Vector Floating Point Instruction Set Quick Reference Card

Key to Tables								See Table Condition Field	<fpconst>
\{C $\}$	F32 (single precision) or F64 (double precision).	Fd, Fn, Fm							
<P>	Single, double, or half-precision (F16).	$\{\mathrm{E}\}$							
S, D, H	Single or double-precision floating point.	$\{$ R $\}$							
F	Signed or unsigned integer.	<VFPregs>							
SI, UI									
<VFPsysreg>									
§	FPSCR or FPSID. 2: VFPv2 and above. 3: VFPv3 and above. 3H: VFPv3 and above with half-precision extension.	<fbits>							
<type>									

Operation		§	Assembler	Exceptions	Action	Notes
Vector arithmetic	Multiply and negate and accumulate negate and accumulate and subtract negate and subtract Add Subtract Divide Absolute Negative Square root		```VMUL{C}.<P> Fd, Fn, Fm VNMUL{C}.<P> Fd, Fn, Fm VMLA{C}.<P> Fd, Fn, Fm VMLS{C}.<P> Fd, Fn, Fm VNMLS{C}.<P> Fd, Fn, Fm VNMLA{C}.<P> Fd, Fn, Fm VADD{C}.<P> Fd, Fn, Fm VSUB{C}.<P> Fd, Fn, Fm VDIV{C}.<P> Fd, Fn, Fm VABS{C}.<P> Fd, Fm VNEG{C}.<P> Fd, Fm VSQRT{C}.<P> Fd, Fm```	IO, OF, UF, IX IO, OF, IX IO, OF, IX IO, DZ, OF, UF, IX IO, IX	$\begin{aligned} & \hline \mathrm{Fd}:=\mathrm{Fn} * \mathrm{Fm} \\ & \mathrm{Fd}:=-(\mathrm{Fn} * \mathrm{Fm}) \\ & \mathrm{Fd}:=\mathrm{Fd}+(\mathrm{Fn} * \mathrm{Fm}) \\ & \mathrm{Fd}:=\mathrm{Fd}-(\mathrm{Fn} * \mathrm{Fm}) \\ & \mathrm{Fd}:=-\mathrm{Fd}+(\mathrm{Fn} * \mathrm{Fm}) \\ & \mathrm{Fd}:=-\mathrm{Fd}-(\mathrm{Fn} * \mathrm{Fm}) \\ & \mathrm{Fd}:=\mathrm{Fn}+\mathrm{Fm} \\ & \mathrm{Fd}:=\mathrm{Fn}-\mathrm{Fm} \\ & \mathrm{Fd}:=\mathrm{Fn} / \mathrm{Fm} \\ & \mathrm{Fd}:=\mathrm{abs}(\mathrm{Fm}) \\ & \mathrm{Fd}:=-\mathrm{Fm} \\ & \mathrm{Fd}:=\mathrm{sqrt}(\mathrm{Fm}) \end{aligned}$	
Scalar compare	Two values Value with zero		$\begin{aligned} & \operatorname{VCMP}\{E\}\{C\} .<P>F A, ~ F m \\ & \operatorname{VCMP}\{E\}\{C\} .<P>F d, ~ \# 0.0 \end{aligned}$	$\begin{aligned} & \text { IO } \\ & \text { IO } \end{aligned}$	Set FPSCR flags on Fd - Fm Set FPSCR flags on $\mathrm{Fd}-0$	Use VMRS APSR_nzcv, FPSCR to transfer flags.
Scalar convert	Single to double Double to single Unsigned integer to float Signed integer to float Float to unsigned integer Float to signed integer Fixed-point to float Float to fixed-point Single to half-precision Single to half-precision Half to single-precision Half to single-precision	3 3 3 H 3 H 3 H 3 H	```VCVT{C}.F64.F32 Dd, Sm VCVT{C}.F32.F64 Sd, Dm VCVT{C}.<P>.U32 Fd, Sm VCVT{C}.<P>.S32 Fd, Sm VCVT{R}{C}.U32.<P> Sd, Fm VCVT{R}{C}.S32.<P> Sd, Fm VCVT{C}.<P>.<type> Fd, Fd, #<fbits> VCVT{C}.<type>.<P> Fd, Fd, #<fbits> VCVTT{C}.F16.F32 Sa,Sm VCVTB{C}.F16.F32 Sd,Sm VCVTT{C}.F32.F16 Sd,Sm VCVTB{C}.F32.F16 Sa,Sm```	IO IO, OF, UF, IX IX IX IO, IX IO, IX IO, IX IO, IX ID, IO, OF, UF, IX	Dd := convertStoD(Sm) Sd := convertDtoS(Dm) Fd := convertUItoF(Sm) Fd := convertSItoF(Sm) Sd := convertFtoUI(Fm) Sd := convertFtoSI(Fm) Fd := convert<type>toF(Fd) Fd := convertFto<type>(Fd) Sd:=convertStoH(Sm) Sd:=convertStoH(Sm) Sd:=convertHtoS(Sm) Sd:=convertHtoS(Sm)	Source is in bottom 16 or 32 bits of Fd. Destination is bottom 16 or 32 bits of Fd. Destination is top 16 bits of Sd Destination is bottom 16 bits of Sd Source is top 16 bits of Sm Source is bottom 16 bits of Sm
Insert constant	Insert constant in register	3	VMOV\{C\}.<P> Fd, \#<fpconst>		Fd := <fpconst>	
Transfer registers	Copy VFP register ARM $^{\circledR}$ to single Single to ARM Two ARM to two singles Two singles to two ARM Two ARM to double Double to two ARM ARM to lower half of double Lower half of double to ARM	$2 \begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2\end{aligned}$			$\begin{aligned} & \mathrm{Fd}:=\mathrm{Fm} \\ & \mathrm{Sn}:=\mathrm{Rd} \\ & \mathrm{Rd}:=\mathrm{Sn} \\ & \mathrm{Sn}:=\mathrm{Rd}, \mathrm{Sm}:=\mathrm{Rn} \\ & \mathrm{Rd}:=\mathrm{Sn}, \mathrm{Rn}:=\mathrm{Sm} \\ & \operatorname{Dm}[31: 0]:=\mathrm{Rd}, \operatorname{Dm}[63: 32]:=\mathrm{Rn} \\ & \operatorname{Rd}:=\operatorname{Dm}[31: 0], \operatorname{Rn}:=\mathrm{Dm}[63: 32] \\ & \operatorname{Dn}[31: 0]:=\mathrm{Rd} \\ & \operatorname{Rd}:=\operatorname{Dn}[31: 0] \end{aligned}$	Sm must be $\mathrm{S}(\mathrm{n}+1)$ Sm must be $\mathrm{S}(\mathrm{n}+1)$

Vector Floating Point Instruction Set Quick Reference Card

Proprietary Notice

Words and logos marked with ${ }^{\circledR}$ or ${ }^{\text {TM }}$ are registered trademarks or trademarks of ARM Limited in the EU and other countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.
Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.
The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded
This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage arising from the use of any information in this reference card, or any error or omission in such information, or any incorrect use of the product.

Document Number

ARM QRC 0007E

Change Log

Date
Nov 2004
May 2005
March 2006
March 2006
Sept 2008

Change

First Release
Release for RVCT 2.2 SP1
Release for RVCT 3.0
Release for RVCT 3.1
Release for RVCT 4.0

