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EPISYENITES IN THE SEVILLETA NATIONAL 
WILDLIFE REFUGE, SOCORRO COUNTY, NEW 

MEXICO—PRELIMINARY RESULTS

Virginia T. McLeMore

New Mexico Bureau of Geology and Mineral Resources, 801 Leroy Place, Socorro, NM, 87801, ginger@nmbg.nmt.edu

AbstrAct—Brick-red episyenites are found in an outlier of Proterozoic-age rocks on the Sevilleta National Wildlife Refuge in central New 
Mexico. The term episyenite is used to describe altered rocks that were desilicified and metasomatized by alkali-rich fluids. Similar episy-
enites are found elsewhere in New Mexico and southern Colorado and are thought to be part of a Cambrian-Ordovician magmatic event 
that is documented throughout southern Colorado and New Mexico. Unlike episyenites in the Caballo and Burro Mountains, which contains 
moderate to high concentrations of rare earth elements (REE), uranium, and thorium; the episyenites in the Sevilleta National Wildlife 
Refuge have no economic potential.
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INTRODUCTION

Recent geologic mapping by New Mexico Bureau of Geol-
ogy and Mineral Resources (NMBGMR) revealed brick-red, 
K-feldspar-rich rocks, called episyenites, in an outlier of Pro-
terozoic-age rocks on the Sevilleta National Wildlife Refuge in 
central New Mexico (Fig. 1; Allen et al., 2013). Because some 
of these complexes are known for potential economic depos-
its of rare earth elements (REE), uranium (U), thorium (Th), 
niobium (Nb), zirconium (Zr), hafnium (Hf), gallium (Ga), 
and other elements (Long et al., 2010; McLemore, 2015), the 
author mapped and sampled these unusual metasomatic rocks 
to compare to episyenites elsewhere in New Mexico, with the 
goals of better understanding their tectonic setting and origin 
and to evaluate their economic potential. Similar episyenites 
are found elsewhere in New Mexico and southern Colorado 
and are thought to be part of a Cambrian-Ordovician magmatic 
event that is documented throughout southern Colorado and 
New Mexico (Fig. 1; McMillan and McLemore, 2004; Rig-
gins et al., 2014). This Cambrian-Ordovician magmatic event 
is characterized by the intrusion of carbonatites, syenites, mon-
zonites, alkaline granites, and mafic dikes, and is associated 
with K-metasomatism (i.e., fenites and episyenites) and REE-
Th-U mineral deposition. This report presents preliminary re-
sults and interpretations as mapping, geochemical, and geo-
chronological studies are ongoing by the author.

DEFINITION OF EPISYENITES

The term episyenite is used to describe altered rocks that 
were desilicified and metasomatized by alkali-rich fluids (Le-
roy, 1978; Recio et al., 1997). The metasomatic rocks in several 
areas in New Mexico, including the Caballo, Burro, and Zuni 
Mountains and Lobo Hill were erroneously called syenites and 
alkali granites (McMillan and McLemore, 2004), but are actu-
ally metasomatic in origin and not primary igneous rocks (Mc-
Lemore, 2013; Riggins, 2014; Riggins et al., 2014). Elsewhere 
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in the world, these alkali-rich metasomatic rocks are associated 
with uranium and thorium deposits (Costi et al., 2002; Condomi-
nes et al., 2007; Cuney et al., 2012), gold deposits (López-Mo-
ro et al., 2013) and tin-tungsten deposits (Charoy and Pollard, 
1989; Costi et al., 2002; Borges et al., 2009), but unmineralized 
episyenites are found as well (Petersson and Eliasson, 1997; 
Recio et al., 1997; Hecht et al., 1999). Episyenites are similar to 
altered rocks formed by fenitization and would be called fenites 
by some geologists. Fenitization is the alkali-metasomatism as-
sociated with carbonatites or alkaline igneous activity (Le Bas, 
2008). However, we are reluctant to use the term fenite for these 
rocks studied here because there is no definitive spatial associa-
tion with carbonatite or alkaline igneous rocks.

