharing uses the functions childOf(vj ;k ; ui;h ), that determines whether

vj ;k is child of ui;h (i.e., vj ;k is a unit contained in ui;h), and referencedBy(vj ;k ; ui;h), that

determines whether vj ;k is referenced by ui;h .

Statement 7.2 de�nes sharing between variables in two data units. The variables must

have the same name in the same scope. Sharing takes place under the same conditions of

statement 7.1, except that both variables are in data units. The engage clause forces the

two variables to share the maximum value. Di�erent policies can implement a di�erent

semantics for reconciliation of values. As no disengage is speci�ed the variables retain

the values they had before the when condition became false. The update of all shared

5The formulae in Figure 7.8 and following assume that variable sharing is well-de�ned, i.e., it takes

places only among variables which actually appear in the speci�cation of a unit according to the program

de�nition. Also, distinguished variables like � and � are never shared. The formal de�nition of these

conditions is omitted for the sake of brevity.
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ui;h :x � wj ;k :x when ui;h :� = dataUnit ^ wj ;k :� = codeUnit ^

(ui;h :� = wj ;k :� 6= head(ui;h :�) _

(sharing(ui;h ;wj ;k ) ^ head(ui;h :�) = head(wj ;k :�)))

engage ui;h :x

disengage ui;h :x ; ?

(7.1)

ui;h :x � wj ;k :x when ui;h :� = wj ;k :� = dataUnit ^

(ui;j :� = wj ;k :� 6= head(wj ;k :�) _

(sharing(ui;h ;wj ;k ) ^ head(ui;h :�) = head(wj ;k :�)))

engage max(ui;h :x ;wj ;k :x)

(7.2)

inhibit ui;h :s when ui;h :� = codeUnit ^

(h8p;m;n : pm;n :� = process ^ (childOf(ui;h ; pm;n ) _

referencedBy(ui;h ; pm;n )) :: pm;n :! 6= activei _

h9x :: ui;h :x = ?i)

(7.3)

Auxiliary de�nitions:

sharing(ui;h ;wj ;k ) = h9p;m;n :: (childOf(wj ;k ; pm;n ) ^ referencedBy(ui;h ; pm;n )) _

(childOf(ui;h ; pm;n) ^ referencedBy(wj ;k ; pm;n ))i

childOf(vj ;k ;ui;h ) =

8<
:
true if vj ;k :� = ui;h :� Æ (u; i; h)

false otherwise

referencedBy(vj ;k ;ui;h ) =

8<
:
true if (v ; j ; k) 2 ui;h :

false otherwise

Figure 7.8: Bindings among units using variable sharing and statement inhibition.

variables must happen in the same atomic step as the assignment to any of them. However,

sharing is speci�ed separately from the (possibly many) assignments that may change the

value of a variable. To accomplish this, Mobile Unity has a two-phased operational model

where the �rst phase involves an ordinary assignment statement execution and the second

is responsible for propagating changes to shared variables. We call the statements that ex-

ecute in the second phase reactive statements. Logically, the set of reactive statements are

executed to �xed point right after each non-reactive statement and one reactive statement

may trigger the execution of other reactive statements. Transient sharing is ultimately

de�ned using reactive statements [MR98], but this is outside the scope of this paper.
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7.5.2 Statement Scheduling

In Mobile Unity, each statement is assumed to be executed in�nitely often in an in�nite

execution, i.e., weakly fair selection of statements is the basis for the scheduling process.

The coordination constructs of Mobile Unity include a construct for guard strengthening

called inhibit. In inhibit s when p, for instance, the statement s continues to be selected

as before, but its e�ect is that of a skip whenever the condition p is not met. We take

advantage of this construct in statement 7.3 of Figure 7.8 to inhibit statements not in

the scope of an active process, and statements that have unbound variables. A variable

appearing in a statement is always unbound if it is not shared with a variable present in a

data unit.

7.5.3 Mobility Constructs

The designer views the move construct as a mechanism by which a component at one

location is relocated to another. The new location may be a known site or a known process.

This form of the move construct:

move(compName; currentLocation;newLocation)

is actually a special instance of the more general form in which the identity of the unit is

already known. One can simply determine the identity by employing the function �nd as

in6

move(�nd(compName; currentLocation);newLocation):

If multiple instances of the same unit exist one is selected7. In order to explore the manner

in which we assigned semantics to the mobility constructs associated with our model we

will focus our presentation on the general form of the construct. Moreover, we will assume

that the unit in question is a process named q with identi�er (i ; j ) destined for location l :

move(q ; i ; j ; l):

6Throughout, we assume that move((q ; i ; j ); l) is unambiguously reducible to move(q ; i ; j ; l).
7We chose to pick up the instance with minimum index.



108 Chapter 7. A Fine-Grained Model

Our general strategy is to treat the operation as a macro reducible to a simple local

assignment statement to the distinguished variable � (see Figure 7.9):

� := (req;move; (q ; i ; j ; (j ; l))

where the �rst two �elds of the record stored in � indicate the propagation status (i.e., an

initial request) and the nature of the request (i.e., a move).

We delegate the actual execution of the operation to a series of coordination statements

built into the Interactions section. The coordination statements propagate the request to

the contained units and ultimately carry out the migration of the individual components

to the new location. All these actions are executed atomically because they are encoded

as reactive statements that execute to �xed point before the system is allowed to take any

other action. The �rst thing that happens is to have the request transferred in the form

of a command to the process q . The result is that qi;j :� is assigned the request with a

propagation status of exec:

qi;j :� := (exec;move; (q ; i ; (j ; l))

while the attribute � of the unit issuing the request is cleared. Of course, in general it

might be the case that a unit requests its own movement and one needs to distinguish

between the two cases as made evident in Figure 7.10.

If, for the sake of simplicity, we assume that the only units contained by q are dm;h

and sk ;n , the next reaction being triggered leads to having the process ready to start the

move, a fact indicated by dropping the propagation status

qi;j :� := (move; (j ; l))

while simultaneously propagating the command to the contained units (see Figure 7.10),

e.g.,

dm;h :� := (exec;move; d ;m; h; (h; l Æ (q ; i ; j )))

sk;n :� := (exec;move; s ; k ;n; (n; l Æ (q ; i ; j )))

Figure 7.10 de�nes the function F that computes, in a command-speci�c manner,

the arguments needed by the contained units. In this case, the location to where they
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move(u; i; j ; l) � � := (req;move;u; i; j ; (j ; l))

put(u; i ; j ; k ; l) � � := (req;put;u; i; j ; (getid(u; i); l)) k k := getid(u; i)

clone(u; i ; j ; k ; l) � � := (req;clone; u; i; j ; (getid(u; i); l)) k k := getid(u; i)

destroy(u; i; j ) � � := (req;destroy;u; i; j ; ())

activate(u; i; j ) � � := (req;activate; u; i; j ; ())

deactivate(u; i; j ) � � := (req;deactivate;u; i; j ; ())

terminate(u; i; j ) � � := (req;terminate; u; i; j ; ())

new(u; j ; k ; l) � � := (req;new; u; j ;getid(u; j ); (l)) k k := getid(u; j )

reference(u; i; j ; v ; k ; h) � � := (req;reference;u; i; j ; (v ; k ; h))

unreference(u; i; j ; v ; k ; h) � � := (req;unreference;u; i; j ; (v ; k ; h))

Auxiliary de�nitions:
getid(name) � get2nd3rd(�nd(name; �))

getid(name; i) � get3rd(�nd(name; i; �))

Figure 7.9: Mapping mobility constructs to Mobile Unity statements.

need to move is the relocated process. Since further propagation is no longer possible the

commands drop the propagation status in the next step

dm;h :� := (move; (h; l Æ (q ; i ; j )))

sk;n :� := (move; (n; l Æ (q ; i ; j )))

The last step is the change in location of each of the units (Figure 7.11). Given the

semantics of Mobile Unity, this may happen in any order but the reactive statements will

be executed again and again until �xed point is reached, i.e.,

qi;j :� = l ^ dm;h :� = l Æ (q ; i ; j ) ^ sk;n :� = l Æ (q ; i ; j )

If an attempt is made to move a unit before the containing process, an apparently

inconsistent state is reached in which the unit is located inside of a nonexistent process

but this is corrected as soon as the process move is complete. Thus the command completes

always in a consistent state.

All other constructs function in a similar manner except that not all the commands

are propagated to the contained units. For instance, terminate a�ects only the status

of the process. The function toPropagate used in Figure 7.10 is designed to control the

propagation process: the propagating constructs are move, put, clone, and destroy.

The construct getid returns the three-part identity of a component located in the ether.

A minimal lexicographical value for the triplet is selected. The two functions get2nd3rd
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wj ;k :� = ? if wj ;k 6= ui;h k ui;h :� = (exec; command ;u; i; args)

reacts-to wj ;k :� = (req; command ; u; i; h; args)
(7.4)

ui;h :� = (command ; args) k hk v ;n;m : childOf(vn;m ;ui;h ) ^ toPropagate(command ) ::

vn;m :� = (exec; command ; v ;n;F(command ;u; i; v ;n;m; args))

reacts-to ui;h :� = (exec; command ; u; i; args)i

(7.5)

Return values for F :

F(move;u; i; v ;n;m; (h; l)) = (m; l Æ (u; i; h))

F(put;u; i; v ;n;m; (k ; l)) = (getid(v ;n); l Æ (u; i; k))

F(clone;u; i; v ;n;m; (k ; l)) = (getid(v ;n); l Æ (u; i; k))

F(destroy;u; i; v ;n;m; ()) = ()

Figure 7.10: Modeling the actions of the run-time support.

and get3rd return the second and third indices, and the third index, respectively, given

the indices triple returned by the function �nd. The complete list of commands and the

corresponding formalization appear in Figures 7.9 and 7.11.

7.5.4 Creation Predicates

The three macros newData, newCode, newProcess are used in Figure 7.5 for the in-

stantiation of new components. newData is de�ned in two forms, the �rst allows the set-

ting of the initial value as a parameter (i.e., v)8. The second uses the initial value de�ned in

the program. The constructs used in Figure 7.5 are special instances of more general form:

for instance, newData(u;n; l ; v) is a special form of newData(u;n; getid(u;n); l ; v). The

function getid (shown in Figure 7.9) has two parameters in this case as we know one of the

indices (i.e., the program name n). Table 7.12 contains the semantics of these predicates.

newData states that a new data unit is located at location l and that setting the initial

value for its variable is v . newCode states that a new code unit is located at location l .

The predicate newProcess locates a process at location l , with status s. The predicates

newData and newCode are used to de�ne the initial location of all the units that have

8The newData predicate is used in theComponents section in order to de�ne the instantiation of new

data units. The implicit quanti�cation over the variables used in the Components section is generally

restricted to some proper range. In case of variable names the range is set to the names appearing in the

unit (i.e., the case of x .
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ui;h :� := l if (ui;h :� = process ) l = head(l)) ^ ui;h :! 6= terminated ^ ui;h :� 6= � k

ui;h :� := ? reacts-to ui;h :� = (move; (h; l))
(7.6)

ui;k :�;ui;k :! := l ;ui;h :! if (ui;h :� = process) l = head(l)) ^ ui;h :� 6= � k

ui;h :� := ? reacts-to ui;h :� = (put; (k ; l))
(7.7)

ui;k :�;ui;k :! := l ;ui;h :! if (ui;h :� = process) l = head(l)) ^ ui;h :� 6= � k

ui;h :� := ? k h8x :: ui;k :x := ui;h :xi reacts-to ui;h :� = (clone; (k ; l))
(7.8)

ui;h :� := ? if ui;h :� 6= � k ui;h :� := ? reacts-to ui;h :� = (destroy; ()) (7.9)

ui;h :! := active if ui;h :! = inactive ^ ui;h :� = process ^ ui;h :� 6= � k ui;h :� = ?

reacts-to ui;h :� = (activate; ())
(7.10)

ui;h :! := inactive if ui;h :! = active ^ ui;h :� = process ^ ui;h :� 6= � k ui;h :� := ?

reacts-to ui;h :� = (deactivate; ())
(7.11)

ui;h :! := terminated if ui;h :! 6= terminated ^ ui;h :� = process ^ ui;h :� 6= � k

ui;h :� := ? reacts-to ui;h :� = (terminate; ())
(7.12)

ui;h :� := l if ui;h :� = process) l = head(l) k ui;h :� := ?

reacts-to ui;h :� = (new; l)
(7.13)

ui;h : := ui;h : [ f(v ; j ; k)g if vj ;k :� 6= process ^ ui;h :� = process ^ ui;h :� 6= � ^

vj ;k :� 6= � k ui;h :� = ? reacts-to ui;h :� = (reference; (v ; j ; k))
(7.14)

ui;h : := ui;h : n f(v ; j ; k)g k ui;h :� := ? reacts-to ui;h :� = (unreference; (v ; j ; k)) (7.15)

Figure 7.11: Migrating components.

newData(u;n; k ; l ; v) � un;k :� = l ^ un;k :x = v

newData(u;n; k ; l) � un;k :� = l ^ un;k :x = initial(n; x)

newCode(u; n; k ; l) � un;k :� = l

newProcess(u;n; k ; l ; s) � un;k :� = l ^ un;k :! = s^

h8u0 : datade�ned(u0;n) :: newData(u0;n; getid(u0;n); l Æ (u; n; k))i^

h8u0 : codede�ned(u0;n) :: newCode(u0;n; getid(u0;n); l Æ (u;n; k))i

Figure 7.12: Constructs for the instantiation of components.

to be inside the process.
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Chapter 8

An Enhanced Fine-Grained Model

Mobile code technologies presented in Chapter 1 usually implements a model where unit

of mobility coincide with the unit of execution. In the most of the cases the model is at

like the one presented in Chapter 7. A at model does not allow the unit of execution to

contain other units of execution. In this chapter we want to loose this constrain extending

the model in Chapter 7.

In this chapter we present an extension of the �ne-grained model presented in Chap-

ter 7. In this enhanced model processes can contain not only units but also other pro-

cesses, therefore generating a hierarchy of processes on the hosts. Hierarchical scoping is

combined with dynamic recon�guration of process structures. This enhanced model is a

natural extension of the previous model.

The notation of the location that in the previous chapter was associated only with

hosts is now associated also with processes that become real locations for other units and

processes. As the modi�cations to the model only a�ect the notion of location, the real

changes to the semantics are minimal. The enhanced model allows the speci�cation of

a powerful system with a location based hierarchical structure that still does not have

a corresponding developed technologies (only a similar attempt has been developed in

Telescript [Whi96]). We now give details of the enhancement.

8.1 The Enhancement with Scoping

A process is now a container not only for units but also for other processes. The general

structure of a host is now a tree. Figure 8.1.a shows the representation of a host containing
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a. b.

Figure 8.1: The structure of a host in the enhanced model (a) and the corresponding

tree topology (b).

nested processes and Figure 8.1.b shows the corresponding tree topology 1. Nested struc-

tures promise added exibility in the organization of resources and systems. Nevertheless,

they are not typically encountered in mobile code languages. The extension turns out to

be a natural step, merely a simple re�nement of the notion of location. A location is no

longer the concatenation of at most two names (i.e., the host name and, if needed, the

process name), but an arbitrarily long concatenation of names, reecting process nesting.

Every nested process acts as a block structured context: all the data and code in

the block are considered local to the process and cannot be accessed from the upper

blocks. However, the inner blocks can access the content of the outer blocks. The binding

mechanism presented in Table 7.8 is readily extended to accommodate the new hierarchical

process structure. Figure 8.2 shows an example of binding in the tree. Variables with the

same name in the scope of the same process (like x in the units v and u) are bound and

share the same value (as in the \at" model). As one might expect, structural changes

due to mobility of code fragments leads to corresponding changes in scope and data access.

