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INTRODUCTION 

The most commonly used method for experimental determination of functional 

relationships is that of least squares because it provides a very convenient 

method for estimating parameters from experimental data. In its usual form, 

use of least squares is equivalent to the assumption that one of the vari­

ables (the dependent variable) has an observation error while the other one 

(the independent variable) is free from error. This assumption is frequently 

made in writing down the descriptive equations though often more for the 

convenience, in order to use least squares, than because it is an accurate, 

representation of reality: usually both variables, dependent and independent, 

will be subject to observation error. A similar assumption is also frequently 

made in system analysis where it is common practice to add noise (usually 

white noise) to the output while leaving the input free of noise. In linear 

systems it is, of course, possible to transfer input noise to output noise 

but if this is done the usual least square theory does not apply. 

The problem of determining a functional relationship when both dependent and 

independent variables are subject to observation error is the problem of 

structural relationship which is the subject of the present report. 

The problem of structural relationship has a fairly long history in the 

statistical literature going back to an early paper of Adcock (1877). Later, 

K. Pearson discussed in relation with the regression problem and a number 

of contributions were also made by other writers notably Van Uven (1930). 

The fullest account was given by Koopmans (1937) in a book entirely devoted 

to econometric applications. The more recent literature, beginning e.g. with 

the paper of Lindley (1947), has focussed attention on the difficulties 

associated with the maximum likelihood solution of the problem in the case 

when the errors are Gaussian. Other procedures, based on the idea of generalised 

least squares of Sprent (1963) - which is essentially the method of Van Uven 

and Koopmans - have also received attention. 

A number of papers have also appeared fairly recently 011 the corresponding 

systems analysis problem of determining an input-output relation when both 

input and output have observation noise. Koopmans was the first to treat 
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this problem in its econometric applications and more recent work begin-

ning with Levin (1964) is strongly influenced by his treatment. The present 

state of the theory for systems applications is rather incomplete and 

unsatisfactory and this situation comes about largely because of many unclear 

points in the theory of the underlying statistical problem. 

The present report has the double aim of giving a convenient readable account 

of basic existing theory and also of clarifying and extending some points of 

theory. Attention is restricted to the simplest linear relation between two 

real variables. It is intended that this report should be the basis for further 

work in extending the theory to relations between vectors and to input-output 

relations of systems analysis. 

The first section describes the well known maximum likelihood solution, 

presenting it in convenient graphical form and giving attention to the 

solution of Dent which, though it has its theoretical limitations, is of 

practical importance. The second method is about the method of generalised 

least squares and its relation with the maximum likelihood solution. The 

third section shows how the maximum likelihood formulation may be decomposed 

into two simpler problems. This decomposition provides the basis for an 

improved theoretical treatment which automatically includes the generalised 

least squares principle. The material of this section has not, to the authors' 

knowledge, previously appeared in the literature. The report concludes with 

a reasonably complete bibliography. 
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1. THE PROBLEM OF ESTIMATION OF LINEAR STRUCTURAL RELATIONS WITH GAUSSIAN 

ERRORS 

In this first section we will introduce the subject by describing the maximum 

likelihood solution of the problem of estimation of linear strutural rela­

tions with Gaussian errors in the form it is usually given in statistical 

texts, for example in the book of Kendall & Stewart (1958) and Graybill(1961). 

The original discussion along these lines goes back to Dent (1935) and 

Lindley (I 949). 

A strutural relation between two variables X and Y is just a functional 

relation 

Y = f (X) (1.1.1.) 

which requires to be determined by observation. Here we will restrict atten­

tion to linear relations 

Y = aX +b (1.1.2.) 

where in general X and Y could be vectors. Since the ideas are most conve­

niently described when X and Yare real variables, we shall assume this to 

be the case for the present. 

Suppose that the observed values (x,y) of (X,Y) are 

x = X + E 

y = Y + n 

(1.1.3.) 

(1.1.4.) 

where E,n are statistically independent Gaussian ebservation orrors with 

zero means and standard deviations a and a respectively. 
E n 

The joint probability density function of £ and n is thus 

2 . 

[
. 1 £ 

exp - Z[-2 
a 

£ 

+ 
2 

.L 1J 2 -a 
n 

(1.1.5) 
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The problem is to estimate. from a sequence of statistically independent 

observations (XI' xI).···.(xn • Yn)' the parameters 

linear relation and also. if they are unknown. the 

and 0 
n 

of the errors. The parameters a,b,cr ,a are 
e n 

a and b defining the 

standard deviations cr 
e 

called the structural 

parameters of the problem. Thus the structural parameters must be found. 

In order to do this. the usual method of solution also requires estimation 

of the true values (XI.Y1) ••••• (Xn.Yn). These are termed the incidental 

parameters of the problem. 

The likelihood function for a single observation is defined by 

L {(X.Y),a.b.o .0 ;(x.y)} 
e n 

~ p{(x.y)!(x.Y).a.b.o .0 } 
e n 

(1.2.1.) 

the proportionality sign indicating that the likelihood function is 

usually left undetermined up to a multiplicative constant. The constant 

of proportionality will here be taken unity so that 

L{(X,Y),a,b,a ,a ;(x,y)} = 
e n 

= 
1 

211(1 0 
e n 

[ 
I (x-X)2 

exp - 2{--2- + 
o 

e 

2 
(y-aX-b) ] 

2 } 
o 

n 

(1.2.2.) 

