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INTRODUCTION

The most commonly used method for experimental determination of functional
relationships is that of least squares because it provides a very convenient
method for estimating parameters from experimental data. In its usual form,
use of least squares is equivalent to the assumption that one of the vari-
ables (the dependent variable) has an observation error while the other one
(the independent variable) is free from error. This assumption is frequently
made in writing down the descriptive equations though often more for the
convenience, In order to use least squares, than because it is an accurate,
representation of reality: usually both variables, dependent and independent,
will be subject to observation error. A similar assumption is also frequently
made in system analysis where it is common practice to add noise (usually
white noise) to the output whileleaving the input free of noise. In linear
systems it is, of course, possible to transfer input noise to output noise

but if this is done the usual least square theory does not apply.

The problem of determining a functional relationship when both dependent and
independent variables are subject to observation error is the problem of

structural relationship which is the subject of the present report.

The problem of structural relationship has a fairly long history in the
statistical literature going back to an early paper of Adcock (1877), Later,

K. Pearson discussed in relation with the regression problem and a number

of contributions were also made by other writers notably Van Uven (1930).

The fullest account was given by Koopmans (1937) in a book entirely devoted

to econometric applications. The more recent literature, beginning e.g. with

the paper of Lindley (1947}, has focussed attention on the difficulties
associated with the maximum likelihood solution of the problem in the case

when the errors are Gaussian. Other procedures, based on the idea of generalised
least squares of Sprent (1963) - which is essentially the method of Van Uven

and Koopmans — have also received attention.

A number of papers have also appeared fairly recently on the corresponding
systems analysis problem of determining an input-output relation when both

input and output have observation noise. Koopmans was the first to treat



this problem in its econometric applications and more recent work begin-

ning with Levin (1964) is strongly influenced by his treatment., The present
state of the theory for systems applications is rather incomplete and
unsatisfactory and this situation comes about largely because of many unclear

points in the theory of the underlying statistical problem.

The present report has the double aim of giving a convenient readable account
of basic existing theory and also of clarifying and extending some points of
theory, Attention is restricted to the gimplest linear relation between two
real variables., It is intended that this report should be the basis for further
work in extending the theory to relations between vectors and to input-output

relations of systems analysis.

The first section describes the well known maximum likelihood solution,
presenting it in convenient graphical form and giving attention to the
solution of Dent which, though it has its theoretical limitations, is of
practical importance. The second method is about the method of generalised
least squares and its relation with the maximum likelihood solution. The
third section shows how the maximum likelihood formulation may be decomposed
into two simpler problems. This decomposition provides the basis for an
improved theoretical treatment which automatically includes the generalised
least squares principle. The material of this section has not, to the authors'
knowledge, previously appeared in the literature, The report concludes with

a reasonably complete bibliography.



i. THE PROBLEM OF ESTIMATION OF LINEAR STRUCTURAL RELATIONS WITH GAUSSIAN
ERRORS

In this first section we will introduce the subject by describing the maximum
likelihood solution of the problem of estimation of linear strutural rela-
tions with Gaussian errors in the form it is usually given in statistical
texts, for example in the book of Kendall & Stewart (1958) and Graybil1(1961).
The original discussion along these lines goes back to Dent (1935} and
Lindley (1949).

1.1, Statement of the problem

A strutural relation between two variables X and Y is just a functional

relation

Y = £(X) (1.1.1.)

which requires to be determined by observation. Here we will restrict atten-

tion to linear relations

Y=aX+b (1.1.2.)

where in general X and Y could be vectors. Since the ideas are most conve-
niently described when X and Y are real variables, we shall assume this to
be the case for the present,

Suppose that the observed values (x,y) of (X,Y) are

x =X+ € (1.1.3.)
Y +n (1.1.4.)

]
il

where £,n are statistically independent Gaussian ebservation orrors with
zero means and standard deviations CR and on respectively.

The joint probability density function of e and n is thus

2
= 1 _lr e a
ple,n) = Tre o exp[ 2[ 9 + 5 I] (1.1.5)
E N UE Un



The problem is to estimate, from a sequence of statistically independent
observations (xl, xl),...,(xn, yn), the parameters a and b defining the
linear relation and also, if they are unknown, the standard deviations .
and on of the errors, The parameters a,b,ce,cn are called the structural
parameters of the problem., Thus the structural parameters must be found.

In order to do this; the usual method of solution also requires estimation
of the true values (XI’YI)""’(Xn’Yn)' These are termed the incidental

parameters of the problem.

1.2, The Maximum Likelihood Solution

The likelihood function for a single observation is defined by
L {(X,Y),a,b,oe,cn;(x,y)}
o<.p{(x,y)[(X,Y),a,b,oE,cn} (1.2.1.)
the proportionality sign indicating that the likelihood function is

usually left undetermined up to a multiplicative constant. The constant

of proportionality will here be taken unity so that

L{(X,Y),a,b,oe,on;(x,y)} =

1
= o ol
en

L xX)? (y-ax-b)*
Al 1]
£ %y

(1.2.2.)

The likelihood function for a sequence of n independent observations is
L{(Xl’Yl>""(xn’Yn)’a’b’cg'cn;(xl’yl)"”(xn’yn)} =

2 2
n (x,-X.) (y,~aX.-b)
=—...—.l.—--——_....— exp —-l- { ! 1 + ! L } (].2-3-)
n nn 2
2m)% "o, i=1 o 2 2

a
E n



The maximum likelihood estimates of the parameters are those values
which maximise the likelihood L or, what is the same thing, its
logarithm 1n L which is

InL=-nln2r - n ln Oe -nln cn +
2 2
| B (xlei) (ylraxifb)
i=] o 2 o 2
€ n

The unknown parameters consist of the incidental parameters Xi’ i=t,.....,n

the structural parameters a,b and possibly GE’UH. So we have the conditions

J1nL _ (X;=x%,) a(aX +b-y )
= - - =0 (1.2.5.)
i c 2 G
€ n
3laL. _ 1 % _
— = - Z_ X, (2K, +b -y) =0 (1.2.6.)
g i=1
n
3lpL _ _ 1 © _
ok - =] (@ +b-y) =0 (1.2.7.)
U“ i=1

If the variances Ue’cn are unknown, there will be two additional equations
arising from the conditionszalac = 0;3/8U = 0. These will be considered

below. & n

A more symmetrical solution comes about if Lagrange multipliers are used.

