
Vector Floating Point Instruction Set
Quick Reference Card

Key to Tables
{C} See Table Condition Field <fpconst> +/– m * 2–n where m and n are integers, 16 <= m <= 31, 0 <= n <=7

<P> F32 (single precision) or F64 (double precision). Fd, Fn, Fm Sd, Sn, Sm (single precision), or Dd, Dn, Dm (double precision).

S, D, H Single, double, or half-precision (F16). {E} E : raise exception on any NaN. Without E : raise exception only on signaling NaNs.

F Single or double-precision floating point. {R} Use FPSCR rounding mode. Otherwise, round towards zero.

SI, UI Signed or unsigned integer. <VFPregs> A comma separated list of consecutive VFP registers, enclosed in braces ({ and }).

<VFPsysreg> FPSCR or FPSID. <fbits> Number of fraction bits in fixed-point number, 0-16 or 1-32.

§ 2: VFPv2 and above. 3: VFPv3 and above. 3H: VFPv3 and above with
half-precision extension.

<type> S16, S32, U16, or U32, for Signed or Unsigned, 16-bit or 32-bit.

Operation § Assembler Exceptions Action Notes

Vector arithmetic Multiply VMUL{C}.<P> Fd, Fn, Fm IO, OF, UF, IX Fd := Fn * Fm

and negate VNMUL{C}.<P> Fd, Fn, Fm IO, OF, UF, IX Fd := – (Fn * Fm)

and accumulate VMLA{C}.<P> Fd, Fn, Fm IO, OF, UF, IX Fd := Fd + (Fn * Fm)

negate and accumulate VMLS{C}.<P> Fd, Fn, Fm IO, OF, UF, IX Fd := Fd – (Fn * Fm)

and subtract VNMLS{C}.<P> Fd, Fn, Fm IO, OF, UF, IX Fd := – Fd + (Fn * Fm)

negate and subtract VNMLA{C}.<P> Fd, Fn, Fm IO, OF, UF, IX Fd := – Fd – (Fn * Fm)

Add VADD{C}.<P> Fd, Fn, Fm IO, OF, IX Fd := Fn + Fm

Subtract VSUB{C}.<P> Fd, Fn, Fm IO, OF, IX Fd := Fn – Fm

Divide VDIV{C}.<P> Fd, Fn, Fm IO, DZ, OF, UF, IX Fd := Fn / Fm

Absolute VABS{C}.<P> Fd, Fm Fd := abs(Fm)

Negative VNEG{C}.<P> Fd, Fm Fd := – Fm

Square root VSQRT{C}.<P> Fd, Fm IO, IX Fd := sqrt(Fm)

Scalar compare Two values VCMP{E}{C}.<P> Fd, Fm IO Set FPSCR flags on Fd – Fm Use VMRS APSR_nzcv,FPSCR to
transfer flags.Value with zero VCMP{E}{C}.<P> Fd, #0.0 IO Set FPSCR flags on Fd – 0

Scalar convert Single to double VCVT{C}.F64.F32 Dd, Sm IO Dd := convertStoD(Sm)

Double to single VCVT{C}.F32.F64 Sd, Dm IO, OF, UF, IX Sd := convertDtoS(Dm)

Unsigned integer to float VCVT{C}.<P>.U32 Fd, Sm IX Fd := convertUItoF(Sm)

Signed integer to float VCVT{C}.<P>.S32 Fd, Sm IX Fd := convertSItoF(Sm)

Float to unsigned integer VCVT{R}{C}.U32.<P> Sd, Fm IO, IX Sd := convertFtoUI(Fm)

Float to signed integer VCVT{R}{C}.S32.<P> Sd, Fm IO, IX Sd := convertFtoSI(Fm)

Fixed-point to float 3 VCVT{C}.<P>.<type> Fd, Fd, #<fbits> IO, IX Fd := convert<type>toF(Fd) Source is in bottom 16 or 32 bits of Fd.

Float to fixed-point 3 VCVT{C}.<type>.<P> Fd, Fd, #<fbits> IO, IX Fd := convertFto<type>(Fd) Destination is bottom 16 or 32 bits of Fd.

Single to half-precision 3H VCVTT{C}.F16.F32 Sd,Sm ID, IO, OF, UF, IX Sd:=convertStoH(Sm) Destination is top 16 bits of Sd

Single to half-precision 3H VCVTB{C}.F16.F32 Sd,Sm ID, IO, OF, UF, IX Sd:=convertStoH(Sm) Destination is bottom 16 bits of Sd

Half to single-precision 3H VCVTT{C}.F32.F16 Sd,Sm ID, IO, OF, UF, IX Sd:=convertHtoS(Sm) Source is top 16 bits of Sm

Half to single-precision 3H VCVTB{C}.F32.F16 Sd,Sm ID, IO, OF, UF, IX Sd:=convertHtoS(Sm) Source is bottom 16 bits of Sm

