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§4. Weighted projective spaces (Mar 2, 4, 7)

§4.1. First examples. Let’s move from quotient spaces by finite groups to
the actions of the easiest infinite group: C∗. We will work out the following
extremely useful example: fix positive integers a0, . . . , an (called weights)
and consider the action of C∗ on An+1 defined as follows:

λ · (x0, . . . , xn) = (ta0x0, . . . , t
anxn) for any t ∈ C∗.

The quotient (which we are going to construct) is called the weighted pro-
jective space. Notation:

P(a0, . . . , an).
For example, we have

P(1, . . . , 1) = Pn.

4.1.1. EXAMPLE. We have met P(4, 6) before. Recall that any elliptic curve
has a Weierstrass equation y2 = 4x3 − g2x − g3, ∆ = g3

2 − 27g2
3 #= 0 and

this is an extremely useful fact for studying elliptic fibrations (and elliptic
curves defined over rings of algebraic integers). Coefficients g2 and g3 are
defined not uniquely but only up to admissible transformations

g2 $→ t4g2, g3 $→ t6g3.

So the moduli space of elliptic curves is P(4, 6) with a point “at infinity”
removed (which corresponds to the C∗-orbit {∆ = 0}). So it should come at
no surprise that

P(4, 6)[g2:g3] & P1
[j:1],

where j is given by the usual formula (2.7.4). Notice however that thinking
about P(4, 6) has a lot of advantages: it encompasses the idea of Weier-
strass families better and it emphacizes the role of special elliptic curves
with many automorphisms. In general, we will see that weighted projec-
tive spaces are different from usual ones: they have singularities.

4.1.2. EXAMPLE. Let’s construct P(1, 1, 2) by hand. Take the map

π : A3
x,y,z \ {0} → P3

[A:B:C:D], (x, y, z) $→ [x2 : xy : y2 : z].

It is easy to see that it separates orbits, i.e. π(x, y, z) = (x′, y′, z′) if and only
if there exists t ∈ C∗ such that

x′ = tx, y′ = ty, z′ = t2z.

The image is a quadratic cone AB = C2 in P3.

Now let’s discuss the general construction of the weighted projective
space. Remember the drill: we have to find all semi-invariants. Here this
is exceptionally easy: any monomial xi0

0 . . . xin
n is a semi-invariant for the

C∗-action of weight w = i0a0 + . . . + inan (i.e. t ∈ C∗ acts by multiply-
ing this monomial by tw). So the algebra of semi-invariants is just the full
polynomial algebra

C[x0, . . . , xn].
However, we have to introduce a different grading on this algebra, where
each variable xi has degree ai. Here are some basic observations:
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• There are no non-constant invariants. So we can not produce a quo-
tient by our method of taking MaxSpec of the algebra of invariants
(by taking the image of the map to Ar given by r basic invariants).
Here is an “explanation”: all orbits contain zero in their closure.
So any invariant polynomial is just a constant equal to the value of
this polynomial in 0. This is the reason we have to remove zero,
just like in the Pn case. Notice that An+1 \ {0} is not an affine va-
riety anymore. The procedure of taking MaxSpec won’t work after
removing the origin.

• The algebra of semi-invariants is generated by variables, which have
different degrees. So the situation is different from our experience
of writing the Grassmannian G(2, n) as a quotient Mat(2, n)/GL2,
where basic semi-invariants (2× 2 minors) all had the same degree.

So we need a new approach. The idea is simple: An+1 \{0} is covered by
principal open sets D(xi). We will take take their quotients by C∗ first and
then glue them, just like in the definition of the usual projective space.

In the case of Pn we don’t even notice the C∗ action because we kill it by
setting xi = 1. So we quite naturally identify D(xi)/C∗ & An. Let’s denote
the corresponding chart Dxi ⊂ Pn to distinguish it from D(xi) ⊂ An+1.
What will happen in a more general case? Setting xi = 1 does not quite
eliminate t: it just implies that tai = 1. This is still an achievement: it shows
that the action of C∗ on D(xi) ⊂ An+1 is reduced to the action of µai on An.
This is a familiar ground: the quotient will be

Dxi = D(xi)/C∗ & An/µai = MaxSpec C[x0, . . . , x̂i, . . . , xn]µai ,

where µai acts with weights a0, . . . âi, . . . , an. So for example, a projective
quadratic cone P(1, 1, 2) is covered by three charts: two copies of A2 and
one copy of 1