In this case we look for an extreme value of

Hi
]

const - n 1n GE -nln Gn +

2 2
n (x.-X,) (v.~Y.) n
g f———t ———} - ] A(Y, -aX - D) (1.2.8.)

=1 o g 2 i=1
£ n

ro] —



We then have the conditions

9F

—————

X,
1

oF
ab

The equations

oF

3A.
i

These equations are equivalent to the previous ones but have a more

of constraint

are

=~-Y, +aX, +b =20
i i

symmetrical form.

i=l’¢0-’n

i=l,e..,n

i=1,.. 41

fig. 1.

(1.2.9.)

(1.2.10.)

(1.2.11.)

{(1.2.12.}

(1.2.13.)



From these equations we obtain

X. = %X. = a\.o (1.2.14.)
i i £
Y, -y, = - Ao (1.2.15.)
i i i n Ty .
From which it follows, by summation, that
n n n 9
Lx -1x =af A op =0 (1.2.16.)
1=} 1=1 1=]
Thus
n n
Tx =]x (1.2.17.)
1=] i=1
i.e,
= 1y Ry -
X==)X ==Jx =x (1.2.18.)
n, i n, i
1=1 1=1
Similarly
=3 (1.2.19.)
We also deduce that
X, - x.) ¢+ (Y, ~y,) =~ a02 02 (1.1.20.)
i i i i £ n
which shows that all the vectors
- . P . 1-2.21
(Xi_ le Yl Yl) ( )

which project observed points on to the line are parallel (fig.l)
Further, since

X, = x. + A.ag> (1.2.22.)
1 1 1 £

2
Yi =¥ kicn (1.2.23.)



we have

_ - _ 2 22
(Yi aXi b) = (yi ax, b) )\i(cn + a ce)

The left hand side vanishes, consequently

¥y, . —.ax, = b

A_'_-_l_—‘-——_
1 02 + a202
n €

By summation using (1.2.12.)} we see that

I~

. (yi - ax; - b) =0
i=1
or

b = § - ax

The estimated line may therefore be written

(y = y) = a(x - x)

(1.2.24,)

(1.2.15.)

(1.2.26.)

(1.2.27.)

(1.2.29.)

and so passes through the common centroid of the observations and of

the estimated values (Xi’ Yi)’ i=1,...,0

From (1.2.14.), (1.2,18.) and (1.2.25.) we deduce that

X, ~X=x, - x

(g =) - alx; - 0}
-+

i i 02 + 3202
n £
2 - 2 -
i cn(xi.—,x) + ao_(y4 y)
B 2 2 2
g + adc
n £

Now from (1.2.11.) and (1.2.12.)

n —
IryE-x =0
i=1

and by substitution from 1.2.25.), (1.2.27.) and (1.2.30.)

. ad
E

(1.2.30.)

(1.2.31.)
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n
- -2 - 2 -
izl{(yi -y) - a(x:.L - x)}{cn (xi -x) + 20 _ (yi - y)l=0 (1.2.32.)
which is
2 2 2 2 2
a Uesxy a(cgsyy Unsxx) Unsxy = 0 (1.2.33.)
where
= (x - (1.2.34.)
SXX X X DA L
Sy = X7 NG -y (1.2.35.)
s = (y-3° (1.2.37.)
vy

The solution for a is

s - ks Lt V{; - kzs )2 + ékzs2 }
a = XY X L XX %y (1.2,38.)
Xy
and thus depends on the ratio of the variances
“n
k =E"'" (]n2.39.)

It is not difficult to show (see appendix 1) that this estimate of a
changes monotonically from one regression line to the other as k

increases from 0 to =,

1.3. Scale-free Form for_the Estimate of Slope

On introducing the parameter

73]

s

S A>3

g2 o2
i n

o = (i.3.1.)




—.]l_

the equation for slope assumes the simpler form

a,2

@ - 29(%) -1=0 (1.3.2.)

with solution

=8 + Vgi + 1 (1.3.3.)

=

The ratio a/k may be determined conveniently by the following trigono-

metrical method. Find 6 such that

cot 20 = 8 (1.3.4.)
and then, in view of the identity

cot 8 = cot 28 + Vcot226 + ] (1.3.5.)
we get

= cot B (1.3.6.)

a1

80 a 1s determined.

Note that the parameters a/k and € are independent of scaling along the
x~ and y- axes. The parameter k, on which © depends, is not independent

of scale. However, in place of k we may take

1 g s
WJon [ (1.3.7.)
a S8
€ XX

or its inverse, as a scale—free parameter equivalent to k. O may be ex-

pressed in terms of k as follows.
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8 s
Yy _ XX
c:TZ1 ci
0= 28
Xy
g a
£€n
g 8 c s
= = JXE N XX
g '8 g s
n ¥y £ Yy
Vs s o § o [s
= XY &/ YYD XX ) (1.3.8.)

