Delaunay Triangulations

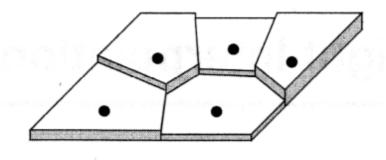
(slides mostly by Glenn Eguchi)

Motivation: Terrains

- Set of data points $A \subseteq R^2$
- Height f(p) defined at each point p in A
- How can we most naturally approximate height of points not in A?

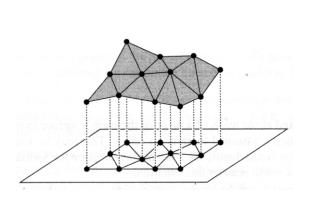
Option: Discretize

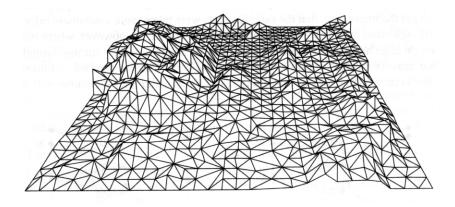
- Let f(p) = height of nearest point for points not in A
- Does not look natural



Better Option: Triangulation

- Determine a *triangulation* of A in R², then raise points to desired height
- *triangulation*: planar subdivision whose bounded faces are triangles with vertices from A



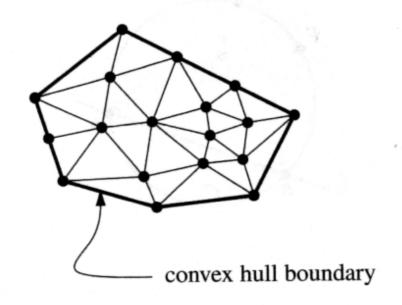


Triangulation: Formal Definition

- maximal planar subdivision: a subdivision S such that no edge connecting two vertices can be added to S without destroying its planarity
- *triangulation* of set of points P: a maximal planar subdivision whose vertices are elements of P

Triangulation is made of triangles

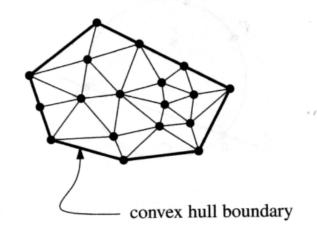
- Outer polygon must be convex hull
- Internal faces must be triangles, otherwise they could be triangulated further



Triangulation Details

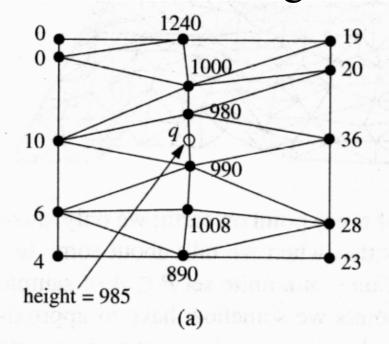
For P consisting of n points, all triangulations contain 2n-2-k triangles, 3n-3-k edges

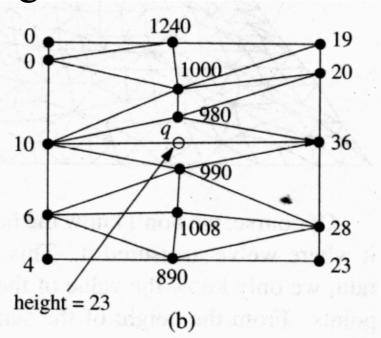
- n = number of points in P
- k = number of points on convex hull of P



Terrain Problem, Revisited

- Some triangulations are "better" than others
- Avoid skinny triangles, i.e. maximize minimum angle of triangulation





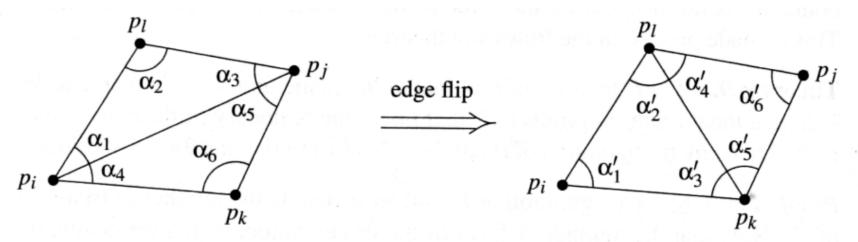
Angle Optimal Triangulations

- Create *angle vector* of the sorted angles of triangulation T, $(\alpha_1, \alpha_2, \alpha_3, \dots \alpha_{3m}) = A(T)$ with α_1 being the smallest angle
- A(T) is larger than A(T') iff there exists an i such that $\alpha_i = \alpha'_i$ for all i < i and $\alpha_i > \alpha'_i$
- Best triangulation is triangulation that is *angle optimal*, i.e. has the largest angle vector.