2(1, 1), which is isomorphic to an affine quadratic cone.
Here is another way of thinking about this. Notice that

O(D(xi)) = C
[
x0, . . . , xn;

1
xi

]

and that C∗ now acts on the affine variety D(xi). We can use our old recipe
for computing the quotient: take the algebra of invariants and compute its
spectrum. So we set

O(Dxi) = O(D(xi))C∗
=

{
p

xk
i

| p ∈ C[x0, . . . , xn], deg p = kai

}

(here and after the degree deg is our funny weighted degree). There are
two cases: if ai = 1 then we just have

O(Dxi) = C
[

x0

xa0
i

, . . . ,
xn

xan
i

]
& C[y1, . . . , yn].

The chart is an affine space, just like for the standard Pn. To figure out the
general case, for simplicity let’s restrict to the weighted projective plane
P(a0, a1, a2). What will be the first chart? Consider the cyclic field extension

C(x0, x1, x2) ⊂ C(z0, x1, x2),
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where x0 = za0
0 . Then we have

O(Dxi) =

{
p

za0k
0

| p ∈ C[x0, x1, x2], deg p = ka0

}
=





∑

i,j

aij

(
x1

za1
0

)i ( x2

za2
0

)j

| a1i + a2j ≡ 0 mod a0




 ⊂ C
[

x1

za1
0

,
x2

za2
0

]
.

So we get a subalgebra in C[y1, y2] spanned by monomials yi
1y

j
2 such that

a1i + a2j ≡ 0 mod a0. This is our old friend, the cyclic quotient 1
a0

(a1, a2).

§4.2. Proj (projective spectrum). Let’s generalize this even further. Let
R be any finitely generated graded integral domain such that R0 = C.
We can write R as a quotient of C[x0, . . . , xn] (with grading given by de-
grees a0, . . . , an of homogeneous generators of R) by a homogeneous (in
this grading!) prime ideal. Functions in this ideal are constant along C∗
orbits in An+1. As a set, we simply define

Proj R ⊂ P(a0, . . . , an)

as a set of C∗-orbits where all functions in the ideal vanish.
Rational functions on Proj R are defined as ratios of polynomials of the

same (weighted) degree, i.e.

C(Proj R) = (Quot R)0,

where the subscript means that we are only taking fractions of degree 0.
We call a function regular at some point if it has a presentation as a frac-
tion with a denominator non-vanishing at this point. It is clear that Proj R
is covered by affine charts Df for each homogeneous element f ∈ R of
positive degree, where

O(Df ) = R[1/f ]0.

What is the gluing? Given Df and Dg, notice that

Df ∩Dg = Dfg,

is a principal open subset in both Df (where it is a complement of a vanish-
ing set of a regular function gdeg f

fdeg g ) and Dg (where we use fdeg g

gdeg f ). Formally
speaking, we have to check that in C(Proj R) we have

R[1/fg]0 = R[1/f ]0
[
fdeg g

gdeg f

]
. (4.2.1)

This kind of formulas are proved by tinkering with fractions with a sole
purpose to balance degrees of the numerator and the denominator. We
leave it as an exercise.
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§4.3. Abstract algebraic varieties. To continue this discussion, we have to
ask ourselves: what is it that we are trying to prove? We will later see that
ProjR is in fact a projective variety, but at this point it would be useful to
give a definition of an abstract algebraic variety.

4.3.1. DEFINITION. For simplicity, we will only define an irreducible algebraic
variety X . We need

• A finitely generated field extension K of C. This will be a field of
rational functions on X .

• Topology on X .
• For each open subset U ⊂ X we need a subalgebra OX(U) ⊂ K. It

should satisfy the condition

OX

(
⋃

i∈I

Ui

)
=

⋂

i∈I

OX(Ui).

OX is called the structure sheaf.
• Finally, X should admit a finite cover {Ui} such that each Ui (with

an induced topology) is an irreducible affine variety (with Zariski
topology) with function field K and for each open subset V ⊂ Ui,
OX(V ) ⊂ K is the algebra of rational functions regular on V .

In practice, algebraic varieties are constructed by gluing affine varieties.
Suppose A and B are irreducible affine varieties with the same function
field K. Suppose, in addition, that there exists another affine variety C and
open immersions

iA : C ↪→ A and iB : C ↪→ B.