Here

r =2 (1.3.9.)
Vs__ s
XX ¥y

is the empirical correlation coefficient which is also scale~free. Now the

equation may be put in symmetrical form as

ao c Vs s c_ s o s
E -0 _XEyy¢{ g ¥Y_.n X (1.3.10.)
g ag s o_ s o s
n E Xy n XX € ¥y
and, defining (scale-free) anglese], 8, in the range (0, %J by
ac_
cot §, = — (1.3.11.)
1 g
n
o s
cot 6, = — . ~=Z& (1.3.12.)
2 ¢ s
n yy

the equation takes the form

cot 26. = L cot 28 (1.3.13.)
1 r 2
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If now 8, is plotted against 6,5

shown in fig., 2 which is also scale-free.

the result is the symmetrical graph

From this graph we see that if the errors are small and so the observations
are well correlated and r = 1, then to reasonable practical approximation,

8, ~ 8. giving

2 1
ag_ o, [s
e = cot Bl = cot 82 = = —ﬂs (1.3.14,)
m n XX .
Thus, independently of the ratio k = onfoe
s
a= | X (1.3.15.)
XX
/2

/g




1.4, The Case of Unknown Variances

- 14 -

I1f the variances are unknown, they can be estimated by using the two

further conditions

n

3F n i

3g -G_ * 3 _2; (xi X
£ Ge 1=1

€ i=1
n
2 1 Z _ 2
g = = (y. Y.)
n i.=l 1

t 2
52 _Z (x; - X)) aloh
_e . 2=l - ¢
2 n b
a 2
no§ -1 n
. i
1=}
Hence
a’o2
=]
02
n
giving
ao
—_= 4 ]
g r
n

(1.4.1.)

(1.4.2,)

(1.4.3.)

(1.4.4.)

(1.4.5.)

(1.4.6.)

(1.4.7.)

A more detailed analysis (Solari, 1963) shows that the positive sign gives

the larger value of In L. Thus

(1.4.8.)
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From equations (1.4.3) it then follows that also

g S o] [
_e ¥y _ _n _xx (1.4.9.)
a s a 8
n XX £ vy
or
a 5
£ o4 (1.4.10.)
a s -
n XX

The positive sign is chosen because all quantities on the left are positive.

Thus from (1.4.8.) and (1.4.10.)

o 3
S W I (1.4.11,)
a s
€ XX

Thus, both the gradient of the estimated straight line and the ratio of
variances are estimated by the quantity /SYY/SXX- The estimated line is

fs .
(y - ) =/ .SIX (x - x) (1.4.12.)
XX .

which has a gradient which is the geometric mean of the gradients of the
two regression lines i.e. s__ /s and s_ /s__ This solution is due to

yy' Txy Xy XX
Dent (1935). We see that it agrees with the result suggested by the graph
in fig. 2.

In general, the gradient of this estimate will have a bias and this remains
true even if the number of observations tends to infinity i,e, the estimate
is "inconsistent". For, asuming that the observations (Xi’ Yi) possess a

finite mean and finite variances o 2

%, oy 48 m + ® we shall have asymptoti-
cally,
s c% + o2
= - . (1.4.13.)
xx 02 + o2
X €



and since

2 2 4 2 2
[} ge + 0 (¢}
——Y-=a2§ Y o . n
2 2 2 = 2
(o3 +
X 9% T % O

with equality only if Un/UE = a, we see that, unless Gnloe = a the estimate
s /s

vy/ Sxx will lie between the true values of a and cn/ce overestimating the
cne and underestimating the other,
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2. GENERALISED LEAST SQUARES

This section shows how the maximum likelihood solution of the last section
can be given a geometrical interpretation which is a generalisation of that
used by K. Pearson (1901} and other early writers. This approach leads to

the method of generalised least squares of Sprent (1970).

2.1. The Use of Homogeneous Line Coordinates

In the further discussion it will be convenient to use homogeneous line

coordinates a, B, v for the undetermined linear relation writing it as
aX + BY = vy (2.1.1.)

The log-likelihood function for n independent observations is then, as

before,

In L{(xi, yi))i = l,...,n,(Xi, Y.). 1 = 1,..,n,;c€,cn} =

19
2 2
n (x, - X,) (v. - Y.)
=-ln (2100) - } Yo —= - CHNE S S (2.1.2.)

1=1 g a2
£ n

It does not explicitly depend on the parameters of the line. It must be

maximised subject to the constraints
aX. + BY, =y i=l,...,n (2.1.3.)
1 1
and so we introduce the function

F{(x, y) i=1,...,n;(Xi, Yi) i=1,...,n;a,8,v,ce,cn} =
n
=lnLl -] A (X +B8Y, -v) (2.1.4.)

i=1

which does depend on the line parameters,
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The conditions for vanishing first derivatives of F then leads to

the following equations which are equivalent to those previously

given:
: (X. - x.)
aF 1 1
—_—— = e = — a). =0 2.1.5.
9x; o2 * ( )
£
(Y. - y.)
%%..: -t g =0 (2.1.6.)
i g2 *
n
n
oF _ _
= = izl Kixi =0 (2.1.7.)
Tt
oF _ _
5 - izl AiYi ) (2.1.8.)
n
aF z
—_— = X, =0 (2.1-9.)
3y i2p 1
n
F
_g_o__z_“_«*L P (x. - %)% =0 (2.1.10.)
£ % g3 i=1 * 1
£
n
aF n I 2
— = o e P — (y_—Y) =0 (2-!.110)
acn on ag izl 1

The solution of these equations and the derivation of the equation for the
estimate of the ratio 8:a (which now takes the place of the parameter a)

follows the same procedure as in the last section.

We shall here note the principal formula which will be needed in what

follows.

We have immediately

X. = x. = \.o g° , (2.1.12.)
1 1 1 4
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i. = 5" - )\.BO‘.

—uy - 2.2 o a2.2y
(ax; + By, —v) — A, (a0 + 3 Un) 0

and so

ax. + PR
1 By.'.l.

A, =
aZg? + B2g2
£ n

By summation and condition (2.1,9.)
v = ax + 8§

so that

alx; - x) + B(y, - )

A, =
1

(a25? + B202)
€ i)

The equation corresponding to (1.2.33.) is

alc?s - aB(c?s - ¢25 ) - g20%s
£ n xx n

xy E VY Xy

The log-likelihood function of n observations is then

1n L = - nln2mno? - L
202 i

0 r~19

1

2 2
{(xi - Xi) +(yi - Yi) }

(2.1.13.)

(2.1.14,)

(2.1.15.)

(2.1.16.)

(2.1.17.)

(2.1.18.)

(2.2.1.)

(2.2.2.)

