
Cortex™-M1
Revision: r1p0

Technical Reference Manual
Copyright © 2006-2008 ARM Limited. All rights reserved.
ARM DDI0413D

Cortex-M1
Technical Reference Manual

Copyright © 2006-2008 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

23 March 2007 A Confidential First release of r0p0

28 September 2007 B Confidential First release of r0p1

20 February 2008 C Non-Confidential Release of Non-Confidential TRM

07 May 2008 D Non-Confidential First release of r1p0
ii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Contents
Cortex-M1 Technical Reference Manual

Preface
About this manual .. xiv
Feedback ... xix

Chapter 1 Introduction
1.1 About the processor .. 1-2
1.2 Components, hierarchy, and implementation .. 1-4
1.3 Configurable options ... 1-10
1.4 About the architecture ... 1-11
1.5 Binary compatibility with Cortex-M3 processor ... 1-12
1.6 Product revisions .. 1-13

Chapter 2 Programmer’s Model
2.1 About the programmer’s model ... 2-2
2.2 Registers ... 2-4
2.3 Data types ... 2-10
2.4 Memory formats .. 2-11
2.5 Instruction set .. 2-13

Chapter 3 Memory Map
3.1 About the memory map ... 3-2
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. iii

Contents
Chapter 4 Exceptions
4.1 About the exception model ... 4-2
4.2 Exception types .. 4-3
4.3 Exception priority .. 4-5
4.4 Stacks ... 4-7
4.5 Pre-emption .. 4-8
4.6 Exception exit ... 4-10
4.7 Late-arrival .. 4-12
4.8 Exception control transfer ... 4-13
4.9 Activation levels .. 4-14
4.10 Lock-up ... 4-16

Chapter 5 Clocks and Resets
5.1 About clocks and resets ... 5-2

Chapter 6 System Control
6.1 About system control .. 6-2
6.2 System control register descriptions ... 6-4

Chapter 7 Nested Vectored Interrupt Controller
7.1 About the NVIC ... 7-2
7.2 NVIC programmer’s model ... 7-3
7.3 Level versus pulse interrupts .. 7-9
7.4 Resampling level interrupts .. 7-10
7.5 Interrupts as general purpose input .. 7-11

Chapter 8 Debug
8.1 About debug ... 8-2
8.2 Debug control ... 8-5
8.3 ROM table .. 8-13
8.4 BPU .. 8-16
8.5 DW unit ... 8-19
8.6 Debug TCM interface ... 8-24
8.7 Examples of debug register halt, access, and step 8-25
8.8 Data address watchpoint matching .. 8-28
8.9 Semiprecise watchpoints .. 8-29

Chapter 9 Debug Access Port
9.1 About the DAP .. 9-2
9.2 Debug access ... 9-3
9.3 AHB-AP .. 9-5

Chapter 10 External and Memory Interfaces
10.1 About bus interfaces ... 10-2
10.2 External interface .. 10-3
iv Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Contents
10.3 Write buffer ... 10-4
10.4 Memory attributes ... 10-5
10.5 Memory interfaces .. 10-6

Appendix A Signal Descriptions
A.1 Clocks and Resets .. A-2
A.2 Miscellaneous ... A-3
A.3 Interrupt interface .. A-4
A.4 External AHB-Lite interface ... A-5
A.5 Memory interfaces .. A-6
A.6 AHB-AP interface .. A-9

Glossary
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. v

Contents
vi Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

List of Tables
Cortex-M1 Technical Reference Manual

Change History ... ii
Table 1-1 Parameter configurable options .. 1-10
Table 1-2 Pin value configurable options .. 1-10
Table 2-1 Application Program Status Register bit functions .. 2-6
Table 2-2 Interrupt Program Status Register bit assignments .. 2-7
Table 2-3 EPSR bit assignments .. 2-8
Table 2-4 Special-Purpose Priority Mask Register bit assignments .. 2-9
Table 2-5 Special-Purpose Control Register bit assignments ... 2-9
Table 2-6 Required mapping for an AHB-Lite interface .. 2-11
Table 3-1 Processor memory regions ... 3-3
Table 4-1 Exception types ... 4-3
Table 4-2 Exception scenarios .. 4-5
Table 4-3 Exception entry steps .. 4-9
Table 4-4 Exception exit steps .. 4-10
Table 4-5 Exception return behavior ... 4-11
Table 4-6 Transferring to exception processing .. 4-13
Table 4-7 Stack activation levels ... 4-14
Table 4-8 Exception transitions ... 4-14
Table 4-9 Exception subtype transitions ... 4-15
Table 6-1 System control registers .. 6-2
Table 6-2 Auxiliary Control Register bit assignments .. 6-4
Table 6-3 SysTick Control and Status Register bit assignments ... 6-5
Table 6-4 SysTick Reload Value Register bit assignments ... 6-7
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. vii

List of Tables
Table 6-5 SysTick Current Value Register bit assignments .. 6-7
Table 6-6 SysTick Calibration Value Register bit assignments .. 6-8
Table 6-7 CPUID Base Register bit assignments ... 6-9
Table 6-8 Interrupt Control State Register bit assignments .. 6-10
Table 6-9 Application Interrupt and Reset Control Register bit assignments 6-12
Table 6-10 Configuration and Control Register bit assignments .. 6-14
Table 6-11 System Handler Priority Register 2 bit assignments ... 6-15
Table 6-12 System Handler Priority Register 3 bit assignments ... 6-16
Table 6-13 System Handler Control and State Register bit assignments 6-17
Table 7-1 NVIC registers .. 7-3
Table 7-2 Interrupt Set-Enable Register bit assignments ... 7-4
Table 7-3 Interrupt Clear-Enable Register bit assignments .. 7-5
Table 7-4 Interrupt Set-Pending Register bit assignments ... 7-6
Table 7-5 Interrupt Clear-Pending Registers bit assignments .. 7-7
Table 7-6 Interrupt Priority Registers 0-31 bit assignments .. 7-8
Table 8-1 Core debug registers summary .. 8-3
Table 8-2 BPU register summary .. 8-3
Table 8-3 DW register summary ... 8-4
Table 8-4 Debug Fault Status Register bit assignments ... 8-6
Table 8-5 Debug Halting Control and Status Register .. 8-8
Table 8-6 Debug Core Register Selector Register ... 8-10
Table 8-7 Debug Exception and Monitor Control Register ... 8-12
Table 8-8 ROM memory ... 8-13
Table 8-9 Breakpoint Control Register bit assignments .. 8-17
Table 8-10 Breakpoint Comparator Registers bit assignments .. 8-18
Table 8-11 DW Control Register bit assignments ... 8-20
Table 8-12 Control Register bit assignments .. 8-20
Table 8-13 DW Comparator Registers bit assignments .. 8-21
Table 8-14 DW Mask Registers bit assignments .. 8-22
Table 8-15 DW Function Registers bit assignments ... 8-23
Table 8-16 Settings for DW Function Registers .. 8-23
Table 9-1 Other AHB-AP ports ... 9-5
Table 9-2 AHB access port registers .. 9-6
Table 9-3 AHB-AP Control/Status Word Register bit assignments ... 9-7
Table 9-4 AHB-AP Transfer Address Register bit assignments ... 9-8
Table 9-5 AHB-AP Data Read/Write Register bit assignments .. 9-9
Table 9-6 Banked Data Register bit assignments ... 9-9
Table 9-7 ROM Address Register bit assignments ... 9-10
Table 9-8 AHB-AP Identification Register bit assignments ... 9-10
Table 10-1 HPROT[3:0] encoding ... 10-5
Table 10-2 Byte-write size .. 10-6
Table 10-3 Instruction and Data TCM sizes .. 10-7
Table A-1 Reset signals .. A-2
Table A-2 Miscellaneous signals ... A-3
Table A-3 Interrupt interface .. A-4
Table A-4 External AHB-Lite interface .. A-5
Table A-5 ITCM interface .. A-6
viii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

List of Tables
Table A-6 DTCM interface ... A-6
Table A-7 Debug ITCM interface ... A-7
Table A-8 Debug DTCM interface ... A-7
Table A-9 AHB-AP interface .. A-9
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. ix

List of Tables
x Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

List of Figures
Cortex-M1 Technical Reference Manual

Key to timing diagram conventions .. xvi
Figure 1-1 Processor with debug block diagram .. 1-4
Figure 1-2 Processor block diagram ... 1-5
Figure 2-1 Processor register set ... 2-4
Figure 2-2 Application Program Status Register bit assignments .. 2-6
Figure 2-3 Interrupt Program Status Register bit assignments .. 2-6
Figure 2-4 Execution Program Status Register bit assignments .. 2-7
Figure 2-5 Special-purpose Priority Mask Register bit assignments .. 2-8
Figure 2-6 Special-Purpose Control Register bit assignments ... 2-9
Figure 3-1 Processor memory map .. 3-2
Figure 4-1 Stack contents after a pre-emption ... 4-8
Figure 5-1 Reset signals ... 5-2
Figure 6-1 Auxiliary Control Register .. 6-4
Figure 6-2 SysTick Control and Status Register bit assignments ... 6-5
Figure 6-3 SysTick Reload Value Register bit assignments ... 6-7
Figure 6-4 SysTick Current Value Register bit assignments .. 6-7
Figure 6-5 SysTick Calibration Value Register bit assignments ... 6-8
Figure 6-6 CPUID Base Register bit assignments ... 6-9
Figure 6-7 Interrupt Control State Register bit assignments .. 6-10
Figure 6-8 Application Interrupt and Reset Control Register bit assignments 6-12
Figure 6-9 Configuration and Control Register bit assignments ... 6-13
Figure 6-10 System Handler Priority Register 2 bit assignments ... 6-15
Figure 6-11 System Handler Priority Register 3 bit assignments ... 6-15
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. xi

List of Figures
Figure 6-12 System Handler Control and State Register bit assignments 6-16
Figure 7-1 Interrupt Priority Registers 0-7 bit assignments .. 7-8
Figure 8-1 Debug Fault Status Register bit assignments ... 8-6
Figure 8-2 Debug Halting Control and Status Register bit assignments 8-8
Figure 8-3 Debug Core Register Selector Register bit assignments 8-10
Figure 8-4 Debug Exception and Monitor Control Register bit assignments 8-12
Figure 8-5 Breakpoint Control Register bit assignments .. 8-16
Figure 8-6 Breakpoint Comparator Registers bit assignments .. 8-18
Figure 8-7 DW Control Register bit assignments ... 8-19
Figure 8-8 DW Mask Registers 0-1 format ... 8-21
Figure 8-9 DW Function Registers bit assignments ... 8-22
Figure 9-1 DAP configuration ... 9-2
Figure 9-2 AHB access port internal structure. .. 9-5
Figure 9-3 AHB-AP Control/Status Word Register bit assignments ... 9-7
Figure 9-4 AHB-AP Identification Register bit assignments ... 9-10
Figure 10-1 ITCM write signal timings .. 10-6
Figure 10-2 ITCM read signal timings .. 10-7
xii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Preface

This preface introduces the Cortex-M1 r0p1 Technical Reference Manual (TRM). It
contains the following sections:

• About this manual on page xiv

• Feedback on page xix.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. xiii

Preface
About this manual

This is the Technical Reference Manual (TRM) for the Cortex-M1 processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written to help:

• system designers, system integrators, and verification engineers who want to
implement the processor in a Field-Programmable Gate Array (FPGA)

• software developers who want to use the processor in a FPGA.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the components of the processor
and the processor instruction set.

Chapter 2 Programmer’s Model

Read this chapter for a description of the processor register set, modes of
operation, and other information for programming the processor.

Chapter 3 Memory Map

Read this chapter for a description of the processor memory map.

Chapter 4 Exceptions

Read this chapter for a description of the processor exception model.

Chapter 5 Clocks and Resets

Read this chapter for a description of the processor clocking and resets.

Chapter 6 System Control

Read this chapter for a description of the registers and programmer’s
model for system control.
xiv Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Preface
Chapter 7 Nested Vectored Interrupt Controller

Read this chapter for a description of the processor interrupt processing
and control.

Chapter 8 Debug

Read this chapter for a description of the processor system debug
components, and debugging and testing the processor.

Chapter 9 Debug Access Port

Read this chapter for a description of the processor debug access port and
the Serial Wire JTAG Debug Port (SWJ-DP).

Chapter 10 External and Memory Interfaces

Read this chapter for a description of the processor bus interfaces.

Appendix A Signal Descriptions

Read this appendix for a summary of processor signals.

Glossary Read the Glossary for definitions of terms used in this manual.

Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams on page xvi

• Signals on page xvi

• Numbering on page xvii.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. xv

Preface
monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear
in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in
timing diagrams. Variations, when they occur, have clear labels. You must not assume
any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:

• HIGH for active-HIGH signals

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xvi Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Preface
• LOW for active-LOW signals.

Lower-case n Denotes an active-LOW signal.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Numbering

The numbering convention is:

<size in bits>'<base><number>

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Additional reading

This section lists publications by ARM and by third parties.

See http://infocenter.arm.com/help/index.jsp for access to ARM documentation.

ARM publications

This manual contains information that is specific to the Cortex-M1 processor. See the
following documents for other relevant information:

• ARMv6-M Architecture Reference Manual (ARM DDI 0419)

• ARMv6-M Instruction Set Quick Reference Guide (ARM QRC 0011)

• ARM AMBA® 3 AHB-Lite Protocol Specification (ARM IHI 0033)

• ARM CoreSight™ Components Technical Reference Manual (ARM DDI 0314)

• ARM Debug Interface v5, Architecture Specification (ARM IHI 0031)

• Application Binary Interface for the ARM Architecture (The Base Standard)
(IHI0036)

• Cortex-M1 Configuration and Sign-off Guide (ARM DII 0166)

• Cortex-M1 Integration Manual (ARM DII 0167).
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. xvii

Preface
Other publications

This section lists relevant documents published by third parties:

• IEEE Standard, Test Access Port and Boundary-Scan Architecture specification
1149.1-1990 (JTAG).
xviii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Preface
Feedback

ARM welcomes feedback on the Cortex-M1 processor and its documentation.

Feedback on the processor

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments on this manual, send an email to errata@arm.com giving:

• the title

• the number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. xix

Preface
xx Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 1
Introduction

This chapter introduces the processor and instruction set. It contains the following
sections:

• About the processor on page 1-2

• Components, hierarchy, and implementation on page 1-4

• Configurable options on page 1-10

• About the architecture on page 1-11

• Binary compatibility with Cortex-M3 processor on page 1-12

• Product revisions on page 1-13.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the processor

The processor is intended for deeply embedded applications that require a small
processor integrated into an FPGA.

The processor incorporates:

• Processor core. This is a low gate count core that features:

— ARM architecture v6-M. A Thumb® Instruction Set Architecture (ISA) that
also includes the 32-bit Thumb-2 BL, MRS, MSR, ISB, DSB, and DMB instructions.

— Operating System (OS) extension option. If this option is implemented,
functionality within the processor is enabled that is capable of running an
operating system. This includes the SVC instruction, a banked stack pointer
register, and an integrated system timer.

— System exception model.

— Handler and Thread modes.

— Stack pointers. One stack pointer is always present.

If the OS extension option is implemented, two stack pointers are present.

— Thumb state only.

— ARM architecture v6-M style BE-8/LE support. Data endianness is
configurable. Instructions and system control registers are always
little-endian. If your processor has debug, debug resources and debugger
accesses are always little-endian.

— No hardware support for unaligned accesses.

• Nested Vectored Interrupt Controller (NVIC). The NVIC is closely integrated
with the processor to achieve low latency interrupt processing. Features include:

— the number of external interrupts that you can configure, 1, 8, 16 or 32

— fixed number of bits of priority, 2 bits, providing four levels of priority

— processor state automatically saved on interrupt entry and restored on
interrupt exit, with no instruction overhead.

• Memory and external AHB-Lite interfaces.

• Optional full debug or reduced debug solutions that feature:

— debug access to all memory and registers in the system, including the
processor register bank when the core is halted

— Debug Access Port (DAP)

— BreakPoint Unit (BPU) for implementing breakpoints

— Data Watchpoint (DW) unit for implementing watchpoints
1-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Introduction
• 32-bit hardware multiplier. You can choose either the standard multiplier or a
smaller, lower performance multiplier implementation.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 1-3

Introduction
1.2 Components, hierarchy, and implementation

This section describes the components, hierarchy, and implementation of the processor
with and without debug.

The main blocks of the processor with debug are:

• Core on page 1-5

• NVIC on page 1-6

• Bus master on page 1-6

• AHB-PPB on page 1-7

• Debug on page 1-7.

Figure 1-1 shows the structure of the processor with debug.

Figure 1-1 Processor with debug block diagram

The main blocks of the processor without debug are:

• Core on page 1-5

• Core memory interface on page 1-6

• NVIC on page 1-6

DTCM

NVIC

Processor with debug

ITCM

Debug subsystem

Breakpoint unit

AHB matrix

Debug TCM interface

AHB Decoder

AHB Multiplexer

AHB-PPB

Core
DbgData watchpoint unit

Debug control

ROM table

External AHB-Lite
interface

NVIC Interrupt
Interface

AHB master

SWJ-DP

AHB-AP
DAP

ITCM
interface

DTCM
interface

SW/JTAG interface
1-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Introduction
• Bus master on page 1-6

• AHB-PPB on page 1-7.

Figure 1-2 shows the structure of the processor without debug.

Figure 1-2 Processor block diagram

1.2.1 Core

The core has the following main features:

• 3-stage pipeline

• multiply cycles:

— three cycles for normal multiplier

— 33 cycles for small multiplier.

• Thumb state

• Handler and Thread modes

• ISR entry and exit

— processor state saving and restoration, with no instruction fetch overhead

— tightly-coupled interface to interrupt controller enabling efficient
processing of late-arriving interrupts.

• LE and BE-8 data endianness support.

DTCM

NVIC

Processor without debug

ITCM

AHB Master

AHB-PPB Core

External
interface

NVIC
interrupt
interface

ITCM
interface

DTCM
interface
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 1-5

Introduction
Registers

The processor contains:

• 13 general purpose 32-bit registers.

• Link Register (LR).

• Program Counter (PC).

• Program Status Register, xPSR.

• Two banked SP registers. Without the OS extension option there is only one SP
register present.

1.2.2 Core memory interface

Core access to Tightly-Coupled Memories (TCMs) is made exclusively through a
dedicated core memory interface.

The core memory interface comprises:

• one core Instruction Tightly-Coupled Memory (ITCM) interface to access ITCM

• one core Data Tightly-Coupled Memory (DTCM) interface to access DTCM.

Because reads are speculatively fetched from TCMs, Device and Strongly-Ordered
memory types are not supported, for example FIFOs in TCM space. You must ensure
that any Flash memory in this space is tolerant of extra accesses at all times. The TCM
interface does not support wait states.

1.2.3 NVIC

The NVIC is tightly coupled to the processor core. This facilitates low-latency
exception processing. The main features include:

• a configurable number of external interrupts, 1, 8, 16, or 32

• a fixed number of bits of priority, 2 bits, providing four levels of configurable
priority

• both level and pulse interrupt support

• processor state automatically saved on interrupt entry and restored on interrupt
exit, with no instruction overhead.

See Chapter 7 Nested Vectored Interrupt Controller for more information.

1.2.4 Bus master

The Bus master provides a maximum of two interfaces. One master interface connects
the internal Private Peripheral Bus (PPB) signals to the AHB PPB. The other master
interface connects external bus signals to the AHB port.
1-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Introduction
1.2.5 AHB-PPB

The AHB Private Peripheral Bus (AHB-PPB) is used to access the:

• NVIC

• the debug components when present.

1.2.6 Debug

There are two configurations for debug:

• The full debug configuration has four breakpoint comparators and two watchpoint
comparators. This is the default configuration.

• The reduced debug configuration has two breakpoint comparators and one
watchpoint comparator.

The Debug components are:

AHB decoder Decodes the AHB address lines to create selects for the
peripherals in the debug system.

AHB multiplexer Combines the debug slave responses for all debug blocks.

AHB matrix The AHB Matrix arbitrates between the processor and debug
accesses to the internal PPB and the AHB-Lite external interface.

See Chapter 10 External and Memory Interfaces for more
information.

DAP The processor contains the AHB-Access Port (AHB-AP).

The AHB-AP converts the output from an external DP component
to an AHB-lite master interface. The AHB-AP master is the
highest priority master in the AHB matrix.