The likelihood function for a sequence of n independent observations is 

L{(X1.Y1) •••• (X .Y ).a.b.cr .cr ;(xl.yI) •••• (x .y)} = 
nnE 11 _ ~._ n n 

1 n 
exp [- - L { 

2 i=1 o 2 
n 

(1.2.3.) 
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The maximum likelihood estimates of the parameters are those values 

which maximise the likelihood L or, what is the same thing, its 

logarithm ln L which is 

ln L = - n ln 2~ - n ln 0 - n ln 0 

2 
I n (xI-X.) - - I { ~ + 
2 i=1 0 2 

8 

8 n 

( 2 
y (,"aXi":"b) 

o 2 
n 

+ 

} (J .2.4.) 

The unknown parameters consist of the incidental parameters 

the structural parameters a,b and possibly 0 ,0 • So we have 
8 n 

X. , 
~ 

i=I, ..... ,n 

alnL --ax:- = 
~ 

:llnL 
----ab = 

If the variances 

arising from the 

below. 

o 2 
n 

n 

I" 
i=1 

a(aXi+b-YI) 
-----'- = 0 

o 2 
n 

I n -I (aXi+b-yl)=O 
o 2 i=1 

n 

the conditions 

(1.2.5.) 

(1.2.6.) 

(1.2.7.) 

o ,0 are unknown, there will be two additional equations 
8 n 

conditions: a/a o 
8 

= o'a/a = O. These will be considered , 0 
n 

A more symmetrical solution comes about if Lagrange multipliers are used. 

In this case we look for an extreme value of 

F = const - n In 0 - n In 0 + 
8 n 

2 2 n (x.-X. ) (y.-Y. ) n 
1./: { ~ ~ + ~ ~ } -I L(Y.- aX. - b) (1.2.8.) 
2 i=1 2 o 2 . I ~ ~ ~ 

0 ~= 
8 n 
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We then have the conditions 

3F ax:- = (X. - x.) + al. = 0 
1 1 1 

1 

n 

a 2. 
£ 

a 2 
n 

(Y.-y.)-L=O 
1 1 1 

= L l. X. = 0 
1 1 i=1 

n 
= L l. = 0 

1 i=1 

The equations of constraint are 

3F 
3l. = 

1 

- Y. + aX. + b = 0 
1 1 

i=l, •.. ,n 

i=l, •• ~,n 

i=l, .... ,n 

These equations are equivalent to the previous ones but have a more 

symmetrical form. 

y 

f 

_x 

fig. I. 

(1.2.9.) 

(1.2.10.) 

(1.2.11.) 

(1.2.12.) 

(1.2.13.) 
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From these equations we obtain 

X. aA.a 2 - x. = 
1 1 1 E 

Y. La 2 - y. = -
1 1 1 n 

From which it follows, by summation, that 

Thus 

i.e. 

n 
- L x. = 

i=1 1 

n n 
L x. = L x. 

i= I 1 i= I 1 

n 2 aL A. a 
i=1 1 E 

- I n I ." 
X = - L x. = - L x. = x 

ni=1 1 ni=1 1 

Similarly 

-
Y y 

We also deduce that 

o 

(X. - x.) : (Y. - y.) = -
1 1 1 1 

2 2 
aa a 

E Tl 

which shows that all the vectors 

(X. - x., Y. - y.) 
~ 1. 1. 1. 

which project observed points on to the line are parallel (fig.l) 

Further, since 

2 X. = x. + A.aa 
1. 1. 1. £ 

2 Y. = y. - A.a 
1. 1. 1. n 

(1.2.14.) 

(1.2.15.) 

(1.2.16.) 

(1.2.17.) 

(1.2.18.) 

(1.2.19.) 

(1.1.20.) 

(1.2.21) 

(1.2.22.) 

(1.2.23.) 
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we have 

(Y. - aX. - b) = (y. - - b) - L(i + a
2
,/) 

l. l. l. aXi l. n £ 

The left hand side vanishes, consequently 

Yi- .ax. - b 
A. = 2·2 l. 2 cr + a cr 

n £ 

By summation using (1.2.12.) we see that 

or 

n 
L (y. -

i=1 1. 

ax. - b) = 0 
l. 

b y - ax 

The estimated line may therefore be written 

(y - y) = a(x - x) 

(1.2.24.) 

(1.2.15.) 

(1.2.26.) 

(1.2.27.) 

(1.2.29.) 

and so passes through the cornmon centroid of the observations and of 

the estimated values (X., Y.), i = I, ••• ,n 
l. 1. 

From (1.2.14.), (1.2.18.) and (1.2.25.) we deduce that 

- ~)} - {(Yi - ;) - a(xi 
Xi - X = Xi - x + ---=--o2----2o-2o-~----­

CJ + a (j 
n £ 

cr2 (x. _ ~) + acr2 (y. - ;) 
n l. £ 1 = ....:.!.--=~..,.2;-----.2,..;;:.2 --==-----

a + a a 
n £ 

Now from (1.2. 11.) and (1. 2. 12. ) 

n 
L A.(X.- X) = 0 

i=1 l. l. 

2 acr 
£ 

and by substitution from 1.2.25.), (1.2.27.) and (1.2.30.) 

(1. 2.30. ) 

(1.2.31.) 
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- 2 2-y) - a(x. - x)}{a (x. - x) + aa (y. - y)}= 0 
1. n1. £1. 

which is 

where 

2 2 
a a s Exy 

2 2 
a(a s - as) 

£yy nxx 

s xx 
= (x _ ~)2 

s xy 

s yy 

(x - ~) (y - y) 

The solution for a is 

2 -as =0 
n xy 

and thus depends on the ratio of the variances 

(1.2.32.) 

(1.2.33.) 

(I .2.34.) 

(1.2.35.) 

(1.2.37.) 

(1.2.38.) 

(1.2.39.) 

It is not difficult to show (see appendix 1) that this estimate of a 

changes monotonically from one regression line to the other as k 

increases from 0 to ~. 

On introducing the parameter 

e = (i.3.1.) 
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the equation for slope assumes the simpler form 

(1.3.2.) 

with solution 

(1.3.3.) 