Then we define the topological space X = A ∪C B by identifying points
iA(x) with iB(x) for any x ∈ C and by declaring a subset U ⊂ X open if
U ∩A and U ∩B is open. Finally, we set

OX(U) = OA(U ∩A) ∩ OB(U ∩B)

It is easy to generalize this to several affine charts: we need irreducible
affine varieties

U0, . . . , Ur,

with the same function field. For each pair Ui, Uj we have affine open sub-
sets

Uij ⊂ Ui, Uji ⊂ Uj

and an isomorphism
φij : Uij → Uji.

This isomorphism should satisfy (draw pictures)
• φij = φ−1

ji ,
• φij(Uij ∩ Uik) = Uji ∩ Ujk, and
• φik = φjk ◦ φij on Uij ∩ Uik.

4.3.2. LEMMA. Proj R is an algebraic variety.
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Proof. We have K = (QuotR)0. For any homogeneous f ∈ R we have an
affine variety

Df = MaxSpec R[1/f ]0.
To get a finite atlas, take only homogeneous generators of R. To see the glu-
ing condition, notice that Dfg is a principal open subset in both Df and Dg.
The compatibility conditions on triple overlaps are of set-theoretic nature,
and are clearly satisfied. !
§4.4. Separatedness. There is one annoying phenomenon that we can dis-
cuss now and then safely ignore later on. One can take two copies of A1

and glue them along D(x) = A1 \ {0}. This produces a famous “line with
two origins” (draw). What’s happening here is that diagonally embedded
D(x) is not closed in the product of charts (draw), compare with how P1 is
glued (draw). So we give

4.4.1. DEFINITION. An algebraic variety is called separated if it has an affine
atlas such that for any pair A, B of charts with C = A ∩ B, the diagonal
inclusion of C in A×B is a closed subset of the product.

How to check this in practice?

4.4.2. LEMMA. Suppose any two affine charts A and B with C = A∩B have the
following property: there exists f ∈ O(A) and g ∈ O(B) such that

O(C) = O(A)f = O(B)g ⊂ K.

Then X is separated iff for any A and B, we have
O(C) is generated by O(A) and O(B).

In particular, Proj R is separated.

Proof. We have O(A × B) = O(A) ⊗k O(B) (why?) , and the diagonal map
∆ : C → A×B is given by a homomorphism

∆∗ : O(A)⊗k O(B) → O(C), f ⊗ g $→ f

1
· g

1
.

The closure (∆(C)) of the diagonal is defined by the kernel of ∆∗. In par-
ticular, its algebra of functions is O(A)O(B) ⊂ O(C). So X is separated iff
this inclusion is an equality for any pair of charts.

The last remark follows from the formula
(Rfg)0 = (Rf )0(Rg)0, (4.4.3)

which we leave as an exercise. !
§4.5. Veronese embedding. We now have two models for P(1, 1, 2): as a
weighted projective plane defined by charts and as a quadratic cone in P3.
What is the relationship between these models? We are going to show that
in fact any ProjR is a projective variety.

4.5.1. DEFINITION. If R is a graded ring then its subring R(d) =
∑

d|n Rn is
called a d-th Veronese subring.

For example, for P(1, 1, 2) the second Veronese subring is generated by
x2, xy, y2, and z, subject to a single quadratic relation. So Proj R(2) is a
quadratic cone in P3 in this case. The basic fact is:
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4.5.2. PROPOSITION. ProjR = ProjR(d) for any d.

Proof. First of all, we have (QuotR)0 = (QuotR(d))0. Indeed, any fraction
a/b ∈ (QuotR)0 can be written as abd−1/bd ∈ (QuotR(d))0.

Let f1, . . . , fr be homogeneous generators of R, so that Proj R is cov-
ered by charts Dfi . Then fd

1 , . . . , fd
r ∈ R(d) are not necessarily generators,

however Proj R(d) is still covered by charts Dfd
i

. Indeed, if all fd
i vanish at

some point p ∈ Proj R(d) then also any function in the ideal generated by
them (and hence any function in its radical) vanishes at p. But any gener-
ator g of R(d) can be expressed as a polynomial in f1, . . . , fr, and therefore
a sufficiently high power of g belongs to the ideal (in R(d)) generated by
fd
1 , . . . , fd

r . So we have

Proj R =
r⋃

i=1

Dfi and Proj R(d) =
r⋃

i=1

Dfd
i

The basic local calculation we need is that charts Dfi of ProjR and Dfd
i

of ProjR(d) can be identified, i.e. that

R(d)[1/fd](0) & R[1/f ](0)
for any homogeneous element f of R. But indeed,

g

fi
=

fdj−ig

fdj

as soon as dj > i. So Proj R and ProjRd have the same charts glued in the
same way. !