The Cortex-M1 system supports 3 possible, configuration
selectable, external DP implementations:

• A Serial-Wire JTAG Debug Port (SWJ-DP) that combines a
JTAG Debug Port and a Serial Wire Debug Port and a
mechanism that allows switching between Serial Wire and
JTAG

• A Serial Wire only Debug Port (SW-DP)

• A JTAG only Debug Port (JTAG-DP).

See Chapter 8 Debug and Chapter 9 Debug Access Port for more
information.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 1-7

Introduction
Debug TCM interface

The debug TCM interface comprises one debug interface to access
both ITCM and DTCM. Only one TCM can be accessed at any
one time.

If your FPGA supports dual ported memory, you can connect both
the debug memory interface and core memory interfaces to TCM
without any multiplexing. In this case, debug access and core
access to TCM is simultaneous. No logic is in place to guarantee
predictable results when there are simultaneous accesses on the
core and debug interfaces to the same word of memory. If your
FPGA memory cannot handle this case predictably, you must
either add your own logic or ensure that debug accesses never
conflict with core accesses. For example, a debugger can safely
access TCMs when the processor is halted or the system reset
signal, SYSRESETn, is asserted.

If your FPGA does not support dual ported memory, you must add
arbitration logic to connect to both the debug memory interfaces
and core memory interfaces.

See Chapter 8 Debug for more information.

BreakPoint Unit The BPU has:

• four instruction address comparators in the full debug
configuration

• two instruction address comparators in the reduced debug
configuration.

You can individually configure the instruction address
comparators to perform a hardware breakpoint. Each comparator
can match the address of the instruction being fetched. If there is
a match, the BPU ensures that the processor triggers a breakpoint
if the instruction that caused the match is executed. Breakpoints
are only supported in the code region of the memory map.

See Chapter 8 Debug for more information.

Data Watchpoint unit

The DW unit has:

• two address comparators in the full debug configuration

• one address comparator in the reduced debug configuration.

You can configure the comparators individually to match either an
instruction address or a data address. Masking support for address
matching is also supported.
1-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Introduction
Watchpoints are semi-precise. This means the processor does not
halt on the instruction that generates the match, it permits the next
instruction to be executed before halting.

See Chapter 8 Debug for more information.

Debug control A debugger can access the debug control registers through the
PPB to halt and step the processor. The debugger can also access
processor registers when the processor is halted.

See Chapter 8 Debug for more information.

ROM table The ROM table enables standard debug tools to recognize the
processor and the debug peripherals available, and to find the
addresses required to access those peripherals.

See Chapter 8 Debug for more information.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 1-9

Introduction
1.3 Configurable options

The processor comes in one of two forms:

• processor with full debug or reduced debug

• processor without debug.

Table 1-1 shows the features you can configure using parameters and the default for the
processors.

Table 1-2 shows the features you can configure by setting processor pin values.

Table 1-1 Parameter configurable options

Feature Configurable option Default value

Interrupts External interrupts 1, 8, 16 or 32. 0 is not supported. 8

Data endianness Little-endian or BE-8 big-endian. Little-endian

OS extension Present or absent. Present

Debuga

a. Present only if the processor is configured with debug.

Full or Reduced debug Full

Multiplier Normal or small multiplier. Normal multiplier

Table 1-2 Pin value configurable options

Feature Configurable option

Instruction TCM sizea 0KB (no Instruction TCM), 1KB, 2KB, and powers of 2 to 1MB.

Data TCM sizea 0KB (no Data TCM), 1KB, 2KB, and powers of 2 to 1MB.

Instruction TCM alias Upper Alias and/or Lower Alias enabled

a. TCM size might be limited by the memory available on your FPGA. Contact your implementation
team for more information.
1-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Introduction
1.4 About the architecture

This processor is an implementation of the ARM architecture v6-M. For details on the
instructions that you can use with this processor, see the ARMv6-M Architecture
Reference Manual.

For complete descriptions of all instruction sets, see the ARMv6-M Instruction Set
Quick Reference Guide.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 1-11

Introduction
1.5 Binary compatibility with Cortex-M3 processor

The Cortex-M1 processor implements a forward binary compatible subset of the
instruction set and features provided by the Cortex-M3 processor. Software, including
system level code, can be easily moved from Cortex-M1 processors to Cortex-M3
processors. This provides increased performance and a simple migration path from
FPGA to ASIC without the requirement for recompilation.

To ensure a smooth transition, ARM recommends that code designed to operate on both
processor architectures obey the following rules and configure the Configuration
Control Register (CCR) appropriately:

• Use word transfers only to access all registers in the NVIC and System Control
Space (SCS)

• Treat all unused SCS registers and bit fields on the Cortex-M1processor as
do-not-modify

• As soon as possible after reset, manually configure the following fields in the
CCR on the Cortex-M3 processor:

— STKALIGN bit to one

— UNALIGN_TRP bit to one

— Leave all other bits in the CCR register as their original value.
1-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Introduction
1.6 Product revisions

This section summarizes the differences in functionality between the releases of this
processor:

r0p0-r0p1 There are no differences in functionality.

r0p1-r1p0 The following changes are incorporated into this release:

• DBGRESTART and DBGRESTARTED pins added to enable
exit from Halting Debug using the
DBGRESTART/DBGRESTARTED handshake mechanism.

• ITCM Upper/Lower Alias mechanism added: CFGITCMEN[1:0]
pins and Alias Enable bits added to new Auxiliary Control
Register in the System Control Space (SCS).

• SWJ-DP removed from the Debug processor. You must now
implement the DP at the integration stage.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 1-13

Introduction
1-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 2
Programmer’s Model

This chapter describes the processor programmer’s model. It contains the following
sections:

• About the programmer’s model on page 2-2

• Registers on page 2-4

• Data types on page 2-10

• Memory formats on page 2-11

• Instruction set on page 2-13.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 2-1

Programmer’s Model
2.1 About the programmer’s model

The processor implements a lightweight profile of Thumb-2, which is all instructions as
defined in the ARMv6-M Architecture Reference Manual. The processor does not
execute ARM instructions.

2.1.1 Privilege

The processor does not support differentiated User and Privileged modes. The processor
is always in Privileged mode.

2.1.2 Operating modes

The processor supports two modes of operation:

Thread mode

Is entered on Reset and can be re-entered as a result of an exception
return.

Handler mode

Is entered as a result of an exception.

2.1.3 Operating states

The processor can operate in one of two operating states:

Thumb state

This is normal execution running the set of 16-bit and 32-bit halfword
aligned Thumb and Thumb-2 instructions.

Debug state

This is the state when in halting debug.

2.1.4 Main stack and process stack access

Out of reset, all code uses the main stack. An exception handler such as SVCall can
change the stack used by Thread mode from the main stack to the process stack by
changing the EXC_RETURN value it uses on exit. All exceptions continue to use the
main stack. The stack pointer, R13, is a banked register that switches between the main
stack and the process stack. Only one stack, the process stack or the main stack, is
visible through R13 at any one time.
2-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Programmer’s Model
It is also possible to switch from main stack to process stack while in Thread mode by
writing to the Special-Purpose Control Register using the MSR instruction. See
Special-Purpose Control Register on page 2-9 for more information.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 2-3

Programmer’s Model
2.2 Registers

The processor has the following 32-bit registers:

• 13 general-purpose registers, R0-R12

• Stack Pointer (SP) (SP, R13) and banked register aliases, SP_process and
SP_main

• Link Register (LR, R14)

• Program Counter (PC, R15)

• Program status registers, xPSR.

Figure 2-1 shows the processor register set.

Figure 2-1 Processor register set

2.2.1 General-purpose registers

The general-purpose registers R0-R12 have no special architecturally-defined uses.

Low registers Registers R0-R7 are accessible by all instructions that specify a
general-purpose register.

High registers Registers R8-R12 are not accessible by all 16-bit instructions.

Program Status Register

r13 (SP)
r14 (LR)
r15 (PC)

r5
r6
r7

r0
r1

r3
r4

r2

r10
r11
r12

r8
r9

low registers

high registers

SP_mainSP_process

xPSR
2-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Programmer’s Model
The R13, R14, and R15 registers have the following special functions:

Stack pointer Register R13 is used as the Stack Pointer (SP). Because the SP
ignores writes to bits [1:0], it is autoaligned to a word, four-byte,
boundary.

Note
 SP[1:0] must be treated as SBZP.

Handler mode always uses SP_main, Thread mode can use either
SP_main or SP_process.

Link register Register R14 is the subroutine Link Register (LR).

The LR receives the return address from PC when a Branch and
Link (BL) instruction is executed.

Exception entry use the LR to provide exception return
information.

At all other times, you can treat R14 as a general-purpose register.

Program counter Register R15 is the Program Counter (PC).

Bit [0] is always 0, so instructions are always aligned to halfword
boundaries.

2.2.2 Special-purpose program status registers (xPSR)

This section describes the break down of the processor status register at the system
level:

• Application PSR

• Interrupt PSR on page 2-6

• Execution PSR on page 2-7.

They can be accessed as individual registers, a combination of any two from three, or a
combination of all three using the MRS and MSR instructions.

Application PSR

The Application PSR (APSR) contains the condition code flags. Before entering an
exception, the processor saves the condition code flags on the stack. You can access the
APSR using the MSR and MRS instructions.

Figure 2-2 on page 2-6 shows the bit assignments of the APSR.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 2-5

Programmer’s Model
Figure 2-2 Application Program Status Register bit assignments

Table 2-1 lists the bit assignments of the APSR.

Interrupt PSR

The Interrupt PSR (IPSR) contains the Interrupt Service Routine (ISR) number of the
current exception activation.

Figure 2-2 shows the bit assignments of the IPSR.

Figure 2-3 Interrupt Program Status Register bit assignments

31 30 29 28 27

N Z C V

0

Reserved

Table 2-1 Application Program Status Register bit functions

Field Name Definition

[31] N Negative or less than flag:

1 = result negative

0 = result positive.

[30] Z Zero flag:

1 = result of 0

0 = nonzero result.

[29] C Carry or borrow flag:

1 = carry true or borrow false

0 = carry false or borrow true.

[28] V Overflow flag:

1 = overflow

0 = no overflow.

[27:0] - Reserveda

a. The bits are defined as UNK/SBZP.

31 0

Reserved ISR NUMBER

56
2-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Programmer’s Model
Table 2-2 lists the bit assignments of the IPSR.

Execution PSR

The Execution PSR (EPSR) contains the Thumb state bit (T-bit).

Figure 2-4 shows the bit assignments of the EPSR.

Figure 2-4 Execution Program Status Register bit assignments

Note
 Unless the processor is in Debug state, the EPSR is not directly accessible and all fields
read as zero using an MRS instruction. MSR instruction writes are ignored.

Table 2-2 Interrupt Program Status Register bit assignments

Field Name Definition

[31:6] - Reserved

[5:0] Exception Number Number of executing exception:

Thread mode = 0

NMI = 2

Hard Fault = 3

SuperVisor Call (SVCall) = 11

PendSV = 14

SysTck = 15

IRQ0 = 16

.

.

.

IRQ31 = 47

31 0

Reserved

25 24

Reserved

23

T

ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 2-7

Programmer’s Model
Table 2-3 lists the bit assignments of the EPSR.

Saved xPSR bits

On entering an exception, the processor saves the combined information from the three
status registers on the stack.

Note
 Bit [9] of the stacked xPSR contains the alignment status of the active SP when the
exception processing begins.

2.2.3 Special-Purpose Priority Mask Register

Use the Special-Purpose Priority Mask Register for priority boosting.

Figure 2-5 shows the bit assignments of the Special-Purpose Priority Mask Register.

Figure 2-5 Special-purpose Priority Mask Register bit assignments

Table 2-3 EPSR bit assignments

Field Name Definition

[31:25] - Reserved.

[24] T The T-bit is set according to the reset vector when the processor comes out of reset. The execution
of an instruction with the EPSR T-bit clear causes a Hard Fault. This ensures that attempts to switch
to ARM state fail in a predictable way.

[23:0] - Reserved.

31 1 0

Reserved

PRIMASK
2-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Programmer’s Model
Table 2-4 lists the bit assignments of the Special-Purpose Priority Mask Register.

You can access the Special-Purpose Priority Mask Register using the MSR and MRS
instructions. You can also use the CPS instruction to set or clear PRIMASK.

2.2.4 Special-Purpose Control Register

The Special-Purpose Control Register identifies the stack pointers used.

Figure 2-6 shows the bit assignments of the Special-purpose Control Register.

Figure 2-6 Special-Purpose Control Register bit assignments

Table 2-5 lists bit assignments of the Special-Purpose Control Register.

For writes from Handler mode occurring as part of an exception return, see the
ARMv6-M Architecture Reference Manual.

Table 2-4 Special-Purpose Priority Mask Register bit assignments

Field Name Function

[31:1] - Reserved

[0] PRIMASK When set, raises execution priority to 0

31 2 1 0

Reserved

Active stack pointer
Reserved

Table 2-5 Special-Purpose Control Register bit assignments

Field Name Function

[31:2] - Reserved

[1] Active stack
pointer

Defines the stack to use:

0 = SP_main is used for the current stack

1 = For Thread mode, SP_process is used for the current stacka.

a. Attempts to set this bit from Handler mode are ignored.

[0] - Reserved
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 2-9

Programmer’s Model
2.3 Data types

The processor supports the following data types:

• 32-bit words

• 16-bit halfwords

• 8-bit bytes.

Note
 Unless otherwise stated the core can access all regions of the memory map, including
the code region, with all data types. To support this, the system, including memories,
must support subword writes without corrupting neighboring bytes in that word.
2-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Programmer’s Model
2.4 Memory formats

The processor views memory as a linear collection of bytes numbered in ascending
order:

• The word at address A consists of the bytes at address A,A+1,A+2,A+3

• The halfword at address A consists of the bytes at address A,A+1

• The halfword at address A+2 consists of the bytes at address A+2,A+3

• The word at address A therefore consists of the halfwords at address A,A+2.

Table 2-6 shows the required mapping for an AHB-Lite interface. Table 2-6 also shows
how the slaves use the HSIZE and the HADDR signals to determine which byte lanes
are active on the data buses HWDATA and HRDATA.

On the TCM interface, the byte write enables are to be used for writes to ensure the
correct byte lanes on the write data bus are written. All TCM reads are performed as
word accesses and the processor will select the appropriate byte lanes depending on the
requested access size and the address alignment.

Note
 These properties are endian-independent.

Endianness affects the numeric significance given to the bytes within the word or
halfword, by the master performing the access. For a little-endian access, the byte with
the highest address within the word or halfword has the highest numerical significance.
For a big-endian access, the byte with the lowest address has the highest numerical
significance.

For more details on endianness, see the ARMv6-M Architecture Reference Manual.

Table 2-6 Required mapping for an AHB-Lite interface

HSIZE HADDR[1:0] DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

Word 0 x x x x

Halfword 0 - - x x

Halfword 2 x x - -

Byte 0 - - - x

Byte 1 - - x -

Byte 2 - x - -

Byte 3 x - - -
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 2-11

Programmer’s Model
Accesses to the PPB space are always in little-endian format. The processor correctly
interprets PPB data even when configured for big-endian operation.
2-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Programmer’s Model
2.5 Instruction set

The processor supports all ARMv6-M Thumb and Thumb-2 instructions. For
information on ARMv6-M Thumb instructions, see the ARMv6-M Architecture
Reference Manual. The processor does not support ARM instructions.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 2-13

Programmer’s Model
2-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 3
Memory Map

This chapter describes the processor fixed memory map. It contains the following
section:

• About the memory map on page 3-2.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 3-1

Memory Map
3.1 About the memory map

Figure 3-1 shows the fixed memory map.

Figure 3-1 Processor memory map

DTCM

SRAM

Reserved
0xE0000000

DW

BP

Reserved

Reserved

Reserved

0xE0001000

NVIC

Reserved

0x00000000

Reserved

Code

0x1FFFFFFF

SRAM

0x20000000

0x3FFFFFFF
0x40000000

0.5GB

0.5GB

1GB

0xDFFFFFFF

Reserved

0xE0000000

0xE0100000

0xFFFFFFFF

0xE0002000

0xE0003000

0xE000E000

0xE000F000

0xE0041000

1MB ITCM (Lower Alias)0x00000000

0x00100000

0x1FFFFFFF

0xE0040000

0xE0042000

private peripheral bus

0xE00FFFFF
ROM Table

0xE00FF000

0x20000000
0x20100000

0x3FFFFFFF

1MB

External device

Peripheral 0.5GB

1GB

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

Debug control
0xE000ED00

External511MB

External
0x0FFFFFFF

External

ITCM (Upper Alias)
0x10000000
0x1000FFFF
0x10010000
3-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Memory Map
Table 3-1 shows the permissions of the processor memory regions.

Table 3-1 Processor memory regions

Region Name
Device
type XNa Interface accessed

0x00000000-
0x000FFFFF

Code, ITCM, Lower
Alias

Normal - If the ITCM Lower Alias is enabled, instruction fetches and
data accesses are performed to ITCM. Data accesses include
data literal accesses. The region shown here is for the
maximum supported size of ITCM. If there is less ITCM, this
region ends at a lower address and the next starts at the
following address.

0x00100000-
0x0FFFFFFF

Code, external Normal - Instruction fetches and data accesses are performed to the
external system bus. Data accesses include data literal
accesses.

0x10000000-
0x1000FFFF

 Code, ITCM, Upper
Alias

Normal - If the ITCM Upper Alias is enabled, instruction fetches and
data accesses are performed to ITCM. Data accesses include
data literal accesses. The region shown here is for the
maximum supported size of ITCM. If there is less ITCM, this
region ends at a lower address and the next starts at the
following address.

0x10010000-
0x1FFFFFFF

Code, external Normal - Instruction fetches and data accesses are performed to the
external system bus. Data accesses include data literal
accesses.

0x20000000-
0x200FFFFF

SRAM, DTCM Normal XN Instruction fetches are faulted. Data accesses are performed
to DTCM. The region shown here is for the maximum
supported size of DTCM. If there is less DTCM, this region
ends at a lower address and the next starts at the following
address.

0x20100000-
0x3FFFFFFF

SRAM, external Normal - Instruction fetches are performed to the external system bus.
Data accesses are performed to the external system bus.

0x40000000-
0x5FFFFFFF

Peripheral Device XN Data accesses are performed to the external system bus.
Instruction accesses are prevented and faulted.

0x60000000-
0x9FFFFFFF

SRAM Normal - Instruction and Data accesses are performed to the external
system bus.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 3-3

Memory Map
See Chapter 10 External and Memory Interfaces for a description of the processor bus
interfaces. See Chapter 8 Debug for information on ROM memory.

0xA0000000-
0xDFFFFFFF

External Device Device XN Data accesses are performed to the external system bus.
Instruction accesses are prevented and faulted.

0xE0000000-
0xE00FFFFF

Private Peripheral Bus SO XN Data accesses are performed over the PPB. Instruction
accesses are prevented and faulted.

0xE0100000-
0xFFFFFFFF

System - XN System segment. Instruction accesses are prevented and
faulted. For data fetches, the region is reserved.

a. Execute Never. A region is marked as XN to prevent instructions being fetched from that region.

Table 3-1 Processor memory regions (continued)

Region Name
Device
type XNa Interface accessed
3-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 4
Exceptions

This chapter describes the exception model of the processor. It contains the following
sections:

• About the exception model on page 4-2

• Exception types on page 4-3

• Exception priority on page 4-5

• Stacks on page 4-7

• Pre-emption on page 4-8

• Exception exit on page 4-10

• Late-arrival on page 4-12

• Exception control transfer on page 4-13

• Activation levels on page 4-14

• Lock-up on page 4-16.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 4-1

Exceptions
4.1 About the exception model

The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and
handle all exceptions. All exceptions are handled in Handler mode. Processor state is
automatically stored to the stack on an exception and automatically restored from the
stack at the end of the exception handler. The following features enable efficient, low
latency exception handling:

• Automatic state saving and restoring. The processor pushes state registers on the
stack when entering the exception and pops them when exiting the exception with
no instruction overhead.

For information on what content is stacked, see Pre-emption on page 4-8.

• Automatic reading of the vector table entry that contains the exception handler
address.

Note
 Vector table entries are ARM or Thumb interworking compatible values.