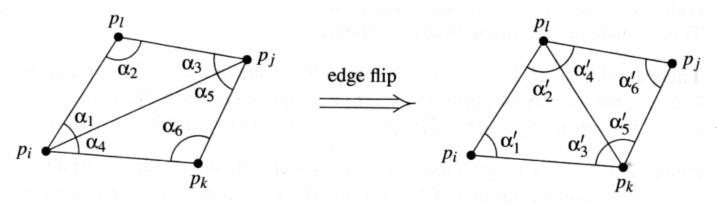
Angle Optimal Triangulations

Consider two adjacent triangles of T:

• If the two triangles form a convex quadrilateral, we could have an alternative triangulation by performing an *edge flip* on their shared edge.



Illegal Edges



• Edge *e* is illegal if:

$$\min_{1\leqslant i\leqslant 6}\alpha_i < \min_{1\leqslant i\leqslant 6}\alpha'_i.$$

• Only difference between *T* containing *e* and *T'* with *e* flipped are the six angles of the quadrilateral.

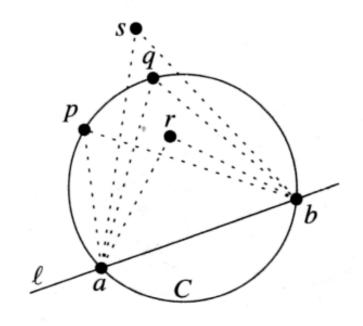
Illegal Triangulations

- If triangulation T contains an illegal edge e, we can make A(T) larger by flipping e.
- In this case, *T* is an *illegal triangulation*.

Thales's Theorem

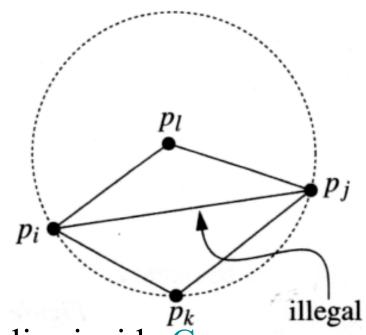
• We can use *Thales' Theorem* to test if an edge is legal without calculating angles

Let *C* be a circle, *l* a line intersecting *C* in points *a* and *b* and *p*, *q*, *r*, and *s* points lying on the same side of *l*. Suppose that *p* and *q* lie on *C*, that *r* lies inside *C*, and that *s* lies outside *C*. Then:



Testing for Illegal Edges

• If p_i , p_j , p_k , p_l form a convex quadrilateral and do not lie on a common circle, exactly one of $p_i p_j$ and $p_k p_l$ is an illegal edge.



- The edge $p_i p_j$ is illegal iff p_l lies inside C.
 - Proved using Thales's Theorem. E.g., the angle p_i - p_j - p_k is smaller than the angle p_i - p_l - p_k

Computing Legal Triangulations

- 1. Compute a triangulation of input points *P*.
- 2. Flip illegal edges of this triangulation until all edges are legal.
- Algorithm terminates because there is a finite number of triangulations.
- Too slow to be interesting...

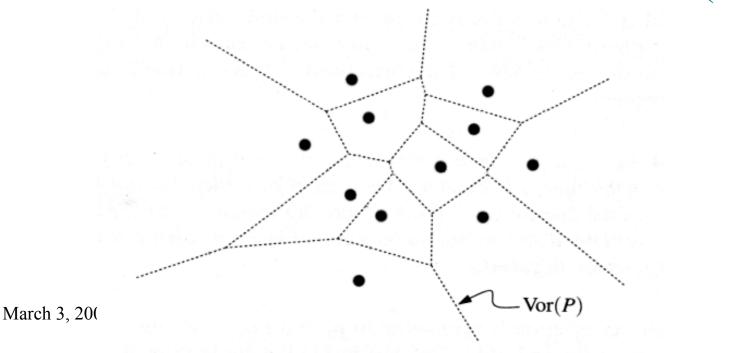
Sidetrack: Delaunay Graphs

- Before we can understand an interesting solution to the terrain problem, we need to understand Delaunay Graphs.
- Delaunay Graph of a set of points P is the dual graph of the Voronoi diagram of P