METHODOLOGY

A detailed geologic map was compiled in ArcMap using 
USGS topographic maps as the map base and by detailed field 
mapping at a scale of approximately 1:6,000 (Fig. 2). A hand-
held GPS unit was used with the current topography loaded 
in the unit to more accurately map the episyenites.  Selected 
samples of the Proterozoic host rocks and episyenites were col-
lected and analyzed by X-ray fluorescence (XRF) spectroscopy 
and inductively coupled plasma spectroscopy  (ICP-OES and 
ICP-MS) by Activation Laboratories in 2012 and 2015, meth-
ods for which can be found at www.actlabs.com. Locations of 
samples and whole-rock geochemical analyses are in Table 1.

 
DESCRIPTION OF PROTEROZOIC ROCKS AND 
EPISYENITES IN THE SEVILLETA NATIONAL 

WILDLIFE REFUGE

An outlier of Proterozoic rocks in the Sevilleta National 
Wildlife Refuge was mapped by Wilpolt et al. (1946), Myers et 
al. (1986), and Allen et al. (2013). Structural relationships are 
complex as rocks have been deformed by Proterozoic, Paleo-
zoic, Laramide, and mid-Tertiary tectonic events.

Proterozoic granite

The predominant rock in the Proterozoic outlier in the Se-
villeta National Wildlife Refuge (Fig. 2) is a medium to coarse-
grained, reddish gray to pinkish gray, nonfoliated to slightly 
foliated granite, consisting of euhedral plagioclase (30-40%), 
quartz (25-35%), and K-feldspar (25-35%), with trace amounts 
(<2%) of biotite, muscovite, and magnetite. Small (<15 cm) 
xenoliths of gray muscovite schist and black amphibolite are 
found locally within the granite. The granite forms rounded 
knobs to steep cliff faces in the area. Pale pink to pale red 
aplite dikes and red and white, quartz-feldspar-biotite pegma-
tites and white quartz veins intruded the granite and are <1 m 
wide and as much as several hundred meters long. Some of 
these thin (<0.5 m) quartz veins contain minor barite-fluorite 
(±malachite) veins.  Iron and manganese oxide breccias cut the 
Proterozoic rocks locally. Many of the small faults cutting the 
Proterozoic granite are filled, in part, by manganese-oxide ce-
mented breccia.

Larger xenoliths and breccias of amphibolite and granitic 
gneiss (0.5- to 1-m diameter) are found in the granite in the 
southern-most portion of the Proterozoic outlier. The amphib-
olite xenoliths are speckled black and white to greenish black 
and consist of hornblende, epidote, biotite, quartz, and pla-
gioclase with some magnetite. These xenoliths are similar to 
amphibolites found in Los Pinos Mountains.

Episyenites
Numerous radioactive, pink to red, small stock-like to 

flat-lying tabular bodies (<300 m long), near-vertical pipes 
(<30 m in diameter), and dike-like bodies (<2 m wide, 400 m 
long) of episyenites are mapped in the exposed outlier (Fig. 2). 
Some areas have numerous small episyenite bodies in a geo-
graphically restricted area, suggesting fracture or fault control. 
The contacts between the episyenite bodies and the host rocks 
vary from location to location, from very sharp to distinctly gra-
dational, crosscutting the foliation of the host rock (Fig. 3). At 
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one locality, a quartz-feldspar-muscovite pegmatite dike grades 
into coarse-grained, K-feldspar-rich episyenite with no quartz. 
The episyenites contain 20-80% alkali-feldspar, 20-40% pla-
gioclase, 0-10% quartz, 1-5% opaque minerals (predominantly 
iron oxides), trace-5% biotite (partially to completely altered 
to chlorite), and trace amounts of apatite, sericite, calcite, and 
carbonate. Some alkali-feldspar crystals are more than a centi-
meter long. Plagioclase is commonly altered to carbonate, he-
matite, and clay. Iron oxides occur as fine-grained red-brown 
disseminations within the feldspars, and as small red cubes and 
octahedrons that were probably once magnetite. The rocks are 
almost devoid of ferromagnesian minerals. 