The problem is to maximise this when (Xi’ Yi) i={,...,n lie on the line

aX + BY = v

(2.2.3.)
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As regards the choice of the (Xi’ Yi) we must minimise the sum of the

squared distances

4k
2
'Z {(xi - Xi)

+ (- Yi)z} (2.2.4.)
1=1

from the observed points (xi, yi) to the actual points (Xi, Yi) lying on
the given line. This means that the squared distance from each (Xi, Yi)

to 1ts corresponding (xi, yi) must be minimised. Now the expression
x - 0+ (v - 12 (2.2.5.)
is minimised when (X, Y) is the foot of the

perpendicular from (x, y) on to the line, i.e.

the points where a circle with centre (x, y)

just touches the line. Thus each (ﬁi, ?i) isg

obtained by perpendicular projection of the
observed point (xi, yi) on to the line. fig. 3.
Having minimised 1n L with respect to the points (Xi’ Yi) it is then
necessary to minimise it with respect to the line parameters and the
error variance (if this is unknown). Minimisation with respect to the
line parameters is just the problem of finding a line of closest fit
to the observed points in the sense of minimisation of the sum of
squared perpendicular distances from these points to the line,

In this way we have arrived at a generalisation of the principleof

least squares.

Now let us consider the case when the error variances are unequal in
which case the log—likelihood funection is given by (2.1.2.) Suppose

we take as distance function between points (x, y) and (X, Y) the value

2 . x-%°, -0

a? a2
e n

(2.2.6.)

which is just the distance between these points of the axes are re-scaled
so that the error variances are both unity. In order to maximise In T. it
is then again necessary to choose (Xi, Yi) to minimise the sum of squared

distances from the observed points. This means that each point (Xi’ Yi)
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must be chosen at minimum distance from the corresponding point (xi, yi).

S0 we are lead to the following geometrical construction. Suppose that

with (x, y) as centre ellipses

2
x - %% -1
2 UZ
£ n

= const. (2.2.7.)
g
are constructed giving the locus of point at
equal distance from (¢, y). There will be one
ellipse which just touches the line, say at
the point (%, %) {see diagram). It is clear

that this point is the point on the line at

the least distance from (x, v). The line from

oX + RY = v

the centre (x, y) to the point of contact

—_— X

\ . .

(X, %) is no longer perpendicular but is the
conjugate direction to the line with respect fig. 4.

to the ellipse. It is easy to see that a general point (X', Y') on this line

satisfies
eci(X' - x) = acg(Y' - y) (2.2.8.)

From (2.1.12.) and (2.1.15.) we get

¥ = x - qo? (ax * By = v) (2.2.9.)
4252 + g2g?
€ n
and similarly
Y=y - go2 lox* By-v) (2.2.10.)

N 4242 4+ g2g2
€ n

from which we get the constant of the ellipse, giving the squared distance

from (x, y) to the line, as

g% = fox * By - v?

3202 + 8202
£ n

(2,2.11.)
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When there are n independent observations (xi, yi) each observation is
projected in the same direction conjugate to the line on to a point

(Xi’ Yi) on the line. The resulting sum of squared distances is

(ox + By - v)z
1 a202 + p262
[ n

(2.2.12.)

I ~19
[N
L)

N~

This must be minimised with respect to the line parameters giving the
line of closest fit to a system of ellipses centred at the observation

points,

An equivalent statement is that the ratio

{ax + By - v)z

azcz + 8202
3 n

(2,2.13.)

must be minimised with respect to the line parameters, the bar denoting
mean value over the observations.

Since the line parameters are homogeneous and only ratios have a
significance, the minimisation problem can be put in the following form

which we will call

THE PRINCIPLE OF GENERALISED LEAST SQUARES: the line parameters of the
maximum likelihood solution may be obtained as the solution of the

minimisation problem

2 . . . .
(ax + By = v) is a minimum with respect to a, 8, v
subject to the constraint

(azcg + Bzcﬁ) = const.

In interpreting this principle, note that in view of the constraint on

(X, Y) we have
ax + By — v = (2.2.14,)
where

C = g + Bn (2.2.]5.)



The variance of [ is

2 - H242 2.2
OC o Ua + B cn (2.2.16,)

may be regarded as that part of the error which measures deviation from

the given line.

2.3. Derivation of Line Parameters Using Generalised Least Squares

We shall rederive the solution for the line parameters using the minimi-

sation formulation of generalised least squares. First we write

(ax + By - v)2 = a2§2 + 2aBxy + 82§2
- 2avx - 2Bvy + v2 (2.3.1.)

Minimigation with respect to v which is unconstrained immediately gives

v = ax + 8y (2.3.2,)
The estimated line thus has the form

a(x-X) +Bly-Y) =0 (2.3.3.)

and passes through the centroid of observations. The quadratic in o and g

becomes

(ax + 8y - V)2 = {u(x - X) + B(y -~ PI?
— ' 2 2.3.4.
= a*s__ + 2 assxy + B Syy ( )
where
- (x - 02 2.3.5.
S (x - x) ( )
Sy (x -G -7 (2.3.6.)
=y -9 (2.3.7.)

]
¥y
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The minimisation problem now becomes

(azsxx + 2 u.Bsxy + styy) minimum with respect

to a, £ subject to

2
(azcg + Bzcﬁ) = const. = 8

This is a well known minimisation problem. It may be solved either

trigonometrically or by the use of a Lagrange multiplier.

The trigonometrical representation method: we put

]

ag § cos O (2.3,10.)

s sin 8 (2.3.11.)

Bcn

when the constraint is automatically satisfied. Then we must minimise

s 8 S
T cos%9 + 2 2L cos 68 sin 6 + 2L sin’s (2.3.12.)
oZ %n ci

The condition 3/38 = 0 gives

S 8

- XX 9c0s8sin 6 + 2 XX (- sinze + coszB) +
2 g C
g €N
£
s
+2-2L sin 6 cos 8 =0 (2.3.13.)
a2
n
or
s S xs s
2L - EX) sin 20 + 222X  cos 28 =0 (2.3.14.)
2 2 g g
Un o€ £ n

which is the same as (1.3.1.), (1.3.4.).

