
High Performance SQL with
PostgreSQL 8.4

Lists and Recursion and Trees, Oh My!
OSCON 2009

Copyright © 2009
David Fetter david.fetter@pgexperts.com
All Rights Reserved

mailto:david@fetter.org
mailto:david@fetter.org
http://www.pgexperts.com/
http://www.pgexperts.com/

Better, Faster TPS Reports

New!
Reach Outside the Current Row

Better, Faster TPS Reports

• Windowing Function
– Operates on a window
– Returns a value for each row
– Calculates value from the rows in the window

• You can use…
– New window functions
– Existing aggregate functions
– User-defined window functions
– User-defined aggregate functions

Better, Faster TPS Reports

[Aggregates] SELECT key, SUM(val) FROM tbl GROUP BY key;

Better, Faster TPS Reports

[Windowing Functions] SELECT key, SUM(val) OVER (PARTITION BY key) FROM tbl;

Better, Faster TPS Reports

ROW_NUMBER (Before)
SELECT
 e1.empno,
 e1.depname,
 e1.salary,
 count(*) AS row_number
FROM
 empsalary e1
JOIN
 empsalary e2
 ON (e1.empno < e2.empno)
GROUP BY e1.empno, e1.depname, e1.salary
ORDER BY e1.empno DESC;

ROW_NUMBER (Before)
OOPS!

 empno | depname | salary | row_number
-------+-----------+--------+------------
 8 | develop | 6000 | 1
 6 | sales | 5500 | 2

 11 | develop | 5200 | 4
 10 | develop | 5200 | 4
 1 | sales | 5000 | 5

 3 | sales | 4800 | 7
 4 | sales | 4800 | 7
 9 | develop | 4500 | 8
 7 | develop | 4200 | 9
 2 | personnel | 3900 | 10
 5 | personnel | 3500 | 11
(11 rows)

ROW_NUMBER (After)

SELECT
 empno,
 depname,
 salary,
 row_number() OVER (
 ORDER BY salary DESC NULLS LAST
)
FROM
 empsalary
ORDER BY salary DESC;

ROW_NUMBER (After)

Yippee!
 empno | depname | salary | row_number
-------+-----------+--------+------------
 8 | develop | 6000 | 1
 6 | sales | 5500 | 2
 10 | develop | 5200 | 3
 11 | develop | 5200 | 4
 1 | sales | 5000 | 5
 3 | sales | 4800 | 6
 4 | sales | 4800 | 7
 9 | develop | 4500 | 8
 7 | develop | 4200 | 9
 2 | personnel | 3900 | 10
 5 | personnel | 3500 | 11
(11 rows)

Built-in Windowing Functions

• row_number()
• rank()
• dense_rank()
• percent_rank()
• cume_dist()
• ntile()

• lag()
• lead()
• first_value()
• last_value()
• nth_value()

Generate Points

WITH RECURSIVE x(i)
AS (
 VALUES(0)
UNION ALL
 SELECT i + 1

 FROM x
 WHERE i < 101
),

Generate Points

Z(Ix, Iy, Cx, Cy, X, Y, I)
AS (
 SELECT Ix, Iy,
 X::float, Y::float,
 X::float, Y::float,
 0
 FROM

Generate Points

 (SELECT -2.2 + 0.031 * i, i
 FROM x) AS xgen(x,ix)
CROSS JOIN
 (SELECT -1.5 + 0.031 * i, i
 FROM x) AS ygen(y,iy)

Generate Points

UNION ALL

Generate Points
 SELECT
 Ix, Iy, Cx, Cy,
 X * X - Y * Y + Cx AS X,
 Y * X * 2 + Cy,
 I + 1
 FROM Z
 WHERE X * X + Y * Y < 16.0
 AND I < 27
),

Choose Some

Zt (Ix, Iy, I) AS (
 SELECT Ix, Iy, MAX(I) AS I
 FROM Z
 GROUP BY Iy, Ix
 ORDER BY Iy, Ix
)

Display Them

SELECT array_to_string(
 array_agg(
 SUBSTRING(
 ' .,,,-----++++%%%%@@@@#### ',
 GREATEST(I,1)
),''
)
FROM Zt
GROUP BY Iy
ORDER BY Iy;

Travelling Salesman Problem
Given a number of cities and the costs of travelling
from any city to any other city, what is the least-
cost round-trip route that visits each city exactly
once and then returns to the starting city?