Let us consider again Figure 8.2. Notice that the data unit w contains a declaration for x .

While the data unit v is present, the variable x in code unit u is bound to the declaration

of x in v . If unit v moves away, the x in code unit v becomes bound to x in w . In general,

the binding mechanism binds a variable in a code unit to the \closest" declaration for that

variable found in the path to the root (i.e. the host) of the tree.

The access to referenced units must also be adjusted for use with the hierarchical model.

1The rectangular thicker boxes represent hosts, normal boxes are processes, and circles are units.
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We constrain the scope of the referenced unit only to the peer units in the referencing

process; however it is still possible to explicitly formalize the access to a referenced unit

also for the lower level units in the branch. Let us consider, for instance, Figure 8.3.a: the

variable x in the code unit v is bound to the declaration of x in data unit z (we assume

that the unit z and process P are on the same host). The declaration of x in z , however,

cannot be bound to the x in code unit u as this is at a lower level (i.e., it is not a peer

unit). In some cases the designer may want to let the x in v to be bound to the x in

z : to do this she can either put another reference to x from process Q or exploit the

reference from process P and introduce a new data unit w declaring x at the peer level of

z in process P . In this case the binding mechanism allows the sharing between the two

declarations of x in data units in the same scope (i.e., w and z ), and w is the closest data

unit declaring x with respect to unit u, then the binding is established between the two x

(see Figure 8.3.b).

In the hierarchical perspective a new operation can be added to the model to be able

to constrain the access of a unit only to peer units. At the moment the access strategy

is a hierarchical access, where lower level units can be bound to an upper level unit (in

case it contains the closest declaration for a certain variable). The new operation could

constrain the accessibility of a unit only to peer units. In order to do so units should have

an attribute indicating their access type: the automatic sharing mechanism looking for

the closest instance of a variable would now have to consider this attribute in computing

it. For instance, let us consider again Figure 8.3.b in this context: if the unit w had access

right set to PeerAccess, unit u would never be able to share the value of its variable, as it

is not a peer unit.

u

x

x:int

x:int

v

w

Figure 8.2: Scoping in the enhanced model: the dashed circles represent data units.
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P

Q

R

a. b.

P

Q

R

v

u

z v

u

w z

x

x:int x

x

xx x

Figure 8.3: Referencing in the hierarchical model

The hierarchical model requires little changes in the semantics of the constructs de�ned

in Table 7.11. As the model in general is enhanced only modifying the notion of location,

the changes required in the semantics are minimal. The operationsmove, put, clone, can

now place a process putting it inside another process, not only on hosts. Let us consider,

for instance, the move operation (7.6) in Table 7.11. The check

ui;h :� = process) l = head(l)

ensures that a process is only be moved on a host, and not inside another process (i.e., l

is a host location). In the modi�edmove for the hierarchical model this check disappears

and the new formalization of move is:

ui;h :� := l if (ui;h :! 6= terminated^ui;h :� 6= �) k ui;h :� := ? reacts-to ui;h :� = (move; (l))

Figure 8.4 contains the updated table for all the constructs, re�ning Figure 7.11.

Moreover, the operations activate, deactivate, and terminate have to be propagated

to all the child processes of the input process. For this reason the function F has to be

de�ned also for these constructs (it simply returns the () value). Figure 8.5 shows the new

functions.
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ui;h :� := l if ui;h :! 6= terminated ^ ui;h :� 6= � k

ui;h :� := ? reacts-to ui;h :� = (move; (h; l))
(8.1)

ui;k :�;ui;k :! := l ;ui;h :! if ui;h :� 6= � k

ui;h :� := ? reacts-to ui;h :� = (put; (k ; l))
(8.2)

ui;k :�;ui;k :! := l ;ui;h :! if ui;h :� 6= � k

ui;h :� := ? k h8x :: ui;k :x := ui;h :xi reacts-to ui;h :� = (clone; (k ; l))
(8.3)

ui;h :� := ? if ui;h :� 6= � k ui;h :� := ? reacts-to ui;h :� = (destroy; ()) (8.4)

ui;h :! := active if ui;h :! = inactive ^ ui;h :� = process ^ ui;h :� 6= � k ui;h :� = ?

reacts-to ui;h :� = (activate; ())
(8.5)

ui;h :! := inactive if ui;h :! = active ^ ui;h :� = process ^ ui;h :� 6= � k ui;h :� := ?

reacts-to ui;h :� = (deactivate; ())
(8.6)

ui;h :! := terminated if ui;h :! 6= terminated ^ ui;h :� = process ^ ui;h :� 6= � k

ui;h :� := ? reacts-to ui;h :� = (terminate; ())
(8.7)

ui;h :� := l if ui;h :� = process) l = head(l) k ui;h :� := ?

reacts-to ui;h :� = (new; l)
(8.8)

ui;h : := ui;h : [ f(v ; j ; k)g if vj ;k :� 6= process ^ ui;h :� = process ^ ui;h :� 6= � ^

vj ;k :� 6= � k ui;h :� = ? reacts-to ui;h :� = (reference; (v ; j ; k))
(8.9)

ui;h : := ui;h : n f(v ; j ; k)g k ui;h :� := ? reacts-to ui;h :� = (unreference; (v ; j ; k)) (8.10)

Figure 8.4: Migrating components: enhanced model.

F(move; u; i; v ;n;m; (h; l)) = (m; l Æ (u; i; h))

F(put; u; i ; v ;n;m; (k ; l)) = (getid(v ;n); l Æ (u; i; k))

F(clone; u; i ; v ;n;m; (k ; l)) = (getid(v ;n); l Æ (u; i; k))

F(destroy;u; i; v ;n;m; ()) = ()

Figure 8.5: Updated functions return values.
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Chapter 9

Lilliput: a Fine-Grain Mobility Prototype

The �ne-grained model presented in Chapter 7 describe a di�erent approach to mobility

from a formal point of view. In this chapter we show a prototype of the approach that

wants to show the implementability of the idea. We describe the design of the prototype,

the name of which is Lilliput. The Java API (Application Program Interface) is then

contained in Appendix A.

The Lilliput implementation follows the formal speci�cation given in Chapter 7. The

input language of the system is a simpli�ed Mobile Unity [MR98] (where no interaction

section can be de�ned, the symbol var is added in the declare section, and all the vari-

able have integer type). The complete grammar of the input language can be found in

Appendix A. A compiler then translates the input document in a Java document that

is going to be compiled and executed on the Java Virtual Machine. The pseudo-Mobile

Unity speci�cation de�nes the system initial con�guration distributed over a network of

hosts and the speci�cation of the variables and code of the system. The compiler translates

every statement into a code unit and every variable declaration with its initialization in

a data unit (it generates Java classes for them). The Components section is translated

in a main method calling some other methods to send units and processes to di�erent

locations. Figure 9.1 depicts the process of translation of the input document into Java

documents.

Once the system is initialized, units and processes are located on di�erent hosts. An

engine is started on each host to maintain consistent sharing among variables (according

to rules speci�ed in Chapter 7), inhibiting code from execution, and executing the mobility

constructs invoked by the code units. When the system is running units and processes
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move around and each engine on hosts has the responsibility to keep the binding in a

consistent state.

We will go through the details of the system next.

9.1 The Lilliput System

We now introduce the details of Lilliput starting from the interface with the programmer.

The language used to prepare input documents for Lilliput is based on the Mobile Unity

notation [MR98] that will be translated into a set of Java �les (Figure 9.1). A small

example will help in the description from now on. Figure 9.2 contains the speci�cation of

a simple input system that shows how Lilliput can migrate processes and units, update

code when needed (through injection of new code in existing processes, and disposal of

code out of date), bind variables and execute code units. The example allows a variable

(i.e, x ) with state, to be moved from a process to another on a di�erent host. Once

the variable reaches its destination, code for executing an increment of the variable may

execute. At a later time, the code for the increment needs to be updated with a more

\eÆcient" increment strategy. Therefore, new code is shipped and injected into the remote

process while disposing of the old code.

The system shown (i.e., System Example) consists of three programs. The �rst pro-

gram (i.e., Program Migration) contains a declaration (with keyword declare) of vari-

ables x , and ag, their initialization (with keyword initially) and an assignment section

(with keyword assign) containing two statements labelled with migrate and ship, respec-

tively. The statement migrate speci�es the movement of the variable x from localhost to

process Q on HOST2 and the assignment of the variable ag to true. The statement

ship allows the movement of a statement labelled with increment to the same process Q

Parser

Classes
defining Units

Initial Configuration

Java DocumentUser Program 

Figure 9.1: Translation of the Input Document.
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System Example

Program Migration

declare

x : var integer

ag: var boolean

initially

x = 0

ag = false

assign

migrate: move(x ; localhost;�nd(Q;HOST2)) k ag := true

ship: move(increment ; localhost;�nd(Q;HOST2)) if ag = true

end

Program Increment

declare

x : integer

assign

increment: x := x + 1 if :�nd(increment ;Update; here)

change: destroy(increment ; Increment) if �nd(increment ;Update; here)

end

Program Update

declare

x : integer

assign

increment: x := 2x

end

Components

newProcess(P ;Migration;HOST1;active)

newProcess(Q; Increment;HOST2;active)

newCode(increment;Update;HOST1)

end

Figure 9.2: An example of system as input in Lilliput.

on HOST2. The second program (i.e., Increment) increments a variable x , and contains

another statement to update the code increment once new code for \more eÆcient" in-

crement computation has been received. The third program (i.e., Update) contains the

increment code that is going to be used for the update de�ned above.

In order to understand the meaning of these programs we need to give details on

how this speci�cation is interpreted by Lilliput. Programs are considered \units of

de�nition" of the data and code of the system. Every variable declared with the keyword

var is interpreted as a data unit of the system and a unit is created, using the initial value

assigned in the initially section. In Figure 9.3 we show the data unit, implemented in
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import lilliput.*;

public class DUxMigration extends LilliDU{

public DUxMigration(){

super("x","Migration",0);

}

}

Figure 9.3: The Java representation of the data unit for variable x .

import lilliput.*;

public class CUmigrateMigration extends LilliCU {

public CUmigrateMigration(){

super("migrate","Migration");

vars.add(new Variable("flag"));

}

public void perform(){

LilliEngine e=LilliEngine.getEngine();

LilliDU d=(LilliDU)e.find("x");

e.move(d, "HOST"","Q");

LilliDU d'=(LilliDU)vars.search("flag");

d'.value=TRUE;

}

}

Figure 9.4: The Java representation of the code unit for statement migrate.

Java, that corresponds to the declaration of variable x of program Migrate in Figure 9.2.

The Java class extends a data unit class (i.e., lilliDU from package lilliput), and calls the

constructor with the name of the unit (i.e., x), the program it comes from (i.e., Migration),

and the initialization value (i.e., 0) as parameters1. A similar data unit is de�ned for the

variable ag.

Every statement of the program (i.e., every labelled line after the assign keyword) is

interpreted as a code unit. In Figure 9.4 we show the Lilliput code unit corresponding

to the statement labelled with migrate in program Migration of Figure 9.22. Notice that

1From now on we refer to a data unit with the name of the variable that it represents. This can lead to

ambiguities in case two variables with same name are member of two di�erent units, however this is not

going to be the case in our example.
2From now on we refer to a code unit with the label of the statement that it represents. This can lead

to ambiguities in the case of statement increment , de�ned both in program Increment and Update. We
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all the variables in the code units are appended to a list of variable names (i.e., vars). No

value for variables is recorded in code units as variables are only placeholders to be bound

to actual data units variables. The perform()method contains the actual code of the unit.

First a reference to the local Lilliput engine needs to be determined (i.e., e). Then, a

search by name for the unit is performed on localhost (with find()). At this point the

movement primitive, move(), can be invoked to move the unit d to the new host and then

to the scope of process Q. The statement that in Figure 9.2 is speci�ed after the symbol

k is executed in a sequential manner in the code unit3. The variable flag is updated.

Notice that the search() method used to �nd the flag variable from the list of variables

bound to the code unit, has a di�erent meaning from the method find(), used to �nd the

data unit to be moved. While search() looks only in the list of variables bound to the

code, find() searches for a unit on which a mobility primitive has to be applied (find(),

in fact, may also be used for searching code units and processes that need to be migrated

or replicated).

The declaration of variable x in program Increment and in program Update are not

preceded by the keyword var, and therefore no data units for them need to be created.

This is justi�ed by the fact that x here is only a dummy variable for the de�nition of the

statement increment in the assign section. The increment statement in program Update,

the change statement in program Increment, and the ship statements in program Migrate

are interpreted as code units similar to the one in Figure 9.4.

The Components section contains the initialization setting for the system. In Fig-

ure 9.2 two processes, P and Q are created and placed on location HOST1 and HOST2, in

an active state, respectively, using the construct newProcess. The second parameter of

newProcess is the name of the program from which units being part of the scope of the

process must be taken from. In case of process P , for instance, the units x , ag, migrate,

and ship are put in its scope. In case of process Q only the unit increment is placed in

the scope. The code unit increment of program Update is placed in the host \library" of

HOST1 for future use using the command newCode 4. In Figure 9.5 we show the corre-

will distinguish in this case specifying also the name of the program.
3Semantically, this interpretation of concurrency as interleaved actions is valid: the code unit is executed

in an atomic fashion by Lilliput of the host.
4The construct newData is provided as well in order to allow the creation and location of data units(as

de�ned in the semantics in Chapter 7.
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import lilliput.*;

public class Lilliput implements LilliConstants{

public static void main(String[] args){

LilliEngine lilli= new LilliEngine();

LilliProcess P= new LilliProcess("P","Migration");

LilliProcess Q= new LilliProcess("Q","Increment");

DUxMigration duXM= new DUxMigration();

DUflagMigration duFlagM= new DUflagMigration();

CUmigrateMigration cuMigrateM= new CUmigrateMigration();

CUshipMigration cuShipM= new CUshipMigration();

CUincrementIncrement cuIncrementI= new CUincrementIncrement();

CUchangeIncrement cuChangeI= new CUchangeIncrement();

CUincrementUpdate cuIncrementU= new CUincrementUpdate();

lilli.addInScope(P,duXM);

lilli.addInScope(P,duFlagM);

lilli.addInScope(P,cuMigrateM);

lilli.addInScope(P,cuShipM);

lilli.addInScope(Q,cuIncrementI);

lilli.addInScope(Q,cuChangeI);

lilli.addInScope(Q,cuIncrementU);

lilli.newProcess(P,"Migration","HOST1",ACTIVE);

lilli.newProcess(Q,"Increment","HOST2",ACTIVE);

lilli.newCode(cuIncrementU, "HOST1");

}

}

Figure 9.5: The Java representation of the Components section.

sponding initialization class (i.e., Lilliput) generated from the Components section of

Figure 9.2. The LilliEngine object is created. Two processes and all the units to place in

their scope are created and the scoping relationships are established with addInScope().

Then, the newProcess() method is called to place the processes in the right status and on

the right location.

We suppose that a Lilliput engine is started on every host of the system. Figure 9.6

shows the architecture of a host in the system. Once the units and the processes are

placed on the right initial locations, the system begins its routine operations. The listener

thread waits for incoming entities arriving on the host and puts them in a queue. In the

meanwhile, a spawn interpreter thread gets entities from the queue, and handles their

relocation on the host. The interpreter also takes care of bindings among the variables of
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Figure 9.6: A host of the Lilliput system.

all the units (in the same scope), of enabling of code units for execution (once all their

variables are bound and the process they are in active), of the (non deterministic) choice

of an enabled code unit for execution, and of its execution.