The Lagrange multiplier method: using a Lagrange parameter u the

minimisation problem becomes

2 2 - 2.2 2.2y i
as _ + ZGBSxy + B syy n (o oy + B Gn) min (2.3.15.)
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Equating derivatives with respect to a and B to zerc we get

n
o

- nol)a + 8
(s, = WO Sxy

z =
a + (s - po=) B =0
Syx ( vy u n)

For a non-zero solution it is necessary that

- 2
(sxx uce) sxy
=0
2
5~ uo
®yx (yy = W0y
giving p as one of the roots of
2
S.x ¢ '(Sxxsyy - sxy)
w2 - p( =+ 2+ =0
o2 o2 02 o2
€ n R
which are
2
Sex S 5 x 9 sxy
u:&{_—-—-{-.ﬂ_ ....—..—ﬂ.) +[+ }
g2 a2 a? g2 o2g2
E n € n

(2.3.16.)

(2.3.17.)

(2.3.18.)

(2.3.19.)

(2.3.20.)

For each of these roots, values of o and B may be found satisfying the

linear equations above and for those particular values we see that

a?s + 2aBs + p2g
y = XX Xy vy
0202 + g2¢2
£ n

(2.3.21.)

and thus the two roots u give respectively the maximum and mirnimum values

of the ratio on the right which are achieved for the corresponding values

a and B. Since we are looking for the minimum value of the ratio, the root

with the negative sign must be chosen.
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The corresponding value of the ratio B/a is

- 2
8 __ (8, = M)
o s
Xy
2
8 s 9 4s
k2 %X k2 XX kz
= 5 (2.3.22.)
xy

By comparing the ratio B/a of eq. (2.3.22.) with 1/a from equation (1.2,38,)

we conclude that they are equal.
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3, SOLUTION OF THE STRUCTURAL ESTIMATION PROBLEM BY A COMBINED BAYESIAN
AND MAXIMUM LIKELIHOOD APPROACH

In the usual solution of the structural estimation problem, as described
up to now, both incidental and structural parameters are estimated by the
maximum likelihood methed. True values (Xi, Yi) are estimated by parallel
projection from the observed points (xi, yi). It is clear that, for a large
number of observations, the resulting configuration of fig. 1, far from
being one of maximum likelihood, is extremely improbable. In view of this,
it is not obvious why the calculation gives acceptable results in most
(though not all) aspects. In order to explain this and give a more satis-
factory theoretical basis to the solution, it is mnecessary to combine
Bayesian and maximum likelihood methods of estimation, using Bayes for

the incidental parameters and maximum likelihood for the structural para-
meters with a modified likelihood function. The present section will show

how this can be dome.

e e Yot e s e B e e ! S P U R ok, 5 o T T P A o . W

We first discuss the Bayesian estimation of the true values (Xi, Yi)

which are the incidental parameters in the problem. Let us consider the
result of making one observation (x, y) of a pair of true values (X, Y).
For convenience, we shall denote the totality of structural parameters

by n:
m™ = (O'-sBs\’rGEgUn) (3.1.1'-)

In the Bayesian view, (x, y) and 7 are given and (X, Y) has a corresponding
conditional distribution on the estimated line. The probability density of

(X, Y) as proportional to the likelihood function i.e.

i 2 20T
p(X,¥{m,x,y,) o< exp —é{(x_x) RS Sl 22! (3.1.2.)

u? c2
L e " !

Now, since the vectors

X-%Y-Y) and (x- %, y - ) (3.1.3.)
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are conjugate with respect to the ellipse centred at (xX,y), as in obvious

from fig. 4, we have

E-HE-0, 6-DE -y _
2

5 0 (3.1.4.)
g o '
€ n
from which follows the identity
2 2 i v 2
-0 G-’ &-%° @-%
2 2 2 2
a o o c
£ n £ n

(x - §)2-+ vy - ?)2

2 2
g o
E n

(3.1.5.)

Since X and Y occur in only the first two terms on the right hand side,

we find

3

- ) ,
p(X,¥|7,%,y) ~ exp|-H{E" §) L —2§) i}

- g C _]_
E n

(3.1.6.)

Since the probability distribution of (X,Y) is confined to a line which
contains (X,Y), we see that the distribution is Gaussian with its mean at
(i,?). Although it has the appearance of a two dimensional distribution,

it is in reality one-dimensional since the vectors (X - X, (¥ -~ ?3 are
proportional. To bring it to one—-dimensional form it is convenient to intro-
duce variables along the two conjugate directions, This is done as follows.

It follows easily from the previous formulae that

2
Ba
x - % = ; {a(x - X) + B(y - YD} (3.1.7.)
8
"] 802
y-Y¥=— {ax-X) + 8 - D} (3.1.8.)
S

Then by subtractionfromx - X and v — Y we get

Bo o Bo ag

Y ;n{__grl(x__x).i,TE(y-Y)} (3.].9-)
S > n




Now put

Then

and

Notice that, in terms of the error variables ¢ and n we can write

o]
Y- Y= -2l

_29_

Bcn
5 o (x - X) +
s £ :

adg

=a(x - X) + B(y - Y)
“n %
w=8~—(x-X +a E—'(Y ~Y)
3 n
2
ag
x - %= ; r
s
go 2
_ ¥ . _n
y-¥=—1¢
s
X - % = By
L47]
Y-Y = ~auw

Na
I
R
™
+

Loy
=

E
1}

1
™w

[y}
+

=

=

g _
Er—-(y -1}
n

(3.1.10.)

(3.1,11.)

(3.1.12.)

(3.1.13.)

(3.1.14.)

(3.1.15.)

(3.1.16.)

(3.1.17.)