WHOLE-ROCK GEOCHEMISTRY

Selected samples of granite and episyenites in the Sevilleta 
National Wildlife Refuge were collected and analyzed for ma-
jor and trace elements (Table 1). In addition, published chemi-
cal analyses of the Priest granite, Los Pinos Granite, Sepultura 
granite and episyenites from the Caballo Mountains (Condie 
and Budding, 1979; Riggins, 2014) are included for compari-
son to the Sevilleta samples. The Sepultura granite is south of 
the Los Pinos Granite and is similar in texture and composi-
tion to the Los Pinos Granite (Condie and Budding, 1979). The 
Priest granite was included because it is found north of the Los 
Pinos Granite and could be a potential correlation to the Sevil-
leta granites, although the Priest granite has different texture 
and composition compared to the Los Pinos Granite.

The Sevilleta, Los Pinos, and Priest granites are metalu-
minous to peraluminous (according to Shand, 1943; Frost et 
al., 2001), alkali-calcic (Frost et al., 2001) and syn-collision-
al to within-plate granites (according to Pearce et al., 1984); 
they plot in the active continental margins zone, according to 
Schandl and Gorton (2002). The Sevilleta granites have similar 
geochemical compositions as the Los Pinos Granite (Table 1; 
Figs. 4, 5), although the REE patterns of the Sevilleta granites 
are closer to that of the Priest granite (Fig. 6).  

The Sevilleta episyenites are high in K2O and low in SiO2 
(Fig. 4), with slightly enriched light REE patterns (Fig. 7). The 
Sevilleta episyenites are similar in composition to episyenites 
found in the Caballo, Burro, and Zuni Mountains and at Lobo 
Hill (Figs. 4, 7; McLemore, 1986; McLemore and McKee, 
1988, 1989; McLemore et al., 1999; McMillan and McLemore, 
2004; Riggins, 2014; Riggins et al., 2014).

FIGURE 3. Sharp contact between brick red episyenite (upper right) and pink 
granite (lower left) on the Sevilleta National Wildlife Refuge.

FIGURE 4. SiO2 verse K2O plot of the granites and episyenites. Note the high 
K2O of the episyenites and the similarity in composition between the Sevilleta 
and Los Pinos granites. Chemical analyses are in Table 1. Chemical analyses 
of Caballo episyenites are from Riggins (2014).

FIGURE 5. Na2O-CaO-K2O plot of the granites. Note the the similarity in 
composition between the Sevilleta and Los Pinos granites. Chemical analyses 
are in Table 1. 
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Sample SEV-2 SEV-4 SEV 13 SEV 23 SEV 42 SEV-5 SEV-6 SEV 14 SEV 15 Priest Los 
Pinos

Sepultura

Lithology episyenite episyenite episyenite episyenite episyenite granite granite granite granite granite granite granite

latitude 34.353718 34.3536 34.35956 34.356443 34.352715 34.3536 34.35382 34.35956 34.35956 na na na

longitude 106.7359 106.7359 106.738 106.7338 106.736 106.7359 106.7358 106.7375 106.7375 na na na