Each code unit can execute simple operations, like the increment of a variable (i.e.

as the increment statement in Figure 9.2), or mobility operations like the move() in the

code unit CUmigrateM. Mobility operations are implemented in Lilliput, and they con-

sist of constructs of migration, creation, replication, and referencing reecting the model

described in Chapter 7.

Going back to our example, consider the initial situation also depicted in Figure 9.7,

where the process P is on HOST1 and Q on HOST2. The interpreter on P will be able to

bind the variable ag in data unit duFlagM with the variable ag in code unit cuMigrateM

(both in the scope of process P). This will allow the code unit cuMigrateM to be enabled for

execution (as P , de�ning the scope for that unit, is active). The code unit cuIncrementI

is also executable, however its guard is always false (until the cuMigrateM sets it to TRUE

while executing). The interpreter on HOST1 chooses non deterministically code units for

execution among the enabled ones. The interpreter will eventually pick up for execution

the cuMigrateM unit. The execution of the unit performs a migration (with move()) of the

sibling unit duXM, if found (otherwise an exception is risen), that will be transferred to

HOST2 and sets the ag to true.

On HOST2, the listener puts the data unit just received in a queue and the local

Lilliput interpreter will place the unit in the scope of process Q , where the unit is

destined. The interpreter on HOST2 was idle as no units were enabled for execution: the

code unit cuIncrementI had unbound variables (i.e., the variable x ) as no data unit was
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Figure 9.7: The initial system con�guration.

present in the process's scope. When the data unit duXM arrives the interpreter is able to

bind the two x of the data and code unit and the code unit becomes ready for execution.

The execution simply performs increments on the value of the variable x in the bound

data unit duXM, changing the actual value in the data unit. When the code unit cushipM

is eventually executed on HOST1 (as the ag now is true) the code unit cuIncrementU

is shipped to the process Q on HOST2, thus enabling the code unit cuchangeI that will

dispose of the old code for the increment so that the new code may be used. In order to

simplify the example we have used a ag to determine when it was time to ship the new

code for the computation of the increment. However, it is possible to re�ne this example

de�ning more sophisticated policies for deciding when it is necessary to ship new code

(i.e., after a request, or after checking some performance parameters). The potential of

Lilliput are discussed further in Section 9.4.

In the next section we describe the architecture of the Lilliput implementation in

details.

9.2 The Architecture of the System

Lilliput has been implemented in Java 1.2 in about 1200 lines of code. The communi-

cation of the hosts involved in the system is handled using the �-Code toolkit [Pic98].

�-Code is a light weight mobile code system with a small set of abstractions to provide the

shipping and the fetching of code and objects across a network of hosts. The integration

of �-Code with Lilliput can be clari�ed considering again Figure 9.6. The Lilliput en-

gine on a host spawns a �-Code thread (i.e., the listener) to listen for incoming elements.

The Lilliput method for the migration of elements outside the host is move(). move()

is implemented exploiting �-Code methods for migrating units/processes to other hosts.
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public class LilliEngine implements LilliConstants{

public void move(LilliElement e, String location, String ProcessName)

public LilliElelement cloning(LilliElement e)

public LilliElelement put(LilliElement e)

public LilliElement neww(Class c)

public void destroy(LilliElement e)

public void activate(LilliProcess p)

public void deactivate(LilliProcess p)

public void terminate(LilliProcess p)

public void reference(LilliProcess p, LilliUnit u)

public void unreference (LilliProcess p, LilliUnit u)

public LilliElement find(String s)

}

Figure 9.8: The Lilliput engine interface.

In case the element to be transferred is a unit, move() instructs �-Code to migrate the

object instanced for the unit and the class describing the unit (i.e., a class like the ones

in Figure 9.3 and in Figure 9.4). Notice that in case of a code unit the object carries no

status for the variables used in the code (as they are only placeholders to be bound on

destination). In case the element to be moved is a complete process, the movement of all

the units in the scope of the process needs to be triggered. The objects of the process

and all the units are moved through �-Code together with all the classes for all the units.

In any case all the binding between data unit variables and code unit variables need to

be severed before migration. This is particularly important in case of referencing to units

in libraries of the host that are not moved together with the referencing processes. The

engine interface is shown in Figure 9.8.

The engine provides the mobility methods available to the programmer. The move()

method has already been described. The two methods cloning() and put() allow replica-

tion of processes and units, with status or without (i.e., with or without initial setting),

respectively. The neww() method creates a new instance of a unit or process, given the

class. This is used to dynamically instantiate classes creating new units or to generate new

processes. reference() and unreference() establish and severe a reference between a unit

and a process. activate(), deactivate(), and terminate() change the status of a pro-

cess to ACTIVE, DEACTIVATE, or TERMINATED, respectively. The destroy() method explicitly

eliminates the process or unit.
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public void run(){

while(true){

engage();

eval();

}

}

private void engage(){

merge();

bind();

enable();

}

private void eval(){

LilliCU c=null;

c=pickUp();

execute(c);

}

Figure 9.9: The Lilliput interpreter thread main cycle.

The Lilliput interpreter main cycle is shown in Figure 9.9. The interpreter �rst phase

is implemented by the engage() method. In this phase the interpreter gets (with merge())

the �rst of the received elements from the queue (Figure 9.6). Then, it puts it in the right

place on the host, either linked to a process or on the host library. The bind() method

binds the variables of the code units to the data units (in the same scope) so to enable

code units for execution. The enable() method then searches for the code units ready for

execution (i.e. the ones in active processes). The second phase of the interpreter consists

in the execution of a code unit. The eval() method uses pickup() to choose one enabled

unit for execution in a non deterministic fashion. Then the execute() method calls the

perform() method of the chosen code unit to actually execute the unit code. The code

may, like in case of the code unit in Figure 9.4, contain migration operations (i.e., move).

If this is the case, �-Code is called to handle the migration process.

9.3 Implementation Details

We now show, using UML class diagrams [BJR99], the main components of the Lilliput

system architecture (Figure 9.10).

Every entity derives from the abstract class Element . An Element has a name, and
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Figure 9.10: The Class Diagram of Lilliput.

a program name (i.e., the name of the program it is derived from). The element also has

a type that will be used to distinguish data, and code units and processes.

The class Constants de�nes the constants of the system, while the class Variable

de�nes a prototype for a variable, with a name and a value. The class Unit and Process

inherit from the Element class. A Unit class carries the attribute container pointing

at the containing process for the unit. The attribute destination is set in the movement

phase when the unit needs to migrate inside a remote process, it carries the name of the

process. The referencedBy list records the processes referencing the unit. Referencing is

the ability to access the contents of a unit without being in the same process context (see

Chapter 7 for details). The clone() method clones the unit. The Process class contains
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the attribute status , i.e., the activation status of the process. The lists dataList and

codeList de�ne references to the contained data and code units, respectively. The gamma

list contains links to the referenced units. The muServer is the local muserver to store the

classes of the units contained. The method clone() clones the process. cloneUndef()

performs a clone with initialization values to variables in the units set. The classes DU and

CU de�ne the abstract data and code units. The inherit from Unit and they are re�ned

in real data and code unit in the Java document output of the front-end of Lilliput (like

in Section 9.1).

The DU class de�nes an abstract data unit. It contains a variable declaration. Every

data unit derived from the program de�ned by the programmer by compilation is an

extension of the DU abstract class.

The CU class de�nes an abstract code unit. It contains the code to be executed (single

statements). It stores a list of variables, that are the variables used in the code statement.

The method perform is implemented by the real code units and will contain the code

to be executed. For simplicity the code can contain arithmetic expressions and mobility

constructs only. The perform method executes the code of the unit. If the code contains

mobility constructs they are invoked on the public mobility methods of the engine on the

host (see Section 9.3.1), containing static methods.

Both code and data unit classes contains a method clone that clones the unit and a

method cloneUndef to clone and set initial values. This is used in order to implement

the put/clone primitives de�ned in the model (Chapter 7).

We now describe the main engine of the system and its classes.

9.3.1 The Engine

The engine is the main element located on each host. The engine class contains structures

used for the evolution of the system. In particular the engine contains:

� the processes list (i.e. the list of processes on the host): plist ;

� the lists of \pending for entering" entities : pending ;

� code units, and data units in the \library" of the host: dataList and codeList ;

� the list of executable code units: executable .
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� the �-Code server muserver used to listen to the incoming elements (and to imple-

ment the move operations).

The engine also implements the methods de�ning the mobility primitives. These meth-

ods are called in the perform() method of the code units.

� move() : to move the entity (unit or process). Implemented on top of �-Code. This

is the only operation involving remote hosts. As we suppose the other operations

only act locally; the method generates a �-Code object (i.e., a group) that will be

sent the engine on the destination site. The destination engine listens for incoming

groups through a �-Code server.

� put() and clone() : to duplicate entities;

� new() : to create an instance of a class or process on the location.

� activate / deactivate / terminate : to change the status of processes;

� destroy : to destroy an entity;

� reference / unreference to reference/unreference a unit: the operation can only

act locally on the host. I.e., if I want to unreference a unit but it is not here the

operation throws an exception.

� newData() : this operation allows the setting to a location of a new data unit;

� newCode() : this operation put a code unit to a location;

� newProcess : it puts a new process to a location.

There are also some auxiliary methods: eliminate() , searchAndRemove() ,

addPending() , and removePending() that we do not describe for brevity.

9.3.2 The Interpreter

The interpreter waits for the engine to put elements in the pending queue, then gets the

elements, puts them in the right lists of the engine, binds the variables, enables the code

units for execution and execute one of them.

We now describe each method in details:
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� engage() . engage() calls two other methods in order to get incoming elements,

merge them to the right lists, and bind the variables. engage uses the following

methods:

{ merge() : this method executes a synchronized method removePending()

of the engine that acts on the pending queue. Whenever the listener puts

something in the queue with the engine method addPending() the interpreter

is woken-up. Then, the elements then are put in the right lists on the engines.

{ bind() : the method is called to stabilize the system after the arrival of new

elements. It binds the variables with the same name contained in two data

units in the same scope and variables with same name in data and code units

in the same scope.

{ enable() : it checks the code units on the site and �nd the ones ready for

execution. That is, it tests if the unit is in the context or it is referenced by a

an active process, and if for all the variables used by the unit there is a binding

to a data unit set. In this case the unit is put in the executable list.

{ handleRemote() : to allow exchanging of messages across the sites. To be de-

veloped.

� eval() : it picks up a statement from the executable list and executes it calling

the method perform() of the code unit selected.

{ pick-up() : select non deterministically a statement for execution for the

executable list of code units.

{ execute(CU c) : calls the perform() method of the statement in the selected

code unit.

There are some auxiliary methods like bindDUDU() , bindDUCU() , bindDUGamma() ,

linkDuvars() , and linkCUvars() .

9.3.3 The Handler

The Handler is called from the �-Code server in order to unpack an incoming group. The

method unpack() gets the element from the received group and put it in the pending

queue.
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9.4 Discussion and Future Work

Mobile agents systems have been mostly implemented in Java [WPM99], with some ex-

ceptions (i.e., Agent Tcl [Gra95], and Telescript [Whi96], Jocaml [CF99]). The choice of

the programming language has often inuenced the system design choices. The unit of

mobility in the Java based mobile systems usually is an object, i.e., the executing agent.

Code mobility in mobile systems is usually limited to �xed class loading mechanisms, most

notably re�nements of the Java class loader (like in Aglets [LO98], Java/RMI [RMI98], or

Web Browsers). In Lilliput the unit of mobility is very �ne-grained, however mobility of

more complex structures, like processes, is allowed and class loading strategies are imple-

mented with code unit migration. Moreover, data and code mobility are at the same level

of the Lilliput abstraction. Therefore, nothing would prevent us from de�ning some sort

of \object loaders", to migrate object status close to the code instead of the usual other

way around.

Lilliput allows all the general mobile agents operations, such as classes and values

sharing among processes (with the referencing mechanism), and replication of resources,

code and agents. At a very �ne-grained level (even single lines) Lilliput also permits code

to be injected into the agent to increase its capabilities, or to replace obsolete behaviors. In

Section 9.1 we showed an example of this, shipping and updating the \increment" strategy

of a remote process.

There are many domains in which features of exibility and dynamic recon�gurability

are important, we are investigating Lilliput applications to domains such as active net-

works, where code needs to be transferred with packets to instruct routers about preferred

routing strategies, or wireless networks, where small devices with scarce resources and

connection need to interact and exchange code and data.

The model at the basis of Lilliput aims to be as general as possible. For instance

referencing of units is allowed across hosts, and cross referencing between processes is

permitted. Once the referencing process and the referenced unit are not on the same

host the unit is not considered as part of the process scope (i.e., no binding is allowed

to that unit). However, references are recorded so that when the process and the unit

happen to be co-located again the binding is automatically permitted. In the Lilliput

implementation we constrained the range for referencing. References are only only local
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between processes and co-located units. Furthermore no cross referencing between pro-

cesses units is allowed (i.e, a process can only reference units on the library of the host,

thus simulating code/data library sharing). References are severed upon migration and

no recording is kept. Nevertheless, we are investigating the advantages and drawbacks

of the implementation (but also formalization) of more general referencing mechanisms,

introducing referencing by type (instead of the used referencing by name), or allowing

remote and permanent referencing �a la Obliq [Car95].

Lilliput binding of variables and search of elements is based on names. Di�erent

strategies, possibly based on types, can be implemented as well. Given the �ne-grained

level and the range of primitives available in Lilliput many security issues rise. \Who

has the right to do what on which element?" is the general question to summarize the

many security problems that the approach has to face, and that have to be investigated.

On-going work on the implementation of Lilliput also involve the development of the

front-end of the system and the automatic mapping between Mobile Unity and Java.

Research on possible languages that embody the decoupling between unit of execution

and mobility have been carried on using XML [BPSM98a]. In [EMF00] an incremental

migration of pieces of XML documents is used for application in the area of management

of big numbers of workstations (i.e., behavioral update) and code distribution on thin

clients: we describe this work in the next part of this thesis.
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Summary

Code mobility is generally perceived to take place at the level of agents and classes. The

model presented in this part adopts an unusually �ne level of granularity by considering

the mobility of code fragments as small as single variables and statements. Our primary

goal was to demonstrate the feasibility of specifying and reasoning about computations

involving �ne-grained mobility. Nevertheless the study has been instrumental in helping us

develop a better understanding of basic mobility constructs and composition mechanisms

needed to support such a paradigm. Composition and scoping emerged as key elements

in the construction of complex units out of bits and pieces of code. The need for both

containment and reference mechanisms was not in the least surprising given current ex-

perience with object-oriented programming languages but it was refreshing to rediscover

it coming from a totally new perspective. The distinction between the units of de�nition,

mobility, and execution proved to be very helpful in structuring our thinking about the

design of highly dynamic systems. The necessity to provide some form of name service

capability in the form of the �nd function appears to align very well with the current

trend in distributed object processing. The resulting model shown in Chapter 7 is unique

in its emphasis on veri�ability and novel in its usage of cascading reactive statements, a

construct akin to event processing but much more general. These features are, to a very

large extent, the direct result of our attempt to reduce the programming notation we o�er

to the semantics of Mobile Unity.