The ratio a/k may be determined conveniently by the following trigono­

metrical method. Find 8 such that 

cot 28 = 9 

and then, in view of the identity 

cot 8 

we get 

a = cot e 
k 

so a is determined. 

(1.3.4.) 

(1.3.5.) 

(1.3.6.) 

Note that the parameters a/k and e are independent of scaling along the 

x- and y- axes. The parameter k, on which e depends, is not independent 

of scale. However, in place of k we may take 

(1.3.7.) 

or its inverse, as a scale-free parameter equivalent to k. e may be ex­

pressed in terms of k as follows. 
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s s 
..Ii..._~ 

G a 

= 

= 

a2 a2 
n E 
2s 
~ 
a a 

E n 

a 
E 

a 
n 

s xx 
s 

yy 

ISS­
xx yy 
s 
xy 

s 
r = _~x,,"y_ 

Vs-s­
xx yy 

a s n xx cr'-s­
E yy 

a IS- a ~ (~ ..Ii... _ -2l ~) 
a'Vs a s n xx E yy 

(1.3.8.) 

(1.3.9.) 

is the empirical correlation coefficient which is also scale-free. Now the 

equation may be put in symmetrical form as 

aa a E ___ n 
a aa 

n E 

VS-S (a = xxyy...£ 
s a 
xy n 

1T 
and, defining (scale-free) angles8

1
, 8

2 
in the range (0, 2) by 

aa 
E 

a 

a 
n 

E cot 8 =-
2 a 

n 

s 
xx 

s 
yy 

the equation takes the form 

1 
cot 28 1 = r cot 28 2 

(1.3.10.) 

(1.3.11.) 

(1.3.12.) 

(1.3.13.) 
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If now 82 is plotted against 8
1

, the result is the symmetrical graph 

shown in fig. 2 which is also scale-free. 

From this graph we see that if the errors are small and so the observations 

are well correlated and r ~ 1, then to reasonable practical approximation, 

8
2 

~ 8
1 

giving 

aO" 
E 

0" 
n 

Thus, independently of the ratio k = o /0 
n E 

Tf/2 

82 

t 

Tf / ~ 

o 

r = 

r = 

O. 1 

0.2 

Tf/4 
fig. 2 

(1.3.14.) 

(1.3.15.) 

= 0.8 
, 

.... r = 

Tf/2 
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If the variances are unknown, they can be estimated by using the two 

further conditions 

of -- = dO 
£ 

dF --= dO 
n 

which give 

0 2 = -
£ n 

,02 = -
n n 

n 
1: (x. 

i=1 ~ 

n 
L (y. 

i=1 ~ 

X. )2 -
1 

- Y. )2 
1 

(x. - X.) 2 = 0 
~ ~ 

(y. - Y. / = 0 
~ ~ 

(1.4.1.) 

(1.4.2.) 

(1.4.3.) 

(1.4.4.) 

Substituting the ratio (x. - X.):(y. - Y.) from(I.I.20)it follows that 
1. 1. 1. 1. 

0 2 
£ -= 

0 2 

Hence 

n 

2 
a 0 2 

£ 

n 
L (x. 

i=1 1 

n 
1: (y. 

i=1 1 

--= 

giving 

ao 
£ --= + o 
n 

_ x.)2 2 
1 a 0 4 

£ =-- (1.4.5.) 

_ y.)2 0 4 
n 

1 

(1.4.6.) 

(1.4.7.) 

A more detailed analysis (Solari, 1963) shows that the positive sign gives 

the larger value of In L. Thus 

ao 
£ 

o 
n 

= 1 (1.4.8.) 
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From equations (1.4.3) it then follows that also 

a s a s 
~ ...It. -.!l xx = (1.4.9.) 
a s a s 

n xx £ yy 

or 

a s 
£ ....xx. + I = (1.4.10.) 

a s 
n xx 

The positive sign is chosen because all quantities on the left are positive. 

Thus from (1.4.8.) and (1.4.10.) 

fi
-

a s 
a=-.!l= yy 

a s 
£ xx 

(1.4.11.) 

Thus, both the gradient of the estimated straight line and the ratio of 

variances are estimated by the quantityjs /s • The estimated line is 
yy xx 

(y - y) =j: r:x (x - ~) (1.4.12.) 

which has a gradient which is the geometric mean of the gradients of the 

two regression lines i.e. s /s and s /s This solution is due to yy xy xy xx 
Dent (1935). We see that it agrees with the result suggested by the graph 

in fig. 2. 

In general, the gradient of this estimate will have a bias and this remains 

true even if the number of observations tends to infinity i.e. the estimate 

is "inconsistent". For, asuming that 

finite mean and finite variances ai, 
cally, 

5 
....xx. + 
s 
xx 

the observations (X., Y.) possess a 
1 1 

cr~ as n + ~ we shall have asymptoti-

(1.4.13.) 
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and since 

0 2 
2 

0 2 + 0 2 0 2 
Y Y n --"l = a < < 

0 2 ~ 

0 2 + 0 2 0 2 
X X £ £ 

with equality only if 0 /0 = a, we see that, 
n £ 

js /s will lie between the true values of a yy xx 
one and underestimating the other. 

unless 0 /0 = a the estimate 
n £ 

and 0 /0 overestimating the 
n £ 
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2. GENERALISED LEAST SQUARES 

This section shows how the maximum likelihood solution of the last section 

can be given a geometrical interpretation which is a generalisation of that 

used by K. Pearson (1901) and other early writers. This approach leads to 

the method of generalised least squares of Sprent (1970). 

In the further discussion it will be convenient to use homogeneous line 

coordinates a, S, v for the undetermined linear relation writing it as 

aX + SY (2.1.1.) 