SiO2 63.8 64.4 62.56 64.91 63.17 75.2 73.7 73.35 73.2 68.5 74.9 75.1

Al2O3 18 18.15 18.3 17.55 18.22 13.05 14.65 14.17 13.96 15.4 12 13.4

TiO2 0.03 0.17 0.25 0.23 0.36 0.15 0.04 0.2 0.2 0.39 0.24 0.22

Fe2O3T 0.28 0.27 1.6 0.6 1.05 1.32 0.91 1.7 1.52 2.92 2.75 1.2

CaO 0.16 0.15 0.22 0.21 0.35 0.25 0.68 0.74 0.25 2.58 0.84 0.64

MgO <0.01 <0.01 0.63 0.05 0.12 0.45 0.1 0.45 0.61 1.6 0.08 0.07

MnO <0.01 <0.01 0.03 0.02 0.01 0.02 0.02 0.05 0.02 na na na

Na2O 0.28 0.24 0.3 0.28 0.34 2.93 4.48 3.2 3.63 4 4.37 4.19

K2O >15.0 >15.0 >15.0 >15.0 >15.0 5.58 3.62 5.04 5.77 4.19 4.27 4.72

P2O5 0.1 0.09 0.12 0.11 0.1 0.09 0.06 0.11 0.1 na na na

LOI 0.22 0.1 0.52 0.18 0.47 0.76 0.58 0.77 0.66 na na na

Total 98.57 99.34 100.15 99.78 100.4 99.86 98.85 99.86 99.92 99.58 99.45 99.54

Ba 380 709 885 669 539 310 13.6 475 557 597 1035 631

Cr <10 10 10 10 10 10 <10 10 20 22 2 4

Cs 19.8 6.86 6.33 9.36 14.3 7.71 15.55 13.8 7.01 8.8 2.6 3

Ga 17.8 16.3 19.7 19 18.8 16.1 26.1 20.6 15.9 na na na

Hf 1.1 4.5 6.4 5.3 9 3.7 1.4 4.6 4.4 na na na

Nb 10.2 23.6 25.2 24.2 23.2 20.9 45.3 29.5 26.8 na na na

Rb 697 622 612 666 681 283 306 356 307 191 135 223

Sn 1 2 2 1 3 2 4 3 2 na na na

Sr 24.5 51.3 56.3 53.1 55.1 41.4 12.6 79.6 53.7 342 63 24

Ta 6.3 3.3 3.4 3.5 3.1 3.8 8 3 3.3 na na na

Th 6.51 22.2 23.5 20.9 17.55 23.9 8.73 18.45 19.65 na na na

U 3.19 4.07 3.46 4.43 2.34 2.26 4.22 3.1 1.95 na na na

V <5 6 14 16 14 14 <5 19 16 na na na

W 56 71 2 1 2 84 94 2 2 na na na

Y 38.4 25.9 27.9 28.2 29.6 25.6 20.1 22.9 16.2 na na na

Zr 12 141 228 183 363 109 15 159 139 131 na na

Co 11 16 2 1 1 15 15 3 2 na na na

Cu 6 7 8 38 8 16 5 33 4 na na na

Li <10 <10 10 <10 <10 10 50 20 10 na na na

Mo <1 <1 <1 <1 <1 <1 <1 <1 <1 na na na

Ni <1 1 7 <1 <1 4 <1 4 6 na na na

Pb 26 27 22 65 21 19 20 28 20 na na na

Sc 1 4 3 4 5 5 9 9 6 na na na

Zn <2 <2 12 10 6 18 12 34 15 na na na

As 0.4 0.5 2.7 1.4 0.7 1.1 0.3 0.6 0.7 na na na

Bi 0.08 0.21 0.15 10.05 0.26 0.25 0.52 4.85 0.17 na na na

Sb 0.14 0.16 0.23 0.51 0.13 0.15 0.1 0.08 0.11 na na na

Sc 0.8 1.7 0.6 1 0.9 na na na

Se 0.4 0.3 0.5 0.5 0.4 0.4 0.4 0.6 0.4 na na na

Te 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.1 0.01 na na na

Tl 0.1 0.11 0.04 0.07 0.07 0.06 0.09 0.07 0.03 na na na

La 5 10.6 11.9 45.6 32.5 17.6 5.7 32.5 23.9 44 70 52

Ce 9.6 19 24.7 86.6 63.5 46.1 12.5 65.9 56.8 98 170 141