(3.1.18.)

from which we see that £ and @ are uncorrelated components of the error

with variances

2« 422 + go? = g2
£ £ n
o2 = g292 + o262 = g2
w n £

Further we get

x-%° a-9?_ W

P
g% o (Ge n)z
€ n .

(3.1.,19.)
(3.1.20.)
(3.1.21.)
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-0’ w-yn®_ 2

5 (3.1.22.)
o2 o2 s
€ n
from which it follows, using (3.1.5.) that
N 2 _ 2 2 2
X-x", -y =C_2+ W (3.1.23.)
2 2 0.0
o o s ( A
£ n S

The likelihood function may consequently be split up into the product
of two—dimensional Gaussian probability densities as follows:

2 2 5
- - Y

2 g2
€ n

1 _£
20 C exp
£ N

_ ] exp I__%{ C‘(x - X) + B(y - Y)}Z

‘,"Er.s ~ 8 - -
ci UE :

-8 —5-(x -X) +a —5'(Y - Y)fL

t i s S ‘

- —l
g exp 14 - % (3.1.24.)

(resny o (=D |

s s -

The two one—-dimensional distributions occuring here are along the conjugate
directions. Note that when (X,Y) lies on the estimated line, the first of

the one-dimensional densities is independent of X and Y.

The likelihood function on which the theory of the previous two sections

is based can be defined, in the Bayesian form, by the equation
p(X,Y,m|x,y) = Lix,y; X,Y,m)p(X,Y,n) (3.2.1.)

giving the posterior density of the parameters, both incidental and struc-
tural, in terms of the prior density. The likelihood function may be written

as the ratio

L(x,y,X,Y,m) = p;}({;{}:{;}]{;§’“) (3.2.2.)
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where

p(x,y|{X,Y,mM = 5 exp

mg g
€0
and

p(x,y|m)=1 (3.2.4,)

A certain amount of difficulty arises in using these equations because of
the occurence of singular and improper probability densities: the proba-
bility distribution of (X,Y) is confined to a line and the density of
{(x,v) before the occurence of (X,Y¥), is uniform over the whole plane.
These difficulties can be avoided by considering only probability ratios
which can be rather easily interpreted. In ratio form we write Bayes' rule

as

p(X,Y,W]x,y) _ . _ p(x,le,Y,w)
S T LY XY, = B (3.2.5.)

We shall now show how Bayes' rule in this form may be decomposed into two
similar Bayes' rules, one for the estimation of the incidental parameters
and one for the estimation of the structural parameters.

The Bayes' rule for the estimation of the incidental parameters has already

been given in 3.1. It may be written, in ratic form

p(X,le,y,w) N . ~ p(x,y[§)Y,ﬂ)
P (Y ) = L(n,x,y; X,Y) = ey (3.2.6.)

which, in the case when the prior probability distribution of (X,Y) along

the line, can be i1dentified with the equation

- - - —

~. 2 5.2 2 2
pE0D L B Z DG |y Em B, G2 D }J
(3.2.7.)

exp |~
02 ci L oi 0%
1 = = 2 Z
TS Ay
g2 g2 2

~ £ n
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which comes from (3,1.5.).

To relate this result to (3.2.5.} we write

P(X,Ysﬂlxsy) _ plX,Y|x,y,m) p{m[x,y)
p(X,Y,m) a -_H;TE¥TFFT__ . '—5%}3"' (3.2.8.)

thus introducing an extra term corresponding to Bayesian estimation of the

parameters m expressed by the equation

p(t]xy) = Lix,y3m p(n) (3.2.9.)

The ratio form for the Bayes' rule for structural parameter estimation

is

TGIE) RS E§%§z$§l (3.2.10.)

p(m

Taking into account the decomposition (3.1.24.) of the likelihood functiom

we get the following:

DECOMPOSITION RULE FOR BAYESIAN STRUCTURAL ESTIMATION: the Bayesian
estimation of the parameters in the structural estimation problem may

be decomposed into

(a) estimation of the incidental parameters given the structural parameters

p(X,Y|x,y,m = L{x,y,m; X,Y) p(X,¥{m) (3.2.11.)
where 8g2 wg? q
o0 - SEanp
L(x,y,m; X,Y)ocexp —§ e = (3,2.12.)
£ N )
(S)

(b) Estimation of the structural parameters

p(r]x,y) = Lix,y;m) p(n) (3.2.13.)
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where

X + By - v}Z

L{x,¥;T) cxexp _£{a S (3.2.14)

Note that in (b) the wvariables X and Y have been illiminated
Despite the similar appearance of the two parts (a) and (b), they must

be given somewhat different interpretations as we shall now see in

connexion with repeated observations,.

In the case of independent observationsjBayes' rule for combined incidental

and structural parameters becomes

R

p((Xi, Yi)Ji = I,...,n,ﬂl(xi, yi)’i = 1,...,n)

1= =]

L(xi, i Xi’ Yi,n) p(m) (3.3.1.)

i=1

Splitting the equation by the decomposition rule we get, for the esti-

mation of the incidental parameters given the structural parameters

p((X,, Y),1i= 1,...,n|ﬁ,(xi, v;),i= 1,..0,m)
n
=i§l{ L(m, X5 ¥i3 Xi’ Yi) p(Xi, Yi[ﬂ )} (3.3.2.)

and, for the estimation of the structural parameters,

p(ﬂl(xi, yi)’i = 1ye..,0)

[ ==

1 LG v;).1) p(m) (3.3.3.)

1

The essential difference between these two last equations is as follows.,
When estimating the incidental parameters (the true values) there are just
as many parameters as observations. Further, each observation provides omnly
information about the corresponding pair of true values, Hence continued

observation provides no better information about the individual values of



these parameters although information about the statistical distribution
of them may be obtained. On the other hand, the structural parameters do
not change with each observation and it is reasonable to expect that
continued observation will provide more and more precise estimates,
Hence it makes sense to use the method of maximum likelihood for the
structural parameters although the Bayes method must be used for the

incidental parameters.