The granularity of the movement in process algebra is based on the notion of process

(i.e., computation code) that is the actual unit of mobility. As we also said in Chapter 1,

extension of this idea have been devised: Ambient calculus [CG00] and Seal calculus
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[Vit99] introduce an explicit notion of environment (ambients in Ambient calculus and

seal in Seal calculus). Environments de�ne the computation scope. The unit of mobility

is the environment that can carry computations and other environments while moving.

Environments are unit of execution and of mobility at the same time as they rely on

the notion of process common to the process algebra based languages. The approach

presented in this part focuses on the decoupling on unit of mobility (i.e., the unit) and

unit of execution (i.e., the process) in order to separate mobility related issues from more

execution related issues like activation/deactivation status. We, therefore, provide speci�c

operations (activate, deactivate, terminate) to act on the execution state of processes.

We can see possible future work in the security �eld also at this level of �ne-grained

mobility, especially in terms of resource access constrains: a �rst step could be adding

operators constraining the visibility of units (as we discussed in Chapter 8).

Subjective and objective mobility of entities is an other security related issues, as it

has to deal with access rights to entities: Ambient calculus is based on subjective mobility,

i.e., every environment can decide to move with its content whenever it wants to, while

Seal calculus prohibits this behavior for security reasons. In Seal calculus the environment

decides on the movement of the contained entities (objective mobility). In our model the

move construct is invoked in a code unit, that, to be executed should be part of an active

process. The move can act on other entities, on the containing process, and on the code

unit itself. We did not want to constrain the model assuming for instance that the move

can only act on inactive processes, or it can only move local entities, or it cannot act on

itself. All these constrains can be formalized on top generating a set of re�ned models

that �t di�erent purposes.

One of the main aims of the work presented in Chapter 7 and 8 is to provide basic

operations for mobile code systems. All the formalisms considered provide more or less

explicit mobility constructs: in �-calculus mobility is much more implicit than in Ambient

calculus, though. Ambient calculus also provides an open operation able to dissolve the

boundaries of an environment. Seal calculus does not provide that operation for security

reasons. We do not provide an open operation as it can be built on top of the basic

primitives of the model. In fact an open can be formalized as a movement (i.e., move) of

all the contained entities of a process and of a destroy of the process itself. We specify basic

movement operations for entities of di�erent granularity (i.e., data, code, and processes).
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The two cloning operations (i.e. put and clone) di�er depending on initialization value of

the copied entity. All the process algebra based models exploit the replication construct

(.e., !) to formalize cloning. No notion of initialization values is provided.

Resources handling happen to be a fundamental issue in mobile code setting: we

provide an operation to establish references to resources. Ambient and Seal calculus rely

exclusively on the notion of scoping de�ned by the environment hierarchy for handling

resources sharing: in our model processes act as containers and scope boundaries, however

an explicit operation is provided (i.e., reference) to allow more general sharing that can

be modeled by the designer.

In Chapter 9 we have presented a prototype of the �ne-grained model, showing the

implementability of the approach, in the next part we show how these ideas are embodied

into an XML based approach. We will also describe some applications of the �ne-grained

approach.
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Chapter 11

Active Documents

In this part we use established tehcnologies to embody the �ne-grained mobility of code

strategies investigated in the previous chapters of this thesis.

In this chapter we introduce a recent technology (XML) and the way we have exploited

it to be able to display formal notations on Internet Browsers. We show how the approach

is used for formal notation display, in particular for Z [Spi92] documents display, enriching

XML [BPSM98a] documents with customized code with \displaying power". the way in

which the displaying is encoded and used is a �rst and simple attempt to add \activity" to

XML documents. Active objects linked to the XML documents are loaded when needed in

a very recon�gurable and exible manner. Our �rst use of the approach was for displaying

purposes. We describe this next.

11.1 Managing complex documents over the Internet

In the last years, we have seen the WWW being slowly transformed from an environment

for sharing documents and data among members of specialized communities (be they scien-

ti�c, research, artistic, social ones, etc.) to a general-purpose new medium for advertising

and marketing commercial enterprises to the public at large. Since commercial use has a

larger impact and therefore power on the advances of the medium, the speci�c needs of

specialized communities have been overlooked in the further development and advances of

this new medium.

For instance, the use of the WWW as an environment for software design introduces

new problems and challenges: the use of the WWW to support software process workows,
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sharing speci�cation documents, allowing to read and write them, and providing hyper-

textual links among documents is felt as a hot topic [KDJY97, SN97], but little speci�c

aid to software designers is available on the WWW at large.

A very important need that many communities of engineers have is the support for

special notations that are current or even absolutely necessary within that community.

Currently the Web is very poor in supporting special notations. The typographical render-

ing of WWW documents is usually de�ned using the HTML mark up language; currently,

it is the basis of most intranet document management systems [Ban97, Res97]. In its

many versions, HTML provides textual support for elements such as input �elds, buttons,

choice lists, etc. along with structural and formatting commands for text within the data

format of network documents, and, of course, the hyperlinking capabilities that gave it its

name.

It has been extremely important that HTML allowed both complex interfaces and

proper and traditional text content to be described in ASCII-based source documents.

HTML has shown the way that text-based support for non-textual content eases under-

standing, tool creation and debugging of applications that deal with it. Furthermore,

they allow a complete intermix of di�erent concerns, such as interface elements and text

characteristics, thereby fostering the creation of complex interfaces that are at the same

time rich in content and sophisticated in their interaction with the user.

On the other hand, HTML is limited in that it has only a small set of allowable

elements, that is, only those that are explicitly de�ned in the standard. Whenever some

authors' needs exceed the capabilities of the elements already de�ned in HTML, a di�erent

approach needs to be used: either the existing tags are abused for a di�erent purpose than

that for which they were designed, or an image is used, or a Java applet is created providing

the desired functionality.

These kludges have obvious and well known drawbacks, that have lead to the devel-

opment of many alternative (and partial) solutions. For instance, Cascading Style Sheets

(CSS [LB97, BLLJ98]) allow authors to separate the e�orts to specify special graphic ef-

fects and the structure and determination of the actual content of the document, allowing

complex typographical rendering to be built on top of still readable plain HTML docu-

ments. XML [BPSM97] is another tentative in that direction: instead of forcing authors to

the limited and closed set of pre-de�ned elements, XML is a meta-markup language that
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allow authors to de�ne their own sets of markup elements that are most appropriate to

the speci�c class of documents they are dealing with. Adjunct languages (XSL, XPointer,

XLink [MD98]) are used by authors to associate these elements to some rendering or link-

ing semantics for their display on paper or screen. This allows a de�nitive separation

between the description of structures and roles of the documents and the description of

their graphical rendering on a computer terminal or on a high resolution printer.

Neither solution is currently completely satisfying for supporting specialized notations

because both are only concerned with supporting text-oriented content only. Many no-

tations have sophisticated need that go well beyond texts. For instance, speci�cation

languages like Z [Spi92] are often based on specialized notations (mathematics and logic

symbols): it would be useful to be able to give a visual interpretation of these symbols

and to allow them to be displayed on WWW pages.

The purpose of this section is to report on a Java rendering engine for XML data that

we have implemented. The engine allows standard typographical support for text-oriented

XML documents, as well as extensible graphical support for additional needs, in particular

for specialized notations. We have created a complete graphical and typographical support

for formal speci�cation documents written in Z. The rendering engine we are describing

works as a completely autonomous applet inside unmodi�ed Java-enabled browsers such

as Netscape Communicator or Microsoft Internet Explorer.

11.2 Creating Z speci�cations

Several tools exist to this date to help software designers to write, test, and share docu-

ments containing their Z speci�cations. A complete guide to all the existing tools for Z

can be found in the site http://www.comlab.ox.ac.uk/archive/z.html.

We can divide the available tools into four main categories: fonts, browsers, editors,

and type checkers.

True Type fonts for Z are available to use with common word processors on many

platforms including Windows and Macintosh, but fonts of course only give access to the

special mathematical characters of the Z language, forcing users to use non-speci�c features

of available tools to create the graphic boxes of schemata and other Z elements.



144 Chapter 11. Active Documents

Customizable formatters such as LaTeX [Lam86] are the most common tools to write Z

speci�cations. General style �les for LaTeX, such as oz.sty, fuzz.sty, ztc.sty, have

been published to precisely render Z speci�cations.

Logica has created a syntax-driven WYSIWYG editor for Z on MS Windows platforms.

Such an editor also integrates a type checker and forces the production of well-formed Z

speci�cations by providing facilities for building, editing, checking, and viewing Z speci�-

cation documents. Being WYSIWYG, the editor can display the Z constructs and symbols

as they would appear on a printed page.

The paper [M+95] describes the Z Browser, an application for displaying Z speci�ca-

tions running on MS Windows. Such a tool is aimed at Z novices, and is integrated with

a complete help system for Z grammar and notation, thus it supports the construction,

syntactical check, and visual layout of Z documents.

Several analysis tools also exist for Z speci�cations. For instance, CadiZ [Jor91] is an

integrated suite of tools for creating Z documents. It understands source �les in LaTeX

and Word for Windows, and can visualize implicit Z expressions (i.e. schema calculi) by

showing their expansions.

Finally, the ZTC [Jia94] type checker accepts LaTeX-formatted Z speci�cations as well

as text-based ones. ZTC also suggests using a special syntax based on concatenation of

ASCII characters for mathematical symbols.

In summary, it is clear that Z is a highly structured notation both graphically and se-

mantically complex, and that writing, checking, and displaying Z speci�cation documents

is yet an unsolved issue.

11.2.1 Hypertext and Z speci�cations

There are several good reasons to provide hypertext functionalities to Z speci�cations. A

complex speci�cation is intrinsically composed of many connected chunks (schemas, etc.)

that refer to each other in a peculiar, often unpredictable way. Furthermore, the idea of

literate programming [Knu84] requires that schemas and texts interleave freely, so that

the reader is provided with a narrative explanation of the most complex schemas, and a

formalized and exact speci�cation of vaguer descriptions. These remarks naturally call for

a hypertext solution.
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Moreover, collaboration and sharing are even better reasons for providing hypertext

support to Z speci�cations: formal speci�cations are but one step in the complex process

of system design, veri�cation, and implementation [FKV94]. Modern development pro-

cesses are enacted by teams of people that cooperate, interact, and discuss. Being able to

create, access, and verify formal speci�cations within the usual tools of our everyday work,

publish them, connect them to the other deliverables of the design and implementation

processes would allow a tighter integration between formal design and actual implemen-

tation [CFR97].

Till recently, Z speci�cations could only be visualized on the WWW by creating images

in one of the supported inline formats, such as GIF. This leads to a very cumbersome and

unnatural creation process, since the Z speci�cations have to be created in a di�erent

environment than the text, and furthermore non-specialized graphic editors have to be

used and restrained in order to produce graphically acceptable schemas. It is also a very

unnatural and clumsy way of accessing to the information: an image of a schema is a

completely opaque object, where the subparts, the texts, the formulas are completely

inaccessible; it is a bitmap that cannot be further processed because the content and

meaning have been lost: the content of a schema cannot be searched, the speci�cations

cannot be indexed, analyzed or veri�ed.

A �rst attempt to show Z speci�cations on the WWW was described in [MAS97],

designing a plug-in for Netscape and Internet Explorer that accepts Z speci�cations written

using one of the existing LaTeX styles.

Although this approach is very original it has two main limitations: �rst, visualizing

Z documents requires the availability of the plug-in, which is architecture-dependent (it

only exists for MS Windows). Secondly, the LaTeX format is alien to the available SGML-

based formats suggested for the WWW: in fact, writing Z schemas in LaTeX requires a

di�erent syntax and approach than writing the surrounding free-ow text in HTML, and

the speci�cations live independently of the host document. The �rst problem has been

addressed: the Z browser is becoming a Java applet, which is architecture-independent

and can be run on most computers of the current generation.

J. Bowen and others in Reading are working on a Java applet to visualize Z schemas

[BC98]. Our approach, detailed in section 11.5, is related but with relevant di�erences.
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11.2.2 The advantages of markup languages

HTML has been extremely successful in allowing unsophisticated network users to be-

come authors of fairly complex documents, even in the absence of widespread editing

tools. Nonetheless, there has been in the past two or three years a widespread aware-

ness ([SMG94]) that HTML has reached its potential, and that a change of paradigm was

necessary.

The major drawback of HTML is that it allows only a pre-speci�ed set of elements.

Authors can only use these elements, and have to limit their authoring needs to what is

available within the existing language, or to force these elements beyond their intended

meaning.

HTML is an application of the Standard Generalized Markup Language [SMG94],

that is, a class of documents conforming to the SGML Document Type De�nition (DTD)

that describes \HTML documents". SGML, being a meta-language describing classes of

documents rather than one speci�c class, is free of the above mentioned limitations of

HTML: by appropriately creating a custom class of documents, and de�ning the legal

elements therein, authors can provide support for any kind of rhetoric need, however

complex and arcane.

Unfortunately, SGML is considerably more complex to learn and design documents

with than HTML, and it has been felt that this would prevent its generalized adoption.

Therefore the SGML working group of the Word Wide Web Consortium was asked to

develop a new mark-up meta-language, namely the Extensible Markup Language (XML)

[BPSM97], to take the place of SGML on the Web. XML documents would have to be

straightforwardly usable over the Internet, compatible with SGML, and easy to create.

There are several standards being developed within the XML framework: the most

important is XML itself, a meta-markup language that allows user to create their own set of

elements for their class of documents. XPointer and XLink [MD98] extend HTML linking

mechanism by providing external speci�cations of locations, multiple links, external links,

etc. XSL [CD98] associates rendering behavior (e.g. character and paragraph settings)

to XML elements through a mapping and rewriting language. XML-Namespace [BHL98]

allows elements coming from di�erent namespaces (document types, for instance) to live

together in the same document. Very important is MathML [IM98], a markup language

for mathematics, formerly part of the unborn HTML 3.0 and subsequently detached in
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an autonomous standard �nally converted into XML. MathML covers most needs for

mathematical rendering, and is capable of showing most of the strange glyphs that are

part of the Z language, but is not thought for Z and does not provide support for other,

more speci�c needs of the Z notation.

Interestingly, in the Z community an SGML-based language for Z speci�cations already

exists: the Z Interchange Format (ZIF for short) [BN92] de�nes a portable representation

of Z, that can be used by all tools supporting SGML. The ZIF is basically a Document

Type De�nition (DTD), namely an SGML speci�cation de�ning the syntax of documents

that contain Z speci�cations. In [GC95] a study of the usage of the ZIF was presented,

according to which ZIF can be fruitfully used to create editors for Z documents using

standard SGML tools, and that Z speci�cations encoded using ZIF could easily be included

in other SGML documents.

XML documents are valid SGML documents. Most existing SGML DTDs can be used

with no modi�cations in an XML environment. Notably, the Z Interchange Format is one

of such DTDs.

It is therefore possible to use the de�nitions speci�ed in the ZIF within XML tools, in

order to create web-friendly visualizations of Z speci�cations. Alternatively, XML tools

allow the HTML tag set to be described and extended as needed. By joining the HTML

DTD with the ZIF DTD, and producing a capable browser, it is possible to write HTML

documents that contain Z speci�cations as markup items, instead of images, thereby keep-

ing all the useful properties that markup has over bitmaps.

In this chapter we report about one such tool, that allow the display of text-based XML

documents enriched with Z speci�cations. This mechanism can obviously be extended to

handle the display of any kind of notation within a XML document.

11.3 Displets and markup languages

Displets were proposed in [VCB97] as a way to extend HTML documents using Java. The

HTML language was extended on a per-document basis by de�ning new tags as needed,

and providing Java classes to take care of their graphical display. While not providing all

the functionality and exibility of a full meta-mark up language such as XML (Sect. 11.2),

HTML extended with displets could allow all kinds of specialized notations and graphical
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e�ects while at the same time leveraging over the existing and well-known set of elements

de�ned by HTML.