Now another basic algebraic fact is:

4.5.3. LEMMA. For a sufficiently large d, R(d) is generated by Rd.

Proof. Let a1, . . . , ar be degrees of homogeneous generators f1, . . . , fr of R.
Let a = l. c.m.(a1, . . . , ar) and let d = ra. We claim that this d works. For
each i, let a = aibi: then

deg f bi
i = a.

Now take any element f ∈ Rkd. We claim that it can be written as a polyno-
mial in elements of Rd. It suffices to consider a monomial f = fn1

1 . . . fnr
r .

For inductive purposes, notice that deg f = kd = (kr)a. If ni < bi for each i
then

deg f < ra = d,

a contradiction. So we can write f = f bi
i g, where deg g = deg f − a. Contin-

uing inductively, we will write

f = [f bi1
i1

. . . f
bis
is

]g,

where deg g = d and degree of the first term is a multiple of d. Since
deg f bi

i = a for each i, we can group elements of the first term into groups of
r powers each of degree d. This shows that f can be written as a polynomial
in elements of Rd. !
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By the lemma we can realize ProjR as a subvariety in PN for a suffi-
ciently large N . Indeed, Proj R & Proj R(d) and

R(d) = C[y0, . . . , yN ]/I,

where I is a homogeneous ideal (in the usual sense). So

ProjR(d) = V (I) ⊂ PN .

4.5.4. COROLLARY. ProjR is a projective variety.
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§5. M2 (and A2) - Part I. (Mar 9, 11, 21, 23, 25)

We are going to spend a considerable amount of time studying the mod-
uli space M2 of algebraic curves of genus 2. Incidentally, this will also give
us the moduli space A2 of principally polarized Abelian surfaces: those are al-
gebraic surfaces isomorphic to C2/Λ, where Λ & Z4 is a lattice. So Abelian
surfaces are naturally Abelian groups just like elliptic curves. We will see
that M2 embeds in A2 as an open subset (via the Jacobian construction) and
the complement A2 \ M2 parametrizes split Abelian surfaces of the form
E1 × E2, where E1 and E2 are elliptic curves. The map Mg ↪→ Ag can
be constructed in any genus (its injectivity is called the Torelli theorem) but
dimensions are usually vastly different:

dimMg = 3g − 3 and dimAg =
g(g + 1)

2
.

The characterization of Mg as a sublocus of Ag is called the Shottky problem.

§5.1. Genus 2 curves: analysis of the canonical ring. Let’s start with a
basic Riemann–Roch analysis of a genus 2 curve C. We fix a canonical
divisor K. We have

deg K = 2× g − 2 = 2 and l(K) = g = 2.

So we can assume that
K ≥ 0

is an effective divisor. by Riemann–Roch, for any point P ∈ C,

l(K − P )− l(K − (K − P )) = 1− 2 + deg(K − P ) = 0.

Since l(P ) = 1 (otherwise C is isomorphic to P1), we have l(K − P ) = 1.
So |K| has no fixed part, and therefore gives a degree 2 map

φ|K| : C → P1.

By Riemann–Hurwitz, it has 6 ramification points called Weierstrass points.
We also see that C admits an involution permuting two branches of φ|2K|.
It is called the hyperelliptic involution.

Now consider |3K|. By Riemann–Roch, we have l(3K) = 5 and l(3K −
P −Q) = 3 for any points P,Q ∈ C. It follows that |3K| is very ample and
gives an embedding

C ↪→ P4.

To get a bit more, we observe that most of geometry of C is nicely en-
coded in the canonical ring

R(K) =
∞⊕

n=0

L(nK).

We can give a more general definition:

5.1.1. DEFINITION. Let D ≥ 0 be an effective divisor on a curve C. Its
graded algebra is defined as follows:

R(D) =
∞⊕

n=0

L(nD).
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This is a graded algebra: notice that if f ∈ L(aD) and g ∈ L(bD) then

(fg) + (a + b)D = (f) + aD + (g) + bD ≥ 0,

so fg ∈ L(a + b)D.