Let us first consider the maximum likelihood method for the structural

parameters. The likelihood function for the n observations is

n n axi + Syi -V !
I L ((x,, y.),7) =exp| =3 } { }2 (3.3.4.)
- i* 71 . s
l_] - l=l -
The In-likelihood function is consequently
n ax, + By. — v
In L. = const - } z (—= - )2
i=1 s
n alg + 2afs + B2g
= const ~ % . 2.3 2y Yy (3.3.5.)
a2o?2 + p2g2
£ n

where the constant will depend in variances. Maximisation with respect to
the line parameters leads to the method of generalised least squares
already discussed. The determination of the wvariance however needs a

special discussion.
As regards the incidental parameters, we find, using the expression for
the likelihood function and a uniform prior distribution of the (Xi’ Yi)

along the estimated line,

p((Xi, Yi))i = 1,...,nlﬂ,(xi, yi),i = l,.4.,n0)

Ba2 ag? :
T ( . _E _ N
ol 2 T X 7% 1) j
~exp |- } Eﬂ — r (3.3.6.)

L i

€ N
(£
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If we now put

2 g2
= n ¥y - __E -

w. = (—5 & - %) 5= (L, '\Yi)} (3.3.7.)

(E n) S s

and change the variables from X5 Vs to Ci’ Wy then, in the new variables

where again the prior distribution is uniform,

w2 |
Pt

so that the Wy have a spherically symmetrical Gaussian distribution with

(3.3.8.)

13

A Lol
PLw]‘_!“s(xis Yl) = eXPL zi

zero means and unit variances.

Now it is a property of the n—dimensional spherically symmetrical Gaussian

distribution that, asymptotically, as n—+«, the distribution becomes concen-
. * . .

trated uniformly over a hypersphere . That this is so may be understood

from the fact that

w2, > Efw?] = | (3.3.9.)

1
|

Il o~

i

so that asymptotically,
n ks
} w? aon (3.3.10.)

meaning that (wl,...,mn) lies on a sphere of radius Yn. The same property
may be deduced more precisely by transforming to n-dimensional spherical

coordinates and deriving that the quantity
2 j¢1
R = ) w? (3.3.11.)

has a % distribution with n degrees of freedom which, asymptotically,
has a sharp peak at R = vn.
Such considerations provide the mathematical basis for the criticism of

the use of the maximum likelihood estimates.

* P. Lé&vy: Legons d'analyse fonctionelle., Paris 1922 {Gauthier-vVillars).
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These estimates correspond to assumiug
w., =0 1 = 1,.0u4n (3.3.12.)

which certainly maximises p(”ii“‘(xi’ yil)but corresponds to a region which
is extremely improbable since this is the centre of the sphere which
asymptotically contains the whole of the .-distribution., The only correct
method in this situation is to abandon the use of maximum likelihood

since there is no peak near to the maximum likelihood estimate which
contains the greater part of the distribution. A similar situation

cccurs also in other contexts where the parameter or parameters to be

estimated have a uniform distribution .

* B.T. Pol'ak & Ya.Z. Tsypkin: Noise proof identification. IFAC Symp.

on Identification & Syst. Parameter Estimation, Tiblisi, USSR, Sept. 1976.



4. SUMMARY AND CONCLUSIONS

As stated in the introduction, the present report is partly expository

and partly original. The main expository part is the first section where
an account has been given of the one-dimensional linear structural re-
lationship problem with Caussian errors. Attention has been given to topic
points not readily available in the literature such as the convenient
graphical presentation of the solution and the solution of Dent for the
case of unknown variances. The second section, which contains a some-

what new presentation of known material, shows how the maximum likelihood
solution gives rise to the generalised least squares principle. '

The third section, which 1s original, has re—analysed the problem from a
Bayesian viewpoint and shown how such an analysis leads to the introduc-
tion of a modified likelihood function for the estimation of the structural
parameters, The use of this likelihood function immediately leads to the

principle of generalised least squares,

In .future work it is intended to show how a similar approach may be used
for structural relation in the multidimensional case and in linear systems

analysis.
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5. APPENDIX

We here show that the slope of the estimated line is a monotonic function
of the variance ratio k unless the observations are either uncorrelated

or perfectly correlated,

In non-homogenous line coordinates, the slope is

9 [ 7
s - h's + /(s - kzs )2 -4 kzsh
= JY XX N Yy XX Xy
a =
2s
Xy
Differentiation gives
s - kzs J(~s_ 3 + 252
1l 8a _ _l___{_ s o+ XX XX Xy,
zk I) —_———— T ——— /i — - PE—
ok 28 yy XX J&s _ kzs 52 + 4k252
vy XX X
so that 1f the right hand side is zero then
2
52 {(s =~ kzs )2 + Akzs } = (s - kzs )252 +
X% vy XX Xy yy xx’ Txx
- 4s 52 {s - kzs }y + 454
XX X¥ vy XX Xy

from which it follows that

2
0 =4s (-s_ s + 32 ).
Xy B Txx"yy Xy
This equation implies that either the observations are uncorrelated or

are perfectly correlated.

It is easy to verify that k = 0 and k = = correspond to the two regression
lines. Consequently, as k increases from O to « the estimated line moves

monotonically from one regression line to the other.



_39.—

6. REFERENCES ON STRUCTURAL ESTIMATION

The following list gives the principal references on structural estimation
in both the statistical and system—analysis literature. For further
references, see Mandansky (1959), Moran (1971). The 1list is arranged in

chronelogical order,

1. ADCOCK, A.D. (1877)
The Analyst 1877, 4, 183-, 5, 53—

2. KUMMEL, C.H.
The Analyst 1897, 6, 97-

3. PEARSON, K; On lines and planes of closest fit to systems of points
in space. Phil.Mag. 1901, 2, 559=572

4. RHODES, E.C.; On lines and planes of closest fit.
Phil. Mag. 1927, 7(3), 357-

5. UVEN, M.J. van; Adjustment of N points....
Proc. Kon. Akad. Wetensch. Amst. 1930, 33, 143-, 307-

6. DENT, B.M.; On cbservation of points connected by a linear relatiom.

Proc. Phys. Soc. 1935, 47, 92-108

F.o HOOS5, CLI.