Our �rst experiment with rendering arbitrary, non-text-based mark up extensions

[VCB97] was to modify an existing browser to allow the parsing and the visualization

of new HTML-like elements. To do so, we took an early version of the HotJava browser,

whose source code was freely available, and modi�ed it so that it could accept on-the-y

extensions of the HTML DTD and load the appropriate classes (called displets) whenever

the newly de�ned tags were to be displayed. That experiment was extremely limited, in

that we used an old version of the Java language, and worked only on a speci�c version of

a speci�c browser. Furthermore, we heavily relied on the existing rendering architecture

of the browser and just provided a minimal e�ort implementation (basically a displet was

just a sequence of drawing instructions for the visualization of the elements).

In [CRV98], on the other hand, we reported about the DispletManager applet, a gen-

eral, extensible rendering and architecture we have been working on, which can be used

for both extensions to HTML and straight XML documents. This architecture is embod-

ied in a Java applet that can be run within any Java-enabled browser such as Netscape

Communicator or MS Internet Explorer.

Fundamental design requirements for the rendering engine have been:

� it must be possible to create special code for rendering arbitrarily odd data types,

in particular non-textual data (displets).

� all displets must easily integrate with each other: a chart element may have a math-

ematical formula as one of the labels, and some sta� notation as another, where

some notes may act as hypertext links.

� the rendering engine must work both for extended HTML and for straight XML,

and the displet classes must be identical.

Figure 11.1 shows the general structure of the DispletManager applet:

The document chunk to be displayed, be it HTML or XML, is loaded by the displet

manager and parsed by the appropriate parser. The resulting tree is then recursively

(depth-�rst) analyzed: the appropriate displet classes are activated to create the rendering

(i.e., the display object) of their element on the basis of the rendering of their sub-elements.
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Figure 11.1: The general structure of the DispletManager applet

No class is allowed direct access to the screen: on the contrary, each displet creates a (set

of) o�-screen bitmap(s) that its ancestor can pass, ignore, modify or add to.

Several specialized browsers exist for XML-based special notations. For instance, We-

bEQ for MathML [Web] and Jumbo for CML, a XML-based notation for chemical data

[Jum]. Although a specialized browser would have probably been more eÆcient and so-

phisticated for Z elements, too, we felt that a general rendering engines for all kinds of

notation was preferred, leading us to a more general and extensible architecture for Z and

other needs.

11.3.1 Applying displets to XML documents

The XML language allows authors to de�ne their own set of elements (tags) to structure

and organize their documents. Of course these elements do not have a pre-de�ned meaning,

nor even a pre-de�ned visualization. For instance, while it is known that the \H1" element

in HTML has both a structural role (the heading of a �rst level section) and a graphical

rendering (use a large font and align it on the left), a corresponding \major-heading"

element in a XML document would have no machine-understandable structural role (but

this is not a problem), nor a known graphical rendering (we can not even determine

whether the element is a block, a paragraph or an inline element).
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The XSL [CD98] language is used for associating rendering information to an XML

document. Each XML document that needs to be displayed on screen or on a printer

would have a XSL document associated. The XSL document contains a series of \rules"

mapping the XML elements of the document to one or more ow objects (i.e., graphical

objects such as blocks, paragraphs and inline texts).

Although in XSL the set of available ow objects is �xed, we allow the speci�cation of

new ow objects, that can be speci�ed in the rules just like the standard ones. Each ow

object corresponds directly to a displet class.

What follows is an example of a simple XML document contained in the DispletMan-

ager applet and its associated XSL style rules. The style sheet refers to two ow objects:

a standard paragraph object (belonging to the CSS family of ow objects available within

the standard XSL proposal), and a special \reverse" ow object that is prepared as a

displet by the author of the document:

<applet code="DispletManager.class" width=500 height=200>

<param name = "style" value = "

<xsl>

<rule>

<target-element value='para'/>

<css.div font-size='12'>

<children/>

</css.div>

</rule>

<rule>

<target-element value='rev'/>

<example.reverse>

<children/>

</example.reverse>

</rule>

</xsl> ">

<param name = "XMLcode" value="
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<para>This is an example of a text rendered in

<rev>reverse</rev></para>

">

</applet>

The DispletManager applet for XML has two arguments: the �rst contains the style

sheet document according to the XSL rules, while the second one contains the XML

document that has to be displayed, using the elements that are described in the XSL style

sheet associated.

Upon loading the applet, the displet manager will start the XSL engine and read in the

'style' parameter. This is parsed (by a XML parser, because it is itself a XML document)

and organized. Then the \XMLcode" parameter is read and parsed by the same XML

parser, creating a tree of elements and data.

The XSL engine will then match each element in the XML document with the pattern

contained in each XSL rule. When the most suitable match has been found, the rest of

the rule (the action part) is executed, creating the ow objects listed and feeding them

their content (usually the rendering of their subelements, as speci�ed by the <children>

tag).

In this example, the 'para' element of the XML document matches the �rst XSL rule,

triggering the creation of a 'div' object of the standard CSS package (a paragraph) with

a speci�c parameter (font-size=12), fed with the children of the element (i.e., the words

and the elements contained within the para tags). Then the 'rev' element is considered,

and matched to the second rule of the stylesheet, triggering the creation of a 'reverse'

object belonging to the 'example' package, fed with its content. As soon as the rendering

of its content has been readied (by creating the necessary bitmaps), the displet class

corresponding to the ow object is activated.

Each displet will then produce a (list of) bitmaps of its content. For instance, the 'div'

displet of the CSS package will set a few parameters (such as margins, line spacing, font,

and size) that may a�ect its sub-elements, wait for the XSL engine to return control after

its content has been readied, and build its own content by combining the bitmaps of each
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Figure 11.2: Rendering a simple displet

word into lines according to the given constraints. Figure 11.2 shows the above mentioned

document results on screen:

11.4 The Rendering Engine

The rendering engine used by the DispletManager applet consists of a set of Java classes

that provide the rendering for the appropriate document elements. These classes are

all subclasses of the DocElement class, which provides the framework of the rendering

procedure.

All classes provide a createBitmap() method, whose purpose is to create and return

the bitmap of the ow object of the considered mark up element on the basis of the bitmaps

of its sub-elements. The createBitmap() method is usually not seen by the implementer

of new classes, and provides the following functionalities:

� an active drawing environment is managed. The drawing environment is a set of

parameters that are used by the rendering methods of the classes in order to decide

how to create the bitmaps. For instance, a paragraph-like class may set some pa-

rameters that will be used by itself, such as margins, line spacing, alignment, etc.,

and some that will be used by its sub-elements, such as font name, font size, font

color, etc. The createBitmap() method allows a displet to set its own attributes

with the setParams() method, and restores the previous situation when the displet
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is �nished. Since createBitmap() methods are recursively activated, this creates a

stack that provides the proper parameters at any level of recursion.

� the rendering of sub-elements is managed. The presence/absence of the element in

the XSL rule may cause or prevent the rendering of the sub-elements of the current

element.

� the rendering of the element is managed. After the bitmaps of the sub-elements of

the element have been created (if appropriate), the createBitmap() method calls

the render() method, which in turn creates the �nal bitmap (or set of bitmaps)

that will be returned. Di�erent classes will implement render() di�erently: for

instance, the render() method of a block element will collect the bitmaps of its

sub-elements in a vertical stack (one above the other), and provide a single bitmap

of the whole element, while the render() method of a paragraph will collect its

sub-elements side-by-side in lines of the given width, and provide a bitmap for every

line it has created; this allow the element containing the paragraph to decide how

much of the paragraph to display at a time (for instance, in case of scrolling).

� active elements are speci�ed and created. Active elements are those that will need

to react to user and system events after they have been displayed. For instance,

form elements and anchors have an associated behavior that is activated when the

user selects them.

Figure 11.3 shows the inheritance structure of the classes of the module library:

DocElements can either be data, entities or tag elements. DataElement classes are used

for the content of mark up elements, i.e., #PCDATA in SGML and XML DTDs. They

can either be text or hidden elements. EntityElements are provided for the management

of XML and HTML entities such as &amp; or the de�nition of new ones. TagElements

are used for the creation of the structure ow objects of the document: they are either

ow objects, block objects, inline elements or special elements.

� A block element is a single object that stands alone in the vertical layout of the

document. Paragraphs or tables are block elements. A ow element is a block

element that is built piecemeal: while plain block elements are built from start to end

before the createBitmap() returns, ow elements build each of their sub-element
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Figure 11.3: The inheritance structure of the module library

and return, and are called as many times as there are sub-elements. This allows

long and complex elements to be rendered only for the possibly small section that is

actually displayed. For instance, HTML and BODY are considered ow elements,

so that the display of an HTML document can start as soon as the �rst object is

completed, and be interrupted when the available display space is �lled.

� Inline elements are elements that can be put side by side with their siblings. Inline

elements are used within block elements and may be text-based, images or something

else. The StyledText class allows the speci�cation of text runs of arbitrary styles.

Inline elements specify the places where they can be broken by creating as many

bitmaps as break points. This allows the containing paragraph or block element to

determine where the line should be broken.

� Special elements are completely tailorable. While in the previous classes displet

programmers can only overload the setParams() and render() methods, here all

methods are overloadable, and can be customized.

As an example, this is the complete source code of the 'reverse' displet:

package example;

import displet.*;

public class reverse extends StyledText {
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public void setParams(StyledTextParams p) {

Color c = p.fgColor;

p.fgColor = p.bgColor ;

p.bgColor = c ;

}

}

The reverse displet is a subclass of the StyledText, which is a subclass of the InlineEle-

ment class. These are classes for text-based objects that behave as in-line elements (eg.

bold, italic, etc.). As it can be seen, the programmer of such a displet only has had to

specify a parameter and have the render() method of its superclass handle all the details.

The displets for showing Z speci�cations are shown in the following section.

11.5 The Z browser

The main extension to HTML we have considered using displets is the implementation of

the complete ZIF DTD. Authors writing Z speci�cations can create documents containing

their Z speci�cations in a markup language similar to HTML and completely intermixable

with plain text and other HTML features such as links, tables, etc.

The ZIF format de�nes several elements (tags) for the building blocks of the language,

such as schemas, de�nitions, etc., and several entities (literal macros) for the special

characters inherited from mathematics and logics. Each element is implemented by a

displet that creates a bitmap where the content of the element is appropriately composed

and the graphical elements such as boxes, lines, etc. are then added. Entities on the other

hand are elements of a graphical alphabet that is contained in a single GIF image and is

loaded with the displets.

The following is an example of a Z schema using the Z Interchange format:

<givendef>

NAME, DATE

</givendef>

<schemadef>

BirthdayBook

<decpart>

<declaration> known: &pset; NAME</declaration>
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<declaration> birthday: NAME &pfun; DATE </declaration>

</decpart>

<axpart>

<predicate>known = &dom; birthday</predicate>

</axpart>

</schemadef>

A schema is de�ned by a tag called schemadef, which contains three elements: the name

of the schema, a declaration part and an axiom part. The declaration part contains one

or more declarations, and the axiom part contains zero or more predicates. Appropriate

ordering and nesting of elements is enforced by the DTD, and is checked when parsing the

document. The notations \&pset;", \&pfun;" and \&dom;" are three entities (respectively,

the partial set symbol, the partial function symbol and the domain symbol) that will be

substituted by the corresponding element in the graphical alphabet containing all the

relevant Z symbols. The displet manager can appropriately show document bits as the

previous one in a WWW browser.

Since many Z speci�ers use LaTeX to produce their Z documents, we have developed

an o�-line translator called \Zed2XML" that transforms Z speci�cations written in LaTeX

using style oz.tex into a corresponding HTML document with the appropriate extension.

For instance, given the following Z speci�cation (the basic birthday book example

from [Spi92]):

corresponding to the following LaTeX source document:

\documentclass[italian,12pt,twoside,openright]{report}

\usepackage{amsfonts}

\usepackage{oz}

\begin{document}

\begin{zed}

[NAME, DATE]

\end{zed}

\begin{schema}{BirthdayBook}

known: \power NAME\\
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birthday: NAME \pfun DATE

\where

known = \dom birthday

\end{schema}

\end{document}

The Zed2XML application transforms the previous LaTeX example in the correspond-

ing applet speci�cation:

<applet archive="displet.zip" code="XMLManager.class" width=450 height=200>

<param name = "XMLcode" value="

<givendef>

<a name="name">NAME</a>,

<a name="date">DATE</a>

</givendef>

<schemadef>

BirthdayBook

<decpart>

<declaration>

known: pset; <a href="#name">NAME</a>

</declaration>

<declaration>

birthday: <a href="#name">NAME</a> pfun;<a href="#date"> DATE</a>

</declaration>

</decpart>

<axpart>

<predicate>

known = dom; birthday

</predicate>

</axpart>

</schemadef>

"> <param name = "style" value="

<xsl>

<import name="htmlcss.stl"/>
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<import name="Zpackage.stl"/>

</xsl>

"></applet>

The output of Zed2XML is the HTML speci�cation of the DispletManager applet. As

it can be seen, we are following the ZIF format quite strictly. For the sake of brevity and

reusability, standard stylesheets are used and invoked by a simple import command in the

speci�cation of the applet.

The 'htmlcss.stl' document contains the XSL rules to use HTML elements within

XML documents. For instance, we are using here HTML links with the A tag. This is the

relevant excerpt from the 'htmlcss.stl' document:

<rule>

<target-element type="a">

<attribute name="href" value="%2"/>

</target-element>

<css.a href="%2">

<children/>

</css.a>

</rule>

The 'Zpackage.xsl' document contains the XSL rules to use the Z displets within XML

documents. This is an excerpt from this stylesheet:

<rule>

<target-element type="givendef"/>

<zpack.givendef>

<children/>

</zpack.givendef>

</rule>

<rule>

<target-element type="schemadef">

<zpack.schemadef>

<children/>

</zpack.schemadef>
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Figure 11.4: Visualization on the WWW of a Z schema

</rule>

When run on a WWW browser, the previous documents is shown as in Figure 11.4.

We remark that all displets integrate with each other and can refer to each other freely.

In our case, the Z schema contains a hypertext link described in a di�erent package. Z

elements and plain text based XML elements freely intermix: it is possible to put standard

HTML tags within Z schemas, for instance an author may require that some declarations of

a schema are written in bold. The Zed2XML translator automatically connects types used

in declarations to their de�nitions using plain HTML links. The author may freely add or

modify the available links and HTML features, and include additional HTML elements,

as well as native XML elements or elements belonging from other packages of displets.

In the next chapter we show how the XML based approach allow very exible handling

of code and data bindings.
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Chapter 12

Incremental Code Mobility and Applications

The increasing popularity of Java and the spread of Web-based technologies are contribut-

ing to a growing interest in dynamic and recon�gurable distributed system architectures.

Such recon�guration can be achieved with code mobility, transferring fragments of code

across the network, from one host to another. Code mobility is generally associated with

Java, where byte code representations of classes can be loaded from remote hosts.

The potential mobility range is however wider, starting from simple data mobility,

where information is transferred. Simple examples are the actual parameters that are

passed to a remote procedure call or the web page that is returned to a get request in the

HTTP protocol. At a level above this, code mobility allows the migration of executable

code: browsers loading applet classes from remote servers are very common examples of

code mobility. Java-based technologies, for instance, Java RMI [RMI98] and Java Virtual

Machines, such as those built into Web browsers, o�er a mobility granularity at a class

level. Mobile agents [WPM99], in which code and data move together, can be considered

the highest level of mobility that can be achieved in a logical context.