5.1.2. REMARK. We have only defined divisors on curves in this class, but
in principle it is no harder to defined a graded algebra of any divisor on an
algebraic variety of any dimension. The canonical ring R(K) of a smooth
variety of dimension n was a subject of a really exciting research in the last
30 years which culminated in the proof of a very important theorem of Siu
and Birkar–Cascini–Hacon–McKernan: R(K) is a finitely generated alge-
bra. This does not sound like much, but it allows us to define Proj R(K),
the so-called canonical model of X . It is easy to see that it depends only on
the field of rational functions C(X). In the curve case, C is uniquely deter-
mined by its field of functions, by in dimension > 1 it is easy to modify a
variety without changing its field of rational functions (e.g. by blow-ups).
So it is very handy to have this canonical model of the field of rational func-
tions. There exists a sophisticated algorithm, called the Minimal Model
Program, which (still conjecturally) allows one to construct the canonical
model by performing a sequence of basic “surgeries” on X called diviso-
rial contractions and flips.

We can compute the Hilbert function of R(K) by Riemann–Roch:

hn(R(K)) = l(nK) =






1 if n = 0
2 if n = 1
3 if n = 2
5 if n = 3
2n− 1 if n ≥ 2.

Let’s work out the generators. L(0) = C is generated by 1. This is a unity
in R(K). Let x1, x2 be generators of L(K). One delicate point here is that
we can (and will) take x1 to be 1 ∈ C(C), but it should not be confused with
a previous 1 because it lives in a different degree in R(K)! In other words,
R(K) contains a graded polynomial subalgebra C[x1], where any power xn

1
is equal to 1 as a rational function on C.

Any other element of first degree has pole of order 2 at K (because if it
has a pole of order 1, it would give an isomorphism C & P1.

A subalgebra S = C[x1, x2] of R is also a polynomial subalgebra: if we
have some homogeneous relation f(x1, x2) of degree d then we have

f(x1, x2) =
d∏

i=1

(αix1 + βix2) = 0 in C(C),

which implies that αix1 + βix2 = 0 for some i, i.e. that x1 and x2 are not
linearly independent, contradiction.
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The Hilbert function of S is

hn(S) =






1 if n = 0
2 if n = 1
3 if n = 2
4 if n = 3
n if n ≥ 2.

So the next generator we need for R(K) is a generator y in degree 3.
What happens in degree 4? We need 7 elements and we have 7 elements

x4
1, x3

1x2, x2
1x

3
2, x1x

3
2, x4

2, yx1, yx2.

We claim that they are indeed linearly independent, and in fact we claim:

5.1.3. LEMMA. There is no linear relation in C(C) of the form

yfk(x1, x2) = fk+3(x1, x2),

where the lower index is the degree. In particular, R(K) is generated by x1, x2, y.

Proof. Suppose the linear relation of the form above exists. Then y, as a
rational function on C, is a rational function f(x1, x2). One can show that
this is impossible either by an elementary analysis of possible positions of
roots of y and this rational function f(x1, x2) or by simply invoking the fact
that as we already know 3K is very ample, and in particular functions in
|3K| separate points of C. But if y is a rational function in x1 and x2 then y
takes the same values on two points from each fiber of φ|2K|. !

It follows that

5.1.4. LEMMA. R(K) is isomorphic to a polynomial algebra in x1, x2, y modulo a
relation

y2 = f6(x1, x2),
where f6 is a polynomial of degree 6.

Proof. We already know that R(K) is generated by x1, x2, y, and that y #∈
C(x1, x2). It follows that y2, yC[x1, x2]3, and C[x1, x2]6 are linearly depen-
dent in R(K)6 and this gives the only relation in R(K):

y2 = yf3(x1, x2) + f6(x1, x2).

We can make a change of variables y′ = y − 1
2f3 to complete the square,

which brings the relation in the required form. !
§5.2. Graded algebra of an ample divisor. Now let’s interpret these alge-
braic results geometrically. The basic fact is:

5.2.1. LEMMA. If D is an ample divisor on a curve C then Proj R(D) = C.

Proof. If D is very ample and R(D) is generated by R(D)1 then R(D) is
isomorphic to a a polynomial algebra in x0, . . . , xN ∈ L(D) modulo the
relations that they satisfy, i.e. R(D) = C[x0, . . . , xN ]/I , where I is a homo-
geneous ideal of C ⊂ PN . So in this case clearly ProjR(D) = C. In general,
if D is ample then kD is very ample for some k > 0. Also, we know by
Lemma 4.5.3 that the Veronese subalgebra R(lD) = R(D)(l) is generated
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by its first graded piece for some l > 0. So klD is a very ample divisor
and R(klD) = R(kl) is generated by its first graded piece. Then we have
ProjR(D) = ProjR(klD) = C. We are not using here that C is a curve, so
if you know your divisors in higher dimension, everything works just as
nicely. !