Metron. 1937, 13, (1), 3~

8. KOOPMANS, T.; Linear Regression Analysis of Economic Time Series.
Haarlem 1937 (DeFrven-Bohn) '

9. WALD, A.; The fitting of straight lines if both variables are siubject
to error. Annals Math. Stat. 1940, 4, 284-300

10, LINDLEY, D.V.; BRegression lines and the linear functional relationship.

J. Roy. Stat. Soc. 1947, supplement, 9, 218-



13.

16.

8.

19,

20.

- 40 -

. NFYMAN & SCOTT, E.; Consistent estimates based on partially consistent

observations,

Econometrica 1948, 16, 1-32

KOOPMANS, T.S. & REILERSQPL, O.; The identification of structural
characteristics. Ann. Math, Stat. 1950, 21, 165-181.

BERKSON, J.; Are there two regressions?
J. Amer. Stat, Ass. 1950, 45, 164-180

. NEYMAN, J. & SCOTT, E.; On certain methods of estimating the linear

structural relationship.

Ann. Math. Stat., 22, 252-361 (correction in 23, 1357)

NEYMAN, J.; Existence of consistent estimates of the directional parameter
in a linear structural relation between two variables.

Ann. Math. Stat. 1951, 22, 497-512

KENDALL, M.G,; Regression, structure and functional relation.

Biometrika I, 1951, 38, 11-25; IT, 1952, 39, 96-108

. WOLFOWITZ, J.; Consistent estimators of the parameters of a linear

structural relation.

Skand. Aktuarietids. 1952, 132-151

LINDLEY, D.V.; Estimation of a functional relationship.

Biometrika 1953, 40, 47-49

KIEFER, J. & WOLFOWITZ, J.; Consistency of the maximum likelihood
estimator in the presence of infinitely many incidental parameters.

Annals Math. Stat. 1956, 27, 887-906

BROWN, R.L.; The Bivariate structural relation.
Biometrika 1957, 44, 84-96



~
2

24,

26.

28.

29.

30.

_[‘_1_

. KENDALL, M.G. & STEWART, A.; The Advanced Theory of Statistics,

Londor 1958 (Griffin) part 1, 2, 3

. MADANSKY, A.; The fitting of straight lines when both variables are

subject to error.

J. Amer. Stat. Ass. 1959, 54, 173-205,

GRAYBILL, F.A.; An Introduction to Linear Statistical Models.
Yew York 1961, (McGraw-Hill) Vol. 1

VILLEGAS, C.; Maximum likelihced estimation of a linear functional
relation.

Ann. Math. Stat. 1961, 32, 1048-1062

LEVIN, J.; Estimation of a system pulse transfer function in the
presence of noise.

IEEE Trans. Aut. Control 1964, AC-9, 229-

SPRENT, P.; A generalised least squares approach to linear functional
relationships.

J. Roy. Stat. Soc. 1966, 28B, 272-297

. KENDALL, M.G. & STEWART, A.; The Advanced Theory of Statistics.

?nd ed. London 1967 (Griffin) Vol. 2

LINDLEY, D.V. & EL-SAYYAD; The Bayesian estimation of a linear functional
relationship.

J. Roy. Stat. Soc. 1968, 30B, 190-202

SMITH, F.W.; System Laplace-transform estimation from sampled data.

IEEE Trans. Aut. Control, 1968, AC-13, no. 1, 37-44

SOLARI, M.E.; The "maximum likelihood solution” of the problem of esti-
mating a linear functional relation.

J. Roy. Stat. Soc. 31B, 1969, 372-375



31.

33,

34.

(%)
[
.

36.

37.

38.

39.

..42_.

ROCERS, A.E. & STETGLITZ, K.; On system identification from noise—
obscured input and output measurements.

Int. J. Control 1970, 12, no. 4, 625-635
BARNETT, V.D.; Fitting straight lines - the linear functional relation-
ship problem.

J. Roy. Stat. Soc. 1970, 32B, 274-278

SPRENT, P.; The saddle point of the likelihood surface for a linear
functional relationship.

J. Roy. Stat. Soc. 1970, 32B, 432-434

MORAN, D.P.P.; Estimating structural and functional relationships.

J. Mult. Anal., 1, 232-255

DOLBY, C.R.; Generalised least squares and maximum likelihood estimation
of non—linear functional relationships.

J. Roy. Stat. Soc. 1972, 34B, 393-400

TAYLOR, J.; A method of fitting several linear functional relations
and of testing for differences between them.

Appl. Statisties 1973, 22, 239-242

FLORENS, J.P., MOUCHART, M. & RICHARD, J.P.; Bayesian inference in
error—in-variables models.

J. Mult. Anal. 1974, &4, 419-452

DOLBY, G.R. & FREEMAN, T.G,; Functional relationships having many inde-—
pendent variables and errors with multivariate normal distributioms.

J. Mult. Anal. 1975, 5, 466-479

AKASHI, H. & MOUSTAFA, A.F.; Parameter identification of systems with
neise in input and output.

Kyoto Univ. 1975, Mem. Fac, Eng. 184-201



	Contents
	Introduction
	1. The problem of estimation of linear structural relations with Gaussian errors
	1.1 Statement of the problem
	1.2 The maximum likelihood solution
	1.3 Scale-free form for the estimate slope
	1.4 The case of unknown variances
	2. Generalised least squares
	2.1 The use of homogeneous line coordinates
	2.2 Geometrical interpretation: generalised least squares
	2.3 Derivation of loine parameters using generalised least squares
	3. Solution of the structural estimation problem by a combined Bayesian and maximum likelihood approach
	3.1 On Bayesian estimation of the true values
	3.2 Decomposition rule for bayesian structural estimation
	3.3 Bayesian estimation for repeated observations
	4. Summary and conclusions
	5. Appendix
	6. References on structural estimation