Delaunay Graphs

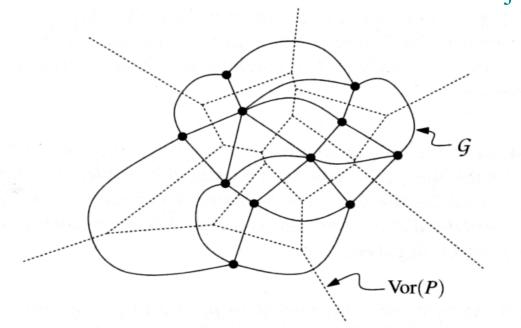
To obtain $\mathcal{DG}(P)$:

- Calculate Vor(P)
- Place one vertex in each site of the Vor(P)



Constructing Delaunay Graphs

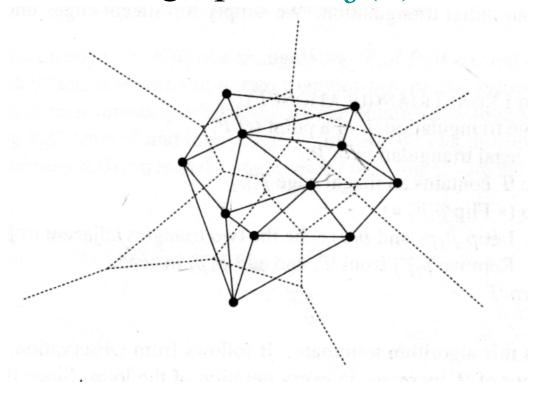
If two sites s_i and s_j share an edge (i.e., are adjacent), create an arc between v_i and v_j , the vertices located in sites s_i and s_j



March 3, 2005

Constructing Delaunay Graphs

Finally, straighten the arcs into line segments. The resultant graph is $\mathcal{D}G(P)$.

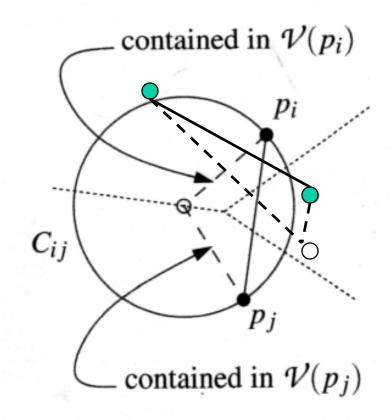


March 3, 2005

Properties of Delaunay Graphs

No two edges cross; $\mathcal{DG}(P)$ is a plane graph.

• Proved using the empty circle property of Voronoi diagrams



March 3, 2005

Lecture 9: Delauna

Delaunay Triangulations

- Some sets of more than 3 points of Delaunay graph may lie on the same circle.
- These points form empty convex polygons, which can be triangulated.
- *Delaunay Triangulation* is a triangulation obtained by adding 0 or more edges to the Delaunay Graph.



Properties of Delaunay Triangles

From the properties of Voronoi Diagrams...

• Three points p_i , p_j , $p_k \in P$ are vertices of the same face of the $\mathcal{DG}(P)$ iff the circle through p_i , p_j , p_k contains no point of P on its interior.

Proof:

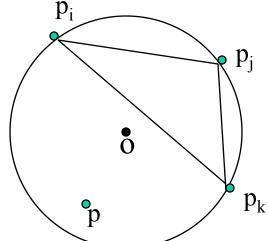
- •Assume there are other points inside the circle.
- •Choose one point p inside the circle, and remove all other points but p_i , p_i , p_k . Note that, after the removal of points,

 p_i , p_i , p_k remains a triangle.

- •Assume lies opposite p_i.
- p is closer to the center than are p_i , p_j , p_k .

So, the center belongs to the interior of the Voronoi face of p.

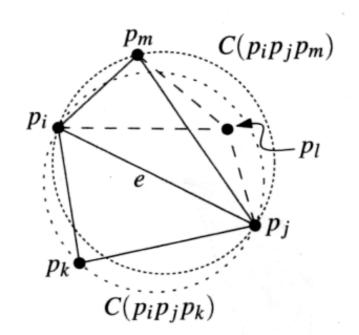
- Consider a segment o-p_j. There is a point q on that segment that is equidistant to p_i and p,but its distance to p_i p_k is larger.
- •Therefore, the Voronoi cells of p_j and p share an edge, so there is a Delaunay edge between p_j and p.
- •But the Delaunay edges cannot intersect. QED.



Legal Triangulations, revisited

A triangulation T of P is legal iff T is a $\mathcal{D}T(P)$.