Insert constant Insert constant in register 3 VMOV{C}.<P> Fd, #<fpconst> Fd := <fpconst>

Transfer registers Copy VFP register VMOV{C}.<P> Fd, Fm Fd := Fm

ARM® to single VMOV{C} Sn, Rd Sn := Rd

Single to ARM VMOV{C} Rd, Sn Rd := Sn

Two ARM to two singles 2 VMOV{C} Sn, Sm, Rd, Rn Sn := Rd, Sm := Rn Sm must be S(n+1)

Two singles to two ARM 2 VMOV{C} Rd, Rn, Sn, Sm Rd := Sn, Rn := Sm Sm must be S(n+1)

Two ARM to double 2 VMOV{C} Dm, Rd, Rn Dm[31:0] := Rd, Dm[63:32] := Rn

Double to two ARM 2 VMOV{C} Rd, Rn, Dm Rd := Dm[31:0], Rn := Dm[63:32]

ARM to lower half of double VMOV{C} Dn[0], Rd Dn[31:0] := Rd

Lower half of double to ARM VMOV{C} Rd, Dn[0] Rd := Dn[31:0]

Vector Floating Point Instruction Set

Quick Reference Card

Operation § Assembler Exceptions Action Notes

Transfer registers ARM to upper half of double VMOV{C} Dn[1], Rd Dn[63:32] := Rd

(continued) Upper half of double to ARM VMOV{C} Rd, Dn[1] Rd := Dn[63:32]

ARM to VFP system register VMSR{C} <VFPsysreg>, Rd VFPsysreg := Rd

VFP system register to ARM VMRS{C} Rd, <VFPsysreg> Rd := VFPsysreg

FPSCR flags to APSR VMRS{C} APSR_nzcv, FPSCR APSR flags := FPSCR flags

Operation § Assembler Synonyms Action

Save VFP registers Single VSTR{C} Fd, [Rn{, #<immed>}] [address] := Fd. Immediate range 0-1020, multiple of 4.

Single, PC-relative VSTR{C} Fd, <label>

Multiple, unindexed / increment after VSTM{C} Rn{!}, <VFPregs> VSTMIA, VSTMEA Saves list of VFP registers, starting at address in Rn.

decrement before VSTMDB{C} Rn!, <VFPregs> VSTMFD (full descending)

Push onto stack VPUSH{C} <VFPregs> VSTMFD SP!

Load VFP registers Single VLDR{C} Fd, [Rn{, #<immed>}] Fd := [address]. Immediate range 0-1020, multiple of 4.

Single, PC-relative VLDR{C} Fd, <label>

Multiple, unindexed / increment after VLDM{C} Rn{!}, <VFPregs> VLDMIA, VLDMFD Loads list of VFP registers, starting at address in Rn.

decrement before VLDMDB{C} Rn!, <VFPregs> VLDMEA (empty ascending)

Pop from stack VPOP{C} <VFPregs> VLDM SP!

FPSCR format Rounding (Stride – 1)*3 Vector length – 1 Exception trap enable bits Cumulative exception bits

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 12 11 10 9 8 7 4 3 2 1 0

N Z C V QC AHP DB FZ RMODE STRIDE LEN IDE IXE UFE OFE DZE IOE IDC IXC UFC OFC DZC IOC

FZ: 1 = flush to zero mode. Rounding: 0 = round to nearest, 1 = towards +∞, 2 = towards –∞, 3 = towards zero. (Vector length * Stride) must not exceed 4 for double precision operands. (Deprecated)

Condition Field Exceptions

Mnemonic Description (VFP) Description (ARM or Thumb®) Mnemonic Description (VFP) Description (ARM or Thumb) ID Input Denormal

EQ Equal Equal HI Greater than, or unordered Unsigned higher IO Invalid operation

NE Not equal, or unordered Not equal LS Less than or equal Unsigned lower or same OF Overflow

CS / HS Greater than or equal, or unordered Carry Set / Unsigned higher or same GE Greater than or equal Signed greater than or equal UF Underflow

CC / LO Less than Carry Clear / Unsigned lower LT Less than, or unordered Signed less than IX Inexact result

MI Less than Negative GT Greater than Signed greater than DZ Division by zero

PL Greater than or equal, or unordered Positive or zero LE Less than or equal, or unordered Signed less than or equal

VS Unordered (at least one NaN operand) Overflow AL Always (normally omitted) Always (normally omitted)

VC Not unordered No overflow
www.arm.com

Proprietary Notice
Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU
and other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the
copyright holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be
liable for any loss or damage arising from the use of any information in this reference card, or any error
or omission in such information, or any incorrect use of the product.

Document Number
ARM QRC 0007E

Change Log
Issue Date Change
A Nov 2004 First Release
B May 2005 Release for RVCT 2.2 SP1
C March 2006 Release for RVCT 3.0
D March 2007 Release for RVCT 3.1
E Sept 2008 Release for RVCT 4.0