Bit[0] of the vector value is loaded into the EPSR T-bit on exception entry.
Creating a table entry with bit [0] clear generates a Hard Fault on the first
instruction of the handler corresponding to this vector.

• Closely-coupled interface between the processor and the NVIC to enable efficient
processing of interrupts and processing of late-arriving interrupts with higher
priority.

• Configurable number of interrupts, from 1, 8, 16, or 32.

• Two bits of configurable interrupt priority providing four levels.

• Separate stacks for Handler and Thread modes if the Operating System (OS)
extension is implemented.

• Exception control transfer using the calling conventions of the C/C++ standard
ARM Architecture Procedure Call Standard (AAPCS). For more information, see
the Application Binary Interface for the ARM Architecture (The Base Standard).

• Priority masking to support critical regions.

Note
 The number of interrupts are configured during implementation. Software can choose
to enable a subset of the configured number of hardware interrupts.
4-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Exceptions
4.2 Exception types

Various types of exceptions exist in the processor. A fault is an exception that results
from an error condition. Faults can be reported synchronously or asynchronously with
respect to the instruction that caused them. In general, faults are reported
synchronously. Faults caused by writes over the external AHB bus are asynchronous
faults. A synchronous fault is always reported with the instruction that caused the fault.
An asynchronous fault does not guarantee how it is reported with respect to the
instruction that caused the fault.

For more information on exceptions, see the ARMv6-M Architecture Reference Manual.

Table 4-1 shows the exception type, position, and priority. Position refers to the word
offset of the exception vectors from the start of the vector table, which is always at
address 0x0. The lower numbers shown in the Priority column of the table are higher
priority. How the types are activated, synchronously or asynchronously, is also shown.
The exact meaning and use of priorities is explained in Exception priority on page 4-5.

Table 4-1 Exception types

Position Exception type Priority Description Activated

- - - Stack top is loaded from first entry of vector table
on reset.

-

1 Reset –3 (highest) Invoked on power up and warm reset. On first
instruction, drops to lowest priority, Thread mode.

Asynchronous

2 Non-maskable
Interrupt

–2 This exception type cannot be:

• masked or prevented from activation by
any other exception

• pre-empted by any other exception other
than Reset.

Asynchronous

3 Hard Fault –1 All classes of Fault. Synchronous or
asynchronous

4-10 - - Reserved. -

11 SVC Configurable System service call using the SVC instruction. Synchronous

12-13 - - Reserved. -
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 4-3

Exceptions
14 PendSV Configurable Pendable request for system service. This is only
pended by software.

Asynchronous

15 SysTick Configurable System tick timer has fired. Asynchronous

16-47 External Interrupt Configurable Asserted from outside the processor or pended by
software.

Asynchronous

Table 4-1 Exception types (continued)

Position Exception type Priority Description Activated
4-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Exceptions
4.3 Exception priority

Table 4-2 shows how priority affects when and how the processor takes an exception. It
lists the actions an exception can take based on priority.

In the processor exception model, priority determines when and how the processor takes
exceptions. You can assign priority levels to interrupts.

4.3.1 Priority levels

The NVIC supports software-assigned priority levels. You can assign a priority level
from 0 to 3 to an interrupt by writing to the two-bit IP_N field in an Interrupt Priority
Register, see Interrupt Priority Registers on page 7-7. Priority level 0 is the highest
priority level and priority level 3 is the lowest. For example, if you assign priority level
1 to IRQ[0] and priority level 0 to IRQ[31], then IRQ[31] has priority over IRQ[0].

Table 4-2 Exception scenarios

Scenario Description

Pre-emption A pended exception can interrupt the current execution thread if the priority of the pended exception is
higher than the current execution priority.

When one exception pre-empts another, the exceptions are nested.

On exception entry the processor automatically saves processor state, which is pushed on to the stack.
The vector corresponding to the exception is fetched. Execution begins at the address pointed to by the
vector table value. Execution of the first instruction of the exception starts when the processor state has
been saved. The state saving is performed over the ITCM, DTCM, or external AHB-Lite interface
depending on:

• the value of the stack pointer when the processor registered the exception

• the size of the TCMs implemented.

The vector fetch is performed over the external AHB-Lite interface or the ITCM memory interface
depending on the configuration of ITCM size.

Return When a valid return instruction is executed, the processor pops the stack and returns to a stacked
exception or Thread mode.

On completion of an exception handler the processor automatically restores the processor state by
popping the stack to restore the state prior to the exception.

Late-arriving A mechanism used by the processor to speed up pre-emption. If a higher priority exception arrives during
state saving for a previous pre-emption, the processor switches to handling the higher priority exception
instead and initiates the vector fetch for that exception. The state saving is not affected by late arrival,
because the state that is saved is the same for both exceptions and the state saving continues uninterrupted.
Late arriving exceptions are recognized up to the point where the vector fetch has been initiated. If a high
priority exception is recognized too late to be handled as a late arrival, it is pended and subsequently
pre-empts the original exception handler.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 4-5

Exceptions
Note
 Software prioritization does not affect reset, Non-Maskable Interrupt (NMI), and Hard
Fault. They always have higher priority than the external interrupts.

When multiple exceptions have the same priority number, the pending exception with
the lowest exception number takes precedence. For example, if both IRQ[0] and
IRQ[1] are priority level 1, then IRQ[0] has precedence over IRQ[1].

An exception is pre-empted if the handler receives an exception that has a higher
priority. If the handler receives an interrupt of the same priority the exception is not
pre-empted, irrespective of the interrupt number.

For more information on the IP_N fields, see Interrupt Priority Registers on page 7-7.
4-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Exceptions
4.4 Stacks

The processor supports two separate stacks:

Process stack

You can configure Thread mode to use either SP_process or SP_main for
its Stack Pointer (SP).

Note
 This is only available if the OS extension option is implemented. Contact

your implementation team for information.

Main stack Handler mode uses the main stack. SP_main is the SP register for the
main stack. Thread mode uses SP_main out of reset.

Only one Stack Pointer register, SP_process or SP_main, is visible at any time, using
R13.

When a thread is pre-empted, its context is automatically saved onto the stack that was
active at the time the exception was recognized.

If an exception pre-empts Thread mode, the context of the pre-empted thread can be
stacked using SP_process or SP_main depending on the value of the CONTROL[1] bit.

If an exception pre-empts another exception handler running in Handler mode, the
pre-empted context can only be stacked using SP_main because this is the only stack
pointer that can be active in Handler mode.

On exception return, the EXC_RETURN value determines which stack is used for the
unstacking of context. The EXC_RETURN value loaded into R14 during exception
entry points to the same stack that was used to stack the context. If your exception
handler code moves the stack, you must ensure that the EXC_RETURN value used for
exception return is correctly updated.

All exception handlers must use SP_main for their local variables.

When the OS extension option is implemented:

• you can configure Thread mode to use the process stack

• exception handlers always use SP_main.

Note
 MSR and MRS instructions have visibility of both stack pointers.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 4-7

Exceptions
4.5 Pre-emption

This section describes the behavior of the processor when it takes an exception.

When the processor takes an exception, it automatically pushes the following eight
registers to the stack:

• xPSR

• ReturnAddress()

• Link Register (LR)

• R12

• R3

• R2

• R1

• R0.

For information on how ReturnAddress() relates to instruction address, see the
ARMv6-M Architecture Reference Manual.

The SP is decremented by eight words on the completion of the stack push. Figure 4-1
shows the contents of the stack after an exception pre-empts the current program flow.

Figure 4-1 Stack contents after a pre-emption

Note
 • Figure 4-1 shows the order on the stack.

• Doubleword alignment of the stack pointer is enforced when stacking
commences. Bit [2] of the stack pointer is saved as bit [9] of the stacked xPSR.

After returning from the exception, the processor automatically pops the eight registers
from the stack. The exception return value, EXC_RETURN, is automatically loaded
into the LR on exception entry to enable exception handlers to be written as normal
C/C++ functions without the requirement for a veneer. See the ARMv6-M Architecture
Reference Manual for more information.

Old SP

SP

xPSR
ReturnAddress()

LR
r12
r3
r2
r1
r0

<previous>
4-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Exceptions
Table 4-3 describes the steps that the processor takes before it enters an exception.

Table 4-3 Exception entry steps

Action Description

Push eight registers Pushes xPSR, ReturnAddress(), LR, R12, R3,R2, R1, and R0 on selected stack.

Read vector table Reads vector from the appropriate vector table entry:

(0x0) + (exception_number *4).

The vector table read is done after all eight registers are pushed on to the stack.

Read SP_main
from vector table

On Reset only, SP_main is updated from the first entry in the vector table. Other exceptions do not
modify SP_main in this manner.

Update LR The LR is set to the appropriate EXC_RETURN to enable correct return from the exception.
EXC_RETURN is one of 16 values as defined in ARMv6-M Architecture Reference Manual.

Update PC Updates PC with the read data from the vector table. No other late-arriving exceptions can be
processed until the first instruction of the exception starts to execute.

Load pipeline Pipeline is filled with sequential instructions at the vector address.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 4-9

Exceptions
4.6 Exception exit

The exception return instruction of a handler loads the PC with the EXC_RETURN
value that was present in LR on entry to an exception handler. This indicates to the
processor that the exception is complete and the processor initiates the exception exit
sequence. See Returning the processor from an exception for the instructions that you
can use to return from an exception.

When returning from an exception, the processor is either:

• returning to the last stacked exception

• returning to Thread mode if there are no stacked exceptions.

Table 4-4 describes the postamble sequence.

4.6.1 Returning the processor from an exception

Exception returns occur when one of the following instructions executed in Handler
mode loads a value of 0xFXXXXXXX into the PC:

• POP that includes loading the PC

• BX with any register.

Table 4-4 Exception exit steps

Action Description

Select SP Sets CONTROL[1] based on EXC_RETURN.

Pop eight registers Pops R0, R1, R2, R3, R12, LR, PC, and xPSR from stack selected by EXC_RETURN.

The value of xPSR[5:0] loaded off the stack determines the exception number that defines
the priority of the thread to be returned to.

The value of EXC_RETURN determines which mode is returned to.
4-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Exceptions
When used in this way, the value written to the PC is intercepted and is referred to as
the EXC_RETURN value. Table 4-5 lists the EXC_RETURN[3:0] values with a description
of the exception return behavior.

If an EXC_RETURN value is loaded into the PC when in Thread mode, or from the
vector table, or by any other instruction, the value is treated as an address, not as a
special value. This address range is defined to have Execute Never (XN) permissions
and results in a Hard Fault.

Note
 Exception handlers must preserve the value of EXC_RETURN[28:4] or write them as
all ones (1s).

Table 4-5 Exception return behavior

EXC_RETURN[3:0] Description

0bXXX0 Reserved.

0b0001 Return to Handler mode.

Exception return gets state from the main stack.

Execution uses SP_Main after return.

0b0011 Reserved.

0b01X1 Reserved.

0b1001 Return to Thread mode.

Exception return gets state from the main stack.

Execution uses SP_Main after return.

0b1101 Return to Thread mode.

Exception return gets state from the process stack.

Execution uses SP_Process after return.

0b1X11 Reserved.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 4-11

Exceptions
4.7 Late-arrival

A late-arriving exception can be handled in preference to a previous exception if the
vector fetch has not started and the late-arriving exception has:

• a higher priority than the previous exception

• the same priority but a lower exception number than the previous exception.

A late-arriving exception causes a change of vector address fetch and exception
prefetch. State saving is not performed for the late-arriving exception because it has
already been performed for the initial exception and so does not have to be repeated. In
this case, execution commences at the vector of the late arriving exception while the
previous exception remains pending.

If a high priority exception is recognized after the vector fetch of the original exception
has started, the late-arriving exception cannot use the context already stacked for the
original exception. In this case, the original exception handler is pre-empted and its
context is saved onto the stack.
4-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Exceptions
4.8 Exception control transfer

Table 4-6 shows how the processor transfers control to an exception following the rules.

Table 4-6 Transferring to exception processing

Processor activity at
recognition of exception Transfer to exception processing

Instruction Instruction completes and exception is taken before the next instruction.

Exception entry This is classified as a late arriving exception. If the new exception is of higher priority or
the same priority and lower exception number than the first exception, the core might
service the late arriving exception first as a late arrival case. If not, the late arriving
exception remains pending and normal pre-emption rules apply.

If the late arriving exception arrives early enough in the core stacking phase it is taken as
a late arrival. In this case, the core fetches the vector for the late arriving exception instead
of the vector for the first exception. Execution begins at the late arriving exception vector
and the first exception remains pending.

If the late arriving exception arrives too late in the stacking phase it cannot be handled as
a late arrival. Instead, the first exception vector is fetched, execution commences at the
first exception vector address and the late arriving exception is pended and normal
pre-emption rules apply.

Exception postamble Exception return sequence is completed and execution resumes at the target of the return.
Normal pre-emption rules then apply.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 4-13

Exceptions
4.9 Activation levels

When no exceptions are active, the processor is in Thread mode. When an exception or
fault handler is active, the processor enters Handler mode. Table 4-7 lists the stacks and
associated active exception and activation levels.

Table 4-8 lists the transition rules for all exception types and how they relate to the
access rules and stack model.

Table 4-9 on page 4-15 lists exception subtype transitions.

Table 4-7 Stack activation levels

Active exception Activation level Stack

None Thread mode Main or process

Exception active Asynchronous pre-emption level Main

Fault handler active Asynchronous or Synchronous pre-emption level Main

Table 4-8 Exception transitions

Active exception Triggering event Transition type Stack

Reset Reset signal Thread Main

ISR or NMIa Set-pending software instruction or hardware signal Asynchronous pre-emption Main

Hard Fault Any fault Synchronous or
asynchronous pre-emption

Main

SVCb SVC instruction Synchronous pre-emption Main

a. Nonmaskable interrupt.
b. Supervisor Call.
4-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Exceptions
Table 4-9 Exception subtype transitions

Intended
activation subtype Triggering event Activation Priority effect

Thread Reset signal Asynchronous Immediate, thread is lowest

Interrupt or NMI Hardware signal or
set-pend

Asynchronous Pre-empt according to priority

SVC SVC instruction Synchronous If the priority programmed for the SVCall exception
is higher than the currently executing priority, the
SVCall exception is taken. If not, the SVC escalates
to a HardFault.

PendSV Software pend request Asynchronous Pre-empt according to priority

SysTick Counter reaches zero
or set-pend

Asynchronous Pre-empt according to priority

HardFault Any fault Synchronous or
asynchronousa

Higher than all except NMIb

a. Activation depends on the cause of the fault.
b. If a Hard Fault occurs when the processor is executing an NMI or Hard Fault handler, the processor enters the architectural

lock-up state. See Lock-up on page 4-16 for more information.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 4-15

Exceptions
4.10 Lock-up

The processor has a lock-up state that is entered when an unrecoverable condition
occurs. The cause of unrecoverable conditions are asynchronous or synchronous faults,
including an escalated SVC instruction. For more information on unrecoverable
conditions, see the ARMv6-M Architecture Reference Manual.

The processor can enter the lock-up state at a priority of -1 or -2. An NMI can be taken
and cause the processor to leave the lock-up state if it was at a priority of -1.

A debugger can also cause the processor to exit the lock-up state.

The LOCKUP pin from the processor indicates the that the processor is in the lock-up
state.
4-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 5
Clocks and Resets

This chapter describes the processor clocking and resets. It contains the following
section:

• About clocks and resets on page 5-2.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 5-1

Clocks and Resets
5.1 About clocks and resets

The processor has one functional clock input, HCLK, and one functional reset signal,
SYSRESETn.

If debug is implemented there is also an AHP-AP clock, DAPCLK, a debug reset
signal, DBGRESETn, and an AHB-AP JTAG reset, DAPRESETn. DAPCLK and
DAPRESETn relate to the Debug Access Port (DAP) logic and the debug reset signal
DBGRESETn relates to the debug logic clocked by HCLK.

Depending on your system requirements, DAPCLK can be either tied to HCLK or
asynchronous to HCLK. You might want DAPCLK to run at a lower frequency than
HCLK if, for example, you have other Access Ports in your system that are unable to
run at the full HCLK. You can, alternatively, use the DAPCLK clock enable signal,
DAPCLKEN, to reduce the effective DAPCLK frequency.

The SYSRESETn signal resets the entire processor system with the exception of
debug, and must be used to reset the external AHB bus. The DBGRESETn signal resets
all the debug logic in the processor, when present.

The following are not reset:

• the TCMs, when present

• the register file.

Figure 5-1 shows the reset signals for the processor.

Figure 5-1 Reset signals

External System
Reset Controller

Processor

SYSRESETn Optional
debugCore

SYSRESETREQ

DBGRESETn

AHB-AP

DAPCLK

DAPRESETn
5-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Clocks and Resets
Note
 Both DBGRESETn and SYSRESETn must be asserted at power on reset.

Depending on your requirements, you might want to reset the system outside the
processor independent of the state of SYSRESETREQ. If this is the case, ensure that:

• Any logic required for debug is not reset.

• SYSRESETREQ is not connected combinatorially to SYSRESETn.
SYSRESETREQ must be registered to ensure that SYSRESETn is driven for
the minimum reset time of your FPGA. SYSRESETREQ is cleared by
SYSRESETn.

• DBGRESETn is driven at power on reset and not by SYSRESETREQ
otherwise the debugger cannot maintain a connection when the processor is reset.

• If DBGRESETn is driven SYSRESETn must also be driven.

Note
 If you do not reset the system at the same time as the processor, you must also ensure
accesses that might be in progress as reset occurs do not disrupt the system.

You must ensure that SYSRESETn and DBGRESETn are:

• held LOW for a minimum of 3 cycles

• deasserted synchronously to HCLK.

You can stop all of the processor clocks indefinitely without loss of state.

Note
 • When the External AHB system and the processor are held in reset by

SYSRESETn, the debugger can only access the debug portion of the PPB space
of the processor and the TCMs. The debugger cannot access external memory
space.

• If SYSRESETn is asserted during a DAP access to the external AHB system or
to the PPB space, except to debug registers, the results of the access cannot be
guaranteed. For example, a read transaction might receive corrupt data and a
faulting transaction might not be recognized by the DAP.

• You must ensure that DAPRESETn is held LOW for a minimum of two cycles
and deasserted synchronously to DAPCLK.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 5-3

Clocks and Resets
5-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 6
System Control

This chapter describes the registers that program the processor. It contains the following
sections:

• About system control on page 6-2

• System control register descriptions on page 6-4.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-1

System Control
6.1 About system control

Table 6-1 gives a summary of the system control registers.

Note
 • All system control registers are only accessible using word transfers. Any attempt

to write a halfword or byte causes corruption of register bits.

Table 6-1 System control registers

Name of register Type Address Reset value Page

Auxiliary Control Register R/W 0xE00E008 • Zeros in upper 27
bits

• the value of
CFGITCMEN[1:0]
in bits [4:3] pins

• Zeros in lower 3 bits

page 6-4

SysTick Control and Status Register R/W 0xE000E010 0x00000004 page 6-5

SysTick Reload Value Register R/W 0xE000E014 0x00000000 page 6-7

SysTick Current Value Register R/W clear 0xE000E018 0x00000000 page 6-7

SysTick Calibration Value Register RO 0xE000E01C 0x80000000 page 6-8

CPUID Base Register RO 0xE000ED00 0x411CC210 page 6-8

Interrupt Control State Register -a 0xE000ED04 0x00000000 page 6-9

Application Interrupt and Reset Control Register -b 0xE000ED0C 0xFA050000c

0xFA058000d

page 6-12

Configuration and Control Register R/W 0xE000ED14 0x00000208 page 6-13

System Handler Priority Register 2 R/W 0xE000ED1C 0x00000000 page 6-14

System Handler Priority Register 3 R/W 0xE000ED20 0x00000000 page 6-14

System Handler Control and State Register R/W 0xE000ED24 0x00000000 page 6-16

a. Access type depends on the individual bit. For more information see Table 6-8 on page 6-10
b. Access type depends on the individual bit. For more information see Table 6-9 on page 6-12
c. Reset value for little-endian.
d. Reset value for BE-8 big-endian.
6-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

System Control
• If you do not have OS extension implemented the addresses 0xE000E010,
0xE000E014, 0xE000E018, and 0xE000E01C are reserved.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-3

System Control
6.2 System control register descriptions

This section describes how to use the system control registers.