- DT → Legal: Empty circle property
- Legal → DT: assume legal and *not* empty circle property



DT and Angle Optimal

The angle optimal triangulation is a **DT**.

Terrain Problem, revisited

Therefore, the problem of finding a triangulation that maximizes the minimum angle is reduced to the problem of finding a Delaunay Triangulation.

So how do we find the Delaunay Triangulation?

How do we compute $\mathcal{D}T(P)$?

- Compute Vor(P) then dualize into DT(P).
- We could also compute $\mathcal{D}T(P)$ using a randomized incremental method.

Degenerate Cases

What if multiple **D**T exist for P?

- Not all **DT** are angle optimal.
- By Thales Theorem, the minimum angle of each of the **D**T is the same.
- Thus, all the **D**T are equally "good" for the terrain problem. All **D**T maximize the minimum angle.

The rest is for the "curious"

Algorithm Overview

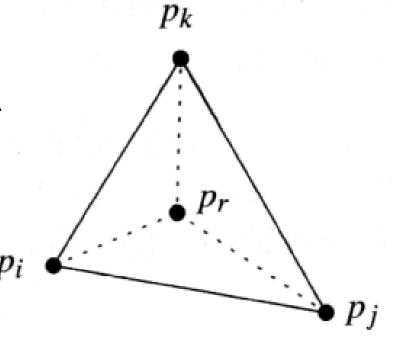
- 1. Initialize triangulation *T* with a "big enough" helper bounding triangle that contains all points *P*.
- 2. Randomly choose a point p_r from P.
- 3. Find the triangle Δ that p_r lies in.
- 4. Subdivide Δ into smaller triangles that have p_r as a vertex.
- 5. Flip edges until all edges are legal.
- 6. Repeat steps 2-5 until all points have been added to *T*.

Triangle Subdivision: Case 1 of 2

Assuming we have already found the triangle that p_r lives in, subdivide Δ into smaller triangles that have p_r as a vertex.

Two possible cases:

1) p_r lies in the interior of Δ

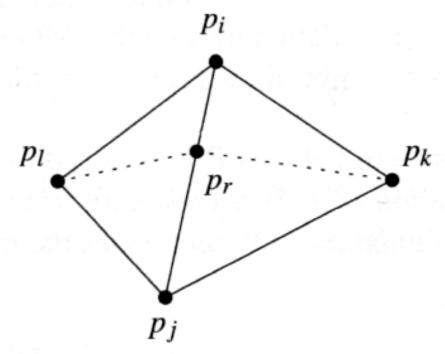


March 3, 2005

Lecture 9: Delaun

Triangle Subdivision: Case 2 of 2

2) p_r falls on an edge between two adjacent triangles



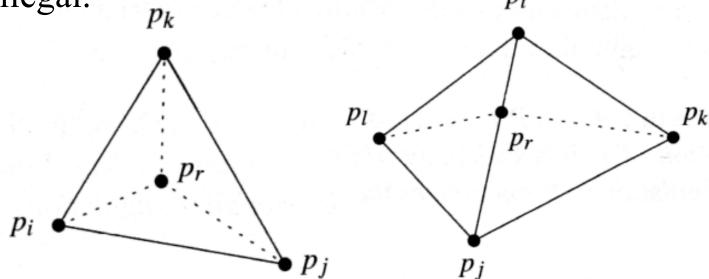
Lecture 9: Delaunay triangulations

Which edges are illegal?

- Before we subdivided, all of our edges were legal.
- After we add our new edges, some of the edges of T may now be illegal, but which ones?

Outer Edges May Be Illegal

- An edge can become illegal only if one of its incident triangles changed.
- Outer edges of the incident triangles $\{p_j p_k, p_i p_k, p_i p_j\}$ or $\{p_i p_l, p_l p_j, p_j p_k, p_k p_i\}$ may have become illegal.



Marc

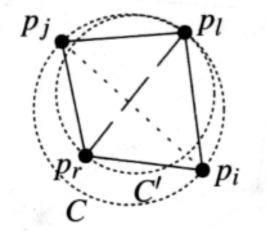
New Edges are Legal

Are the new edges (edges involving p_r) legal?

Consider **any** new edge $p_r p_l$.