The log-likelihood function for n independent observations is then, as 

before, 

In L{ (x. , y.) i = 1, ••. ,n,(X., Y.) i = 1, .. ,n,~a ,0 } = 
~ ~ ) ~ ~ , E T] 

n (xi - X. )2 (y. - Y. )2 

In (21T0 0 ) ! I { ~ ~ ~ } (2.1.2.) = - - + 
E T] i=1 02 02 

E T] 

It does not explicitly depend on the parameters of the line. It must be 

maximised subject to the constraints 

aX. + SY. = v 
~ ~ 

i=I, ... ,n 

and so we introduce the function 

F{(x, y) i=1, ... ,n;(X., Y.) i=1, ... ,n;a,S,v,0 ,0 } 
~ 1.. £ n 

n 
In L - I 

i=1 
A.(aX. + SY. - v) 
~ ~ ~ 

which does depend on the line parameters. 

(2.1.3.) 

(2.1.4.) 
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The conditions for vanishing first derivatives of F then leads to 

the following equations which are equivalent to those previously 

g~ven: 

aF 
ax. 

1. 

(x. - x.) 
~ ~ 

(y. - y. ) 
aF ~ ~ -- = -ay. 

0 2 
~ 

n 

aF n 

I A.X. = aa i=1 ~ ~ 

aF n 
- I A.Y. 

aB i=1 ~ ~ 

aF 
n 

I A. = 0 ay i=1 ~ 

aF n 
8a - - + 

0 
0 3 € € 

€ 

aF n + ao 0 a 3 
~ ~ n 

- aA. = 0 
~ 

- BA. = 0 
~ 

0 

0 

n 
x. )2 I (x. -

i=1 ~ 1 

n 
Y. )2 I (y. -

i=1 ~ ~ 

= 0 

0 

(2.1.5.) 

(2.1.6.) 

(2.1.7.) 

(2.1.8.) 

(2.1.9.) 

(2.1.10.) 

(2. 1 • 1 1 • ) 

The solution of these equations and the derivation of the equation for the 

estimate of the ratio B:a (which now takes the place of the parameter a) 

follows the same procedure as in the last section. 

We shall here note the principal formula which will be needed in what 

follows. 

We have immediately 

X. = x. - A.a 0 2 (2.1.12.) 
~ ~ ~ E 



Y. 
1 

from which 

and so 

A. 
1 

(lX. + Sy. - " 
1 1 

(l202 + S202 
E n 
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By summation and condition (2.1.9.) 

(lX + Sy 

so that 

a(x. - x) + S(y. - y) 
A. 

1 1 

1 
(a 2 0 L 82 0'2) + 

E n 

The equation corresponding to (1.2.33.) 1S 

Suppase we cansider the case af equal variances 

= 0 

The lag-likelihaad functian af n abservatians is then 

In L = - nln2rroL 
n 
I {(x. -

i=1 1 

2 
X.) +(y. 

1 ·1 

(2.1.13.) 

(2.1.14.) 

(2.1.15.) 

(2.1.16.) 

(2.1.17.) 

(2.1.18.) 

(2.2.1.) 

(2.2.2.) 

The prablem is to' maximise this when (X .• Y.) i=l •...• n lie an the line 
1 1 

aX + sy = " (2.2.3.) 
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As regards the choice of the (X., Y.) we must minimise the sum of the 
~ ~ 

squared distances 

n 
I {(x. 

i=1 ~ 

from the observed points (x., y.) to the actual points 
~ ~ 

(2.2.4.) 

(X., Y.) lying on 
~ ~ 

the given line. This means that the squared distance from each (X., Y.) 
~ ~ 

to its corresponding (x., y.) must be minimised. Now the expression 
~ ~ 

2 2 
(x - X) + (y - Y) (2.2.5.) 

YI 

j ! 
I 

I 

is minimised when (X, Y) is the foot of the 

perpendicular from (x, y) on to the line, ~.e. 

the points where a circle with centre (x, y) 

jus t touches the line. Thus each (lL, )I.) is aX + BY = v 
~ ~ 

obtained by perpendicular projection of the -x 

observed point (x., y.) on to the line. 
~ ~ 

fig. 3. 

Having minimised In L with respect to the points (X., Y.) it is then 
~ ~ 

necessary to minimise it with respect to the line parameters and the 

error variance (if this is unknown). Minimisation with respect to the 

line parameters is just the problem of finding a line of closest fit 

to the observed points in the sense of minimisation of the sum of 

squared perpendicular distances from these points to the line. 

In this way we have arrived at a generalisation of the principle of 

least squares. 

Now let us consider the case when the error variances are unequal in 

which case the log-likelihood function is given by (2.1.2.) Suppose 

we take as distance function between points (x, y) and (X, Y) the value 

(x - X) 2 
+ (2.2.6.) 

which is just the distance between these points of the axes are re-scaled 

so that the error variances are both unity. In order to maximise In L it 

is then again necessary to choose (X., Y.) to minimise the sum of squared 
~ ~ 

distances from the observed points. This means that each point (X., Y.) 
~ ~ 
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must be chosen at minimum distance from the corresponding point (x., y.). 
1 1 

So we are lead to the following geometrical construction. Suppose that 

with (x, y) as centre ellipses 

(x - X) 2 
+ = const. 

are constructed giving the locus of point at 

equal distance from (c, y). There will be one 

ellipse which just touches the line, say at 

the point (~, ~) (see diagram). It is clear 

that this point is the point on the line at 

the least distance from (x, y). The line from 

the centre (x, y) to the point of contact 

(~, ~) is no longer perpendicular but is the 

conjugate direction to the line with respect 

y 

i 

I 

/ , , 
\ 

\ 
I 
I (x,y) ~ 

\ , 

(2.2.7.) 

o.X + BY = iJ 

_x 

fig. 4. 

to the ellipse. It is easy to see that a general point (X', Y') on this line 

satisfies 

From (2.1.12.) and (2.1.15.) we get 

'V 
X 

(o.x + By - \I) 

0.2 0 2 + S202 
£ n 

and similarly 

y _ 80 2 (o.x + 8y - \I) 

n 0.202 + 8202 
£ n 

(2.2.8.) 