Pr 1.35 2.45 3.03 10.2 7.31 4.52 1.59 7.5 6.02 na na na

Nd 5.7 9.2 11.8 35.8 25.5 16.7 6.2 27.3 21.3 na na na

Sm 2.41 2.27 3.1 7.59 5.19 4.24 2.48 5.62 4.97 6.7 21 18

Eu 0.3 0.37 0.48 0.74 0.45 0.45 0.2 0.67 0.57 0.78 3.1 2.4

Gd 3.22 2.2 3.32 5.85 4.59 3.59 2.34 4.53 3.58 na na na

Tb 0.78 0.52 0.65 0.86 0.82 0.63 0.57 0.73 0.57 0.68 4 2.8

Dy 5.28 3.59 4.23 4.39 4.94 4.07 3.43 3.97 2.91 na na na

Ho 1.16 0.83 0.95 0.94 1.01 0.92 0.67 0.81 0.6 na na na

Er 3.64 2.68 2.96 2.91 2.9 2.79 2.3 2.27 1.7 na na na

Tm 0.48 0.48 0.47 0.48 0.39 0.39 0.37 0.33 0.26 na na na

Yb 3.38 3.21 3.64 3.59 2.94 3.09 3.59 2.4 2.12 1.6 12 11

Lu 0.41 0.49 0.56 0.58 0.41 0.45 0.48 0.38 0.33 0.29 1.9 1.8

TREE 42.71 57.89 71.79 206.13 152.45 105.54 42.42 154.91 125.63 152.05 282 229

TABLE 1. Chemical analyses of Sevilleta granites and episyenites and Priest, Los Pinos, and Sepultura granites (from Condie and Budding, 1979). Major oxides are 
in percent (%) and trace elements are in parts per million (ppm). Latitude and longitude are in NAD27. Na=not available. REE=rare earth elements. Fe2O3T=Total 
iron calculated as Fe2O3.
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FIGURE 6. Similar sample/chondrite normalized REE patterns for the Sevil-
leta, Los Pinos, and Priest granites. Chondrite values from Nakamura (1974). 
Chemical analyses are in Table 1.

FIGURE 7. Similar sample/chondrite normalized REE patterns for the Sevil-
leta and Caballo episyenites. The Caballo episyenite with the heavy REE en-
riched pattern is indicative of potential economic heavy REE concentrations 
(Riggins et al., 2014), not found in the Sevilleta episyenites. Chondrite values 
from Nakamura (1974). Chemical analyses are in Table 1. Chemical analyses 
of Caballo episyenites are from Riggins (2014).

DISCUSSION AND CONCLUSIONS

Correlation of the Proterozoic Sevilleta granite

The granite in the Sevilleta National Wildlife Refuge is sim-
ilar in appearance, texture, and composition to the Los Pinos 
Granite (Figs. 4, 5; Allen et al., 2013), which is found in the 
foothills of Los Pinos Mountains (Beers, 1976; Bolton, 1976; 
Condie and Budding, 1979; Shastri, 1993). The Los Pinos 
Granite is 1655-1666 Ma and was affected by a younger tec-
tonic event at about 1420 Ma (Shastri, 1993; Karlstrom et al., 
2004). More work is needed to properly correlate the granite 
outlier.