Before adding $p_r p_l$,

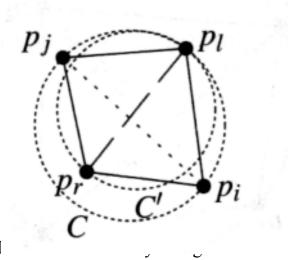
- p₁ was part of some triangle p_ip_jp₁
- Circumcircle C of p_i , p_j , and p_l did not contain any other points of P in its interior



New edges incident to p_r are Legal

- If we shrink C, we can find a circle C' that passes through p_rp_l
- C' contains no points in its interior.
- Therefore, $p_r p_l$ is legal.

Any new edge incident p_r is legal.



Flip Illegal Edges

- Now that we know which edges have become illegal, we flip them.
- However, after the edges have been flipped, the edges incident to the new triangles may now be illegal.
- So we need to recursively flip edges...

LegalizeEdge

 p_r = point being inserted $p_i p_j$ = edge that may need to be flipped

LegalizeEdge(p_r , $p_i p_j$, T)

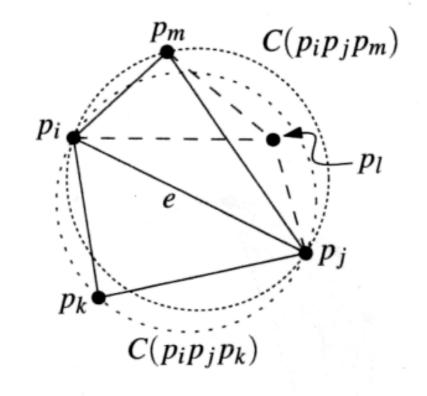
- 5. **if** $p_i p_j$ is illegal
- 6. **then** Let $p_i p_j p_l$ be the triangle adjacent to $p_r p_i p_j$ along $p_i p_i$
- 7. Replace $p_i p_j$ with $p_r p_l$
- 8. Legalize Edge $(p_r, p_i p_l, T)$
- 9. LegalizeEdge(p_r , $p_l p_i$, T)

 p_j p_l p_i

Flipped edges are incident to p_r

Notice that when LEGALIZEEDGE flips edges, these new edges are incident to p_r

- By the same logic as earlier, we can shrink the circumcircle of $p_i p_j p_l$ to find a circle that passes through p_r and p_l .
- Thus, the new edges are legal.



Bounding Triangle

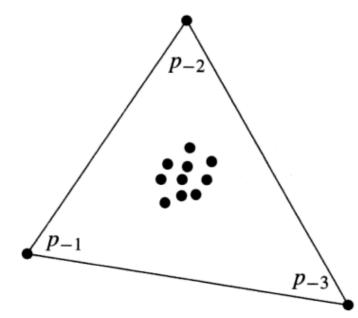
Remember, we skipped step 1 of our algorithm.

2. Begin with a "big enough" helper bounding triangle that contains all points.

Let $\{p_{-3}, p_{-2}, p_{-1}\}$ be the vertices of our bounding triangle.

"Big enough" means that the triangle:

- contains all points of P in its interior.
- will not destroy edges between points in P.



March 3, 2005

Lecture 9: Delauna

Considerations for Bounding Triangle

- We could choose large values for p_{-1} , p_{-2} and p_{-3} , but that would require potentially huge coordinates.
- Instead, we'll modify our test for illegal edges, to act as if we chose large values for bounding triangle.

Bounding Triangle

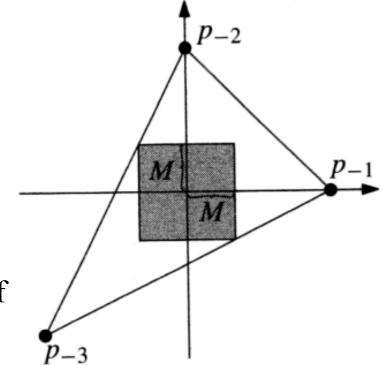
We'll *pretend* the vertices of the bounding triangle are at:

$$p_{-1} = (3M, 0)$$

$$p_{-2} = (0, 3M)$$

$$p_{-3} = (-3M, -3M)$$

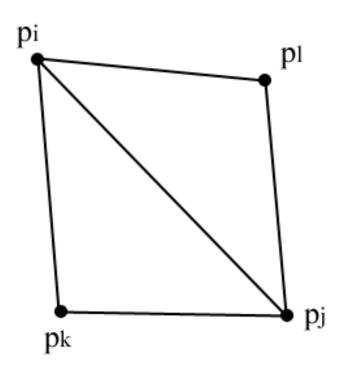
M = maximum absolute value of any coordinate of a point in P



Lecture 9: Delauliay urangulations

Modified Illegal Edge Test

 $p_i p_j$ is the edge being tested p_k and p_l are the other two vertices of the triangles incident to $p_i p_j$



Our illegal edge test falls into one of 4 cases.