6.2.1 Auxiliary Control Register

Use the Auxiliary Control Register to control the Instruction TCM Upper and Lower
Alias Enables.

The register address, access type and reset value are:

Address 0xE000E008

Access Read/write

Reset value Upper 27 bits at 0, the value of CFGITCMEN[1:0] pins in bits [4:3],
lower 3 bits at 0

Figure 6-1 shows the bit assignments of the Auxiliary Control Register

Figure 6-1 Auxiliary Control Register

Table 6-2 lists the bit assignments of the Auxiliary Control Register.

When the ITCMLAEN bit is set, all valid instruction and data accesses to the address
region 0x00000000 to (maximum ITCM size) are mapped onto the ITCM interface.
When the ITCMLAEN bit is clear, these accesses are mapped onto the external
AHB-Lite interface.

Reserved

31 0

ITCMUAEN
ITCMLAEN

00

2345

Reserved

Table 6-2 Auxiliary Control Register bit assignments

Bits Field Function

[31:5] - Reserved.

[4] ITCMUAEN Instruction TCM Upper Alias Enable.

[3] ITCMLAEN Instruction TCM Lower Alias Enable.

[2:0] - Reserved.
6-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

System Control
When the ITCMUAEN bit is set, all valid instruction and data accesses to the address
region 0x10000000 to (0x10000000 + maximum ITCM size) are mapped onto the ITCM
interface. When the ITCMUAEN bit is clear, these accesses are mapped onto the
external AHB-Lite interface.

6.2.2 SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features.

The register address, access type, and reset value are:

Address 0xE000E010

Access Read/write

Reset value 0x00000004

Figure 6-2 shows the bit assignments of the SysTick Control and Status Register.

Figure 6-2 SysTick Control and Status Register bit assignments

Table 6-3 lists the bit assignments of the SysTick Control and Status register.

0Reserved

31 17 16 15 3 2 1 0

Reserved 0 0

COUNTFLAG CLKSOURCE
TICKINT
ENABLE

Table 6-3 SysTick Control and Status Register bit assignments

Bits Field Function

[31:17] - Reserved.

[16] COUNTFLAG Returns 1 if timer counted to 0 since last time this was read. Clears on read by application
or debugger.

[15:3] - Reserved.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-5

System Control
6.2.3 SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the SysTick
Current Value Register when the counter reaches 0. It can be any value in range
0x00000001-0x00FFFFFF. A start value of 0 is possible, but has no effect because the
SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value can be calculated according to its use. For example:

• A multi-shot timer has a SysTick interrupt RELOAD of N-1 to generate a timer
period of N processor clock cycles. For example, if the SysTick interrupt is
required every 100 clock pulses, 99 must be written into RELOAD.

• A single shot timer has a SysTick interrupt RELOAD of N to deliver a single
SysTick interrupt after a delay of N processor clock cycles. For example, if a
SysTick interrupt is next required after 400 clock pulses, you must write 400 into
RELOAD.

The register address, access type, and reset value are:

Address 0xE000E014

Access Read/write

Reset value 0x00000000

Figure 6-3 on page 6-7 shows the bit assignments of the SysTick Reload Value Register.

[2] CLKSOURCE Always reads as one:

1 = processor clock.

Indicates that SysTick uses the processor clock, HCLK.

[1] TICKINT 1 = counting down to zero pends the SysTick handler.

0 = counting down to zero does not pend the SysTick handler. Software can use
COUNTFLAG to determine if the SysTick handler has ever counted to zero.

[0] ENABLE 1 = counter operates in a multi-shot way. That is, counter loads with the Reload value and
then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally
pends the SysTick handler, based on TICKINT. It then loads the Reload value again and
begins counting.

0 = counter disabled.

Table 6-3 SysTick Control and Status Register bit assignments (continued)

Bits Field Function
6-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

System Control
Figure 6-3 SysTick Reload Value Register bit assignments

Table 6-4 lists the bit assignments of the SysTick Reload Value Register.

6.2.4 SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

The register address, access type, and reset value are:

Address 0xE000E018

Access Read/write clear

Reset value 0x00000000

Figure 6-4 shows the bit assignments of the SysTick Current Value Register.

Figure 6-4 SysTick Current Value Register bit assignments

Table 6-5 lists the bit assignments of the SysTick Current Value Register.

31 0

RELOADReserved

2324

Table 6-4 SysTick Reload Value Register bit assignments

Bits Field Function

[31:24] - Reserved

[23:0] RELOAD Value to load into the SysTick Current Value Register when the counter reaches 0

31 0

CURRENTReserved

2324

Table 6-5 SysTick Current Value Register bit assignments

Bits Field Function

[31:24] - Reserved.

[23:0] CURRENT Reads return the current value of the SysTick counter.

This register is write-clear. Writing to it with any value clears the register to 0. Clearing this
register also clears the COUNTFLAG bit of the SysTick Control and Status Register.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-7

System Control
6.2.5 SysTick Calibration Value Register

Use the SysTick Calibration Value Register to enable software to scale to any required
speed using divide and multiply.

The register address, access type, and reset value are:

Address 0xE000E01C

Access Read-only

Reset value 0x80000000

Figure 6-5 shows the bit assignments of the SysTick Calibration Value Register.

Figure 6-5 SysTick Calibration Value Register bit assignments

Table 6-6 lists the bit assignments of the SysTick Calibration Value Register.

6.2.6 CPU ID Base Register

Read the CPU ID Base Register to determine:

• the ID number of the processor core

• the version number of the processor core

• the implementation details of the processor core.

The register address, access type, and reset value are:

Address 0xE000ED00

Access Read-only

31 0

TENMSReserved

232430

SKEW
NOREF

29

Table 6-6 SysTick Calibration Value Register bit assignments

Bits Field Function

[31] NOREF Reads as one. Indicates that no separate reference clock is provided.

[30] SKEW Reads as zero. Calibration value for the 10ms inexact timing is not known because TENMS is not
known. This can affect its suitability as a software real time clock.

[29:24] - Reserved.

[23:0] TENMS Reads as zero. Indicates calibration value is not known.
6-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

System Control
Reset value 0x410CC210

Figure 6-6 shows the bit assignments of the CPUID Base Register.

Figure 6-6 CPUID Base Register bit assignments

Table 6-7 lists the bit assignments of the CPUID Base Register.

6.2.7 Interrupt Control State Register

Use the Interrupt Control State Register to:

• set a pending Non-Maskable Interrupt (NMI)

• set or clear a pending PendSV

• set or clear a pending SysTick

• check for pending exceptions

• check the vector number of the highest priority pended exception

• check the vector number of the active exception.

The register address, access type, and reset value are:

Address 0xE000ED04.

31 16 15 4 3 0

IMPLEMENTER REVISIONPARTNO

24 23 20 19

VARIANT Constant

Table 6-7 CPUID Base Register bit assignments

Bits Field Function

[31:24] IMPLEMENTER Implementor code:

0x41 = ARM

[23:20] VARIANT Implementation defined variant number:

0x0 for r0p0 and r0p1

0x1 for r1p0.

[19:16] Constant Reads as 0xC

[15:4] PARTNO Number of processor within family:

0xC21

[3:0] REVISION Implementation defined revision number:

0x0 = r0p0, r1p0

0x1 = r0p1
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-9

System Control
Access Access type depends on the individual bit. For more information see
Table 6-8.

Reset value 0x00000000.

Figure 6-7 shows the bit assignments of the Interrupt Control State Register.

Figure 6-7 Interrupt Control State Register bit assignments

Table 6-8 lists the bit assignments of the Interrupt Control State Register.

31 28 22 21 0

VECTACTIVE

30 29 27 26 2324 12 11

VECTPENDING

NMIPENDSET

PENDSVSET
PENDSVCLR

ISRPREEMPT
ISRPENDING

Reserved

25

PENDSTSET
PENDSTCLR
Reserved

Reserved

5618 17

Reserved

Table 6-8 Interrupt Control State Register bit assignments

Bits Field Type Function

[31] NMIPENDSET R/W On writes:

1 = set pending NMI

0 = no effect.

NMIPENDSET pends and activates an NMI. Because NMI is the
highest-priority interrupt, it takes effect as soon as it registers unless the
processor is at a priority of -2.

On reads, this bit returns the pending state of NMI.

[30:29] - - Reserved.

[28] PENDSVSETa R/W On writes:

1 = set pending PendSV

0 = no effect.

On reads this bit returns the pending state of PendSV.
6-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

System Control
[27] PENDSVCLRa WO On writes:

1 = clear pending PendSV

0 = no effect.

[26] PENDSTSETa R/W On writes:

1 = set pending SysTick

0 = no effect.

On reads this bit returns the pending state of SysTick.

[25] PENDSTCLRa WO On writes:

1 = clear pending SysTick

0 = no effect.

[24] - - Reserved.

[23] ISRPREEMPTb RO You must only use this at debug time. It indicates that a pending interrupt
becomes active in the next running cycle. If C_MASKINTS is clear in the Debug
Halting Control and Status Register, the interrupt is serviced:

1 = a pending exception is serviced on exit from the debug halt state

0 = a pending exception is not serviced.

[22] ISRPENDINGb RO External interrupt pending flag, where:

1 = interrupt pending

0 = interrupt not pending.

[21:18] - - Reserved.

[17:12] VECTPENDINGa RO Indicates the exception number for the highest priority pending exception:

0 = no pending exceptions

Non zero = The pending state includes the effect of memory-mapped enable and
mask registers. It does not include the PRIMASK special-purpose register
qualifier.

[11:6] - - Reserved.

[5:0] VECTACTIVEc RO Active exception number field:

0 = Thread mode

Non zero = the exception numberc of the currently active exception.

Reset clears the VECTACTIVE field.

a. OS Extension only, otherwise Reserved.
b. Debug Extension only, otherwise it is Reserved.
c. This is the same value as IPSR bits [5:0].

Table 6-8 Interrupt Control State Register bit assignments (continued)

Bits Field Type Function
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-11

System Control
6.2.8 Application Interrupt and Reset Control Register

Use the Application Interrupt and Reset Control Register to:

• determine data endianness

• clear all active state information from debug halt mode

• request a system reset.

The register address, access type, and reset value are:

Address 0xE000ED0C.

Access Access type depends on the individual bit. For more information see
Table 6-9.

Reset value 0xFA050000 is the reset value for little-endian.

0xFA058000 is the reset value for BE-8 big-endian.

Figure 6-8 shows the bit assignments of the Application Interrupt and Reset Control
Register.

Figure 6-8 Application Interrupt and Reset Control Register bit assignments

Table 6-9 lists the bit assignments of the Application Interrupt and Reset Control
Register.

31 16 15 0

VECTKEY

12

Reserved

14

ENDIANNESS

3

SYSRESETREQ
Reserved

Table 6-9 Application Interrupt and Reset Control Register bit assignments

Bits Field Type Function

[31:16] VECTKEY WO Register key. To write to other parts of this register, you must ensure 0x5FA is
written into the VECTKEY field.

[15] ENDIANNESS RO Data endianness bit. The read value depends on the endian configuration
implemented:

0 = little-endian

1 = BE-8 big-endian.

[14:3] - - Reserved.
6-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

System Control
6.2.9 Configuration and Control Register

The Configuration and Control Register permanently enables stack alignment and
causes unaligned accesses to result in a Hard Fault.

The register address, access type, and reset value are:

Address 0xE000ED14

Access Read-only

Reset value 0x00000208

Figure 6-9 shows the bit assignments of the Configuration and Control Register.

Figure 6-9 Configuration and Control Register bit assignments

[2] SYSRESETREQ WO Writing 1 to this bit causes the SYSRESETREQ signal to the outer system to
be asserted to request a reset. The intention is to force a large system reset of
all major components except for debug. The C_HALT bit in the DHCSR is
cleared as a result of the system reset requested. The debugger does not lose
contact with the device.

[1] VECTCLRACTIVE WO Clears all active state information for fixed and configurable exceptions.

This bit:

• is self-clearing

• can only be set by the DAP when the processor is halted.

When this bit is set:

• clears all active exception status of the processor

• forces a return to Thread mode

• forces an IPSR of 0.

A debugger must re-initialize the stack.

[0] - - Reserved.

Table 6-9 Application Interrupt and Reset Control Register bit assignments (continued)

Bits Field Type Function

31 03 2

Reserved

Reserved
UNALIGN_TRP

48

Reserved

9

STKALIGN

10
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-13

System Control
Table 6-10 lists the bit assignments of the Configuration and Control Register.

6.2.10 System handler priority registers

System handlers are a special class of exception handler that can have their priority set
to any of the priority levels.

There are two system handler priority registers for prioritizing the following system
handlers:

• SVCall, see System Handler Priority Register 2

• SysTick, see System Handler Priority Register 3 on page 6-15

• PendSV, see System Handler Priority Register 3 on page 6-15.

PendSV and SVCall are permanently enabled. You can enable or disable SysTick by
writing to the SysTick Control and Status Register.

System Handler Priority Register 2

The register address, access type, and reset value are:

Address 0xE000ED1C

Access Read/write

Reset value 0x00000000

Figure 6-10 on page 6-15 shows the bit assignments of the System Handler Priority
Register 2.

Table 6-10 Configuration and Control Register bit assignments

Bits Field Function

[31:10] - Reserved.

[9] STKALIGN Always set to 1. On exception entry, all exceptions are entered with 8-byte stack alignment
and the context to restore it is saved. The SP is restored on the associated exception return.

[8:4] - Reserved.

[3] UNALIGN_TRP Indicates that all unaligned accesses results in a Hard Fault. Trap for unaligned access is
fixed at 1.

[2:0] - Reserved.
6-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

System Control
Figure 6-10 System Handler Priority Register 2 bit assignments

Table 6-11 lists the bit assignments for the System Handler Priority Register 2.

System Handler Priority Register 3

The register address, access type, and reset value are:

Address 0xE000ED20

Access Read/write

Reset value 0x00000000

Figure 6-11 shows the bit assignments of the System Handler Priority Register 3.

Figure 6-11 System Handler Priority Register 3 bit assignments

31 30 29 0

PRI_11

Reserved

Table 6-11 System Handler Priority Register 2 bit assignments

Bits Field Function

[31:30] PRI_11 Priority of system handler 11, SVCall

[29:0] - Reserved

Reserved Reserved

PRI_15 PRI_14

31 23 024 212230 29
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-15

System Control
Table 6-12 lists the bit assignments of the System Handler Priority Registers.

6.2.11 System Handler Control and State Register

Use the System Handler Control and State Register to read or write the pending status
of SVCall.

The register address, access type, and reset value are:

Address 0xE000ED24

Access Read/write

Reset value 0x00000000

Figure 6-12 shows the bit assignments of the System Handler and State Control
Register.

Figure 6-12 System Handler Control and State Register bit assignments

Table 6-12 System Handler Priority Register 3 bit assignments

Bits Field Function

[31:30] PRI_15 Priority of system handler 15, SysTick

[29:24] - Reserved

[23:22] PRI_14 Priority of system handler 14, PendSV

[21:0] - Reserved

31 0

SVCALLPENDED

141516

ReservedReserved
6-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

System Control
Table 6-13 lists the bit assignments of the System Handler Control Register.

Note
 This register is only accessible as part of debug and not through the processor memory
map.

Table 6-13 System Handler Control and State Register bit assignments

Bits Field Function

[31:16] - Reserved.

[15] SVCALLPENDED Reads as 1 if SVCall is pended.

If written to:

1 = Set pending SVCall

0 = Clear pending SVCall

[14:0] - Reserved.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 6-17

System Control
6-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 7
Nested Vectored Interrupt Controller

This chapter describes the Nested Vectored Interrupt Controller (NVIC). It contains the
following sections:

• About the NVIC on page 7-2

• NVIC programmer’s model on page 7-3

• Level versus pulse interrupts on page 7-9

• Resampling level interrupts on page 7-10

• Interrupts as general purpose input on page 7-11.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 7-1

Nested Vectored Interrupt Controller
7.1 About the NVIC

The NVIC supports interrupts that can be re-prioritized. The NVIC and the core of the
processor are closely coupled, which enables low latency interrupt processing and
efficient processing of late arriving interrupts.

All NVIC registers are only accessible using word transfers. Any attempt to write a
halfword or byte individually causes corruption of the register bits.

NVIC registers are always little-endian.

Processor accesses are correctly handled regardless of the endian configuration of the
processor.

DAP accesses must be interpreted as little-endian.

Processor exception handling is described in Chapter 4 Exceptions.
7-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Nested Vectored Interrupt Controller
7.2 NVIC programmer’s model

This section describes the NVIC registers. It contains the following:

• NVIC register map

• NVIC register descriptions.

7.2.1 NVIC register map

Table 7-1 gives a summary of the NVIC registers.

7.2.2 NVIC register descriptions

The sections that follow describe how to use the NVIC registers.

Interrupt Set-Enable Register

Use the Interrupt Set-Enable Register to:

• enable interrupts

• determine which interrupts are currently enabled.

Table 7-1 NVIC registers

Name of register Type Address Reset value Page

Interrupt Set Enable Register R/W 0XE000E100 0x00000000 page 7-3

Interrupt Clear Enable Register R/W 0XE000E180 0x00000000 page 7-4

Interrupt Set Pending Register R/W 0XE000E200 0x00000000 page 7-5

Interrupt Clear Pending Register R/W 0XE000E280 0x00000000 page 7-6

Priority 0 Register R/W 0XE000E400 0x00000000 page 7-7

Priority 1 Register R/W 0XE000E404 0x00000000 page 7-7

Priority 2 Register R/W 0XE000E408 0x00000000 page 7-7

Priority 3 Register R/W 0XE000E40C 0x00000000 page 7-7

Priority 4 Register R/W 0XE000E410 0x00000000 page 7-7

Priority 5 Register R/W 0XE000E414 0x00000000 page 7-7

Priority 6 Register R/W 0XE000E418 0x00000000 page 7-7

Priority 7 Register R/W 0XE000E41C 0x00000000 page 7-7
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 7-3

Nested Vectored Interrupt Controller
Each bit in the register corresponds to one of 32 interrupts. Setting a bit in the Interrupt
Set-Enable Register enables the corresponding interrupt.

When the enable bit of a pending interrupt is set, the processor activates the interrupt
based on its priority. When the enable bit is clear, asserting the interrupt signal pends
the interrupt, but it is not possible to activate the interrupt, regardless of its priority.
Therefore, a disabled interrupt can serve as a latched general-purpose bit. You can read
it and clear it without invoking an interrupt.

Clear the enable state by writing a 1 to the corresponding bit in the Interrupt
Clear-Enable Register (see Interrupt Clear-Enable Register). This also clears the
corresponding bit in the Interrupt Set-Enable Register (see Interrupt Set-Enable
Register on page 7-3).

The register address, access type, and reset value are:

Address 0xE000E100

Access Read/write

Reset value 0x00000000

Table 7-2 lists the bit assignments of the Interrupt Set-Enable Register.

Interrupt Clear-Enable Register

Use the Interrupt Clear-Enable Registers to:

• disable interrupts

• determine which interrupts are currently enabled.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt
Clear-Enable Register bit disables the corresponding interrupt.

Table 7-2 Interrupt Set-Enable Register bit assignments

Bits Field Function

[31:0] SETENA Interrupt set enable bits. For writes:

1 = enable interrupt

0 = no effect.

For reads:

1 = interrupt enabled

0 = interrupt disabled

Writing 0 to a SETENA bit has no effect. Reading the bit returns its current enable state. Reset
clears the SETENA fields.
7-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Nested Vectored Interrupt Controller
The register address, access type, and reset value are:

Address 0xE000E180

Access Read/write

Reset value 0x00000000

Note
 Writing a 1 to a Clear-Enable Register bit does not affect currently active interrupts. It
only prevents new activations.

Table 7-3 lists the bit assignments of the Interrupt Clear-Enable Register.

Interrupt Set-Pending Register

Use the Interrupt Set-Pending Register to:

• force interrupts into the pending state

• determine which interrupts are currently pending.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt
Set-Pending Register bit pends the corresponding interrupt. Writing a 0 to a pending bit
has no effect on the pending state of the corresponding interrupt.

Clear an interrupt pending pit by writing a 1 to the corresponding bit in the Interrupt
Clear-Pending Register (see Interrupt Clear-Pending Register on page 7-6).

Note
 Writing to the Interrupt Set-Pending Register has no effect on an interrupt that is already
pending.