As a corollary, we have

5.2.2. COROLLARY. Let C be a genus 2 curve. Then R(K) induces an embedding

C ⊂ P(1, 1, 3)

and the image is defined by an equation

y2 = f6(x1, x2). (5.2.3)

The embedding misses a singularity of P(1, 1, 3) (where x1 = x2 = 0, y = 1).
In the remaining two charts of P(1, 1, 3), the curve is given by equations

y2 = f6(1, x2) and y2 = f6(x1, 1).

The projection onto P1
[x1:x2] is a bicanonical map φ|2K| and roots of f6 are branch

points of this 2 : 1 cover. In particular, f6 has no multiple roots and any equation
of the form (5.2.3) defines a genus 2 curve.

The tricanonical embedding C ⊂ P4 factors through the Veronese embedding

P(1, 1, 3) ↪→ P4, (x1, x2, x3, y) $→ [x3
1 : x2

1x2 : x1x
2
2 : x3

2 : y],

where the image is a projectivized cone over a rational normal curve.

This sets up a bijection between curves of genus 2 and unordered 6-
tuples of distinct points p1, . . . , p6 ∈ P1 modulo PGL2. We are going to
use this to construct M2. The classical way of thinking about 6 unordered
points in P1 is to identify them with roots of a binary form f6(x1, x2) of
degree 6. Let V6 be a vector space of all such forms and let D ⊂ P(V6)
be the discriminant hypersurface (which parameterizes binary sextics with
multiple roots). Thus we have (set-theoretically):

M2 = (P(V6) \ D)/ PGL2 .

§5.3. GIT: Proj quotient. We will construct the quotient P(V6)/ PGL2 and
then through away the image of D from it to get M2. So far we were only
taking quotients of affine varieties by the action of the group. How about
quotients of projective varieties?

5.3.1. EXAMPLE. Here is a preview: what is the quotient of the standard P2

by the action of the symmetric group S3 that acts by permuting the coordi-
nates x1, x2, x3? We can realize P2 as the quotient of A3 by the action of C∗,
which commutes with the action of S3. So we can take the quotient by the
action of S3 first, which gives A3 with coordinates given by the elementary
symmetric functions. Now we can quotient out by the action of C∗ but now
notice that it has weights 1, 2, 3! So the quotient morphism is

π : P2 → P(1, 2, 3),

[x1 : x2 : x3] $→ [x1 + x2 + x3 : x1x2 + x2x3 + x1x3 : x1x2x3].
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More systematically, the procedure is as follows. Suppose a group G acts
on a projective variety X . Suppose we can write X = ProjR, where R is
some finitely generated graded algebra. This is called a choice of polarization.
Suppose we can find an action of G on R that induces an action of G on X .
This is called a choice of linearization. Then we can form a GIT quotient

X//G = ProjRG.

In the example above, P2 = Proj C[x1, x2, x3], and

P2//S3 = Proj C[x1, x2, x3]S3 =

= Proj C[x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3] = P(1, 2, 3).
We will use this construction to describe M2.

§5.4. Classical invariant theory of a binary sextic. We have to describe the
algebra R = O(V6)SL2 of SL2-invariant polynomial functions for the linear
action of SL2 on V6. The classical convention for normalizing the coeffi-
cients of a binary form is to divide coefficients by the binomial coefficients:

f6 = ax6 + 6bx5y + 15cx4y2 + 20dx3y3 + 15ex2y4 + 6fxy5 + gy6.

Explicit generators for R were written down in the 19-th century by Cleb-
sch, Cayley, and Salmon. We are not going to prove that they indeed gen-
erate the algebra of invariants but let’s discuss them to see how beautiful
the answer is. Let p1, . . . , p6 denote the roots of the dehomogenized form
f6(x, 1) and write (ij) as a shorthand for pi−pj . Then we have the following
generators (draw some graphs):

I2 = a2
∑

fifteen
(12)2(34)2(56)2

I4 = a4
∑

ten
(12)2(23)2(31)2(45)2(56)2(64)2

I6 = a6
∑

sixty
(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2

D = I10 = a10
∏

i<j

(ij)2

I15 = a15
∑

fifteen
((14)(36)(52)− (16)(32)(54)).