(2.2.9.) 

(2.2.10.) 

from which we get the constant of the ellipse, giving the squared distance 

from (x, y) to the line, as 

d2 = (o.x + 8y _ \1)2 

0.2 0 2 + 820 2 
E n 

(2.2.11.) 
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When there are n independent observations (x., y.) each observation 1S 
1 1 

projected in the same direction conjugate to the line on to a point 

(x., Y.) on the line. The resulting sum of squared distances is 
1 1 

n 

L 
i=1 

d~ 
1 

n 

L 
i=1 

(ax + ~y - v)2 

a 20 2 + S202 
E n 

(2.2.12.) 

This must be minimised with respect to the line parameters giving the 

line of closest fit to a system of ell~pses centred at the'observation 

points. 

An equivalent statement is that the ratio 

2 (ax + Sy - v) 
(2.2.13.) 

a 2 0 2 + S202 
E n 

must be minimised with respect to the line parameters, the bar denoting 

mean value over the observations. 

Since the line parameters are homogeneous and only ratios have a 

significance, the minimisation problem can be put in the following form 

which we will call 

THE PRINCIPLE OF GENERALISED LEAST SQUARES: the line parameters of the 

maximum likelihood solution may be obtained as the solution of the 

minimisation problem 

(ax + Sy - v)2 is a minimum with respect to a, S, v 

to the constraint 

S2(2) = const. 
n 

In interpreting this principle, note that in view of the constraint on 

(X, Y) we have 

ax + Sy - v (2.2.14.) 

where 

(IE + Sn (2.2.15.) 
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The variance of ~ is 

(l2 = a2(l2 + B2(l2 
~ E T) 

(2.2.16.) 

may be regarded as that part of the error which measures deviation from 

the given line. 

We shall rederive the solution for the line parameters using the minimi­

sation formulation of generalised least squares. First we write 

(ax + By - v)2 = a2~2 + 2aB~Y + B2y2 

- 2avx - 2Bvy + v2 (2.3.1.) 

Minimisation with respect to v which is unconstrained immediately gives 

v = ax + By (2.3.2.) 

The estimated line thus has the form 

a(x - X) + B(y - Y) = 0 (2.3.3.) 

and passes through the centroid of observations. The quadratic in a and B 

becomes 

where 

(ax + By - v)2 = {a(x - ~) + B(y - y)}2 

s 
xx 

s xy 

= (x _ ~)2 

= (x - ~)(y - y) 

- 2 s = (y - y) 
yy 

(2.3.4.) 

(2.3.5.) 

(2.3.6.) 

(2.3.7.) 
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The minimisation problem now becomes 

{ 

(a2s + 2 aas + a2s ) 
xx xy yy 

to a, a subject to 

(a20 2 + a20 2) = const. = s2 
£ n 

minimum with respect 

This is a well known minimisation problem. It may be solved either 

trigonometrically or by the use of a Lagrange multiplier. 

The trigonometrical representation method: we put 

ao = s cos 6 
£ 

ao = s sin e 
n 

(2.3.10.) 

(2.3.11.) 

when the constraint is automatically satisfied. Then we must minimise 

The 

or 

s 2 s 
xx cos e + 2 2L cos e sin 

0 2 o 0 
£ n 

£ 

condition alae = a gives 

s s 
xx 2cos 8 sin e + 

0 2 
2 2L(_ 

o 0 
£ n 

£ 

s 
+ 2 YY sin e cos 8 = a 

0 2 
n 

s s s 

e 

(...Ii.. _ xx) sin 28 + 2~ cos 
0 2 0 2 o 0 

£ n n £ 

s 2 
+ ...Ii.. sin e 

0 2 
n 

2 e = a 

which is the same as (1.3.1.), (1.3.4.). 

The Lagrange multiplier method: using a Lagrange parameter ~ the 

minimisation problem becomes 

(2.3.12.) 

(2.3.13.) 

(2.3.14.) 

(2.3.15.) 
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Equating derivatives with respect to a and e to zero we get 

(s - 1I(2)a + s S 0 
xx E xy 

s a + (Syy 11(2) S 0 
yx n 

For a non-zero solution it is necessary that 

(s - 11( 2) s 
xx E xy 

= 0 

s (s - 11(2) 
yx yy n 

giving II as one of the roots of 

s s (s s - s ) 2 
II (_xx_ + _yy_) + _.::x.::x,-yy<.L_--"XY"'-_ 

0 2 0 2 0 2 0 2 
E nEOn 

which are 

11= !{Sxx + ~ + J(sxx _ ~)2 
0 2 0 2 - 0 2 0 2 
EnE n 

= 0 

(2.3.16.) 

(2.3.17.) 

(2.3.18.) 

(2.3.19.) 

(2.3.20.) 

Fo, each of these roots, values of a and e may be found satisfying the 

linear equations above and for those particular values we see that 

II = 
a2s + 2aSs + S2s xx xy yy (2.3.21.) 

a20 2 + e20 2 
E n 

and thus the two roots 11 give respectively the maximum and minimum values 

of the ratio on the right which are achieved for the corresponding values 

a and S. Since we are looking for the minimum value of the ratio, the root 

with the negative sign must be chosen. 
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The corresponding value of the ratio S/a is 

(2.3.22.) 