Several application domains need a more exible approach to code mobility then can

be achieved with Java. This exibility can either be required as a result of low network

bandwidth or scalability. The 9,600 baud bandwidth between a server and a GSM mobile

phone cannot cope with downloading large amounts of Java byte code from a server.

Scalability requirements can mean for example, that applications on several thousand

clients have to be kept in sync or that tasks are so computationally intensive that they

need to be distributed across multiple processors. These processors need to be instructed

in a exible way.
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In this chapter we show how to achieve more �ne-grained mobility than in the ap-

proaches that are based on Java. We demonstrate that the unit of mobility can be

decomposed from an agent or class level, if necessary, down to the level of individual

statements. We can then support incremental insertion or substitution of, possibly small,

code fragments and open new application areas for code mobility such as management

of applications on mobile thin clients, for example wireless connected personal digital

assistants (PDAs), user interface construction and inconsistency management.

This work builds on the formal foundation for �ne-grained code mobility that we

presented earlier in Part II. There we develop a theoretical model for �ne-grained mobility

at the level of single statements or variables and argues that the potential of code mobility

is somehow hidden behind the capability of the most commonly used language for code

mobility, i.e., Java. In this chapter, we share that vision and focus on an implementation

of �ne-grained mobility using standardized and widely available technology.

In this chapter we give a description of how to use the eXtensible Markup Language

(XML) [BPSM98a] to achieve exible, �ne-grained and incremental code mobility. In Sec-

tion 12.1, we discuss related work, most notably XML and other approaches to logical

code mobility. In Section 12.2, we show how XML supports the de�nition of high-level

languages and how incremental code mobility can be de�ned with XML. In Section 12.3

we demonstrate how the implementation of mobile code systems supported by o�-the-shelf

XML products. The construction of interpreters for high-level languages is simpli�ed by

XML parsers and the Document Object Model (DOM) [ABC+98]. XML parsers construct

abstract syntax trees of the XML document and the DOM standardizes an interface for

traversals through abstract syntax trees. Section 12.4 we argue that �ne-grained mobil-

ity has the potential for a set of application areas such as consistency management in

distributed documents, user interface development, and management of applications on

mobile thin clients. We give examples of the application of our approach in these areas.

Section 12.5 evaluates the approach and identi�es strengths and weaknesses.

12.1 Overview of XML and Logical Mobility

Physical mobility is concerned with the physical movement of hosts, such as notebooks,

PDAs, mobile phones and wearable computers. Logical mobility is the ability to transfer
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data and/or code from one host to another by using a network. This chapter focuses

on logical mobility, though the approach is also applicable to information that transits

between physically mobile hosts; in fact, Section 12.4 discusses how our work can be

applied to manage applications deployed on PDAs. Logical mobility encompasses data

and code mobility.

Data mobility is a very common mechanism and often used to exchange or spread infor-

mation among di�erent hosts distributed on a network. Data mobility can be achieved by

passing parameters to remote procedure calls, object requests or the put and get operations

of the �le transfer protocol. With the introduction of the Internet and the World-Wide-

Web the Hyper Text Markup Language (HTML) has been used as the predominant format

for data that moves between hosts on the Internet.

XML [BPSM98a] is the next generation markup language for the Internet. XML is a

subset of the Standard Generalized Mark-up Language (SGML) [ISO86]. Unlike HTML

both XML and SGML allow users to de�ne their own set of mark-up tags for structuring

documents. These user-de�ned mark-up tags are de�ned in document type de�nitions

(DTDs). A DTD is a context free grammar that de�nes the syntax of documents. XML

documents always declare a reference to their DTD in order to enable generic parsers to

obtain the speci�cation of the grammar. Thus with the advent of XML, di�erent formats

for transferable data can be de�ned. Many di�erent DTDs have been standardized to

encode speci�c notations in XML. An example of a software engineering application is the

XMI [OMG98b] that de�nes a DTD that can represent any UML [BJR99] model.

XML is not only useful for publication of documents on the World-Wide-Web, but

that it can also be used as an application-speci�c transport protocol in distributed system

construction. In [ESF99] the authors report about the use of XML for the transport of

data between di�erent distributed and heterogeneous components of a �nancial trading

system. That system uses XML documents as parameters to CORBA object requests.

Moreover, the OMG have requested proposals for the interoperability between their Inter-

face De�nition Language and XML [OMG99] that will address the seamless interchange

of XML documents and equivalent complex values of IDL data types.

Data and code mobility in Java are supported through object serialization and class

loading. The status of objects can be serialized and transferred from one host to another

while the class loading strategies can vary, depending on the application. For instance,
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT KarelProgram (turnon|go|turnleft|

pickbeeper|putbeeper|turnoff|times)*>

<!ELEMENT turnon EMPTY>

<!ELEMENT go EMPTY>

<!ELEMENT turnleft EMPTY>

<!ELEMENT pickbeeper EMPTY>

<!ELEMENT putbeeper EMPTY>

<!ELEMENT turnoff EMPTY>

<!ELEMENT times (turnon|go|turnleft|

pickbeeper|putbeeper|turnoff|times)*>

<!ATTLIST times howoften CDATA #REQUIRED>

Figure 12.1: The DTD for Karel's Instruction Set.

the Netscape class loader downloads applet classes from the web server of the containing

HTML page; the Java RMI class loader allows the application to download the classes of

the objects remotely passed as parameters at run time. The class of the moved object

can migrate onto the new host or it can be fetched from a remote server. Many di�erent

technologies have been built on top of these simple mechanisms.

Mobile agents are such a technology. Mobile agents are autonomous objects carrying

their state and code that proactively move across the network. Many new systems have

been developed to support mobile agents [KZ97]. Agent mobility requires the migration

of both code and state of the agent at the same time and they can move proactively

performing tasks on behalf of users. The more recent mobile agents technologies are usually

Java based [WPM99] however some examples exist of non-Java based mobile agents (e.g.,

Emerald [LHM88]).

12.2 Specifying Incremental Code Mobility with XML

XML provides a exible approach to describe data structures. We now show that XML

can also be used to describe code. XML DTDs are, in fact, very similar to attribute gram-

mars [Knu68]. Each element of an XML DTD corresponds to a production of a grammar.

The contents of the element de�ne the right-hand side of the production. Contents can be
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<?xml version="1.0"?>

<!DOCTYPE KarelProgram SYSTEM "karel.dtd">

<KarelProgram>

<turnon/>

<times howoften="2">

<turnleft/>

<times howoften="2">

<go/>

</times>

</times>

<turnoff/>

</KarelProgram>

Figure 12.2: An XML program for Karel.

declared as enumerations of further elements, element sequences or element alternatives.

These give the same expressive power to DTDs as BNFs have for context free grammars.

The markup tags of DTDs de�ne terminal symbols. Elements of XML DTDs can be at-

tributed. These attributes can be used to store the value of identi�ers, constants or static

semantic information, such as symbol tables and static types. Thus, XML DTDs can be

used to de�ne the abstract syntax of programming languages. We refer to documents that

are instances of such DTDs as XML programs. XML programs can be interpreted and

in Section 12.3 we discuss how such interpreters can be constructed using XML parsers.

When such instances are sent from one host to another we e�ectively achieve code mobility.

In order to demonstrate these ideas, we consider a very simple programming language

to instruct Karel, the robot. The language has �rst been de�ned in [PRS94]. In this

chapter we only consider a subset of it for reasons of brevity. Karel's language has a set

of primitives. These include turnon , to switch the robot on, go to make it proceed one

step into its current direction, turnleft to change the robots current direction by turning

left, pickbeeper and putbeeper to get and dispose of beeper objects and turnoff to

turn Karel o�. Moreover, Karel's programming language includes a number of control

structures for repetition and conditional execution. Here, we only consider the times

statement. It repeats a cycle of commands for a given number of times. Figure 12.1 shows

the syntax of the subset of Karel's programming language de�ned as an XML DTD.
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Figure 12.3: The actions of the robot.

<?xml version="1.0"?>

<!DOCTYPE times SYSTEM "karel.dtd">

<times howoften="3">

<turnleft/>

</times>

Figure 12.4: XML Code Increment.

Figure 12.2 shows an instance of the DTD in Figure 12.1. This instance is a Karel

program that instructs Karel �rst to turn left, then to proceed two steps, turn left again

and proceed two more steps. Karel's route is shown in Figure 12.3. If we imagine that

Karel is a real robot, that is instructed from some control host by sending these XML

programs via, for example, a radio network, we have then achieved logical code mobility

with XML.

Unlike Java code, which is sent in a compiled form, XML code is transferred as source

code and then interpreted on a remote host. Unlike Java, XML does not con�ne us to

sent coarse-grained units of code; XML documents do not need to begin with the root

of the DTD, they can also start with other symbols of the grammar. This enables us to

specify sub-programs and even individual statements. We refer to such code fragments as

XML program increments. Hence, we can specify complete programs as well as arbitrarily

�ne-grained increments in XML.

Figure 12.4 shows such a �ne-grained program increment. We can imagine that we

want to change the behaviour of Karel by replacing the turnleft statement with this
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increment and thus change the behaviour of Karel making it turn right instead of left 1.

As Karel is controlled by a slow radio network, we want to avoid re-sending the whole

program but rather incrementally send the new program fragments.

The question that arises is how we specify the insertion or replacement of program

increments. Addressing particular locations in an HTML document is achieved by \an-

chors". These anchors, however, cannot be de�ned by users who do not have control over

the document. Likewise in our approach, the sender of an increment does not have control

over the program once it has been sent and we cannot assume that programmers identify

anchors or other labels a-posteriori that could then later be used for incremental code

insertion or replacements.

To solve this problem, we use XPointer, an XML-related standard. XPointer is part

of the XLink speci�cation [MD98] and overcomes the limitation of HTML by supporting

navigations within XML documents. These navigations are capable of addressing every

document component without having to modify the document itself. We use XPointer to

identify that component of an existing XML program that we want to replace with a new

increment.

Going back to our example, Figure 12.6 shows an XPointer expression that determines

the Karel program statement that we want to replace. The XPointer expression starts

from the root of the program and then selects the �rst statement of type times , and in

that statement it selects the turnleft statement. Thus, by specifying a fragment of a

program in XML together with an XPointer expression, we can express incremental code

mobility. Figure 12.5 shows how Karel's behaviour will di�er after the new increment has

replaced the turnleft statement.

We have so far shown how we can use XML to de�ne programs and how we can de�ne

the update of code in an incremental fashion. In the next section we describe how we

can utilize o�-the-shelf XML technology in order to implement interpreters for application

speci�c languages and how these interpreters implement incremental code updates.

1Because the Karel language does not have a primitive to turn right, we have to implement turning

right by turning left three times.
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Figure 12.5: The incremental change to Karel's behaviour.

root().child(1,times).child(1,turnleft)

Figure 12.6: XPointer Address for Increment.

12.3 Implementation of the Approach

After a programming language has been speci�ed, an interpreter for this language needs

to be implemented. We �rst show how signi�cantly o�-the-shelf XML technology, most

notably XML Parsers and the implementations of the Document Object Model, simplify

the construction of such interpreters. Then, we explain how the communication between

sender and receiver can be achieved using distributed object technology. Finally, we focus

on the implementation of incremental code mobility, demonstrate how XPointer processors

support locating the increment to be updated, and how the DOM supports incremental

syntax tree modi�cations.

12.3.1 Interpreter Implementation

The �rst stage of an interpreting a program involves the validation of the syntactic cor-

rectness. As a result of that stage, interpreters produce an attributed abstract syntax

tree (AST) of the program. If the program is written in XML, both tasks can be entirely

delegated to a validating XML parser. We use IBM's XML4J [Alp99] but many other

validating XML parsers exist. Figure 12.7 shows the use of the XML4J parser in our

Java-based Karel interpreter. When invoking parse on the Karel code of Figure 12.2 the

XML parser will construct the parse tree that is graphically represented in Figure 12.8.
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import org.w3c.dom.*; //DOM API

import com.ibm.xml.parser.*; //XML Parser

public void execute(String program,

String update_location){

...

//create a new parser for Karel Programs

Parser parser=new Parser("Karel.dtd");

InputStream is;

// parser to read input stream from program

is=new StringBufferInputStream(program);

// root of parse tree for program in inc

Document inc=parser.readStream(is);

...

}

Figure 12.7: Translating XML program into an AST.

The next stage of the interpretation is a static semantic analysis that checks, for

example, the uniqueness of identi�ers or the correct typing of expressions. This is often

done while the interpreter is executing the code in order to avoid several traversals of the

abstract syntax tree. Thus, while traversing the tree and visiting each node, the interpreter

�rst checks for violations of the static semantics and then executes the operation that the

node represents. Operations for traversals through ASTs that have been constructed from

XML documents are standardized by the Document Object Model (DOM) [ABC+98] and

are implemented in o�-the-shelf products, such as IBM's XML4J. The DOM traversal

operations support obtaining all the children of a node, querying the type of the node,

obtaining values of node attributes and so on.

Figure 12.9 shows an excerpt of the Karel interpreter that traverses the abstract syntax

tree and executes a statements for each AST node. The actions usually modify some state

variables. In case of Karel, these state variables indicate whether the robot has been

switched on, its current position and direction and the number of items that it has picked

up. The interpretation is then performed as a recursive method execute , which is initially

passed the root node of the AST tree. It then examines the type of node and performs the
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KarelProgram

tunroffturnon

turnleft

times
howoften=2

times
howoften=2

go

Figure 12.8: Abstract Syntax Tree for Karel's Program.

appropriate action. For the root node, it recursively calls execute for all its child nodes.

For a node of type go , it adds the current direction to its co-ordinates. We note that for

Karel, the implementation of each command requires a few lines of code and in total is

about 50 lines of Java code.

12.3.2 Code Mobility

In order to support code mobility, we have to send an XML program from a remote host

rather than read it from a local �le system. Any transfer protocol could be used for

this purpose. However, in [ESF99], we discussed the bene�ts of using distributed object

technology to transport XML documents between di�erent hosts of a network. The same

considerations apply to XML documents that represent programs and we therefore use

distributed object technology to pass XML programs from a sender that manages the

execution to a receiver that then implements the interpreter as shown above. Figure 12.10

visualizes this behaviour.

For sending Karel programs to the robot interpreter, we use Java/RMI [RMI98]. The

use of distributed object technology rather than lower-level network protocols is motivated

by the availability of further middleware services. If for example security is important in a

particular application area and use of the interpreter by non-authorized principals needs to

be disabled or requesters need to be authenticated, a security service, such as the CORBA

security service [OMG98a] could be used.

In order to facilitate the remote communication that transmits the mobile code, the

Karel Interpreter declares the remote interface Karel as shown in Figure 12.11. That
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import org.w3c.dom.*; // DOM API

import com.ibm.xml.parser.*; // XML parser

class KarelExecutor {

//the position and direction of Karel:

private int x_pos=5, y_pos=5;

private int x_direction=1, y_direction=0;

private int num_beepers=0; //collected items

private boolean on=false;//activation status

public void execute(Node n) {

if (n.getNodeName().equals("KarelProgram")){

NodeList children=n.getChildNodes();

Node command;

for (int i=0; i<children.getLength();i++) {

execute(children.item(i));

}

} else if (n.getNodeName().equals("go")){

if (on) {

x_pos=x_pos+x_direction;

y_pos=y_pos+y_direction;

}

} else ...

}

}

Figure 12.9: Traversing the AST during interpretation.