TSP Schema

CREATE TABLE pairs (
 from_city TEXT NOT NULL,
 to_city TEXT NOT NULL,
 distance INTEGER NOT NULL,
 PRIMARY KEY(from_city, to_city),
 CHECK (from_city < to_city)
);

TSP Data
INSERT INTO pairs
VALUES
 ('Bari','Bologna',672),
 ('Bari','Bolzano',939),
 ('Bari','Firenze',723),
 ('Bari','Genova',944),
 ('Bari','Milan',881),
 ('Bari','Napoli',257),
 ('Bari','Palermo',708),
 ('Bari','Reggio Calabria',464),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
) /* Working Table */
AS (
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs
UNION ALL
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
)
AS (/* Distances One Way */
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs
UNION ALL
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Symmetric Setup

WITH RECURSIVE both_ways(
 from_city,
 to_city,
 distance
)
AS (
 SELECT
 from_city,
 to_city,
 distance
 FROM
 pairs
UNION ALL /* Distances Other Way */
 SELECT
 to_city AS "from_city",
 from_city AS "to_city",
 distance
 FROM
 pairs
),

TSP Program:
Path Initialization Step

paths (
 from_city,
 to_city,
 distance,
 path
)
AS (
 SELECT
 from_city,
 to_city,
 distance,
 ARRAY[from_city] AS "path"
 FROM
 both_ways b1
 WHERE
 b1.from_city = 'Roma'
UNION ALL

TSP Program:
Path Recursion Step

 SELECT
 b2.from_city,
 b2.to_city,
 p.distance + b2.distance,
 p.path || b2.from_city
 FROM
 both_ways b2
 JOIN
 paths p
 ON (
 p.to_city = b2.from_city
 AND
 b2.from_city <> ALL (p.path[
 2:array_upper(p.path,1)
]) /* Prevent re-tracing */
 AND
 array_upper(p.path,1) < 6
)
)

TSP Program:
Timely Termination Step

 SELECT
 b2.from_city,
 b2.to_city,
 p.distance + b2.distance,
 p.path || b2.from_city
 FROM
 both_ways b2
 JOIN
 paths p
 ON (
 p.to_city = b2.from_city
 AND
 b2.from_city <> ALL (p.path[
 2:array_upper(p.path,1)
]) /* Prevent re-tracing */
 AND
 array_upper(p.path,1) < 6 /* Timely Termination */
)
)

TSP Program:
Filter and Display

SELECT
 path || to_city AS "path",
 distance
FROM
 paths
WHERE
 to_city = 'Roma'
AND
 ARRAY['Milan','Firenze','Napoli'] <@ path
ORDER BY distance, path
LIMIT 1;

TSP Program:
Filter and Display

davidfetter@tsp=# \i travelling_salesman.sql
 path | distance
----------------------------------+----------
 {Roma,Firenze,Milan,Napoli,Roma} | 1553
(1 row)

Time: 11679.503 ms

Who Posts Most?

Who
CREATE TABLE forum_users (
 user_name TEXT NOT NULL,
 CHECK(user_name = trim(user_name)),
 user_id SERIAL UNIQUE
);

CREATE UNIQUE INDEX forum_user_user_name_unique
 ON forum_users(lower(user_name));

INSERT INTO forum_users (user_name)
VALUES
 ('Tom Lane'), ('Robert Haas'), ('Alvaro Herrera'), ('Dave Page'),
 ('Heikki Linnakangas'), ('Magnus Hagander'), ('Gregory Stark'),
 ('Josh Berkus'), ('David Fetter'), ('Benjamin Reed');

Posts

CREATE TABLE message (
 message_id INTEGER PRIMARY KEY,
 parent_id INTEGER
 REFERENCES message(message_id),
 message_text TEXT NOT NULL,
 forum_user_id INTEGER
 NOT NULL REFERENCES forum_users(user_id)
);

Add some posts

INSERT INTO message
WITH RECURSIVE m(
 message_id,
 parent_id,
 message_text,
 forum_user_id)
AS (
 VALUES(1, NULL::integer, md5(random()::text),1)

Add some posts

UNION ALL

Add some posts
 SELECT
 message_id+1,
 CASE
 WHEN random() >= .5 THEN NULL

 ELSE FLOOR(random()*message_id)+1
 END::integer,

 md5(random()::text),
 floor(random() * 10)::integer +1
 FROM m
 WHERE message_id < 1001
)
SELECT * FROM m;

WELL?!?