March 3, 2005

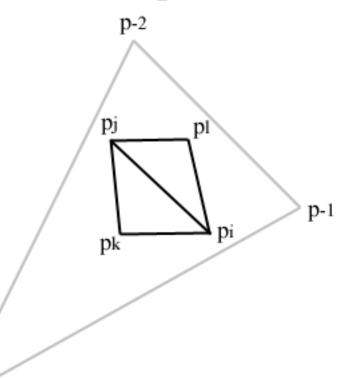
Lecture 9: Delaunay triangulations

Case 1) Indices i and j are both negative

- p_ip_j is an edge of the bounding triangle
- p_ip_j is legal, want to preserve edges of bounding triangle

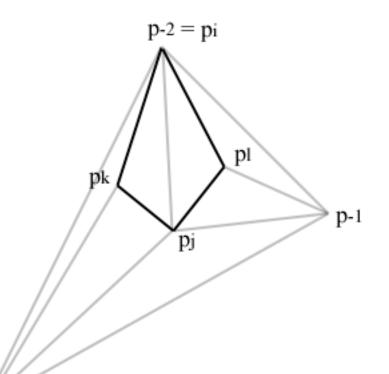
Case 2) Indices i, j, k, and l are all positive.

- This is the normal case.
- $p_i p_j$ is illegal iff p_l lies inside the circumcircle of $p_i p_j p_k$



Case 3) Exactly one of i, j, k, l is negative

- •We don't want our bounding triangle to destroy any Delaunay edges.
- •If i or j is negative, $p_i p_j$ is illegal.
- •Otherwise, $p_i p_j$ is legal.



March 3, 2005

Lecture 9: Dela

p-3

Case 4) Exactly two of i, j, k, l are negative.

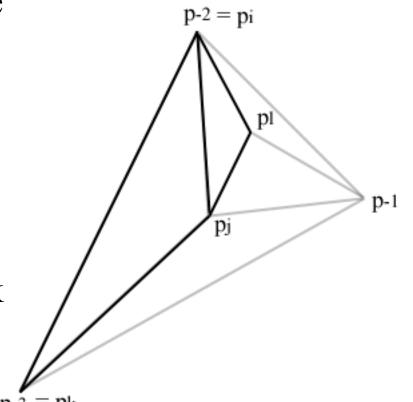
•k and l cannot both be negative (either p_k or p_l must be p_r)

•i and j cannot both be negative

•One of i or j and one of k or l must be negative

•If negative index of i and j is smaller than negative index of k and l, $p_i p_j$ is legal.

•Otherwise $p_i p_i$ is illegal.



March 3, 2005

Lecture 9: Delaunay triangulations

Triangle Location Step

Remember, we skipped step 3 of our algorithm.

- 3. Find the triangle T that p_r lies in.
- Take an approach similar to Point Location approach.
- Maintain a point location structure D, a directed acyclic graph.

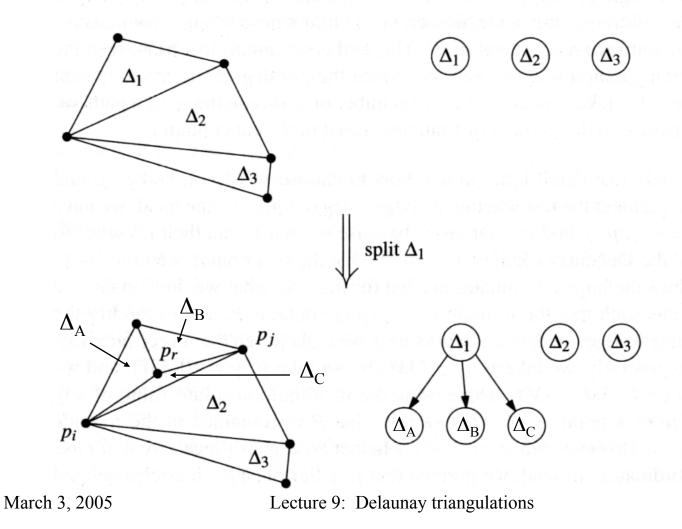
Structure of D

- Leaves of \mathcal{D} correspond to the triangles of the current triangulation.
- Maintain cross pointers between leaves of \mathcal{D} and the triangulation.
- Begin with a single leaf, the bounding triangle p₋₁p₋₂p₋₃