Table 7-3 Interrupt Clear-Enable Register bit assignments

Bits Field Function

[31:0] CLRENA Interrupt clear-enable bits.

For writes:

1 = disable interrupt

0 = no effect.

For reads:

1 = interrupt enabled

0 = interrupt disabled.

Writing 0 to a CLRENA bit has no effect. Reading the bit returns its current enable state.

Reset clears the CLRENA field.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 7-5

Nested Vectored Interrupt Controller
The register address, access type, and reset value are:

Address 0xE000E200

Access Read/write

Reset value 0x00000000

Table 7-4 lists the bit assignments of the Interrupt Set-Pending Register.

Interrupt Clear-Pending Register

Use the Interrupt Clear-Pending Register to:

• clear pending interrupts

• determine which interrupts are currently pending.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt
Clear-Pending Register bit clears the pending state of the corresponding interrupt.

Note
 Writing to the Interrupt Clear-Pending Register has no effect on an interrupt that is
active unless it is also pending.

The register address, access type, and reset value are:

Address 0xE000E280

Access Read/write

Reset value 0x00000000

Table 7-4 Interrupt Set-Pending Register bit assignments

Bits Field Function

[31:0] SETPEND Interrupt set-pending bits.

For writes:

1 = pend interrupt

0 = no effect.

For reads:

1 = interrupt is pending

0 = interrupt is not pending.
7-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Nested Vectored Interrupt Controller
Table 7-5 lists the bit assignments of the Interrupt Clear-Pending Registers.

Interrupt Priority Registers

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the
available interrupts. 0 is the highest priority and 3 is the lowest.

The two bits of priority are stored in bits [7:6] of each byte.

The register address, access type, and reset value are:

Address 0xE000E400-0xE000E41C

Access Read/write

Reset value 0x00000000

Figure 7-1 on page 7-8 shows the bit assignments of Interrupt Priority Registers 0-7.

Table 7-5 Interrupt Clear-Pending Registers bit assignments

Bits Field Function

[31:0] CLRPEND Interrupt clear-pending bits.

For writes:

1 = clear interrupt pending bit

0 = no effect.

For reads:

1 = interrupt is pending

0 = interrupt is not pending.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 7-7

Nested Vectored Interrupt Controller
Figure 7-1 Interrupt Priority Registers 0-7 bit assignments

Figure 7-1 shows fields for 32 interrupts using Interrupt Priority Registers 0-7. If your
implementation uses fewer interrupts, all unused registers are Reserved.

Table 7-6 lists the bit assignments of the Interrupt Priority Registers.

31 23 15 7 081624

E000E400

E000E404

E000E408

E000E40C

E000E410

E000E414

E000E418

E000E41C

561415 1322 212930

IP_0

IP_4

IP_8

IP_12

IP_16

IP_20

IP_24

IP_28

IP_1

IP_5

IP_9

IP_13

IP_17

IP_21

IP_25

IP_29

IP_2

IP_6

IP_10

IP_14

IP_18

IP_22

IP_26

IP_30

IP_3

IP_7

IP_11

IP_15

IP_19

IP_23

IP_27

IP_31

ReservedReservedReserved Reserved Reserved Reserved

Table 7-6 Interrupt Priority Registers 0-31 bit assignments

Bits Field Function

[7:6] IP_n Priority of interrupt n
7-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Nested Vectored Interrupt Controller
7.3 Level versus pulse interrupts

The processor supports both level and pulse interrupts. A level interrupt is held asserted
until it is cleared by the ISR accessing the device. A pulse interrupt is a variant of an
edge model. The interrupt signal is sampled synchronously on the rising edge of the
processor clock. The processor recognizes a pulse when the input is observed LOW and
then HIGH on two consecutive rising edges of the processor clock.

For level interrupts, if the signal is not deasserted before the return from the interrupt
routine, the interrupt repends and re-activates. This is particularly useful for FIFO and
buffer-based devices because it ensures that they drain either by a single ISR or by
repeated invocations, with no extra work. This means that the device holds the interrupt
signal asserted until the device is empty.

A pulse interrupt must be asserted for at least one processor clock cycle to enable the
NVIC to observe it.

A pulse interrupt can be reasserted during the ISR so that the interrupt can be pended
and active at the same time. The application design must ensure that a second pulse does
not arrive before the interrupt caused by the first pulse is activated. If the second pulse
arrives before the interrupt is activated, the second pulse has no effect because it is
already pended. When the ISR is activated, the pend bit is cleared. If the interrupt asserts
again when the ISR is activated, the NVIC latches the pend bit again.

Pulse interrupts are mainly used for external signals and for rate or repeat signals.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 7-9

Nested Vectored Interrupt Controller
7.4 Resampling level interrupts

An ISR can detect that no more interrupts occur during interrupt processing to avoid the
overhead of ISR exit and entry. This information is available in the set and clear pending
registers, see Interrupt Interrupt Set-Pending Register on page 7-5 and Interrupt
Interrupt Clear-Pending Register on page 7-6.

For Pulse interrupts, a bit that is set to 1 indicates that another interrupt has arrived since
the ISR started.

If the level interrupt is guaranteed to have been cleared and then asserted, the status bit
read from the Interrupt Pending Registers is set to 1, as for pulse interrupts.

For level interrupts, where the line might remain HIGH continuously from ISR entry,
write 1 to the appropriate bit of the:

• Interrupt Set-Pending Register

• Interrupt Clear-Pending Register.

The Interrupt Clear-Pending Register is not cleared if the interrupt line is HIGH, and
can be read again to determine the status.
7-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Nested Vectored Interrupt Controller
7.5 Interrupts as general purpose input

You can use an unused interrupt line as a general purpose input. To use the interrupt line
as a general purpose input ensure the interrupt is disabled. See Interrupt Clear-Enable
Register on page 7-4.

You can use the Interrupt Clear-Pending Register on page 7-6 to check if the input is
HIGH since it was last accessed.

To check the current status, write 1 to the appropriate bit of Interrupt Clear-Pending
Register. The value on the status bit is cleared if the interrupt line is LOW and the
Interrupt Clear-Pending Register can be read again to determine the status.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 7-11

Nested Vectored Interrupt Controller
7-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 8
Debug

This chapter describes the debug system and how to use it. It contains the following
sections:

• About debug on page 8-2

• Debug control on page 8-5

• ROM table on page 8-13

• BPU on page 8-16

• DW unit on page 8-19

• Debug TCM interface on page 8-24

• Examples of debug register halt, access, and step on page 8-25

• Data address watchpoint matching on page 8-28

• Semiprecise watchpoints on page 8-29.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-1

Debug
8.1 About debug

There are two configurations for debug:

• The full debug configuration has four breakpoint comparators and two watchpoint
comparators. This is the default configuration.

• The reduced debug configuration has two breakpoint comparators and one
watchpoint comparator.

Debug facilitates:

• core halt

• core stepping

• core register access while halted

• read/write to:

— TCMs

— AHB address space

— internal Private Peripheral Bus (PPB)

• breakpoints

• watchpoints.

The main debug components are:

• debug control registers to access and control debugging of the core

• BreakPoint Unit (BPU) to implement breakpoints

• Data Watchpoint (DW) unit to implement watchpoints

• debug memory interfaces to access ITCM and DTCM

• ROM table.

All the debug components exist on the internal PPB, 0xE000ED30 - 0xE000EEFF. Access to
the debug components is only possible when the debug extension is present.

Even when debug is present, you can only access the debug components from the debug
port. Accesses from software are reserved.

Debug control and data access occurs through the Advanced High-performance
Bus-Access Port (AHB-AP). This interface is driven by an external DP component. See
Chapter 9 Debug Access Port for information on the AHB-AP and implementation
options for the external DP component, typically a configurable SWJ-DP. Access
includes:

• The AHB-PPB. Through this bus, the debugger can access debug, including:

— debug control

— DW unit
8-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
— BPU unit

— the ROM Table

— TCMs if configured.

• The AHB address space. The AHB slaves in the debug system always expect
32-bit AHB transfers. If a byte or halfword access is created from the DAP, the
transfer is extended to a 32-bit access and all 32 bits in the register are accessed.

The DAP must be interpret all accesses as little-endian.

Figure 1-1 on page 1-4 shows the structure of the debug system, indicating how the
AHB-AP can access each of the system components and external buses.

Table 8-1 shows a summary of the core debug registers.

Table 8-2 shows a summary of the Breakpoint registers.

Table 8-1 Core debug registers summary

Name Reset value Type Address Description

DFSR 0x0 R/W 0xE000ED30 See Debug Fault Status Register on page 8-5

DHCSR 0x0 R/W 0xE000EDF0 See Debug Halting Control and Status Register on page 8-7

DCRSR 0x0 WO 0xE000EDF4 See Debug Core Register Selector Register on page 8-10

DCRDR 0x0 R/W 0xE000EDF8 See Debug Core Register Data Register on page 8-11

DEMCR 0x0 R/W 0xE000EDFC See Debug Exception and Monitor Control Register on page 8-11

Table 8-2 BPU register summary

Name Reset value Type Address Description

BPU_CTRL 0x0 R/W 0xE0002000 See Breakpoint Control Register on page 8-16

BPU_COMP0 0x0 R/W 0xE0002008 See Breakpoint Comparator Registers on page 8-17

BPU_COMP1 0x0 R/W 0xE000200C See Breakpoint Comparator Registers on page 8-17

BPU_COMP2 0x0 R/W 0xE0002010 See Breakpoint Comparator Registers on page 8-17

BPU_COMP3 0x0 R/W 0xE0002014 See Breakpoint Comparator Registers on page 8-17
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-3

Debug
Table 8-3 shows a summary of the DW registers.

Table 8-3 DW register summary

Name Reset value Type Address Description

DW_CTRL 0x0 R/W 0xE0001000 See DW Control Register on page 8-19

DW_COMP0 - R/W 0xE0001020 See DW Comparator Registers on page 8-20

DW_MASK0 - R/W 0xE0001024 See DW Mask Registers on page 8-21

DW_FUNCTION0 0x00 R/W 0xE0001028 See DW Function Registers on page 8-22

DW_COMP1 - R/W 0xE0001030 See DW Comparator Registers on page 8-20

DW_MASK1 - R/W 0xE0001034 See DW Mask Registers on page 8-21

DW_FUNCTION1 0x00 R/W 0xE0001038 See DW Function Registers on page 8-22
8-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
8.2 Debug control

This section describes how to access and control core debug to test the core. It contains
the following sections:

• Debug Fault Status Register

• Debug Halting Control and Status Register on page 8-7

• Debug Core Register Selector Register on page 8-10

• Debug Core Register Data Register on page 8-11

• Debug Exception and Monitor Control Register on page 8-11.

Note
 The processor cannot access the debug control register on the PPB. Accesses are
Reserved if the processor attempts to access debug control. Debug control is accessed
through the DAP.

8.2.1 Debug Fault Status Register

Use the Debug Fault Status Register (DSFR) to monitor:

• external debug requests

• vector catches

• data watchpoint match

• BKPT instruction execution and BPU comparator matches

• halt requests.

Multiple flags in the Debug Fault Status Register can be set when multiple debug
conditions occur. The register is sticky read/write clear. This means that it can be read
normally. Writing a 1 to a bit clears that bit.

C_DEBUGEN must be set before any bits in the DFSR are updated.

The register address, access type, and reset value are:

Address 0xE000ED30

Access Read/write-one-to-clear

Reset value 0x00000000

Figure 8-1 on page 8-6 shows the bit assignments of the Debug Fault Status Register.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-5

Debug
Figure 8-1 Debug Fault Status Register bit assignments

Table 8-4 lists the bit assignments of the Debug Fault Status Register.

31 4 3 2 1 0

Reserved

EXTERNAL
VCATCH

DWTTRAP
BKPT

HALTED

5

Table 8-4 Debug Fault Status Register bit assignments

Bits Field Function

[31:5] - Reserved.

[4] EXTERNAL External debug request flag:

1 = EDBGRQ has halted the core

0 = no EDBGRQ external debug request occurred.

The processor stops on next instruction boundary.

[3] VCATCH Vector catch flag:

1 = vector catch occurred

0 = no vector catch occurred.

When the VCATCH flag is set, a flag in the Debug Exception and Monitor Control Register is
also set to indicate the type of vector catch.
8-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
EXTERNAL, VCATCH, DWTRAP, BKPT, and HALTED are not set unless the event
is caught. If C_DEBUGEN is enabled, these events halt the processor and cause it to
enter Debug state.

8.2.2 Debug Halting Control and Status Register

The purpose of the Debug Halting Control and Status Register (DHCSR) is to:

• provide status information about the state of the processor

• enable core debug

• halt and step the processor.

The register address, access type, and reset value are:

Address 0xE000EDF0

Access Read/write

Reset value 0x20000000

Figure 8-2 on page 8-8 shows the bit assignments of the Debug Halting Control and
Status Register.

[2] DWTRAP Data Watchpoint (DW) flag:

1 = DW match

0 = no DW match.

The processor stops at the current instruction or at the next instruction.

[1] BKPT BKPT flag:

1 = BKPT instruction or hardware breakpoint match

0 = no BKPT instruction or hardware breakpoint match.

The BKPT flag is set by the execution of the BKPT instruction or on an instruction whose address
triggered the breakpoint comparator match. When the processor has halted, the return PC points
to the address of the breakpointed instruction.

[0] HALTED Halt request flag:

1 = halt requested by DAP access to C_HALT or halted with C_STEP asserted

0 = no halt request.

Table 8-4 Debug Fault Status Register bit assignments (continued)

Bits Field Function
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-7

Debug
Figure 8-2 Debug Halting Control and Status Register bit assignments

Table 8-5 lists the bit assignments of the Debug ID Register.

Reserved

Reserved

DBGKEY

2 1 0341516171823242526

ReservedReserved

Write

Read

C_MASKINTS
C_STEP
C_HALT

C_DEBUGENS_RESET_ST
S_RETIRE_ST
S_HALT
S_REGRDY

31

Table 8-5 Debug Halting Control and Status Register

Bitsa Type Field Function

[31:16] WO DBGKEYb Debug Key. 0xA05F must be written whenever this register is written. Reads back as
status bits [25:16]. If not written as Key, the write operation is ignored and no bits
are written into the register.

[31:26] - - Reserved.

[25] RO S_RESET_ST Indicates that the core has been reset, or is now being reset, since the last time this
bit was read. This a sticky bit that clears on read. So, reading twice and getting 1
then 0 means it was reset in the past. Reading twice and getting 1 both times means
that it is currently reset and held in reset.

[24] RO S_RETIRE_ST Indicates that an instruction has completed since last read. This is a sticky bit that
clears on read. You can use this to determine if the core is stalled on a load/store or
fetch.

[23:18] - - Reserved.

[17] RO S_HALT The core is halted in debug state when S_HALT is set.

[16] RO S_REGRDY Register Read/Write to the Debug Core Register Selector Register is available. Set
when the core is halted and there is no core register access in progress.

[15:4] - - Reserved.

[3] R/W C_MASKINTS When this bit is set and debug is enabled, external interrupts, SysTick, and PendSV
are masked. This bit does not affect NMI, Hard Fault or SVCall. When
C_DEBUGEN = 0, this bit has no effect.
8-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
S_RETIRE_ST, S_HALT, S_REGRDY, and C_HALT always clear on a system reset.
S_RESET_ST is always set on a system reset.

To halt on a reset, the following bits must be enabled:

• bit [0], VC_CORERESET, of the Debug Exception and Monitor Control Register

• bit [0], C_DEBUGEN, of the Debug Halting Control and Status Register.

When C_DEBUGEN is cleared it is recommended that you clear C_MASKINTS,
C_STEP, and C_HALT in the same access.

You can only clear C_HALT from the debugger.

The following events can set C_HALT:

• Debugger write

• Watchpoint hit

• BKPT instruction or breakpoint hit

• C_STEP set and the processor has stepped an instruction

• EDBGRQ set

• reset vector catch

• hard fault vector catch.

Note
 • Only word accesses to the DHCSR are permitted.

• Non-word accesses are treated as if they were word accesses. If a byte or halfword
access is created from the DAP, the transfer is extended to a 32-bit access and all
32 bits in the register are accessed.

[2] R/W C_STEP Steps the core in halted debug. When C_DEBUGEN = 0, this bit has no effect.

[1] R/W C_HALT Halts the core. This bit is set automatically when the core halts, for example, on a
breakpoint. This bit clears on core reset. When C_DEBUGEN = 0, this bit has no
effect.

[0] R/W C_DEBUGEN Enables or disable debug:

1 = debug enabled

0 = debug disabled.

a. Bits [3], [2], [0] are reset by DBGRESETn. Bits [25], [24], [17], [16], [1] are reset by SYSRESETn.
b. Writes to this register with the wrong value in DBGKEY are ignored.

Table 8-5 Debug Halting Control and Status Register (continued)

Bitsa Type Field Function
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-9

Debug
8.2.3 Debug Core Register Selector Register

The purpose of the Debug Core Register Selector Register (DCRSR) is to select the
processor register to transfer data to or from.

The register is 17 bits wide. The address and access type are:

Address 0xE000EDF4

Access Write-only

Figure 8-3 shows the bit assignments of the Debug Core Register Selector Register.

Figure 8-3 Debug Core Register Selector Register bit assignments

Table 8-6 lists the bit assignments of the Debug Core Selector Register.

REGSELReserved

REGWnR

Reserved

31 0151617 45

Table 8-6 Debug Core Register Selector Register

Bits Type Field Function

[31:17] - - Reserved

[16] WO REGWnR Write = 1

Read = 0

[15:5] - - Reserved

[4:0] WO REGSEL 5b00000 = R0

5b00001 = R1

…

5b01100 = R12

0b01101 = the current SP

0b01110 = LR

5b01111 = DebugReturnAddress()a

5b10000 = xPSR flags, execution number, and state information

5b10001 = MSP (Main SP)

5b10010 = PSP (Process SP)

0b10100 = {{6{1'b0}}, CONTROL[1], {24{1'b0}}, PRIMASK[0]}

All unused values are reserved.
8-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
This write-only register generates a request to the core to transfer data to or from Debug
Core Register Data Register and the selected register. Until this core transaction is
complete, bit [16], S_REGRDY, of the DHCSR is 0. You must ensure that S_REGRDY
is HIGH before writing to the DCRSR.

Note
 • Writes to this register when C_DEBUGEN=0 are ignored.

• Writes other than word accesses are not permitted.

• Writes with REGSEL other than as indicated are not permitted.

• Reads from this register are not permitted.

• Writes to the IPSR are ignored.

• Bit[1] of the CONTROL register can only be set if the OS extension is present and
the processor is in Thread mode.

8.2.4 Debug Core Register Data Register

The purpose of the Debug Core Register Data Register (DCRDR) is to hold data read
from or written to core registers.

The register address, access type, and reset value are:

Address 0xE000EDF8

Access Read/write

Reset value 0x00000000

This is the data value written to the register selected by the Debug Register Selector
Register.

8.2.5 Debug Exception and Monitor Control Register

The purpose of the Debug Exception and Monitor Control Register (DEMCR) is:

• Global enable for the DW unit.

• Vector catching. That is, causes debug entry on execution of a specified vector.

The register address, access type, and reset value are:

Address 0xE000EDFC

Access Read/write

a. This is the address of the next instruction to be executed. Bit [0] of DebugReturnAddress() is Reserved.
Bit [0] does not affect the EPSR T-bit, which is accessed independently through the xPSR register
selection. Modifying the T-bit in the EPSR has no effect on bit [0] of the DebugReturnAddress() so that
the T-bit and DebugReturnAddress() might be modified in either order when changing between Thumb
and ARM state while halted.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-11

Debug
Reset value 0x00000000

Figure 8-4 shows the bit assignments of the Debug Exception and Monitor Control
Register.

Figure 8-4 Debug Exception and Monitor Control Register bit assignments

Table 8-7 lists the bit assignments of the Debug Exception and Monitor Control
Register.

VC_CORERESET and VC_HARDERR are ignored when C_DEBUGEN is LOW.

This register manages exception behavior under debug.

Debug entry caused by a vector catch is only guaranteed to occur before the execution
of the first instruction of the trapped exception handler. However, another higher
priority exception can be taken. For example, if the VC_HARDERR bit is set, the
processor is able to:

1. Take a Hard Fault exception.

2. Take an NMI exception before the first instruction in the Hard Fault handler.

3. Enter debug state on the first instruction in the NMI handler.

ReservedReserved Reserved

31 1 0

DWTENA

91011232425

VC_HARDERR VC_CORERESET

Table 8-7 Debug Exception and Monitor Control Register

Bits Field Function

[31:25] - Reserved.