By comparing the ratio S/a of eq. (2.3.22.) with 11a from equation (1.2.38.) 

we conclude that they are equal. 
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3. SOLUTION OF THE STRUCTURAL ESTIMATION PROBLEM BY A COMBINED BAYESIAN 

AND MAXIHUM LIKELIHOOD APPROACH 

In the usual solution of the structural estimation problem, as described 

up to now, both incidental and structural parameters are estimated by the 

maximum likelihood method. True values CX., Y.) are estimated by parallel 
1 1 

projection from the observed points Cx., y.). It is clear that, for a large 
1 1 

number of observations, the resulting configuration of fig. 1, far from 

being one of maximum likelihood, is extremely improbable. In view of this, 

it is not obvious why the calculation gives acceptable results in most 

(though not all) aspects. In order to explain this and give a more satis­

factory theoretical basis to the solution, it is necessary to combine 

Bayesian and maximum likelihood methods of estimation, using Bayes for 

the incidental parameters and maximum likelihood for the structural para­

meters with a modified likelihood function. The present section will show 

how this can be done. 

We first discuss the Bayesian estimation of the true values (X., Y.) 
1 1 

which are the incidental parameters in the problem. Let us consider the 

result of making one observation (x, y) of a pair of true values (X, Y). 

For convenience, we shall denote the totality of structural parameters 

by 1[: 

1[ = (a,S,\),a ,a ) 
E n 

(3. 1. 1. ) 

In the Bayesian view, (x, y) and TI are given and (X, Y) has a corresponding 

conditional distribution on the estimated line. The probability density of 

(X, Y) as proportional to the likelihood function i.e. 

p (X, Y I TI ,x,y,) 

Now, s~nce the vectors 

(X - ](, Y - \I) and (x - ](, y - \I) 

2 -
+ (Y - y) } \ 

a2 
n ~ 

(3.1.2.) 

C3.1.3.) 
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are conjugate with respect to the ellipse centred at (x,y), as 'n obvious 

from fig. 4, we have 

'" '" (Y - ~) (~ - y) (X - X) (X - x) 
+ 0 2 2 

0.1.4.) 
a a 

E n 

from which follows the identity 

2 2 (X - J'{)2 (Y _ ~) 2 (X - x) 
+ 

(Y - y) 
= + + 2 2 2 2 

a a a a 
E n E n 

(x _ ~) 2 (y _ ~) 2 
2 + 2 0.1.5.) 

a a 
E n 

since X and Y occur in only the first two terms on the right hand side, 

we find 

p(X,Yi1f,x,y) 

,-

I -X __ ....;J{;;:o:.)_2 + (Y - ~) 2 }l 
~ exp ~ H a 2 a 2 ' ! 0.1.6.) 

E n 

Since the probability distribution of (X,Y) is confined to a line which 

contains (X,Y), we see that the distribution is Gaussian with its mean at 

(X,Y). Although it has the appearance of a two dimensional distribution, 

it is in reality one-dimensional since the vectors (X - X), (Y - Y) are 

proportional. To bring it to one-dimensional form it is convenient to intro­

duce variables along the two conjugate directions. This is done as follows. 

It follows easily from the previous formulae that 

'" x - X 

'" y - y = 

Sa 2 
E 

7 
Sa 2 

n 

""7" 

{a(x - X) + S(y - Y)} 

{a(x - X) + S(y - Y)} 

Then by subtraction from x - X and y - Y we get 

'" X - X 
Sa 

n (x - X) + 
a 

E 

aa 
E 

a 
n 

(y - Y)} 

0.1.7.) 

0.1.8.) 

0.1.9.) 
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ao a 80 ao 
Y - Y' = S Tl { __ Tl 

(x - X) 
+ __ s 

(y - Y)} 
2 a a 

(3.1.10.) 
s S Tl 

Now put 

Z; a(x - X) + 8(y - Y) (3.1.11.) 

0 a 
8 -'l (x - X) + a S (y - Y) w a 0 

(3.1.12.) 
E Tl 

Then 

<l0 2 

x - li. = -+- Z; (3.1.13.) 
s 

80 2 

Y - Y' =-+ Z; (3.1.14.) 
s 

and 

X - ~ 8w (3.1.15.) 

'V 
Y - Y = -aw (3.1.16.) 

Notice that, 1n terms of the error variables £ and Tl we can write 

z; a£ + 8Tl (3.1.17.) 

a (1 

-8 1'\ + Cl 
S (3.1.18.) w = -£ - 1'\ 

0 (1 
S 1'\ 

from which we see that z; and ware uncorrelated components of the error 

with variances 

(12 1).2(12 + 8(12 2 = s 
£ £ 1'\ 

(3.1.19.) 

(12 8 20 2 + 1). 2 0 2 2 = = s 
w 1'\ S 

(3.1.20.) 

Further we get 

(X - Jt)2 (Y _ Y') 2 w2 
+ = 

0 2 (12 C~(11'\)2 £ 1'\ 

(3.1.21.) 



- 30 -

2 2 (;2 (X - X) 
+ 

(Y - y) 
= (3.1.22.) 2 

0 2 0 2 s 
£ n 

from which it follows, using (3.1.5.) that 

2 2 (;2 w2 (X - X) (Y - y) 
(3.1.23.) + = -+ 

0 2 0 2 2 
( 0 \ 2 s E: n; 

£ n '-s-/ 
The likelihood function may consequently be split up into the product 

of two-dimensional Gaussian probability densities as follows: 

[-H 2 2 

}] exp (x - X) + 
(y - Y) 

21Ta a 
0 2 0 2 £ n 

£ n 

= exp l-H a(x X) + 8(y - Y)}2]. 
/2n. s s 

0 2 0 2 1 
n (x - X) E (y -

. , 
-8 2 + a 2 Y) ,1.. 