Subdivision and D

• Whenever we split a triangle Δ_1 into smaller triangles Δ_a and Δ_b (and possibly Δ_c), add the smaller triangles to D as leaves of Δ_1

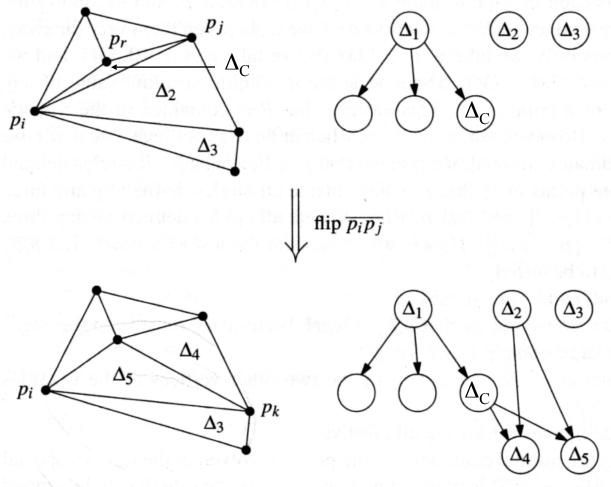
Subdivision and D



Edge Flips and D

- Whenever we perform an edge flip, create leaves for the two new triangles.
- Attach the new triangles as leaves of the two triangles replaced during the edge flip.

Edge Flips and D



March 3, 2003

Lecture >

iaunay triangulations

Searching D

- p_r = point we are searching with
- 2. Let the current node be the root node of \mathcal{D} .
- 3. Look at child nodes of current node. Check which triangle p_r lies in.
- 4. Let current node = child node that contains p_r
- 5. Repeat steps 2 and 3 until we reach a leaf node.

Searching D

- Each node has at most 3 children.
- Each node in path represents a triangle in \mathcal{D} that contains p_r
- Therefore, takes O(number of triangles in \mathcal{D} that contain p_r)

Properties of D

Notice that the:

- Leaves of \mathcal{D} correspond to the triangles of the current triangulation.
- Internal nodes correspond to *destroyed triangles*, triangles that were in an earlier stage of the triangulation but are not present in the current triangulation.

Algorithm Overview

- 1. Initialize triangulation T with helper bounding triangle. Initialize \mathcal{D} .
- 2. Randomly choose a point p_r from P.
- 3. Find the triangle Δ that p_r lies in using \mathcal{D} .
- 4. Subdivide Δ into smaller triangles that have p_r as a vertex. Update \mathcal{D} accordingly.
- 5. Call LEGALIZEEDGE on all possibly illegal edges, using the modified test for illegal edges. Update \mathcal{D} accordingly.
- 6. Repeat steps 2-5 until all points have been added to T.

Analysis Goals

- Expected running time of algorithm is:
 O(n log n)
- Expected storage required is:
 O(n)

First, some notation...

- $P_r = \{p_1, p_2, ..., p_r\}$
 - Points added by iteration r
- $\Omega = \{p_{-3}, p_{-2}, p_{-1}\}$
 - Vertices of bounding triangle
- $\mathcal{D}G_{r} = \mathcal{D}G(\Omega \cup P_{r})$
 - Delaunay graph as of iteration r

Sidetrack: Expected Number of Δs

It will be useful later to know the expected number of triangles created by our algorithm...

Lemma 9.11 Expected number of triangles created by DelaunayTriangulation is 9n+1.

• In initialization, we create 1 triangle (bounding triangle).

Expected Number of Triangles

In iteration r where we add p_r ,

- in the subdivision step, we create at most 4 new triangles. Each new triangle creates one new edge incident to p_r
- each edge flipped in LegalizeEdge creates two new triangles and one new edge incident to p_r

Expected Number of Triangles

Let $k = number of edges incident to p_r after insertion of p_r, the degree of p_r$

- We have created at most 2(k-3)+3 triangles.
- -3 and +3 are to account for the triangles created in the subdivision step

The problem is now to find the expected degree of $\mathbf{p_r}$

Expected Degree of p_r

Use backward analysis:

- Fix P_r , let p_r be a random element of P_r
- $\mathcal{D}G_r$ has 3(r+3)-6 edges
- Total degree of $P_r \le 2[3(r+3)-9] = 6r$

E[degree of random element of P_r] ≤ 6

Triangles created at step r

Using the expected degree of pr, we can find the expected number of triangles created in step r.

$$deg(p_r, \mathcal{D}G_r) = degree \text{ of } p_r \text{ in } \mathcal{D}G_r$$

E[number of triangles created in step
$$r$$
] \leq E[2deg(p_r , \mathcal{DG}_r) - 3]
= 2E[deg(p_r , \mathcal{DG}_r)] - 3
 \leq 2·6-3 = 9

Expected Number of Triangles

Now we can bound the number of triangles:

 ≤ 1 initial $\Delta + \Delta s$ created at step $1 + \Delta s$ created at step $2 + ... + \Delta s$ created at step n

$$\leq 1 + 9n$$

Expected number of triangles created is 9n+1.