[24] DWTENA Global enable or disable for the DW unit:

1 = DW unit enabled.

0 = DW unit disabled. Watchpoints cannot halt the core. The DW PCSR reads as
OxFFFFFFFF.

[23:11] - Reserved.

[10] VC_HARDERR Debug trap on a Hard Fault.

[9:1] - Reserved.

[0] VC_CORERESET Reset Vector Catch. Halt running system if SYSRESETn is asserted.
8-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
8.3 ROM table

Table 8-8 shows the memory-mapped registers in ROM memory and the general format
of the component ID and peripheral ID registers. For more information on the ROM
table, see the ARMv6-M Architecture Reference Manual.

Table 8-8 ROM memory

Address Value Name Bits Description

0xE00FF000 0xFFF0F003 SCS [31:0] Points to the System Control Space (SCS) at 0xE000E000. This
includes core debug control registers.

0xE00FF004 0xFFF02003 DW [31:0] Points to the DW unit at 0xE0001000.

0xE00FF008 0xFFF03003 BPU [31:0] Points to the BPU at 0xE0002000.

0xE00FF00C 0x00000000 end [31:0] Marks of end of table. Because adding more debug components
is not permitted, this value is fixed.

0xE00FFFCC 0x00000001 MEMTYPE [7:0] System memory map is always accessible from the DAP.
Always set to 0x1.

0xE00FFFD0 0x00000004 Peripheral ID4 [31:8] Reserved.

[7:4] Indicates the size of the ROM table:

0x0 = 4KB ROM table.

[3:0] JEP106 continuation code:

0x4

0xE00FFFD4 0x00000000 Peripheral ID5 - Reserved.

0xE00FFFD8 0x00000000 Peripheral ID6 -

0xE00FFFDC 0x00000000 Peripheral ID7 -

0xE00FFFE0 0x00000070 Peripheral ID0 [31:8] Reserved.

[7:0] Contains bits [7:0] of the part number:

0x70.

0xE00FFFE4 0x000000B4 Peripheral ID1 [31:8] Reserved.

[7:4] Contains bits [3:0] of the JEP106 ID code:

0xB.

[3:0] Contains bits [11:8] of the part number

0x4.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-13

Debug
Note
 The complete:

• JEP106 continuation code is 0x4

• JEP106 ID code for ARM is 0x3B

0xE00FFFE8 0x0000002B Peripheral ID2 [31:8] Reserved.

[7:4] Indicates the revision:

0x0 = r0p0

0x1 = r0p1

0x2 = r1p0.

[3] Indicates JEDEC assigned ID fields:

0x1.

[2:0] Contains bits [6:4] of the JEP106 ID code:

0x3.

0xE00FFFEC 0x00000000 Peripheral ID3 [31:8] Reserved.

[7:4] Indicates minor revision field RevAnd.

[3:0] Indicates block unmodified:

0x0.

0xE00FFFF0 0x0000000D Component ID0 [31:8] Reserved.

[7:0] Preamblea.

0xE00FFFF4 0x00000010 Component ID1 [31:8] Reserved.

[7:4] Indicates component class:

0x1 = ROM table.

[3:0] Preamblea.

0xE00FFFF8 0x00000005 Component ID2 [31:8] Reserved.

[7:0] Preamblea.

0xE00FFFFC 0x000000B1 Component ID3 [31:8] Reserved.

[7:0] Preamblea.

a. Preamble enables a debugger to detect the presence of the ROM table.

Table 8-8 ROM memory (continued)

Address Value Name Bits Description
8-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
• The Cortex-M1 processor part number is 0x470.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-15

Debug
8.4 BPU

The BPU implements:

• four instruction comparators in the full debug configuration

• two instruction comparators in the reduced debug configuration.

You can configure each instruction comparator to provide a hardware breakpoint.

The registers that provide BPU operations are:

• Breakpoint Control Register

• Breakpoint Comparator Registers on page 8-17.

A BP comparator register matching the address of the second half word of a 32-bit
instruction generates the breakpoint.

8.4.1 Breakpoint Control Register

Use the Breakpoint Control Register to enable the Breakpoint block.

The register address, access type, and reset value are:

Address 0xE0002000

Access Read/write

Reset value Bit [0] (ENABLE) is reset to b0.

Figure 8-5 shows the bit assignments of the Breakpoint Control Register.

Figure 8-5 Breakpoint Control Register bit assignments

31 3 2 1 0

Reserved

478

NUM_CODE1

ENABLE
KEY

Reserved
8-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
Table 8-9 lists the bit assignments of the Breakpoint Control Register.

8.4.2 Breakpoint Comparator Registers

Use the Breakpoint Comparator Registers to store the values to compare with the
instruction address.

In the full debug configuration the register address, access type, and reset value are:

Address 0xE0002008, 0xE000200C, 0xE0002010, and 0xE0002014

Access Read/write

Reset value Bit [0] (ENABLE) is reset to b0.

In the reduced debug configuration the register address, access type, and reset value are:

Address 0xE0002008, 0xE000200C

Access Read/write

Reset value Bit [0] (ENABLE) is reset to b0.

Figure 8-6 on page 8-18 shows the bit assignments of the Breakpoint Comparator
Registers.

Table 8-9 Breakpoint Control Register bit assignments

Bits Field Type Function

[31:8] - RO Reserved.

[7:4] NUM_CODE1 RO Number of comparators. This read-only field and contains either:

b0100 = four instruction comparators in use

b0010 = two instruction comparators in use.

[3:2] - RO Reserved.

[1] KEY WO Key field. To write to the Breakpoint Control Register, you must write a 1 to this
write-only bit. This bit is reads as zero.

[0] ENABLE R/W Breakpoint unit enable bit:

1 = Breakpoint unit enabled

0 = Breakpoint unit disabled.

DBGRESETn clears the ENABLE bit.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-17

Debug
Figure 8-6 Breakpoint Comparator Registers bit assignments

Table 8-10 lists the bit assignments of the Breakpoint Comparator Registers.

31 0

COMP

12829 230

Reserved
BP_MATCH ENABLE

Reserved

Table 8-10 Breakpoint Comparator Registers bit assignments

Bits Field Function

[31:30] BP_MATCH This field selects what happens when the COMP address is matched.It is interpreted as:

b00 = no breakpoint matching

b01 = set breakpoint on lower halfword, upper is unaffected

b10 = set breakpoint on upper halfword, lower is unaffected

b11 = set breakpoint on both lower and upper halfwords.

[29] - Reserved.

[28:2] COMP Comparison address. Although it is architecturally Unpredictable whether breakpoint matches
on the address of the second halfword of a 32-bit instruction to generate a debug event, in this
processor it is predictable and a debug event is generated.

[1] - Reserved.

[0] ENABLE Compare enable for Breakpoint Comparator Register n:

1 = Breakpoint Comparator Register n compare enabled

0 = Breakpoint Comparator Register n compare disabled.

The ENABLE bit of BPU_CTRL must also be set to enable comparisons.

DBGRESETn clears the ENABLE bit.
8-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
8.5 DW unit

The DW unit implements:

• two comparators in the full debug configuration

• one comparator in the reduced debug configuration.

Each set of comparators contains:

• a comparator register, see DW Comparator Registers on page 8-20

• a mask register, see DW Mask Registers on page 8-21

• a function register, see DW Function Registers on page 8-22

You can configure each set of a comparators as a:

• PC hardware watchpoint

• data address watchpoint.

You can also read sampled PC values from the DW unit.

Note
 The information in this section is for both the full and reduced debug configuration
unless otherwise stated.

8.5.1 DW Control Register

Use the DW Control Register to check how many comparators are available.

The register address, access type, and reset value are:

Address 0xE0001000

Access Read-only

Reset value 0x20000000

Figure 8-7 shows the bit assignments of the DW Control Register.

Figure 8-7 DW Control Register bit assignments

31 028 27

NUMCOMP Reserved
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-19

Debug
Table 8-11 lists the bit assignments of the DW Control Register.

8.5.2 DW Program Counter Sample Register

Use the DW Program Counter Sample Register (DWPCSR) to enable coarse-grained
software profiling using a debug agent, without changing the currently executing code.

If the core is not in debug state, the value returned is the instruction address of a recently
executed instruction.

If the core is in debug state, the value returned is 0xFFFFFFFF.

Note
 When polling this register the timing of what is running on the core might differ when
compared to not polling if the core makes accesses to the PPB. This is because the core
and the DAP share access to the PPB, where the DAP has higher priority.

The register address, access type, and reset value are:

Address 0xE000101C

Access Read-only

Reset value 0x00000000

Table 8-12 lists the bit assignments of the DW PCSR.

8.5.3 DW Comparator Registers

Use the DW Comparator Registers to write the values that trigger watchpoint events.

Table 8-11 DW Control Register bit assignments

Bits Field Function

[31:28] NUMCOMP Number of comparators field. This read-only field contains:

• b0010 to indicate two comparators in the full debug configuration

• b0001 to indicate one comparator in the reduced debug configuration.

[27:0] - Reserved.

Table 8-12 Control Register bit assignments

Bits Field Function

[31:0] EIASAMPLE Execution instruction address sample, or 0xFFFFFFFF if the core is halted or DWTENA is LOW
8-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
In the full debug configuration the register address, access type, and reset value are:

Address 0xE0001020, 0xE0001030

Access Read/write

Reset value 0x00000000

In the reduced debug configuration the register address, access type, and reset value are:

Address 0xE0001020

Access Read/write

Reset value 0x00000000

Table 8-13 describes the field of DW Comparator Registers.

8.5.4 DW Mask Registers

Use the DW Mask Registers to apply a mask to data addresses when matching against
COMP.

In the full debug configuration the register address, access type, and reset value are:

Address 0xE0001024, 0xE0001034

Access Read/write

Reset value 0x00000000

In the reduced debug configuration the register address, access type, and reset value are:

Address 0xE0001024

Access Read/write

Reset value 0x00000000

Figure 8-8 shows the bit assignments of DW Mask Registers.

Figure 8-8 DW Mask Registers 0-1 format

Table 8-13 DW Comparator Registers bit assignments

Field Name Definition

[31:0] COMP DW_COMP to compare against PC or the data address as given by DW_FUNCTION Register.

DW_COMP is always masked using the DW Mask Register value before a compare is done.

31 0

Reserved

4

MASK

3

ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-21

Debug
Table 8-14 lists the bit assignments of DW Mask Registers 0-1.

8.5.5 DW Function Registers

Use the DW Function Registers to control the operation of the comparator. Each
comparator can match against either the PC or the data address and halt the core. This
function is in conjunction with DW_COMP.

In the full debug configuration the register address, access type, and reset value are:

Address 0xE0001028, 0xE0001038

Access Read/write

Address 0x00000000

In the reduced debug configuration the register the register address, access type, and
reset value are:

Address 0xE0001028

Access Read/write

Address 0x00000000

Figure 8-9 shows the bit assignments of DW Function Registers 0-1.

Figure 8-9 DW Function Registers bit assignments

Table 8-14 DW Mask Registers bit assignments

Bits Field Function

[31:5] - Reserved.

[4:0] MASK Mask on data address when matching against COMP. This is the size of the ignore mask.

So, ~0<<MASK forms the mask against the address to use. That is, DW matching is performed as:
(ADDR & (~0 << MASK)) == (COMP & (~0 << MASK))

For word accesses the two least significant bits are not compared.

For halfword accesses the least significant bit is not compared.

For PC matches the least significant bit is not compared.

31 1 04 3 2

Reserved FUNCTION

25 24 23

MATCHED

Reserved
8-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
Table 8-15 lists the bit assignments of DW Function Registers 0-1.

You can use the mask and compare address to specify a watchpoint.

Table 8-16 describes the function settings of the DW Function Registers.

Table 8-15 DW Function Registers bit assignments

Bits Field Function

[31:25] - Reserved.

[24] MATCHED This bit is set when the comparator matches this bit is cleared on read.

[23:4] - Reserved.

[3:0] FUNCTION See Table 8-16 for FUNCTION settings.

Table 8-16 Settings for DW Function Registers

Value Function

b0000 Disabled

b0001-b0011 Reserved

b0100 Watchpoint on PC match

b0101 Watchpoint on read address

b0110 Watchpoint on write address

b0111 Watchpoint on read or write address

b1000-b1111 Reserved
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-23

Debug
8.6 Debug TCM interface

The Debug TCM interface comprises a DTCM and an ITCM interface.

The static signals CFGITCMSZ[3:0] and CFGDTCMSZ[3:0] indicate the size of
ITCM and DTCM:

• ITCM address range is from 0x00000000 to the size specified by
CFGITCMSZ[3:0]

• DTCM address range is from 0x20000000 to the size specified by
CFGDTCMSZ[3:0].

If an AHB access from the AHB-AP is:

• inside the configured TCM range the access is to the appropriate TCM

• outside the configured TCM range the access is to the external interface as
appropriate.

Note
 Unless the core is halted or held in reset by SYSRESETn, any debug access to the TCM
memory might conflict with core operation.
8-24 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
8.7 Examples of debug register halt, access, and step

This section provides example sequences that you can use to perform debug register
access, halt, step, and exit.

8.7.1 Debug halt example

This is an example of a debug halt. If you want to halt the processor, perform the
following:

1. Write 0xA05F0003 to the Debug Halting Control and Status Register. This enables
debug and halts the core.

2. Wait for the S_HALT bit of the DHCSR to be set. This indicates that the core is
halted.

8.7.2 Debug read register access example

This is an example of a debug read register access. If you want to halt the processor and
read a value from one of the core registers, perform the following:

1. Write 0xA05F0003 to the Debug Halting Control and Status Register. This enables
debug and halts the core.

2. Wait for the S_HALT bit of the Debug Halting Control and Status Register to be
set. This indicates that the core is halted.

3. Write the register number that you want to read into the Debug Core Register
Selector Register and set bit [16] to 0 simultaneously.

4. Wait for the S_REGRDY bit in the DHCSR to set. This indicates the core has
completed the read master.

5. Read the DCRDR. This returns the required core register.

8.7.3 Debug write register access example

This is an example of a debug register access. If you want to halt the processor and write
a value into one of the registers, perform the following:

1. Write 0xA05F0003 to the Debug Halting Control and Status register. This enables
debug and halts the core.

2. Wait for the S_HALT bit of the Debug Halting Control and Status Register to be
set. This indicates that the core is halted.

3. Write the value that you want to be written to the DCRDR.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-25

Debug
4. Write the register number that you want to write to into the Debug Core Register
Selector Register and set bit [16] to 0 simultaneously.

5. Wait for the S_REGRDY bit in the DCRSR to be set. This indicates the core has
completed the write transfer.

8.7.4 Debug step example

This is an example of a debug step. If you want to step the processor, perform the
following:

1. Write 0xA05F0003 to the Debug Halting Control and Status Register. This enables
debug and halts the core.

2. Wait for S_HALT to be set one in the DHCSR to indicate that the core is halted.

3. Write 0xA05F0005 to the Debug Halting Control and Status Register. This clears
C_HALT and sets C_STEP to one.

4. The core exits debug state, executes one instruction and returns to halted debug
state.

5. The core remains halted in debug state.

If more single steps are required repeat steps 3-5.

Note
 When entering debug halt step, you can set C_DEBUGEN, C_HALT and C_STEP in
one write instruction.

8.7.5 Breakpoint debug entry example

This is an example of a hardware PC breakpoint using the BPU. If you want to halt the
processor with a breakpoint, perform the following:

1. Write 0xA05F0001 to the DHCSR to set C_DEBUGEN to enable debug.

2. Set the value in BU_COMP0 register to the address of the instruction that you
want to set as a breakpoint to break the execution flow.

3. Use BU_CTRL to enable the breakpoint.

4. C_HALT is set by the hardware when the hardware breakpoint matches.

5. Read S_HALT to ensure the core is halted.
8-26 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
8.7.6 Exiting core debug

You can exit Halting debug by:

• clearing the C_DEBUGEN and C_HALT bits in the Debug Halting Control and
Status Register.

• using the DBGRESTART/DBGRESTARTED handshake interface.

See the ARMv6-M Architecture Reference Manual for more details.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-27

Debug
8.8 Data address watchpoint matching

You can use the COMP field of the DW Comparator Registers and the MASK field of
the DW Mask Registers to match with the data address. For Example:

• A COMP address of 0x27 with a MASK value of 2 matches a:

— word access at 0x24

— halfword access at 0x24 or 0x26

— byte access at 0x24, 0x25, 0x26, or 0x27.

• A COMP address of 0x27 with a MASK value of 1 matches a:

— word access at 0x24

— halfword access at 0x26

— byte access at 0x26 or 0x27.

• A COMP address of 0x27 with a MASK value of 0 matches a:

— word access at 0x24

— halfword access at 0x26

— byte access at 0x27.

For information on the Comparator Registers and DW Mask Registers, see DW
Comparator Registers on page 8-20 and DW Mask Registers on page 8-21.
8-28 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug
8.9 Semiprecise watchpoints

The processor watchpoints are described as semiprecise. When the processor triggers a
watchpoint, it executes one more instruction after the one that triggered the watchpoint,
before entering debug state. The number of extra instructions is constant, independent
of bus or instruction cycle times. If another debug event causes the processor to enter
debug state earlier, for example as a result of a breakpoint, the processor enters debug
state with more than one flag set in the DFSR. See Debug Fault Status Register on
page 8-5 for more information.

Note
 The instruction executed can include an exception return sequence or any number of
exception entry sequences.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 8-29

Debug
8-30 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 9
Debug Access Port

This chapter describes the processor Debug Access Port (DAP). It contains:

• About the DAP on page 9-2

• Debug access on page 9-3

• AHB-AP on page 9-5.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 9-1

Debug Access Port
9.1 About the DAP

When debug is implemented, the processor also contains an Advanced
High-performance Bus Access Port (AHB-AP) interface for debug accesses.

External DP components access this AHB-AP interface. The Cortex-M1 system
supports three possible DP implementations:

• Serial Wire JTAG Debug Port (SWJ-DP). This is a standard CoreSight debug port
that combines JTAG-DP and the Serial Wire Debug Port (SW-DP) and allows
switching between Serial Wire and JTAG.

• Only SW-DP, through configuration options.

• Only JTAG-DP, through configuration options

The DP and AP together are referred to as the Debug Access Port (DAP).

Figure 9-1 shows the DAP configuration.

Figure 9-1 DAP configuration

For additional information about the DP components, see the CoreSight Components
Technical Reference Manual.

For more information on the AHB-AP, see AHB-AP on page 9-5.

Note
 If your implementation of the DAP does not include both JTAG-DP and SW-DP, you
cannot switch between them.

SWJ-DP

DAP internal
 interface AHB-AP interfaceDebug port

interface

JTAG-DP

SW-DP

Cortex-M1

AHB-AP

DAP
9-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug Access Port
9.2 Debug access

The SWJ-DP and AHB-AP enables access to the debug system and core components of
the processor over the AHB matrix. The access to the memory map from the DAP is the
same as that made by data accesses from the core, although this is restricted to always
be little-endian. The PPB, TCMs and external AHB interface are accessible.

9.2.1 Debug access during core reset

To enable access to the debug modules at all times, all processor debug logic is reset by
the DBGRESETn signal instead of the SYSRESETn signal. The debug interface and
debug access logic are accessible when SYSRESETn is asserted.

When SYSRESETn is asserted:

• debug writes to non-debug components, including the core registers, have no
effect

• debug reads from non-debug components, including the core registers, return
unpredictable data.

• accesses from the DAP to the system AHB bus through the AHB Matrix
complete, but the returned read data is unpredictable.

9.2.2 Debug access while core running

Arbitration between the core and debug is so that DAP accesses always have priority.
This means that polling for an event using the DAP is always possible, but might change
the precise cycle timing of core accesses.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 9-3

Debug Access Port
9.2.3 Debug access to TCMs

Caution
 • Only use a debugger to write to TCMs when the core is halted.

• Although a debugger can perform debug accesses to TCM when the core is
running, some FPGA RAM implementations might have unpredictable results
when a read and write occur simultaneously to the same location. If this is the
case, you must ensure logic is included to prevent accesses occurring
simultaneously.