Here the summations are chosen to make the expressions S6-invariant. In
particular, they can all be expressed as polynomials in C[a, b, c, d, e, f, g], for
example

I2 = −240(ag − 6bf + 15ce− 10d2). (5.4.1)
Here is the main theorem:

5.4.2. THEOREM. The algebra R = O(V6)SL2 is generated by invariants I2, I4, I6,
I10, and I15. The subscript is the degree. Here D = I10 is the discriminant which
vanishes iff the binary form has a multiple root. The unique irreducible relation
among the invariants is

I2
15 = G(I2, I4, I6, I10).

Now we use our strategy to construct M2:
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• Compute V6// SL2 = MaxSpec R first. By 19-th century, this is

C[I2, I4, I6, I10, I15]/(I2
15 = G(I2, I4, I6, I10)).

• Now quotient the result by C∗, i.e. compute Proj R. Here we have
a magical simplification: ProjR = Proj R(2) but the latter is gen-
erated by I2, I4, I6, I10, and I2

15. Since I2
15 is a polynomial in other

invariants, in fact we have

Proj R(2) = Proj C[I2, I4, I6, I10] = P(2, 4, 6, 10) = P(1, 2, 3, 5).

• To get M2, remove a hypersurface D = 0, i.e. take the chart DI10 of
P(1, 2, 3, 5). This finally gives

M2 = A3/µ5,

where µ5 acts with weights 1, 2, 3.
• One can show that C[A, B,C]µ5 has 8 generators. So as an affine

variety, we have

M2 = (P(V6) \ D)/ PGL2 ↪→ A8,

{y2 = f(x)} $→
(

I5
2

I10
,
I3
2I4

I10
,
I2I2

4

I10
,

I5
4

I2
10

,
I2
2I6

I10
,
I2I3

6

I2
10

,
I5
6

I3
10

,
I4I6

I10

)
.

This of course leaves more questions then gives answers:
(1) How do we know that points of M2 correspond to isomorphism

classes of genus 2 curves? In other words, why is it true that our
quotient morphism

P(V6) \ D → A3/µ5

is surjective and separates PGL2-orbits? It is of course very easy
to give examples of quotients by infinite group actions that do not
separate orbits.

(2) Can one prove the finite generation of the algebra of invariants and
separation of orbits by the quotient morphism without actually com-
puting the algebra of invariants?

(3) Is M2 a coarse moduli space (and what is a family of genus 2 curves)?
(4) Our explicit description of M2 as A3/µ5 shows that it is singular.

Which genus 2 curves contribute to singularities?
(5) Our construction gives not only M2 but also its compactification by

Proj R. Can we describe the boundary Proj R \ M2?
(6) Are there other approaches to the construction of M2?
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§5.5. Homework due on April 1.

Write your name here:

Problem 1. Let C ⊂ Pd be a rational normal curve of degree d, let Ĉ ⊂
Ad+1 be the affine cone over it, and let C̄ ⊂ Pd+1 be its projective closure.
Show that C̄ is isomorphic to P(1, 1, d) (1 point).

Problem 2. Let P ∈ P1 be a point. Let R =
⊕
k≥0

L(kP ) be the associated

ring. Describe the projective embedding of P1 given by the d-th Veronese
subalgebra of R (1 point)

Problem 3. Show that I2 (see (5.4.1)) is indeed an SL2-invariant polyno-
mial. (2 points)

Problem 4. A weighted projective space P(a0, . . . , an) is well-formed if no
n of the weights a0, . . . , an have a common factor. For example, P(1, 1, 3)
is well-formed but P(2, 2, 3) is not. Consider the polynomial ring R =
C[x0, . . . , xn], where xi has weight ai. (a) Suppose that d = gcd(a0, . . . , an).
Show that R(d) = R and that P(a0, . . . , an) & P(a0/d, . . . , an/d). (b) Suppose
that d = gcd(a1, . . . , an) and that (a0, d) = 1. Compute R(d) and show that
P(a0, . . . , an) & P(a0, a1/d . . . , an/d). Conclude that any weighted projec-
tive space is isomorphic to a well-formed one (2 points).