XML

document

HOST1 HOST2

INTERPRETER

DTD

Figure 12.10: Migration of XML program to remote interpreter.

interface is implemented by the Karel interpreter. This enables a controller that resides
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import java.rmi.*;

import java.io.*;

public interface Karel extends Remote {

void execute(String program,

String update_location)

throws RemoteException,

UnambiguousInsertException;

} // Karel

Figure 12.11: Remote Method Invocation for Karel.

HOST1 HOST2

INTERPRETER

DTDdocument
XML

Increment

XML

XPointer
directions

Figure 12.12: The migration of the increment XML �le to the robot site.

on one host to send Karel programs for interpretation on a di�erent host. Note that we do

not transfer the DTD together with the code but rather assume that the DTD is stored

locally. This choice derives from the observation that the interpreter implementation is

very tightly linked to the DTD, because the DTD is the grammar of the language and

every interpreter is dependent on the grammar of the language that it executes.

12.3.3 Incremental Code Mobility

Incremental and �ne-grained mobility as shown in Figure 12.12 can be implemented using

standard XML o�-the-shelf technologies. So far, we have shown how to parse and interpret

the program, which is passed as the �rst parameter to the execute method in Figure 12.11.

The second parameter is an XPointer expression. If this XPointer expression is not empty

and well-formed, it will identify a node in the abstract syntax tree that needs to be

replaced with the program increment that is passed as the �rst parameter to execute .

The strategy for implementing incremental code mobility is then as follows: we �rst parse

the program increment passed as the �rst parameter and construct an syntax tree for the

increment, we then evaluate the XPointer expression and then replace the node addressed
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times
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Code
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Figure 12.13: Result of incremental code update on AST.

in the expression with the root node of the syntax tree of the increment. This replacement

is shown in Figure 12.13.

In order to implement this strategy for incremental updates, we take again advantage

of the DOM. Parsing the program increment and constructing the AST for it is achieved

in the same way as for the full program. This time, the parser just creates a tree whose

root node type is di�erent from the root type of the DTD. In case of our Karel increment,

a root increment node of type times is created.

The evaluation of the XPointer expression for the replacement node can be fully del-

egated to an XPointer processor. Again there are several of those processors available

and we use the one that comes with XML4J. Figure 12.14 shows how we use the XPointer

processor in order to locate the node replace that needs to be replaced. The replacement

of the code increment is shown at the bottom of Figure 12.14. We then navigate to the

parent node of replace and substitute it with the root node of the syntax tree of the

increment that was sent using standard DOM operations.

12.4 Applications

In the previous two sections, we have presented our work through a deliberately simple

example in order to introduce our approach and highlight its potential. In this section, we

describe application domains that could bene�t from incremental code mobility with XML.

These include user interfaces engine, the management of applications on portable digital

assistants, and the exible co-ordination of consistency checks in distributed documents.
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import org.w3c.dom.*; // DOM API

import com.ibm.xml.parser.*; // IBM's parser

import com.ibm.xml.xpointer.*;//IBM's xpointer

...

public void execute(String program,

String update_location)

throws RemoteException,

UnambiguousInsertException {

...

// create an XPointer object from

// the update location that is passed

XPointerParser xpp=new XPointerParser();

XPointer xp=null;

xp=xpp.parse(update_location);

// Interpret XPointer object from the

//root node of the previously parsed doc

Pointed nodelist=xp.point(root);

if (nodelist.size()!=1) {

throw new UnambiguousInsertException();

} else {

Node replace=(nodelist.item(0)).node;

Node parent=replace.getParentNode();

//we get the parent node

if (parent==null)

throw new UnambiguousInsertException();

//replacement of the child with the new code

parent.replaceChild(inc.getDocumentElement(),

replace);

}

}

Figure 12.14: Evaluating XPointer Expression

12.4.1 User Interface Engines

The installation and administration of large-scale systems with thousands of clients is

a potential application for incremental code mobility. The departure control system of
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airlines that are used to handle check-ins are good examples. For large airlines or alliances,

the clients implementing the user interface of such systems have to be deployed on several

10,000 machines, distributed across the globe. The machines are not necessarily owned

by the airlines but are rather temporarily rented from airport authorities, which want to

keep a tight regime on updates of software. Thus airlines cannot frequently update the

software that is installed on these machines. To accommodate frequent changes, they have

to utilize code mobility.

It would be possible to accommodate changes by deploying a Java Virtual Machine

on each of these systems and downloading front-end applications from centralized servers.

The Java approach, however, has two disadvantages. First it requires code of substantial

size to be downloaded from a server, possibly through slow dial-up networks. Second, the

Java code needs to be changed whenever the user interface needs to be changed. These

limitations can be overcome by installing a general-purpose user interface engine onto each

of the client machines that interpret high-level user interface descriptions.

XwingML is a DTD for such a user interface description language [Sof99b]. It provides

markup tags for all Java Swing user interface components and also provides an interpreter

for XwingML documents that generates the desired user interfaces. Applying our approach

of code mobility to XML, the high-level descriptions of user interfaces can be sent from a

centralized server to all distributed client hosts. Because the user interface descriptions are

rather small compared to the size of the Java byte code of the full user interface application,

we avoid the �rst of the above problems. The second limitation is overcome because the

user interface description is just code, which can be generated by server applications that

may, for example, be driven by business processes.

Incremental mobility can be applied successfully in this context, too. If the displayed

window needs to be updated, for example by adding or replacing some buttons, an XML

code increment can be sent to the user interface engine. The idea is exactly the same

as with incremental code mobility for Karel the Robot. The program increment can be

dynamically integrated with the original XML code for the window, thus making the

window change its appearance.
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12.4.2 Application Management on Mobile PDAs

An interesting application for our XML-based approach to code mobility arises when

logical mobility meets physical mobility. Lightweight computing devices, such as Personal

Digital Assistants (PDAs) are starting to be used for mission critical computing and are

integrated into enterprise computing environments. In these settings, it is important for

all PDAs to run the same set of applications. An example for such a PDA deployment is

the New York Stock Exchange (NYSE). NYSE has equipped its traders with PDAs, that

are used for trade data entry and automated transmission between trade data and back

oÆce trade settling systems.

The applications that are used in �nancial markets have to evolve rather rapidly.

Financial analysts invent new products known as derivatives on a regular basis. Once

such a product has been created, the trading applications need to be adjusted and be

updated to support trading in these new derivatives. If the used machines were wired

workstations it would be feasible to transfer and replace the complete code when needed.

The incremental approach described in this chapter could be also applied. This approach

becomes rather essential when the used devices are thin clients like PDAs; in this case

incremental code updates are an interesting option, considering temporal unreachability

of PDAs and slow IRDA or radio network connectivity.

To pursue this approach application developers have to devise an XML-based scripting

language for developing trading applications. They also have to build an interpreter for

this language which then is deployed on each PDA. Whenever an application needs to

be adjusted, a program increment can be added to a list of updates that are kept on

the server to which PDAs connect. Whenever a PDA physically enters the trading room

and establishes connection to the server, the server �rst checks the patch-level of the

applications on that PDA. The server will then incrementally send all application updates

that are not yet deployed on the PDA.

The de�nition of an application-speci�c language and its implementation in an inter-

preter may sound diÆcult to accomplish. It is, however, well supported. The application-

speci�c language can refer to XWingML for user interface de�nition purposes. The imple-

mentation of an interpreter is simpli�ed by the availability of light-weight XML parsers

and Java Virtual Machines that have already been developed for PDAs, such as 3COM's

Palm Pilot [Sof99a].
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<ConsistencyRule id="r1" type="CT">

<id>r1</r1>

<Description>

For every instance in a collaboration diagram

there must be a class in a class diagram

with the same name.

</Description>

<Source>

<XPointer>

root().child(all,Package).

(all,CollaborationDiagram).

(all,Collaboration).(all,Instance)

</XPointer>

</Source>

<Destination>

<XPointer>

root().child(all,Package).

(all,ClassDiagram).(all,Class)

</XPointer>

</Destination>

<Condition expsource="origin().attr(CLASS)"

op="equal"

expdest="origin().attr(NAME)"/>

</ConsistencyRule>

Figure 12.15: A Consistency Rule in XML Format.

12.4.3 Consistency Management

In [EEF+99], we describe a high-level language for de�ning rules that de�ne the consistency

between distributed software engineering documents. We assume that these documents

are represented in XML themselves. This is a fair assumption, because Microsoft's OÆce

2000 can save documents in XML format, IBM's Visual Age environment uses XML as

representation scheme for its project repository and most case tools can export UML

diagrams in XMI.

[EEF+99] suggests a language to express consistency rules. This language is, in fact,
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Figure 12.16: Consistency management architecture.

a high-level XML programming language and facilitates representing consistency rules as

XML documents. Figure 12.15 shows an example of such a rule.

The rule is based on the XMI DTD and demands that for each object in each collab-

oration diagram, there is a class in a class diagram whose name equals the type of the

object. In [EEF+99], we also explain the interpreter that executes these consistency rules

in order to check the consistency of XML documents. The result of such a check for a rule

is a set of XLink expressions that link consistent document fragments with each other and

inconsistent document fragments to an indicator of such inconsistency.

The approach as described in [EEF+99] uses one set of rules and one rule interpreter.

This is rather inexible as every member of a software development team has to work

against the same set of rules. Moreover, the centralized interpretation of rules creates a

bottleneck that can be avoided if we have multiple rule interpreters on each developer's

machine. The rule interpreter would then only have those sets of rules that the developer

needs to check consistency of the documents she produced locally. We can even have

dedicated interpreters for particular subgroups of the development team in order to check

consistency between documents produced by di�erent team members and then at a higher

level there can be rule sets that check for project-wide consistency.

The sets of rules that are active at each of these interpreters cannot be static but have to

evolve during the course of the project, for example as a result of changing team structures

and di�erent allocations of responsibilities. In order to accommodate such changes, the
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set of rules that are active at each interpreter have to be changed. New rules have to be

added and existing rules may have to be deleted. These changes can be triggered by a

consistency supervisor component that uses our approach to incremental code mobility to

pass the XML-encoded consistency rules to the di�erent rule interpreters involved.

Figure 12.16 shows the overall architecture of this approach. Each developer's work-

station and group and project servers run an interpreter for XML-consistency rules. The

consistency supervisor manages the rule set of consistency rules that are active for each

of these interpreters and moves new rules incrementally to these interpreters, if necessary.

12.5 Evaluation

In this section we discuss the advantages and current disadvantages of the approach. We

also hint at how the disadvantages may be overcome.

We have demonstrated how XML and its related technologies can be used for both

specifying and implementing incremental code mobility at any granularity. By not �xing

a particular granularity for mobile code, we enable complete programs as well as individual

lines of code to be sent across the network. The combination of �ne-grained and incremen-

tal mobility achieves previously unavailable degrees of exibility. We have examined the

application of incremental and �ne-grained code mobility to user interface management,

application management on PDAs and consistency management of distributed documents.

The success of the approach critically depends on the ability to encode a high-level

programming language in an XML DTD. Our Karel example has demonstrated that this is

possible. The XwingML DTD suggests this can also be achieved in a scalable way. We can

imagine, that our approach will be used to write XML versions of interpreted languages,

such as Javascript. We could then build a compiler that translates between Javascript and

the XML encoding and a XML interpreter that wraps an existing Javascript interpreter.

Our approach then facilitates incremental code updates.

In the Karel example, we have only shown how incrementality can be achieved by

replacing existing fragments. We note that this may be overly restrictive. However, the

strategies shown here can also be applied to add or delete pieces of code to or from the

original program. To address insertion points or identify the fragments of deletion, we
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could use XPointer in the same way. To implement the changes to the abstract syntax

tree, we could use the insert and delete method calls of the XML4J package [Alp99].

Our approach has not yet explored the combination of data and code mobility, in a

step towards agent mobility. This would be, however, a rather small improvement as XML

is naturally well suited to express data structures. To achieve this in our Karel example,

we could change the DTD of Karel's language and add an encoding for the position and

other state attributes of Karel. In this way we can write an XML program containing

Karel's position initialization. The interpreter would have to be modi�ed as well in order

to be able to obtain the information (i.e. the initial position), and to initialize Karel's

status correctly.

We used Java and RMI for implementing the migration of the XML program in the

example, the approach, however, is completely language independent, as long as XML is

used to encode the moving code2.

The incremental update of the code is done after the robot has terminated an execution.

However, in some applications it may be convenient to apply the changes to the program

while the program is executing. The user interface application is a good example. This

is feasible in our approach as well. Nevertheless, it would raise problems related to the

maintenance of the program counter and the updating of operations in a cycle. However,

if the language is simple enough this might be feasible.

Furthermore, incremental updating of code raises a series of issues related with access

control problems: for instance, what happens if the code is updated twice by di�erent

principals? No one of the parties would know the actual status of the program. In our

perspective we see applications in \code-distribution" oriented domains, where a single

sender has full control of the code and has the right to update it. If we did not use RMI,

but CORBA to transmit the code, the CORBA security service could be used to enforce

these access rights.

2The use of Java was also driven by the availability of XML4J [Alp99] tools.
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Summary

In Chapter 11 we have presented a tool for visualizing Z speci�cations on the WWW:

it �ts every browser and every platform. The tool is based on XML displayed through

\displets". The advantage of having a Z browser running on all platforms is essentially

that sharing of Z documents is encouraged by the di�usion of WWW on the Internet.

A possible application can be a groupware tool for editing and versioning formal doc-

uments; such a tool could be integrated with other software tools in order to improve the

speci�cation phase of the software process. The reuse of parts of documents obviously ben-

e�ts from having these hypertextual Z documents. The tools will also improve the search

of pieces of speci�cations in complex documents: every element in the Z speci�cation can

be labeled or linked to other pieces of documents or to URL on the Internet.

XML can be further extended in order to include new symbols and integrate Z speci-

�cation with other notations: new Java classes have to be written for the new symbols.

An ambitious goal consists of de�ning all XML displets necessary in an organization to

support the intranet management system of formal documents typical of such an organi-

zation. For instance, we are currently working on displets for managing UML documents.

XML documents are completed with XSL style sheets that instruct display engines about

how the rendering of notations. This �rst attempt toward the use of XML technologies

for code mobility is enhanced in Chapter 12, where we showed a way of applying the

�ne-grained code mobility to speci�c application domains. We used o�-the-shelf tools to

implement a very �ne-grained approach and used it in di�erent contexts, validating the

thesis that �ne-grained code mobility could be actually be useful in speci�c studies, and

opening the doors to new approaches.
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In the chapter we presented an incremental approach to code mobility using the XML

language. The novelty of the approach consists in being able to send code incrementally

instead of re-sending complete updated versions of the code. Java based technologies

launched the idea of object and classes mobility, allowing a set of new paradigms for

communication to become feasible [WPM99, Pic98].

Many theoretical languages have been used to specify and analyze code mobility [CG98,

MR98, NFP98, CFM98, FGL+96] the movement is speci�ed with di�erent granularities

showing that the Java point of view, where a class is the unit of mobility was not the

only possibility to be explored [MPR99]. In this part we showed a possible incarnation

of these ideas, and described a set of application in a domain speci�c contexts. Possible

developments of this work may involve security issues: incrementally updating of code

raises access right and authentication issues.

Incremental update of executing code, although already feasible in the approach, is a

challenging �eld we will explore, maybe restricting to speci�c its use to particular domains.

We intend to explore the use of this approach in real projects involving industrial partners

in some of the domains that we mentioned in Section 12.4.