Origin of episyenites
Textures, high K-feldspar contents, and high K2O concen-

Sample REE113 REE114 REE115 REE116

Lithology episyenite episyenite episyenite episyenite

latitude 33.0742213 33.0741465 33.07345 33.07345

longitude -107.228879 -107.228523 -107.22697 -107.22697

SiO2 56.96 63.84 54.49 50.83

Al2O3 17.92 15.94 15.25 14.59

TiO2 0.19 0.06 0.28 0.41

Fe2O3T 6.73 3.73 5.65 7.5

CaO 0.24 1.08 5.65 6.57

MgO 3.16 0.05 0.7 2.3

MnO 0.035 0.045 0.049 0.107

Na2O < 0.01 0.07 0.1 < 0.01

K2O 12.89 14.04 12.67 10.22

P2O5 0.007 0.03 0.13 0.013

LOI 2.27 1.11 5.07 6.91

Total 100.5 99.995 100.039 99.63

Ba 600 397 375 491

Cr < 20 < 20 < 20 < 20

Cs 0.6 0.7 0.7 < 0.5

Ga 26 9 14 22

Hf 5.6 3.5 5.8 15.6

Nb 3 2 10 27

Rb 370 362 323 317

Sn 1 < 1 4 3

Sr 11 11 31 39

Ta 0.8 1 1.4 1.8

Th 33.6 39.9 43.9 26

U 4.4 3.5 3.9 205

V 39 18 59 68

W

Y 24 45 24 642

Zr 211 89 193 4730

Co

Cu < 10 < 10 < 10 < 10

Li

Mo

Ni

Pb < 5 < 5 < 5 16

Sc

Zn < 30 < 30 < 30 < 30

As < 5 < 5 < 5 5

Bi < 0.4 < 0.4 < 0.4 2.6

Sb < 0.5 < 0.5 < 0.5 < 0.5

Sc

Se

Te

Tl

La 68.4 2.8 22.5 23.8

Ce 170 8.7 49.6 93.9

Pr 14.3 1.19 5.35 10.6

Nd 50.8 5.6 18.2 49.5

Sm 8.1 3.1 3.8 18.9

Eu 1.13 0.72 0.6 4.11

Gd 6.5 4.2 3.5 29.5

Tb 0.8 1.1 0.6 7.7

Dy 4 7.6 3.6 69.9

Ho 0.7 1.6 0.7 19.8

Er 2.2 4.7 2.6 77.5

Tm 0.34 0.71 0.47 15.2

Yb 2.4 4.7 3.5 133

Lu 0.43 0.76 0.65 26.9

TREE 330.1 47.48 115.67 580.31

TABLE 1. Continued.
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trations support a metasomatic origin of the Sevilleta episy-
enites. The field and mineralogical observations suggest that 
the Sevilleta episyenites were formed by interaction of a K-rich 
fluid with the granitic host rock, possibly along fault, fracture, 
and shear zones. The most altered rocks contain more than 15 
wt.% K2O, which is close to the composition of endmember 
orthoclase (15.60 wt. % K2O; Deer et al., 1992; Riggins, 2014; 
Riggins et al., 2014), suggesting the most altered rocks are 
composed almost completely of K-feldspar. The K-rich fluid 
that caused metasomatism was likely silica undersaturated, 
resulting in dissolution and/or alteration of primary quartz, bi-
otite and other accessory silicate phases (Cathelineau, 1986), 
and precipitation of secondary K-feldspar with iron-oxide 
inclusions. Similar observations are found in the episyenites 
found in the Caballo and Burro Mountains (Riggins, 2014; 
Riggins et al., 2014). 

Carbonatites and alkaline igneous rocks are commonly en-
riched in sodium, potassium and REE, due to magmatic pro-
cesses such as crystal fractionation and late magmatic hydro-
thermal activity (Sheard et al., 2012; Gysi and Williams-Jones, 
2013; Walters et al., 2013). Primitive carbonatitic melts contain 
significant amounts of sodium and potassium that are incom-
patible in the crystallizing assemblage, so are fractionated into 
the residual melt and can then be lost to late-stage hydrother-
mal fluids, which causes metasomatism (LeBas, 2008). Episy-
enite textures, mineralogy and mineral chemistry from the Ca-
ballo and Burro Mountains suggest that these episyenites have 
been formed and mineralized by K- metasomatism, with the 
original fluids possibly derived from carbonatites or alkaline 
melts (Riggins, 2014; Riggins et al., 2014). Carbonatites are 
found in the Lemitar and Chupadera Mountains near Socorro 
(Fig. 1) that could have provided K-rich fluids resulting in the 
metasomatism in the Sevilleta National Wildlife Refuge.

Age of episyenites
None of the episyenites found in the Sevilleta National 

Wildlife Refuge have been dated, but are here tentatively cor-
related to similar episyenites found at Lobo Hill and in the Ca-
ballo, Burro and Zuni Mountains, New Mexico (McLemore, 
1986, 2013; McLemore and McKee, 1988, 1989; McLemore 
et al., 1999; 2012; McMillan and McLemore, 2004; Riggins, 
2014; Riggins et al., 2014). Field relationships, i.e., the pres-
ence of episyenite pebbles in the Cambrian-Ordovician Bliss 
sandstone lying unconformably on the episyenites and Protero-
zoic rocks in the Caballo Mountains, indicate that episyenites 
are older than the Bliss Formation (McLemore, 1986; Riggins, 
2014). Episyenite clasts in the Bliss sandstone contain xeno-
time of similar chemistry to that of xenotime from episyenites 
in the Caballo Mountains, which suggests that REE mineral-
ization also occurred prior to the Cambrian-Ordovician (Rig-
gins, 2014). 