The core of the processor has a single address for each TCM for both reads and writes
to enable a non-debug processor to use single-ported RAMs. You can use dual-port
RAMs for TCMs to enable programming before the core of the processor is removed
from reset and to facilitate debug removal.

For information on TCM sizes, see Table 10-3 on page 10-7.
9-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug Access Port
9.3 AHB-AP

This section describes the AHB Access Port (AHB-AP), for access to a system AHB bus
through an AHB-Lite master. It acts as a slave to the DAP internal bus, driven by only
a single debug port, typically an external SWJ-DP, at any one time. Figure 9-2 shows
the internal structure of the AHB-AP.

Figure 9-2 AHB access port internal structure.

The AHB-AP has two interfaces:

• An internal DAP bus interface that connects to the SWJ-DP

• An AHB master port for connection through the matrix to the external AHB-Lite
interface and the PPB.

9.3.1 AHB-Lite master ports

The AHB-Lite master port supports AHB in AMBA v2.0. The AHB-Lite master port
does not support:

• BURST and SEQ

• Exclusive accesses

• Unaligned transfers.

Table 9-1 shows the other AHB-AP ports.

Interface Access
Control

AHB master
 port

DAPCLK

DAP internal bus
interface

AHB Master
 interface

HCLK

DAPSELx AHB access port (AHB-AP)

Table 9-1 Other AHB-AP ports

Name Type Description

DBGEN Input Enables AHB-AP transfers if HIGH

SPIDEN Inputa

a. Tied LOW.

Permits secure transfers to take place on the AHB-AP

nCDBGPWRDN Inputb

b. Tied HIGH.

Indicates that the debug infrastructure is powered down

nCSOCPWRDN Inputb Indicates that the system AHB interface is powered down
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 9-5

Debug Access Port
9.3.2 AHB-AP programmer’s model

This section describes the registers used to program the AHB-AP:

• AHB-AP register summary

• AHB access port register descriptions.

AHB-AP register summary

Table 9-2 shows the AHB access port registers.

AHB access port register descriptions

The section describes the AHB access port registers:

• AHB-AP Control/Status Word Register, CSW, 0x00 on page 9-7

• AHB-AP Transfer Address Register, TAR, 0x04 on page 9-8

• AHB-AP Data Read/Write Register, DRW, 0x0C on page 9-9

• AHB-AP Banked Data Registers, BD0-BD03, 0x10-Ox1C on page 9-9

• ROM Address Register, ROM, 0xF8 on page 9-10

• AHB-AP Identification Register, IDR, 0xFC on page 9-10.

Table 9-2 AHB access port registers

Offset Type Width Reset value Name

0x00 R/W 32 0x43800042 Control/Status Word, CSW

0x04 R/W 32 0x00000000 Transfer Address, TAR

0x08 - - - Reserved SBZ

0x0C R/W 32 - Data Read/Write, DRW

0x10 R/W 32 - Banked Data 0, BD0

0x14 R/W 32 - Banked Data 1, BD1

0x18 R/W 32 - Banked Data 2, BD2

0x1C R/W 32 - Banked Data 3, BD3

0x20-0xF7 - - - Reserved SBZ

0xF8 RO 32 0xE00FF000 Debug ROM table

0xFC RO 32 0x44770001 Identification Register, IDR
9-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug Access Port
AHB-AP Control/Status Word Register, CSW, 0x00

This is the control word used to configure and control transfers through the AHB
interface.

Figure 9-3 shows the Control/Status Word Register bit assignments.

Figure 9-3 AHB-AP Control/Status Word Register bit assignments

Table 9-3 lists the bit assignments.

Size

31 28 24 23 12 11 8 7 6 5 4 3 2 0

Prot Reserved Mode

TrInProg
DbgStatus

AddrInc
Reserved

Reserved SPIStatus

2227

Table 9-3 AHB-AP Control/Status Word Register bit assignments

Bits Type Name Function

[31] - - Reserved SBZ.

[30] - - Reserved SB0.

[29:28] - - Reserved SBZ.

[27:24] R/W Prot Specifies the protection signal encoding to be output on HPROT[3:0].
Reset value is noncacheable, non-bufferable, data access, privileged = b0011.

[23] RO SPIStatus Indicates the status of the SPIDEN port. Always reads as b1.

[22:12] - - Reserved SBZ.

[11:8] R/W Mode Specifies the mode of operation:

b0000 = Normal download/upload model

b0001-b1111 = Reserved SBZ.

Reset value = b0000.

[7] RO TrInProg Transfer in progress. This field indicates if a transfer is currently in progress on the
AHB master port.

[6] RO DbgStatus Indicates the status of the DBGEN port. Always reads as b1 = AHB transfers permitted.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 9-7

Debug Access Port
AHB-AP Transfer Address Register, TAR, 0x04

Table 9-4 shows the AHB-AP Transfer Address Register bit assignments.

[5:4] R/W AddrInc Auto address increment and packing mode on Read or Write data access. Only
increments if the current transaction completes without an Error Response. Does not
increment if the transaction completes with an Error Response or the transaction is
aborted.

Auto address incrementing and packed transfers are not performed on access to Banked
Data registers 0x10-0x1C. The status of these bits is ignored in these cases.

Increments and wraps within a 1KB address boundary, for example, for word
incrementing from 0x1400-0x17FC. If the start is at 0x14A0, then the counter increments
to 0x17FC, wraps to 0x1400, then continues incrementing to 0x149C.

b00 = auto increment off

b01 = increment, single.

Single transfer from corresponding byte lane.

b10 = increment, packed

Word = same effect as single increment.

Byte/Halfword. Packs four 8-bit transfers or two 16-bit transfers into a 32-bit DAP
transfer. Multiple transactions are carried out on the AHB interface.

b11 = Reserved SBZ, no transfer.

Size of address increment is defined by the Size field, bits [2:0].

Reset value = b00.

[3] - - Reserved SBZ, R/W = b0

[2:0] R/W Size Size of the data access to perform:

b000 = 8 bits

b001 = 16 bits

b010 = 32 bits

b011-b111 = Reserved SBZ.

Reset value = b010.

Table 9-3 AHB-AP Control/Status Word Register bit assignments (continued)

Bits Type Name Function

Table 9-4 AHB-AP Transfer Address Register bit assignments

Bits Type Name Function

[31:0] R/W Address Address of the current transfer. Unaligned address values with respect to the Size field
of the Control/Status Word Register are unsupported.

Reset value is 0x00000000.
9-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug Access Port
AHB-AP Data Read/Write Register, DRW, 0x0C

Table 9-5 shows the AHB-AP Data Read/Write Register bit assignments.

AHB-AP Banked Data Registers, BD0-BD03, 0x10-Ox1C

BD0-BD3 provide a mechanism for directly mapping through DAP accesses to AHB
transfers without having to rewrite the Transfer Address Register (TAR) within a
four-location boundary. BD0 reads/writes from TA. BD1 reads/writes from TA+4.
Table 9-6 shows the AHB-AP Banked Data Register bit assignments.

Table 9-5 AHB-AP Data Read/Write Register bit assignments

Bits Type Name Function

[31:0] R/W Data Write mode:

Data value to write for the current transfer.

Read mode:

Data value read from the current transfer.

Table 9-6 Banked Data Register bit assignments

Bits Type Name Function

[31:0] R/W Data If DAPADDR[7:4] = 0x0001, so accessing AHB-AP registers in the range 0x10-0x1C, the
derived HADDR[31:0] is:

• Write mode:

Data value to write for the current transfer to external address TAR[31:4] +
DAPADDR[3:2] + 2'b00.

• Read mode:

Data value read from the current transfer from external address TAR[31:4] +
DAPADDR[3:2] + 2'b00.

Auto address incrementing is not performed on DAP accesses to BD0-BD3.

Banked transfers are only supported for word transfers. Non-word banked transfers are
reserved and Unpredictable. Transfer size is currently ignored for banked transfers.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 9-9

Debug Access Port
ROM Address Register, ROM, 0xF8

Table 9-7 shows the ROM Address Register bit assignments.

AHB-AP Identification Register, IDR, 0xFC

The register reset value is 0x447700001.

Figure 9-4 shows the AHB-AP Identification Register bit assignments.

Figure 9-4 AHB-AP Identification Register bit assignments

Table 9-8 shows the AHB-AP Identification Register bit assignments.

Table 9-7 ROM Address Register bit assignments

Bits Type Name Function

[31:0] RO Debug AHB ROM Address Base address of a ROM table. The ROM provides a look-up table for
system components. Set to 0xE00FF000 in the AHB-AP in the initial
release.

Revision

31 28 27 24 23 17 16 15 8 7 0

JEDEC
bank JEDEC code Reserved Identity value

AP

Table 9-8 AHB-AP Identification Register bit assignments

Bits Type Name

[31:28] RO Revision. Reset value is 0x2 for AHB-AP.

[27:24] RO JEDEC banka. Reset value is 0x4.

a. Using JEDEC bank 0x0 with a JEDEC code of 0x00 is reserved for
use by ARM.

[23:17] RO JEDEC code. Reset value is 0x3B.

[16] RO ARM AP. Reset value is b1.

[15:8] - Reserved SBZ.

[7:0] RO Identity value. Reset value is 0x01 for AHB-AP.
9-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug Access Port
9.3.3 AHB-AP clocks and resets

The AHB-AP has two clock domains:

DAPCLK Drives the DAP bus interface and access control for register read and
writes. DAPCLK must be driven by a constant clock. When started, it
must not be stopped or altered while the DAP is in use.

DAPCLK can be connected to HCLK or can be asynchronous to
HCLK, if there are other APs in the SoC that cannot operate at full
HCLK.

HCLK AHB clock domain driving AHB interface.

DAPRESETn

Initializes the state of all registers in the AHB-AP.

9.3.4 Supported AHB protocol features

The AHB-Lite master port supports AHB in AMBA v2.0.

HPROT encodings

HPROT[3:0] is provided as an external port and is programmed from the Prot field in
the CSW register with the following conditions:

• HPROT[3:0] programming is supported.

• Exclusive access is not supported, so HRESP[2] is not supported.

See AHB-AP Control/Status Word Register, CSW, 0x00 on page 9-7 for values of the
Prot field.

HRESP

HRESP[0] is the only RESPONSE signal required by the AHB-AP:

• AHB-Lite devices do not support SPLIT and RETRY and so HRESP[1] is not
required.

• HRESP[2] is not supported in the AHB-AP.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 9-11

Debug Access Port
AHB-AP transfer types and bursts

The AHB-AP cannot initiate a new AHB transfer every clock cycle (unpacked) because
of the additional cycles required to serial scan in the new address or data value through
a debug port. The AHB-AP supports two HTRANS transfer types, IDLE and
NONSEQ.

• When a transfer is in progress, it is of type NONSEQ.

• When no transfer is in progress and the AHB-AP is still granted the bus then the
transfer is of type IDLE.

The only unpacked HBURST encoding supported is SINGLE. Packed 8-bit transfers or
16-bit transfers are treated as individual NONSEQ, SINGLE transfers at the AHB-Lite
interface. This ensures that there are no issues with boundary wrapping, to avoid
additional AHB-AP complexity.

9.3.5 Packed transfers

The DAP internal interface is a 32-bit data bus. 8-bit or 16-bit transfers can be formed
on AHB according to the Size field in the Control/Status Word Register at 0x00. The
AddrInc field in the Control/Status Word Register enables optimized use of the DAP
internal bus to reduce the number of accesses from the tools to the DAP. It indicates if
the entire data word is to be used to pack more than one transfer. Address incrementing
is automatically enabled if packet transfers are initiated so that multiple transfers are
carried out at the sequential addresses. The size of the address increment is based on the
size of the transfer.

See AHB-AP Control/Status Word Register, CSW, 0x00 on page 9-7 for values of the
AddrInc field and AHB-AP Data Read/Write Register, DRW, 0x0C on page 9-9 for Data
Read/Write Register bit values.

Examples of the transactions are:

• For an unpacked 16-bit write to an address base of 0x2 (CSW[2:0]=b001,
CSW[5:4]=b01), HWDATA[31:16] is written from bits [31:16] in the Data
Read/Write Register.

• For an unpacked 8-bit read to an address base of 0x1, (CSW[2:0]=b000,
CSW[5:4]=b01), HRDATA[31:16] and HRDATA[7:0] are zeroed and
HRDATA[15:8] contains read data.

• For a packed byte write at a base address 0x2, (CSW[2:0]=b000, CSW[5:4]=b10),
four write transfers are initiated, the order of data being sent is:

— HWDATA[23:16], from DRW[23:16], to HADDR[31:0]=0x2

— HWDATA[31:24], from DRW[31:24], to HADDR[31:0]=0x3
9-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Debug Access Port
— HWDATA[7:0], from DRW[7:0], to HADDR[31:0]=0x4

— HWDATA[15:8], from DRW[15:8], to HADDR[31:0]=0x5

• For a packed halfword reading at a base address of 0x2, (CSW[2:0]=b001,
CSW[5:4]=b10), two read transfers are initiated:

— HRDATA[31:16] is stored into DRW[31:16] from HADDR[31:0]=0x2

— HRDATA[15:0] is stored into DRW[15:0] from HADDR[31:0]=0x4

If the current transfer is aborted or the current transfer receives an ERROR response, the
AHB-AP does not complete the following packed transfers.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 9-13

Debug Access Port
9-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Chapter 10
External and Memory Interfaces

This chapter describes the processor external and memory interfaces. It contains the
following sections:

• About bus interfaces on page 10-2

• External interface on page 10-3

• Write buffer on page 10-4

• Memory attributes on page 10-5

• Memory interfaces on page 10-6.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 10-1

External and Memory Interfaces
10.1 About bus interfaces

The processor contains two bus interfaces:

• external interface

• memory interfaces.

Note
 The processor contains an internal PPB for accesses to the Nested Vectored Interrupt
Controller (NVIC), Data Watchpoint (DW) unit, and BreakPoint Unit (BPU).
10-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

External and Memory Interfaces
10.2 External interface

This is an AHB-Lite bus interface. See External AHB-Lite interface on page A-5 for
descriptions of the AHB-lite bus signals.

Processor accesses and debug accesses to external AHB peripherals are implemented
over this bus. Because processor AHB access to zero wait state slaves typically take two
cycles longer than TCM accesses, instructions and data must be contained in TCM
where possible. If on-chip FPGA memory is used for the processor, highest
performance is possible if this is TCM memory, rather than SRAM mapped onto the
AHB interface.

Processor accesses and debug accesses share the external interface. Debug accesses take
priority over processor accesses.

Timing of processor accesses might be changed by the presence of debug accesses.
Giving highest priority to debug means that debug cannot be locked-out by a
continuously executing stream of core instructions. Because debug accesses tend to be
infrequent, debug accesses do not have a major impact on processor accesses.

Any vendor specific components can populate this bus.

If an external AHB peripheral incorrectly deadlocks the AHB bus, the debugger might
not be able to halt or access the core registers. Contact your implementation team for
FPGA probing tools to debug the system external to the core.

Unaligned accesses to this bus are not supported.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 10-3

External and Memory Interfaces
10.3 Write buffer

To prevent bus wait cycles from stalling the processor during data stores, stores to the
external interfaces go through a one-entry write buffer. If the write buffer is full,
subsequent accesses to the bus stall until the write buffer has drained.

DMB and DSB instructions wait for the write buffer to drain before completing.
10-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

External and Memory Interfaces
10.4 Memory attributes

Table 10-1 shows encoding for HPROT[3:0].

Table 10-1 HPROT[3:0] encoding

HPROT[3] HPROT[2] HPROT[1] HPROT[0] Description

0 0 0 0 Invalid

0 0 0 1 Invalid

0 0 1 0 Instruction fetch

0 0 1 1 Data fetch

0 1 X X Invalid

1 X X X Invalid
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 10-5

External and Memory Interfaces
10.5 Memory interfaces

The processor has two memory interfaces:

• ITCM

• DTCM.

See Memory interfaces on page A-6 for descriptions of the ITCM and DTCM interface
signals.

The processor does not support wait states for the memory interfaces.

Note
 This section describes the ITCM interface. This description also applies to the DTCM
interface.

Table 10-2 shows the ITCMBYTEWR value for different sizes of write accesses.

Figure 10-1 shows the write signal timings for the ITCM interface.

Figure 10-1 ITCM write signal timings

Table 10-2 Byte-write size

ITCMBYTEWR value Size of write

 4'b1111 Word

 4'b0011 or 4'b1100 Halfword

 4'b0001, 4'b0010, 4'b0100 or 4'b1000 Byte

CLK

ITCMADDR

ITCMWDATA

ITCMBYTEWR

ITCMRD

ITCMWR

ITCMRDATA

Write address

Write data

Write enable
10-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

External and Memory Interfaces
For writes, the write address, write data, and control signals are driven on the same
cycle. The write enable signals ensure individual bytes within a word are written
without corrupting the other bytes in the same word. For example, if
ITCMBYTEWR[1] is asserted, bits ITCMBYTEWR[15:8] are written in to byte 1 of
the word at address ITCMADRR.

Figure 10-1 on page 10-6 shows the read signal timings for the ITCM interface.

Figure 10-2 ITCM read signal timings

Table 10-3 shows the TCM sizes that are defined through input pins. These sizes are
factored into both the core and debug address decoders.

0

CLK

ITCMADDR

ITCMWDATA

ITCMBYTEWR

ITCMRD

ITCMWR

ITCMRDATA

Read address

Read data

Table 10-3 Instruction and Data TCM sizes

CFGITCMSZE or
CFGDTCMSZE

TCM size

4'h0 0KB

4'h1 1KB

4'h2 2KB

4'h3 4KB

4'h4 8KB

4'h5 16KB

4'h6 32KB

4'h7 64KB

4'h8 128KB
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. 10-7

External and Memory Interfaces
If you use other values than those that Table 10-3 on page 10-7 shows, the effects are
Unpredictable.

4'h9 256KB

4'hA 512KB

4'hB 1MB

Table 10-3 Instruction and Data TCM sizes (continued)

CFGITCMSZE or
CFGDTCMSZE

TCM size
10-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Appendix A
Signal Descriptions

This appendix lists the processor interfaces and the interface signals. Full description of
an interface or signal is given where the interfaces or signals differ from those described
in the appropriate interface specification. It contains the following sections:

• Clocks and Resets on page A-2

• Miscellaneous on page A-3

• Interrupt interface on page A-4

• External AHB-Lite interface on page A-5

• Memory interfaces on page A-6

• AHB-AP interface on page A-9.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 Clocks and Resets

Table A-1 lists the clock and reset signals.

Table A-1 Reset signals

Name Direction Description

HCLK Input Main processor clock.

DAPCLKa Input AHB-AP clock. Can be connected to HCLK or can be asynchronous to HCLK if there
are other APs in the SoC that cannot operate at full HCLK.

DBGRESETna Input Reset for debug logic.

SYSRESETn Input System reset. Resets processor and non-debug portion of NVIC. Debug components are
not reset by SYSRESETn.

DAPRESETna Input AHB-AP reset, DAPCLK domain

a. Only present if the processor is configured with debug.
A-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Signal Descriptions
A.2 Miscellaneous

Table A-2 lists the miscellaneous signals.

Table A-2 Miscellaneous signals

Name Direction Description

LOCKUP Output Indicates that the core is locked up.

HALTEDa Output Indicates halting debug mode. HALTED remains asserted while the core is in debug.

SYSRESETREQ Output Requests that the system reset controller resets the core. It is cleared on reset. Do not
connect this line directly to the reset input, use a flop to hold the reset LOW for a cycle.

EDBGRQa Input External debug request.

DBGRESTARTa Input External restart request.

If you are not using this signal to connect to a CTI, tie this input LOW.

Contact ARM for connection information if you are using this signal to connect to a
CTI.

DBGRESTARTEDa Output Handshake for DBGRESTART.

If you are not using this signal to connect to a CTI, leave unconnected.

Contact ARM for connection information if you are using this signal to connect to a
CTI.

a. Only present if the processor is configured with debug.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. A-3

Signal Descriptions
A.3 Interrupt interface

Table A-3 lists the signals of the external interrupt interface.

Table A-3 Interrupt interface

Name Direction Description

IRQ[31:0] Input External interrupt signals

NMI Input Non-maskable interrupt
A-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Signal Descriptions
A.4 External AHB-Lite interface

Table A-4 lists the signals of the external AHB-Lite interface.