Conclusions

The main goal of the work presented in this thesis has been the development of models,

tools, and prototypes allowing the investigation and the exploitation of mobile code tech-

niques. More speci�cally, we concentrated on mobile code speci�cation and automatic

analysis, on investigation of basic mobile code operations and exploiting the power of log-

ical mobility looking beyond the developed mobile code technologies. Some of the results

of the investigation could be applied to application domains through the use of existing

technologies in a way that was compliant with our investigation.

Contribution

We now summarize the contribution of this thesis.

Speci�cation and Analysis of Mobile Code System

We have presented the speci�cation language PoliS and its enhanced version (MobiS) able

to specify mobile code features of systems. On top of PoliS a model checker has been

built by our group in Bologna for the analysis of properties of systems. In this thesis we

used the model checker to prove properties on mobile code systems. MobiS allows the

speci�cation of mobile agents as �rst class elements nd the speci�cation of three major

mobility paradigms,i.e., data, code and agent mobility can be formalized.

Model and Prototype for Fine-grained Mobility

Mobile Unity has been used to give semantics to a set of basic primitives for logical

mobility and for investigating issues related with �n-grained mobility. In this approach

every line of code and every variable is considered mobile. In the model we study the

details of the approach trying to constrain it to follow existing technology behavior. The
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prototype (Lilliput) presented was written in Java . It shows the implementability of the

semantics constrains and of the basic operations of the model.

Implementation of Incremental Code Mobility

In the last part of the thesis we have presented the use of currently available techniques and

tools for the implementation of a very �ne-grained model for code mobility. The approach

uses XML and related technologies for achieving incremental mobility at a statement level.

The number of possible application domains for this approach reveals that the existing

technology might sometimes be inadequate. We showed some possible applications of this

new approach.

Future Work

Di�erent lines of future work could be followed. I will distinguish future work on the

di�erent parts in order to show these multiple lines. On the speci�cation and analysis

front with PoliS and MobiS much can be done in order to improve the readability of the

speci�cations. We are thinking of possible integration of PoliS with UML and XML in

order to obtain a more user-friendly interface. The model checker needs to be enhanced in

order to deal with MobiS speci�cations. We are investigating this issue as having agents as

�rst class elements leads to a large state explosion in our current model checker. Security

properties could result to be very interesting on an analysis front, especially in a code

mobility setting.

On the �ne-grained approach we are interested in enhancing some aspects such as

referencing units by type and not by name, and exploring other mobility primitives not

considered. In Chapter 8 we enhanced the model with nested spaces and it would be

interesting to study referencing in mode detail in the tree structure generated by nested

processes. A prototype of the nested model could be implemented as well exploring imple-

mentation problems of the approach. Security issues could be explored on this �ne-grained

approach as well, especially the ones concerned with resource access and remote entity ref-

erencing and migration.

The use of Mobile Unity temporal logic proof system would o�er a good �eld for

analysis of properties on the model with respect to incremental code mobility with XML.
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We see future work in the application domains described in Chapter 12. We also have plan

for application of the XML approach to mobile computing settings and Java cards. XML

technologies are rapidly evolving and new features can be introduced in the prototype

like for instance XML schemas could substitute XML DTDs allowing a higher level of

exibility.

Closing Remark

Analysis, speci�cation, and prototyping have revealed to be powerful instruments for in-

vestigation of new paradigms and technologies. With respect to mobile code the formal

approach taken led us to the development of challenging new models, independent from the

developed mobile code technologies. From model we went down again reaching the tech-

nology level and demonstrated the implementability of the new approaches that revealed

potentially unexplored trends for code mobility in di�erent application domains.
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Appendix A

The Lilliput Input Grammar

S ! System Id SystemBody end

SystemBody ! Programs Components

Programs ! Id ProgramBody end

Components ! Components ComponentsBody end

ProgramBody ! OptDeclare OptInitialize OptAssign

OptDeclare ! declare Declarej�

Declare ! Declaration

j Declaration [] Declare

Declaration ! Id : DeclarationBody

DeclarationBody ! var Integer

j Integer

OptIntialize ! initially Initializej�

Initialize ! Initialization

j Initialization [] Initialize

Initialization ! Id = RightInit

RightInit ! Integer

j Function(ListId)

OptAssign ! assign Assign endj�
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Assign ! Assignment

j Assignment [] Assign

Assignment ! Label : Stmt

Stmt ! St k Stmt

j St

St ! GuardedStmt

j SimpleStmt

j Quanti�edStmt

GuardedStmt ! [Stmt ] if (Guard)

SimpleStmt ! Id := Rightside

Rightside ! Integer

j Function(ListId)

j MobilityCalls

Quanti�edStmt ! < OpListId : Range :: Stmt >

Range ! Limit LRel Id RRel Limit

LRel ! < j �

RRel ! > j �

Limit ! Integer jId

Guard ! SimpleGuard Relop Guard

j SimpleGuard

SimpleGuard ! Term

j SimpleGuard Addop Term

Term ! Factor

j Term Mulop Factor

Factor ! Id

j Function(ListId)

j Integer

j not Factor
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Op ! [] j k

MobilityCalls ! Predicate(List)

Predicate ! movejputjclonej : : :

List ! Id ; List jFunction(List); List

j Id jFunction(List)

ComponentsBody ! Component [] ComponentsBody

Component ! Quanti�edC [] SimpleC

SimpleC ! newData(List)

j newCode(List)

j newProcess(List)

Quanti�edC ! < [] Id : Range :: SimpleC >

RelOp ! � j � j < j >

Addop ! +j � j_

mulop ! �j=j^

Id ! letter (letter jdigit)�

Integer ! digits optional � exp

digits ! digit digit�

optional � exp ! (E (+j � j�) digits)j�
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Appendix B

The Lilliput API

Hierarchy For Package lilliput

� class java.lang.Object

{ class lilliput.LilliElement (implements java.lang.Cloneable, lilliput.LilliConstants,

java.io.Serializable)

� class lilliput.LilliProcess

� class lilliput.LilliUnit

� class lilliput.LilliCU

� class lilliput.LilliDU

{ class lilliput.LilliEngine (implements lilliput.LilliConstants)

{ class lilliput.LilliHandler (implements mucode.GroupHandler, lilliput.LilliConstants)

{ class java.lang.Thread (implements java.lang.Runnable)

� class lilliput.LilliInterpreter (implements lilliput.LilliConstants)

{ class java.lang.Throwable (implements java.io.Serializable)

� class java.lang.Exception

� class lilliput.LilliActivateException

� class lilliput.LilliDestroyException

� class lilliput.LilliExecutableException

� class lilliput.LilliFindException

� class lilliput.LilliMoveProcessException
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� class lilliput.LilliReferenceException

{ class lilliput.Variable (implements java.lang.Cloneable, lilliput.LilliConstants,

java.io.Serializable)

� interface lilliput.LilliConstants

Interface LilliConstants

All Known Implementing Classes: LilliInterpreter, LilliElement, LilliHandler, Lil-

liEngine, Variable

public interface LilliConstants

Constants for the package LilliConstants.java

Field Summary

static int ACTIVE status of an active process

static int CODE type of code units

static int DATA type of data units

static java.lang.String EMPTY empty string

static int INACTIVE status of an inactive process

static int PROCESS type of processes

static int TERMINATED status of a terminated process

static int UNDEFINED value assigned to variables that do not need to carry a value

Class LilliElement

java.lang.Object

|

+--lilliput.LilliElement

Direct Known Subclasses: LilliProcess, LilliUnit

public abstract class LilliElement
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extends java.lang.Object

implements java.io.Serializable, java.lang.Cloneable, LilliConstants

The class de�nes the abstract element LilliElement.java

Field Summary

java.lang.String name the name of the element

java.lang.String program the name of the program the element comes form in case of

a process the program is the program where the contained units come from

int type the type of the element

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED

Constructor Summary

LilliElement()

Class LilliUnit

java.lang.Object

|

+--lilliput.LilliElement

|

+--lilliput.LilliUnit

Direct Known Subclasses: LilliCU, LilliDU

public abstract class LilliUnit

extends LilliElement

de�nes the class of a general (abstract) unit LilliUnit.java

Field Summary

LilliProcess container name of the containing process

java.lang.String destination the name of the destination process when the unit is to

be moved
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java.util.LinkedList referencedBy the list of the referencing processes

Fields inherited from class lilliput.LilliElement

name, program, type

Constructor Summary

LilliUnit()

Method Summary

java.lang.Object clone() the method to clone the unit

Class LilliProcess

java.lang.Object

|

+--lilliput.LilliElement

|

+--lilliput.LilliProcess

public class LilliProcess

extends LilliElement

See Also: Serialized Form

Field Summary

java.util.LinkedList codeList the list of contained code units

java.util.LinkedList dataList the list of contained data units

java.util.LinkedList gamma the list of referenced units

mucode.MuServermuserver the muserver proper of the process where to store the classes

of the units

int status the staus of a process: the initalization value is to INACTIVE

Fields inherited from class lilliput.LilliElement

name, program, type

Constructor Summary LilliProcess(java.lang.String n, java.lang.String prog)

the constructor with two parameters

Method Summary java.lang.Object clone()



Appendix B. The Lilliput API 195

the method clones the process

java.lang.Object cloneUndef() the cloning of a process with initialization values

Class LilliDU

java.lang.Object

|

+--lilliput.LilliElement

|

+--lilliput.LilliUnit

|

+--lilliput.LilliDU

public class LilliDU

extends LilliUnit

contains the class for a data unit LilliDU.java

Field Summary

Variable var the variable contained in the unit

Fields inherited from class lilliput.LilliUnit

container, destination, referencedBy

Fields inherited from class lilliput.LilliElement name, program, type

Constructor Summary

LilliDU(java.lang.String n, java.lang.String p, int val) the method clones the

data unit

Method Summary

java.lang.Object clone() the method to clone the unit

java.lang.Object cloneUndef() the method clones the unit with unde�ned value for

the variable; the method needs to be re�ned by the real data unit class that can initialize

the variable with the actual initialization value
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Class LilliCU

java.lang.Object

|

+--lilliput.LilliElement

|

+--lilliput.LilliUnit

|

+--lilliput.LilliCU

public class LilliCU

extends LilliUnit

This is the class representing a code unit LilliCU.java

Field Summary

java.util.LinkedList vars the list of variables of the unit

Fields inherited from class lilliput.LilliUnit

container, destination, referencedBy

Fields inherited from class lilliput.LilliElement

name, program, type

Constructor Summary

LilliCU(java.lang.String n, java.lang.String p) the method containing the ac-

tual code: to be overwritten

Method Summary

java.lang.Object clone() the method to clone che code unit.

java.lang.Object cloneUndef() the method clones the unit but leaves all the variables

to unde�ned void perform() method containing the code of the unit

Class LilliEngine

java.lang.Object

|

+--lilliput.LilliEngine
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public class LilliEngine

extends java.lang.Object

implements LilliConstants

LilliEngine.java

Field Summary (package private) static LilliEngine engine the actual engine

reference

(package private) java.util.LinkedList executable the list of executable units

(package private) static LilliInterpreter interpreter the static interpreter

(package private) java.util.LinkedList libraryCU the list of code units part of

the host library

(package private) java.util.LinkedList libraryDU the list of data units part of

the host library

(package private) mucode.MuServer muserver the muserver storing the classes on

the host

private java.util.LinkedList pending the list of pending elements to enter the host

pending is accessed only by two synchronized methods add and removePending

(package private) java.util.LinkedList pList the list of processes on the host

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED

Constructor Summary

LilliEngine()

Method Summary

void activate(LilliProcess p) 'activate' method it activates an inactive process.

(package private) void addPending(LilliElement el)

LilliElement cloning(LilliElement e)

void deactivate(LilliProcess p) 'deactivate' method to deactivate a process so that

it does not execute

void destroy(LilliElement e) 'destroy':method to destroy an element.

private void eliminate(LilliElement e, LilliProcess father) 'eliminate' method:

to eliminate an element from the site.
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LilliElement �nd(java.lang.String s)

static LilliEngine getEngine()

static void main(java.lang.String[] args)

voidmove(LilliElement e, java.lang.String lambda, java.lang.String ProcessName)

the method move moves an element to a location the movement can address also a desti-

nation process if the element to be moved is a unit.

void newCode(LilliCU c, java.lang.String lambda)

void newData(LilliDU d, java.lang.String lambda, int val)

void newProcess(LilliProcess p, java.lang.String prog, java.lang.String lambda,

int status)

LilliElement neww(java.lang.Class c)

void parseArgs(java.lang.String[] args, int index)

private static void printHelp()

LilliCU put(LilliCU c)

LilliDU put(LilliDU d)

LilliProcess put(LilliProcess p)

void reference(LilliProcess p, LilliUnit u) to reference a local element not of type

process

(package private) LilliElement removePending()

private void searchAndRemove(java.util.LinkedList l, LilliElement e) aux-

iliary method to search and remove from a list of elements

void terminate(LilliProcess p) to terminate a process

void unreference(LilliProcess p, LilliUnit u) to unreference an element.

Class LilliHandler

java.lang.Object

|

+--lilliput.LilliHandler

public class LilliHandler

extends java.lang.Object
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implements mucode.GroupHandler, LilliConstants

The handler called by the MuCode server. LilliHandler.java

Field Summary

(package private) LilliEngine actualEngine

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED

Constructor Summary

LilliHandler()

Method Summary

java.lang.Runnableunpack(mucode.Group group, mucode.MuServer server) the method

called by mucode to unpack the group arrived at destination

Class LilliInterpreter

java.lang.Object

|

+--java.lang.Thread

|

+--lilliput.LilliInterpreter

public class LilliInterpreter

extends java.lang.Thread

implements LilliConstants

The class of the interpreter LilliInterpreter.java

Field Summary

(package private) LilliEngine actualEngine

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED

Constructor Summary
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LilliInterpreter(LilliEngine en)

Method Summary

private void bind() bind(): to bind the variables of the units on the host

private void bindDUCU(LilliProcess p, LilliDU d) this method binds a data

unit d to the code unit in the same scope

private void bindDUDU(LilliProcess p, LilliDU d) this method binds a data

unit d to the data unit in the same scope

private void bindDUGamma(LilliProcess p, LilliDU d) this method binds the

data unit d to the referenced units in the same scope

private void enable() this method enables the code unit ready for execution and put

them in the executable list of the engine

private void engage() 'engage' method: to get from the pending list the elements to

be arranged on the host, bind the variables and enable code units

void eval() this method picks up a code unit for execution and executes it

private void execute(LilliCU c) this method executes the unit chosen calling the

method perform of the unit

private LilliElement lilliFind(java.lang.String s, java.util.LinkedList l) to

�nd an element with name s in a list.

private void linkDUvars(Variable v1, Variable v2) this method binds two vari-

able with same name

private void merge()

to get incoming units and put them on the right place on the host

private voidmoveClassElement(LilliElement e, mucode.MuServer muserver) this

method helps in moving classes to a classpace

private LilliCU pickUp() this method picks up a unit for execution from the exe-

cutable list with a random policy

void run() the run method executes the engagement and the evaluation

Class Variable

java.lang.Object

|
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+--lilliput.Variable

public class Variable

extends java.lang.Object

implements java.io.Serializable, LilliConstants, java.lang.Cloneable

the class de�ning a variable Variable.java

Field Summary

java.lang.String name the name of the variable

int value the value of the variable

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED

Constructor Summary

Variable(java.lang.String name1) the constructor initializing the value to the unde-

�ned value

Variable(java.lang.String name1, int value1) the constructor for speci�c initial-

ization with value

Method Summary java.lang.Object clone() to clone the variable
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