-j \ 
, 

s s 
~ 

- 0 0 
exp 

o 0 (Z1T. (~) l 
(~) 

s s 

(3.1.24.) 

The two one-dimensional distributions occuring here are along the conjugate 

directions. Note that when (X,Y) lies on the estimated line, the first of 

the one-dimensional densities is independent of X and Y. 

The likelihood function on which the theory of the previous two sections 

is based can be defined, in the Bayesian form, by the equation 

p(X,Y,1Tlx,y) L(x,y; X,Y,1T)p(X,Y,1T) (3.2.1.) 

giving the posterior density of the parameters, both incidental and struc­

tural, in terms of the prior density. The likelihood function may be written 

as the ratio 

L(X,y,X,Y,1T) = p(x,y X,Y,If) 
p(x,y If) 

(3.2.2.) 
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and 
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p(x,yIX,Y,rr) = n2~rr-o--o- exp 
£ T\ 

p(x,ylrr)= 1 

(3.2.3.) 

(3.2.4.) 

A certain amount of difficulty arises in using these equations because of 

the occurence of singular and improper probability densities: the proba­

bility distribution of (X,Y) is confined to a line and the density of 

(x,y) before the occurence of (X,Y), is uniform over the whole plane. 

These difficulties can be avoided by considering only probability ratios 

which can be rather easily interpreted. In ratio form we write Bayes' rule 

as 

p(X,Y,rrlx,y) 
p(X,Y,1T) L(X,Y; X,Y,rr) = p(x,y X,Y,rr) 

p(x,y 1T) 
(3.2.5.) 

We shall now show how Bayes' rule in this form may be decomposed into two 

similar Bayes' rules, one for the estimation of the incidental parameters 

and one for the estimation of the structural parameters. 

The Bayes' rule for the estimation of the incidental parameters has already 

been given in 3.1. It may be written, in ratio form 

p(x,ylx,y,rr) = 
p(X,Y!rr) L(rr,x,y; X,Y) = p(x,y X,Y,rr) 

p (x,y 1T) (3.2.6.) 

which, in the case when the prior probability distribution of (X,Y) along 

the line, can be identified with the equation 

~ 

\ 

( X) 2 
exp -l{ x - + 

0 2 
L £ (3.2.7.) 

1

-1{(X - Jt)2 + 
exp -

0 2 
- £ 
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which comes from (3.1.5.). 

To relate this result to (3.2.5.) we write 

p(X,Y,Tf\x,y) = -'-'-3;r'-ii+:-F 
p(X,Y,Tf) 

p(Tf\x,y) 
p (Tf) 

(3.2.8.) 

thus introducing an extra term corresponding to Bayesian estimation of the 

parameters Tf expressed by the equation 

p(Tf\x,y) = L(x,y;Tf) p(n) 0.2.9.) 

The ratio form for the Bayes' rule for structural parameter estimation 

p(n\x,y) = 
p (Tf) L(x,y;n) = p(x,y\n) 

p ex, y) 
(3.2.10.) 

Taking into account the decomposition (3.1.24.) of the likelihood function 

we get the fOllowing: 

DECOMPOSITION RULE FOR BAYESIAN STRUCTURAL ESTIMATION: the Bayesian 

estimation of the parameters in the structural estimation problem may 

be decomposed into 

(a) estimation of the incidental parameters given the structural parameters 

p(X,Y\x,y,n) L(x,y,Tf; X,Y) p(X,Y\Tf) 

where 

L(x,y,n; X,Y)<>-exp 

60 2 

\ ~. (X - x) 
,. s 

"0
2 
£ 

-2-
s 

-~1 0 0 

L (~) 
s 

(b) Estimation of the structural parameters 

p(1f\x,y) L(x,y;1f) p(n) 

0.2.11.) 

(Y - y) [ 

(3.2.12.) 

(3.2.13.) 



where 

ax + 
L(x,y;1f) e><--exp -H 

s 
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Note that in (b) the variables X and Y have been illiminated 

(3.2.14) 

Despite the similar appearance of the two parts (a) and (b), they must 

be given somewhat different interpretations as we shall now see in 

connexion with repeated observations~ 

In the case of independent observations Bayes' rule for combined incidental , 
and structural parameters becomes 

pl(x., Y.) i = 
,,1. 1.' 

1 , ... ,n, 1f1 (x., y.) i = I, ... , n) 
1 l' 

n 
11 

i=1 
L(x., y.; X., Y. ,11) p(1I) 

1. 1. 1. 1. 
(3.3.1.) 

Splitting the equation by the decomposition rule we get, for the esti­

mation of the incidental parameters given the structural parameters 

p((X., Y.) i 
1 l' 

n 
= II { L(TT, 

i=1 
x. , 

1 

1 , ... ,n 111 , (x., y.) i = I, ... , n) 
1 l' 

y.; X., Y.) p (X., Y. 111 ») 
1. 1. 1. 1. 1. 

and, for the estimation of the structural parameters, 

p (11 I (x., y.) i = I, ... , n) 
11' 

n 
= 11 L((x., y.),1I) p(1I) 

i= 1 1 1 

(3.3.2.) 

(3.3.3.) 

The essential difference between these two last equations is as follows. 

When estimating the incidental parameters (the true values) there are just 

as many parameters as observations. Further, each observation provides only 

information about the corresponding pair of true values. Hence continued 

observation provides no better information about the individual values of 
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these parameters although information about the statistical distribution 

of them may be obtained. On the other hand, the structural parameters do 

not change with each observation and it is reasonable to expect that 

continued observation will provide more and more precise estimates. 

Hence it makes sense to use the method of maximum likelihood for the 

structural parameters although the Bayes method must be used for the 

incidental parameters. 