Patience :)

Find the fr1st ps0t
WITH RECURSIVE t1 AS (
 SELECT
 /* First message in the thread is the thread ID */
 message_id AS thread_id,
 message_id,
 parent_id,
 forum_user_id,
 ARRAY[message_id] AS path
 FROM message
 WHERE parent_id IS NULL

Find the Next Ones

UNION ALL

Find the Next Ones
 SELECT
 t1.thread_id,
 m.message_id,
 m.parent_id,
 m.forum_user_id,
 t1.path || m.message_id
 FROM message m
 JOIN t1 ON
 (t1.message_id = m.parent_id)
),

Count Posters
in Each Thread

t2 AS (
 SELECT
 thread_id,
 forum_user_id,
 count(*) AS reply_count
 FROM t1
 GROUP BY thread_id, forum_user_id
 ORDER BY thread_id, count(*)
),

Find the Top Posters

t3 AS (
 SELECT thread_id,
 max(reply_count) AS reply_count
 FROM t2
 GROUP BY thread_id
)

Show Them :)

SELECT t2.thread_id, f.user_name, t3.reply_count
FROM t2
JOIN t3 USING (thread_id, reply_count)
JOIN forum_users f ON (f.user_id = t2.forum_user_id)
WHERE reply_count > 3
ORDER BY reply_count DESC;

Top Posters :)

 thread_id | user_name | reply_count
-----------+-----------------+-------------
 1 | Tom Lane | 9
 1 | Gregory Stark | 9
 82 | Magnus Hagander | 5
 108 | Dave Page | 4
 9 | Josh Berkus | 4
(5 rows)

OBTW

With CTE and Windowing, SQL is Turing Complete.

Cyclic Tag System

The productions are encoded in the table "p" as follows:
 "iter" is the production number;
 "rnum" is the index of the bit;
 "tag" is the bit value.

This example uses the productions:
 110 01 0000

The initial state is encoded in the non-recursive union arm,
in this case just '1'

The (r.iter % n) subexpression encodes the number of
productions, which can be greater than the size of table "p",
because empty productions are not included in the table.

Cyclic Tag System
Parameters:
 the content of "p"
 the content of the non-recursive branch
 the 3 in (r.iter % 3)

"p" encodes the production rules; the non-recursive branch is
the initial state, and the 3 is the number of rules

The result at each level is a bitstring encoded as 1 bit per
row, with rnum as the index of the bit number.

At each iteration, bit 0 is removed, the remaining bits
shifted up one, and if and only if bit 0 was a 1, the content
of the current production rule is appended at the end of the
string.

Proof:

Construct a Cyclic Tag System with
CTEs and Windowing.

Proof:

WITH RECURSIVE
p(iter,rnum,tag) AS (
 VALUES (0,0,1),(0,1,1),(0,2,0),
 (1,0,0),(1,1,1),
 (2,0,0),(2,1,0),(2,2,0),(2,3,0)
),

Proof:
r(iter,rnum,tag) AS (
 VALUES (0,0,1)
UNION ALL
 SELECT r.iter+1,
 CASE
 WHEN r.rnum=0 THEN p.rnum + max(r.rnum) OVER ()
 ELSE r.rnum-1
 END,
 CASE
 WHEN r.rnum=0 THEN p.tag
 ELSE r.tag
 END
 FROM
 r
 LEFT JOIN p
 ON (r.rnum=0 and r.tag=1 and p.iter=(r.iter % 3))
 WHERE
 r.rnum>0
 OR p.iter IS NOT NULL
)

Proof:

SELECT iter, rnum, tag
FROM r
ORDER BY iter, rnum;

Thanks
Andrew (RhodiumToad) Gierth

Questions?
Comments?
Straitjackets?

Thank You!
Copyright © 2009
David Fetter david.fetter@pgexperts.com
All Rights Reserved

mailto:david@fetter.org
mailto:david@fetter.org
http://www.pgexperts.com/
http://www.pgexperts.com/