Problem 5. Compute Proj C[x, y, z]/(x5 + y3 + z2). Here x has weight 12,
y has weight 20, and z has weight 30 (1 point).

Problem 6. Using the fact that M2 = A3/µ5, where µ5 acts with weights
1, 2, 3, construct M2 as an affine subvariety of A8 (1 point).

Problem 7. Let V4 be the space of degree 4 binary forms. Show that
O(V4)SL2 is a polynomial algebra generated by invariants of degrees 2 and 3
(hint: use Problem 4 from the previous homework). (3 points).

Problem 8. (a) Prove (4.2.1). (b) Prove (4.4.3) (1 point).
Problem 9. Let P ∈ E be a point on an elliptic curve. (a) Compute

Proj R(P ) and the embedding of E in it. (b) Compute ProjR(2P ) and the
embedding of E in it. (2 points)

Problem 10. Let P ∈ E be a point on an elliptic curve. Show that φ|4P |
embeds E in P3 as a complete intersection of two quadrics (i.e. the homoge-
neous ideal of E in this embedding is generated by two quadrics) (2 points).

Problem 11. Show that any genus 2 curve C can be obtained as follows.
Start with a line l ⊂ P3. Then one can find a quadric surface Q and a cubic
surface S containing l such that Q ∩ S = l ∪ C (2 points).

Problem 12. Assuming that M2 = A3/µ5 set-theoretically, define families
of curves of genus 2 (analogously to families of elliptic curves), and show
that M2 is a coarse moduli space (2 points).

Problem 13. Assuming the previous problem, show that M2 is not a fine
moduli space (2 points).

Problem 14. Show that An\{0} is not an affine variety for n > 1 (1 point).
Problem 15. Suppose X and Y are separated algebraic varieties. Explain

how to define X × Y as an algebraic variety and show that it is separated
(2 points).
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Problem 16. (a) Show that an algebraic variety X is separated if and only
if the diagonal X is closed in X ×X . (b) Show that a topological space X is
Hausdorff if and only if the diagonal X is closed in X ×X equipped with
a product topology. (c) Explain how (a) and (b) can be both true but A1 is
both separated and not Hausdorff (2 points).

Problem 17. Use affine charts to show that G(2, n) is an algebraic variety
without using the Plücker embedding (1 point).

Problem 18. Consider rays R1, . . . , Rk ⊂ R2 emanating from the origin,
having rational slopes, going in the counter-clockwise direction, and span-
ning the angle 2π once. Suppose that each angle RiRi+1 (and RkR1) is less
than π. This is called a (two-dimensional) fan. The angles RiRi+1 (and
RkR1) are called (top-dimensional) cones of the fan. Rays themselves are
also (one-dimenesional) cones. The origin is a zero-dimensional cone. Now
for each cone σ of the fan, consider the semigroup Λ = σ ∩ Z2 and the dual
semigroup

Λ⊥ = {(u, v) ∈ Z2 | ui + vj ≥ 0 for any (i, j) ∈ Λ} ⊂ Z2.

Let K be the field C(x, y). We can think about an element (i, j) ∈ Z2

as a Laurent monomial xiyj . This gives us algebras C[σ] ⊂ K spanned
by monomials in Λ⊥. (a) Show that for each inclusion of cones τ ⊂ σ,
MaxSpec C[τ ] is a principal open subset in MaxSpec C[σ]. (b) Show that
one can glue all MaxSpec C[σ] together. This is called a toric surface. (c)
Show that weighted projective planes are toric surfaces (3 points).

Problem 19. An algebraic curve is called bielliptic if it admits a 2 : 1
morphism C → E onto an elliptic curve; the covering transformation is
called a bielliptic involution. Let C be a genus 2 curve. (a) Show that if
C is bielliptic then its bielliptic involution commutes with its hyperelliptic
involution. (b) Show that C is bielliptic if and only if the branch locus
p1, . . . , p6 ∈ P1 of its bi-canonical map has the following property: there
exists a 2 : 1 morphism f : P1 → P1 such that f(p1) = f(p2), f(p3) = f(p4),
and f(p5) = f(p6). (c) Show that (b) is equivalent to the following: if we
realize P1 as a conic in P1 then lines p1p2, p3p4, and p5p6 all pass through a
point (3 points).