One sample of the episyenite in the Burro Mountains yield-
ed 40Ar/39Ar plateau ages of 516.4±4.5 to 533.3±5.2 Ma, which 
is consistent with formation during the Cambrian-Ordovician 
(Riggins, 2014). However, other samples from the Caballo and 
Burro Mountains yields complex and intriguing age results that 
are likely related to multiple alteration events, and therefore 

cannot constrain the maximum age of episyenite formation 
(Riggins, 2014). A monzonite associated with the episyenites 
at Lobo Hill has been dated as 518±5.7 Ma, suggesting that the 
Lobo Hill episyenite could be of a similar age (McLemore et 
al., 1999). Additional age dating is underway.

During Cambrian-Ordovician time, a period of alkaline and 
carbonatite magmatism and extension occurred in southern 
Colorado and New Mexico at about 500 Ma (Fig. 1; McLem-
ore and McKee, 1988; Evans and Clemons, 1988; McLemore 
et al., 1999; McMillan and McLemore, 2004; Riggins et al., 
2014) followed by a Paleozoic period of basin formation and 
uplift as part of the Ancestral Rocky Mountains (Florida uplift, 
Pedregosa Basin; Ross and Ross, 1986). The Cambrian-Or-
dovician magmatic event is characterized by the intrusion of 
carbonatites, syenites, monzonites, and alkaline granites and 
associated with episyenites, K-metasomatism (i.e., fenitiza-
tion) and Th-REE-U mineral deposits. This type of magmat-
ic and metasomatic activity is consistent with continental rift 
and aborted rift systems, although geologic evidence such as 
rift-basin sediments and geophysical signatures are lacking 
to support a rift during this time period in New Mexico. Rec-
ognition of widespread Cambrian-Ordovician magmatic ac-
tivity in New Mexico, evidence of relatively rapid uplift and 
erosion in the Florida Mountains (Evans and Clemons, 1988; 
Clemons, 1998; Ervin, 1998), and the presence of carbonatites 
(Olson et al., 1967; Fenton and Faure, 1970; Armbrustmach-
er, 1984; McLemore, 1983, 1987; McLemore and Modres-
ki, 1990; White-Pinilla, 1996) suggest that New Mexico and 
southern Colorado was not a simple passive margin during 
Cambrian-Ordovician time; but rather experienced sufficient 
extension to perturb the mantle and initiate magmatism (Mc-
Millan and McLemore, 2004). Thus, an aulacogen was pro-
posed by McMillan and McLemore (2004) to exist in New 
Mexico during Cambrian and Early Ordovician time, similar 
to the Southern Oklahoma aulacogen of the same age (Loring 
and Armstrong, 1980; Larson et al., 1985; Loring et al., 1987; 
McConnell and Gilbert, 1990). The Sevilleta episyenites could 
be another example of alkaline metasomatism associated with 
this Cambrian-Ordovician event.

Outlook for mineral resource potential in the future 
Unlike episyenites in the Caballo and Burro Mountains, the 

episyenites in the Sevilleta National Wildlife Refuge have no 
economic potential, except perhaps for red decorative stone. A 
few episyenites are slightly radioactive, but all samples are low 
in uranium, thorium, yttrium, niobium and REE (Table 1; Fig. 
6). Episyenites at Lobo Hill, near Moriarty have been mined 
for decorative stone and are at least 10 m deep. It is possible 
that the Sevilleta episyenites could be enriched in uranium, 
thorium, yttrium, niobium and REE at depth, but drilling is 
required to investigate the potential. However, the Sevilleta 
National Wildlife Refuge is withdrawn from mineral entry.

Future research
Future research includes mineral chemistry (identification 

of REE, uranium, and thorium minerals) and dating of these 
rocks. 
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