Table A-4 External AHB-Lite interface

Name Direction Description

HADDR[31:0] Output For more information, see the AMBA 3 AHB-Lite Protocol Specification

HBURST[2:0] Output

HPROT[3:0] Output

HRDATA[31:0] Input

HREADY Input

HRESP Input

HSIZE[2:0] Output

HTRANS[1:0] Output

HWDATA[31:0] Output

HWRITE Output
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. A-5

Signal Descriptions
A.5 Memory interfaces

Table A-5 lists the signals of the ITCM interface.

Table A-6 lists the signals of the DTCM interface.

Table A-5 ITCM interface

Name Direction Description

ITCMEN Output Enable to memory. Either ITCMRD or ITCMWR is also set.

ITCMRD Output Read Enable to memory, set only if ITCMEN is set.

ITCMWR Output Write Enable, set if and only if ITCMBYTEWR is non zero, and only if
ITCMEN is set.

ITCMBYTEWR[3:0] Output Write Enables for each byte, if any of these are set, ITCMWR is also set.

ITCMADDR[19:2] Output Address to read from or write to.

ITCMWDATA[31:0] Output Data to be written to ITCM. Only bytes that ITCMBYTEWR is set for are valid.

ITCMRDATA[31:0] Input Data read from the ITCMADDR. All reads are 32 bit.

CFGITCMSZ[3:0] Input Size encoded onto 4 bits. Tie off at synthesis time to optimize logic for speed, or
wire to a static value at run time to permit more flexibility.

CFGITCMEN[1:0] Input ITCM Alias Enables. Sets the value written into the Upper and Lower ITCM
Alias Enable bits in the Auxiliary Control Register on reset.

CFGITCMEN[1] sets the Upper Alias Enable bit and CFGITCMEN[0] sets the
Lower Alias Enable bit.

The value on these pins must be held constant for at least 2 cycles before
SYSRESETn is deasserted.

Table A-6 DTCM interface

Name Direction Description

DTCMEN Output Enable to memory. Either DTCMRD or DTCMWR is also set.

DTCMRD Output Read Enable to memory, set only if DTCMEN is set.

DTCMWR Output Write Enable, set if and only if DTCMBYTEWR is non zero, and only if
DTCMEN is set.

DTCMBYTEWR[3:0] Output Write Enables for each byte. If any of these are set, DTCMWR is also set.

DTCMADDR[19:2] Output Address to read from or write to.
A-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Signal Descriptions
Table A-7 lists the signals of the Debug ITCM interface.

Table A-8 lists the signals of the Debug DTCM interface.

DTCMWDATA[31:0] Output Data to be written to DTCM. Only bytes that DTCMBYTEWR is set for are
valid.

DTCMRDATA[31:0] Input Data read from the DTCMADDR. All reads are 32-bit.

CFGDTCMSZ[3:0] Input Size encoded onto 4 bits. Tie off at synthesis time to optimize logic for speed, or
wire to a static value at run time to permit more flexibility.

Table A-6 DTCM interface (continued)

Name Direction Description

Table A-7 Debug ITCM interface

Name Direction Description

DBGITCMEN Output Enable to memory. Either DBGITCMRD or DBGITCMWR is also set.

DBGITCMRD Output Read Enable to memory, set only if DBGITCMEN is set.

DBGITCMWR Output Write Enable, set if and only if DBGITCMBYTEWR is non zero, and only
if DBGITCMEN is set.

DBGITCMBYTEWR[3:0] Output Write Enables for each byte, if any of these are set, DBGITCMWR is also
set.

DBGITCMADDR[19:2] Output Address to read from or write to.

DBGITCMWDATA[31:0] Output Data to be written to ITCM. Only bytes that DBGITCMBYTEWR is set
for are valid.

DBGITCMRDATA[31:0] Input Data read from the DBGITCMADDR. All reads are 32 bit.

Table A-8 Debug DTCM interface

Name Direction Description

DBGDTCMEN Output Enable to memory. Either DBGDTCMRD or DBGDTCMWR is also set.

DBGDTCMRD Output Read Enable to memory, set only if DBGDTCMEN is set.

DBGDTCMWR Output Write Enable, set if and only if DBGDTCMBYTEWR is non zero, and
only if DBGDTCMEN is set.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. A-7

Signal Descriptions
DBGDTCMBYTEWR[3:0] Output Write Enables for each byte. If any of these are set, DBGDTCMWR is
also set.

DBGDTCMADDR[19:2] Output Address to read from or write to.

DBGDTCMWDATA[31:0] Output Data to be written to DTCM. Only bytes that DBGDTCMBYTEWR is set
for are valid.

DBGDTCMRDATA[31:0] Input Data read from the DBGDTCMADDR. All reads are 32-bit.

Table A-8 Debug DTCM interface (continued)

Name Direction Description
A-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Signal Descriptions
A.6 AHB-AP interface

Table A-9 lists the signals of the AHB-AP interface.

Table A-9 AHB-AP interface

Name Direction Description

DAPRDATA[31:0] Output The read bus is driven by the selected AHB-AP during read cycles when
DAPWRITE is LOW.

DAPREADY Output The AHB-AP uses this signal to extend a DAP transfer.

DAPSLVERR Output The error response is because of:

• Master port produced an error response, or transfer not initiated because of
DAPEN preventing a transfer.

• Access to AP register not accepted after a DAPABORT operation.

DAPCLKEN Input DAP clock enable (power saving).

DBGEN Input AHB-AP enable.

DAPADDR[31:0] Input DAP address bus.

DAPSEL Input Select signal generated from the DAP decoder to each AP. This signal indicates that
the slave device is selected, and a data transfer is required. There is a DAPSEL
signal for each slave. The signal is not generated by the driving DP. The decoder
monitors the address bus and asserts the relevant DAPSEL.

DAPENABLE Input This signal indicates the second and subsequent cycles of a DAP transfer from DP
to AHB-AP.

DAPWRITE Input When HIGH indicates a DAP write access from DP to AHB-AP. When LOW
indicates a read access.

DAPWDATA[31:0] Input The write bus is driven by the DP block during write cycles when DAPWRITE is
HIGH.

DAPABORT Input Aborts the current transfer. The AHB-AP returns DAPREADY HIGH without
affecting the state of the transfer in progress in the AHB Master Port.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. A-9

Signal Descriptions
A-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Glossary

This glossary describes some of the terms used in technical documents from ARM
Limited.

Abort A mechanism that indicates to a core that the attempted memory access is invalid or not
allowed or that the data returned by the memory access is invalid. An abort can be
caused by the external or internal memory system as a result of attempting to access
invalid or protected instruction or data memory.

See also Data Abort, External Abort and Prefetch Abort.

Addressing modes Various mechanisms, shared by many different instructions, for generating values used
by the instructions.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only
supports a subset of the functionality provided by the AMBA AXI protocol. The full
AMBA AHB protocol specification includes a number of features that are not
commonly required for master and slave IP developments and ARM Limited
recommends only a subset of the protocol is usually used. This subset is defined as the
AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA
is the ARM open standard for on-chip buses. It is an on-chip bus specification that
details a strategy for the interconnection and management of functional blocks that
make up a System-on-Chip (SoC). It aids in the development of embedded processors
with one or more CPUs or signal processors and multiple peripherals. AMBA
complements a reusable design methodology by defining a common backbone for SoC
modules.

Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports.
Connection to the main system bus is through a system-to-peripheral bus bridge that
helps to reduce system power consumption.

AHB See Advanced High-performance Bus.

AHB Access Port (AHB-AP)
An optional component of the DAP that provides an AHB interface to a SoC.

AHB-AP See AHB Access Port.

AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all of the basic
functions required by the majority of AMBA AHB slave and master designs,
particularly when used with a multi-layer AMBA interconnect. In most cases, the extra
facilities provided by a full AMBA AHB interface are implemented more efficiently by
using an AMBA AXI protocol interface.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the
data size is said to be aligned. Aligned words and halfwords have addresses that are
divisible by four and two respectively. The terms word-aligned and halfword-aligned
therefore stipulate addresses that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Architecture The organization of hardware and/or software that characterizes a processor and its
attached components, and enables devices with similar characteristics to be grouped
together when describing their behavior, for example, Harvard architecture, instruction
set architecture, ARMv6-M architecture.

ARM instruction An instruction of the ARM Instruction Set Architecture (ISA). These cannot be
executed by the processor.

ARM state The processor state in which the processor executes the instructions of the ARM ISA.
The processor only operates in Thumb state, never in ARM state.
Glossary-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Glossary
Base register A register specified by a load or store instruction that is used to hold the base value for
the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the
address that is sent to memory.

Base register write-back
Updating the contents of the base register used in an instruction target address
calculation so that the modified address is changed to the next higher or lower
sequential address in memory. This means that it is not necessary to fetch the target
address for successive instruction transfers and enables faster burst accesses to
sequential memory.

Beat Alternative word for an individual data transfer within a burst. For example, an INCR4
burst comprises four beats.

BE-8 Big-endian view of memory in a byte-invariant system.

See also LE, Byte-invariant and Word-invariant.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are
stored at increasing addresses in memory.

See also Little-endian and Endianness.

Big-endian memory Memory in which:

• a byte or halfword at a word-aligned address is the most significant byte or
halfword within the word at that address

• a byte at a halfword-aligned address is the most significant byte within the
halfword at that address.

See also Little-endian memory.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which
program execution is to be halted. Breakpoints are inserted by the programmer to enable
inspection of register contents, memory locations, variable values at fixed points in the
program execution to test that the program is operating correctly. Breakpoints can be
removed after the program is successfully tested.

See also Watchpoint.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-3

Glossary
Burst A group of transfers to consecutive addresses. Because the addresses are consecutive,
there is no requirement to supply an address for any of the transfers after the first one.
This increases the speed at which the group of transfers can occur. Bursts over AMBA
are controlled using signals to indicate the length of the burst and how the addresses are
incremented.

See also Beat.

Byte An 8-bit data item.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged
when switching between little-endian and big-endian operation. When a data item
larger than a byte is loaded from or stored to memory, the bytes making up that data item
are arranged into the correct order depending on the endianness of the memory access.
The ARM architecture supports byte-invariant systems in ARMv6 and later versions.

See also Word-invariant.

Cold reset Also known as power-on reset.

See also Warm reset.

Context The environment that each process operates in for a multitasking operating system.

Core A core is that part of a processor that contains the ALU, the datapath, the
general-purpose registers, the Program Counter, and the instruction decode and control
circuitry.

Core reset See Warm reset.

Data Abort An indication from a memory system to the core of an attempt to access an illegal data
memory location. An exception must be taken if the processor attempts to use the data
that caused the abort.

See also Abort.

Debug Access Port (DAP)
A TAP block that acts as an AMBA, AHB or AHB-Lite, master for access to a system
bus. The DAP is the term used to encompass a set of modular blocks that support system
wide debug. The DAP is a modular component, intended to be extendable to support
optional access to multiple systems such as memory mapped AHB and APB through a
single debug interface.

Debugger A debugging system that includes a program, used to detect, locate, and correct software
faults, together with custom hardware that supports software debugging.
Glossary-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Glossary
Endianness Byte ordering. The scheme that determines the order that successive bytes of a data
word are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

Exception An error or event which can cause the processor to suspend the currently executing
instruction stream and execute a specific exception handler or interrupt service routine.
The exception could be an external interrupt or NMI, or it could be a fault or error event
that is considered serious enough to require that program execution is interrupted.
Examples include attempting to perform an invalid memory access, external interrupts,
and undefined instructions. When an exception occurs, normal program flow is
interrupted and execution is resumed at the corresponding exception vector. This
contains the first instruction of the interrupt service routine to deal with the exception.

Exception handler
See Interrupt service routine.

Exception vector See Interrupt vector.

Halfword A 16-bit data item.

Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts
when a breakpoint or watchpoint is encountered. All processor state, coprocessor state,
memory and input/output locations can be examined and altered by the JTAG interface.

See also Monitor debug-mode.

Host A computer that provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

Implementation-defined
The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Internal PPB See Private Peripheral Bus.

Interrupt service
routine

A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector One of a number of fixed addresses in low memory that contains the first instruction of
the corresponding interrupt service routine.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-5

Glossary
JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for
debug access.

JTAG-DP See JTAG Debug Port.

LE Little endian view of memory in both byte-invariant and word-invariant systems. See
also Byte-invariant, Word-invariant.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored
at increasing addresses in memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or
halfword within the word at that address

• a byte at a halfword-aligned address is the least significant byte within the
halfword at that address.

See also Big-endian memory.

Load/store architecture
A processor architecture where data-processing operations only operate on register
contents, not directly on memory contents.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system
comprises several macrocells (such as a processor, an ETM, and a memory block) plus
application-specific logic.

Monitor debug-mode
One of two mutually exclusive debug modes. In Monitor debug-mode the processor
enables a software abort handler provided by the debug monitor or operating system
debug task. When a breakpoint or watchpoint is encountered, this enables vital system
interrupts to continue to be serviced while normal program execution is suspended.

See also Halt mode.

Multi-layer An interconnect scheme similar to a cross-bar switch. Each master on the interconnect
has a direct link to each slave, The link is not shared with other masters. This enables
each master to process transfers in parallel with other masters. Contention only occurs
in a multi-layer interconnect at a payload destination, typically the slave.

Power-on reset See Cold reset.

PPB See Private Peripheral Bus.
Glossary-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Glossary
Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the
pipeline before the preceding instructions have finished executing. Prefetching an
instruction does not mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to the core that an instruction has been fetched
from an illegal memory location. An exception must be taken if the processor attempts
to execute the instruction. A Prefetch Abort can be caused by the external or internal
memory system as a result of attempting to access invalid instruction memory.

See also Data Abort, Abort.

Private Peripheral Bus
Memory space at 0xE0000000 to 0xE00FFFFF.

Processor A processor is the circuitry in a computer system required to process data using the
computer instructions. It is an abbreviation of microprocessor. A clock source, power
supplies, and main memory are also required to create a minimum complete working
computer system.

RealView ICE A system for debugging embedded processor cores using a JTAG interface.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as 0 and read as 0.

SBO See Should Be One.

SBZ See Should Be Zero.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and
TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

Should Be One (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces
Unpredictable results.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces
Unpredictable results.

Serial-Wire JTAG
Debug Port

A standard debug port that combines JTAG-DP and SW-DP.

SWJ-DP See Serial-Wire JTAG Debug Port.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-7

Glossary
System memory
map

Address space at 0x00000000 to 0xFFFFFFFF.

TAP See Test access port.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is nTRST. This signal is
mandatory in ARM cores because it is used to reset the debug logic.

Thread Control Block (TCB)
A data structure used by an operating system kernel to maintain information specific to
a single thread of execution.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating
in Thumb state.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines
the data size is said to be unaligned. For example, a word stored at an address that is not
divisible by four.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug
controller and debug logic. This type of reset is useful if you are using the debugging
features of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when
the data contained by a particular memory address is changed. Watchpoints are inserted
by the programmer to enable inspection of register contents, memory locations, and
variable values when memory is written to test that the program is operating correctly.
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Word A 32-bit data item.

Word-invariant In a word-invariant system, the address of each byte of memory changes when
switching between little-endian and big-endian operation, in such a way that the byte
with address A in one endianness has address A EOR 3 in the other endianness. As a
result, each aligned word of memory always consists of the same four bytes of memory
in the same order, regardless of endianness. The change of endianness occurs because
of the change to the byte addresses, not because the bytes are rearranged.The ARM
Glossary-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

Glossary
architecture supports word-invariant systems in ARMv3 and later versions. When
word-invariant support is selected, the behavior of load or store instructions that are
given unaligned addresses is instruction-specific, and is in general not the expected
behavior for an unaligned access. It is recommended that word-invariant systems use
the endianness that produces the desired byte addresses at all times, apart possibly from
very early in their reset handlers before they have set up the endianness, and that this
early part of the reset handler must use only aligned word memory accesses.

See also Byte-invariant.

Write buffer A pipeline stage for buffering write data to prevent bus stalls from stalling the processor.
ARM DDI0413D Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-9

Glossary
Glossary-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI0413D

	Cortex-M1 Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Additional reading

	Feedback
	Feedback on the processor
	Feedback on this manual

	Introduction
	1.1 About the processor
	1.2 Components, hierarchy, and implementation
	1.2.1 Core
	1.2.2 Core memory interface
	1.2.3 NVIC
	1.2.4 Bus master
	1.2.5 AHB-PPB
	1.2.6 Debug

	1.3 Configurable options
	1.4 About the architecture
	1.5 Binary compatibility with Cortex-M3 processor
	1.6 Product revisions

	Programmer’s Model
	2.1 About the programmer’s model
	2.1.1 Privilege
	2.1.2 Operating modes
	2.1.3 Operating states
	2.1.4 Main stack and process stack access

	2.2 Registers
	2.2.1 General-purpose registers
	2.2.2 Special-purpose program status registers (xPSR)
	2.2.3 Special-Purpose Priority Mask Register
	2.2.4 Special-Purpose Control Register

	2.3 Data types
	2.4 Memory formats
	2.5 Instruction set

	Memory Map
	3.1 About the memory map

	Exceptions
	4.1 About the exception model
	4.2 Exception types
	4.3 Exception priority
	4.3.1 Priority levels

	4.4 Stacks
	4.5 Pre-emption
	4.6 Exception exit
	4.6.1 Returning the processor from an exception

	4.7 Late-arrival
	4.8 Exception control transfer
	4.9 Activation levels
	4.10 Lock-up

	Clocks and Resets
	5.1 About clocks and resets

	System Control
	6.1 About system control
	6.2 System control register descriptions
	6.2.1 Auxiliary Control Register
	6.2.2 SysTick Control and Status Register
	6.2.3 SysTick Reload Value Register
	6.2.4 SysTick Current Value Register
	6.2.5 SysTick Calibration Value Register
	6.2.6 CPU ID Base Register
	6.2.7 Interrupt Control State Register
	6.2.8 Application Interrupt and Reset Control Register
	6.2.9 Configuration and Control Register
	6.2.10 System handler priority registers
	6.2.11 System Handler Control and State Register

	Nested Vectored Interrupt Controller
	7.1 About the NVIC
	7.2 NVIC programmer’s model
	7.2.1 NVIC register map
	7.2.2 NVIC register descriptions

	7.3 Level versus pulse interrupts
	7.4 Resampling level interrupts
	7.5 Interrupts as general purpose input

	Debug
	8.1 About debug
	8.2 Debug control
	8.2.1 Debug Fault Status Register
	8.2.2 Debug Halting Control and Status Register
	8.2.3 Debug Core Register Selector Register
	8.2.4 Debug Core Register Data Register
	8.2.5 Debug Exception and Monitor Control Register

	8.3 ROM table
	8.4 BPU
	8.4.1 Breakpoint Control Register
	8.4.2 Breakpoint Comparator Registers

	8.5 DW unit
	8.5.1 DW Control Register
	8.5.2 DW Program Counter Sample Register
	8.5.3 DW Comparator Registers
	8.5.4 DW Mask Registers
	8.5.5 DW Function Registers

	8.6 Debug TCM interface
	8.7 Examples of debug register halt, access, and step
	8.7.1 Debug halt example
	8.7.2 Debug read register access example
	8.7.3 Debug write register access example
	8.7.4 Debug step example
	8.7.5 Breakpoint debug entry example
	8.7.6 Exiting core debug

	8.8 Data address watchpoint matching
	8.9 Semiprecise watchpoints

	Debug Access Port
	9.1 About the DAP
	9.2 Debug access
	9.2.1 Debug access during core reset
	9.2.2 Debug access while core running
	9.2.3 Debug access to TCMs

	9.3 AHB-AP
	9.3.1 AHB-Lite master ports
	9.3.2 AHB-AP programmer’s model
	9.3.3 AHB-AP clocks and resets
	9.3.4 Supported AHB protocol features
	9.3.5 Packed transfers

	External and Memory Interfaces
	10.1 About bus interfaces
	10.2 External interface
	10.3 Write buffer
	10.4 Memory attributes
	10.5 Memory interfaces

	Signal Descriptions
	A.1 Clocks and Resets
	A.2 Miscellaneous
	A.3 Interrupt interface
	A.4 External AHB-Lite interface
	A.5 Memory interfaces
	A.6 AHB-AP interface

	Glossary