Let us first consider the maximum likelihood method for the structural 

parameters. The likelihood function for the n observations is 

The 

n 
~exp ( -! 

n ax. + Sy. - \) 
II L «x., y.),1I) L { 

1 1 

i=J 1 1 i=J s 

In-likelihood function 

In L const - l 

n = const - 2" 

is 

n 
L 

i=l 

consequently 

(lX. + By. - \) 2 
( 

1 1 
) 

s 

(l2S + 2aSs + S2s 
xx xy yy 

a 20 2 + S202 
£ n 

I }21 (3.3.4.) 

(3.3.5.) 

where the constant will depend in variances. Maximisation with respect to 

the line parameters leads to the method of generalised least squares 

already discussed. The determination of the variance however needs a 

special discussion. 

As regards the incidental parameters, we find, using the expression for 

the likelihood function and a uniform prior distribution of the (X., Y.) 
1 1 

along the estimated line, 

p«X., Y.) i 
1 l' 

r { 
n \ 

\- I L ' 0<.- exp 
i=J 1 L 

J , ••• ,n \11 , (x., y.) i = J, ••• , n,) 
1 l' 

S02 acr 2 
'1-n (X. - lI.) - -fey. - )i.) i -2-

1 1 s 1 1 ~r s 
o 0 

(...£...1l) 
s 

1 (3.3.6.) , 
" 



If we now put 

W. 
1 o 0 

(...£..2l) 
s 
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'" X. ) 
1 

"02 
£ 

- -2-
s 

(Y. - Y.)} 
1 1 

(3.3.7.) 

and change the variables from x .• y. to s .• w. then. in the new variables 
1.. 1.. 1.. 1.. 

where again the prior distribution is uniform. 

p(w.!1f.(X .• y.)\ 
1 1.. 1... 

n 
tA.. exp, -! L 

I i=1 
(3.3.8.) 

00 that the w. have a spherically symmetrical Gaussian distribution with 
1 

zero means and unit variances. 

Now it is a property of the n-dimensional spherically symmetrical Gaussian 

distribution that. asymptotically. as n+ oo • the distribution becomes concen­

* trated uniformly over a hypersphere • That this is so may be understood 

from the fact that 

so that asymptotically. 

n 
\" 7 L w. 

i=1 1 

'V n 

(3.3.9.) 

(3.3.10.) 

mean1ng that (wl ••••• w
n

) lies on a sphere of radius In. The same property 

may be deduced more precisely by transforming to n-dimensional spherical 

coordinates and deriving that the quantity 

n 

I 
i=1 

w? 
1 

(3.3.11.) 

has a X2 distribution with n degrees of freedom which. asymptotically. 

has a sharp peak at R = In. 

Such considerations provide the mathematical basis for the criticism of 

the use of the maximum likelihood estimates. 

* P. Levy: Le~ons d'analyse fonctionelle. Paris 1922 (Gauthier-Villars). 
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These ('stirn.:ltes correspond to :lSSllm~ng 

[0. 
1 

o i:::: l, ... ,n 0.3.12.) 

which certainly maximises p l-"i i n-, (xi' y i)) but. corresponds to a reg10n which 

is extremely improbable since this is the centre of the sphere which 

asymptotically contains the whole of the ~-distribution. The only correct 

method in this situation is to abandon the use of maximum likelihood 

since there is no peak near to the maximum likelihood estimate which 

contains the greater part of the distribution. A similar situation 

occurs also in other contexts where the parameter or parameters to be 

estimated have a uniform distribution* • 

.. B.T. Pol'ak & Ya.Z. Tsypkin: Noise proof identification. IFAC Symp. 

on Identification & Syst. Parameter Estimation, Tiblisi, USSR, Sept. 1976. 
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4. SUHI1ARY AND CONCLUSIONS 

As stated in the introduction, the present report is partly expository 

and partly original. The main expository part is the first section where 

an account has been given of the one-dimensional linear structural re­

lati(lnsllip problem witll Gaussian errors. Artetltion has been given ttl t(lpic 

points not readily available in the literature StIch as the convenient 

graphical presentation of the solution and the solution of Dent for the 

case of unkno~~ variances. The second section, which contains a some-

what new presentation of known material, shows how the maximum likelihood 

solution gives rise to the generalised least squares principle. 

The third section, which is original, has re-analysed the problem from a 

Bayesian viewpoint and shown how such an analysis leads to the introduc­

tion of a modified likelihood function for the estimation of the structural 

parameters. The use of this likelihood function immediately leads to the 

principle of generalised least squares. 

In .future work it ~s intended to show how a similar approach may be used 

for structural relation in the multidimensional case and in linear systems 

.1nalysis. 



- 38 -

5. APPENDIX 

We here show that the slope of the estimated line is a monotonic function 

of the variance ratio k unless the observations are either uncorrelated 

or perfectly correlated. 

In non-homogenous line coordinates, the slope is 

? r------------- ----.--
s - h-s +. 1(. - k 2s )2 - 4 k 2s

2 
yy xx" "Y xx xy 3 = ~~ ____ ~~ __ o_-LJ~----~~------~~ 

Differentiation gives 

da 
= 

2k ak 
{- s 

xx 

2s 
xY 

2 2 
- k s )(-s ) + 2s 

~2~X.~ L xx ~2 2 "Y} 
k s ) + 4k s 

xx xy 

so that if the right hand side is zero then 

2 
s xx 

{ (s 
yy 

2 
- 4s s (s 

xx xy yy 

from which it follows that 

o 2 
4s (-s s 

xy xx yy 
2 

+ S ) 
xy 

+ 

This equation impli~s th3t either the observations are uncorrelated or 

are perfectly correlated. 

It is easy to verify that k = 0 and k = ro correspond to the two regression 

lines. Consequently, as k increases from 0 to ro the estimated line moves 

monotonically from one regression line to the other. 
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