Storage Requirement

- D has one node per triangle created
- 9n+1 triangles created
- O(n) expected storage

Expected Running Time

Let's examine each step...

- 2. Begin with a "big enough" helper bounding triangle that contains all points.
 - O(1) time, executed once = O(1)
- 3. Randomly choose a point p_r from P. O(1) time, executed n times = O(n)
- 4. Find the triangle Δ that p_r lies in.

Skip step 3 for now...

Expected Running Time

- 4. Subdivide Δ into smaller triangles that have p_r as a vertex.
 - O(1) time executed n times = O(n)
- 5. Flip edges until all edges are legal.In total, expected to execute a total number of times proportional to number of triangles created = O(n)

Thus, total running time without point location step is O(n).

- Time to locate point p_r is
 - O(number of nodes of D we visit)
 - + O(1) for current triangle
- Number of nodes of D we visit
 - = number of destroyed triangles that contain p_r
- A triangle is destroyed by p_r if its circumcircle contains
 p_r

We can charge each triangle visit to a Delaunay triangle whose circumcircle contains p_r

 $K(\Delta)$ = subset of points in P that lie in the circumcircle of Δ

- When $p_r \in K(\Delta)$, charge to Δ .
- Since we are iterating through P, each point in $K(\Delta)$ can be charged at most once.

Total time for point location:

$$O(n + \sum_{\Delta} \operatorname{card}(K(\Delta))),$$

We want to have $O(n \log n)$ time, therefore we want to show that:

$$\sum_{\Delta} \operatorname{card}(K(\Delta)) = O(n \log n),$$

Introduce some notation...

$$T_{\rm r}$$
 = set of triangles of $\mathcal{D}G(\Omega \cup P_{\rm r})$

 $\mathcal{T}_r \setminus \mathcal{T}_{r-1}$ triangles created in stage r

Rewrite our sum as:

$$\sum_{r=1}^{n} \left(\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) \right).$$

More notation...

 $k(P_r, q)$ = number of triangles $\Delta \in \mathcal{T}_r$ such that q is contained in Δ

 $k(P_{\rm r}, q, p_{\rm r})$ = number of triangles $\Delta \in \mathcal{T}_{\rm r}$ such that q is contained in Δ and $p_{\rm r}$ is incident to Δ

Rewrite our sum as:

$$\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) = \sum_{q \in P \setminus P_r} k(P_r, q, p_r).$$

Find the $E[k(P_r, q, p_r)]$ then sum later...

- Fix P_r , so $k(P_r, q, p_r)$ depends only on p_r .
- Probability that p_r is incident to a triangle is 3/r

Thus:

$$E[k(P_r,q,p_r)] \leqslant \frac{3k(P_r,q)}{r}$$
.

Using:

$$E[k(P_r,q,p_r)] \leqslant \frac{3k(P_r,q)}{r}$$
.

We can rewrite our sum as:

$$\mathbf{E}\big[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\big] \leqslant \frac{3}{r} \sum_{q \in P \setminus P_r} k(P_r, q).$$

Now find $E[k(P_r, p_{r+1})]...$

• Any of the remaining n-r points is equally likely to appear as p_{r+1}

So:

$$\mathbf{E}[k(P_r, p_{r+1})] = \frac{1}{n-r} \sum_{q \in P \setminus P_r} k(P_r, q).$$

Using:

$$E[k(P_r, p_{r+1})] = \frac{1}{n-r} \sum_{q \in P \setminus P_r} k(P_r, q).$$

We can rewrite our sum as:

$$E\left[\sum_{\Delta\in\mathcal{I}_r\setminus\mathcal{I}_{r-1}}\operatorname{card}(K(\Delta))\right]\leqslant 3\left(\frac{n-r}{r}\right)E\left[k(P_r,p_{r+1})\right].$$

Find $k(P_r, p_{r+1})$

- number of triangles of \mathcal{T}_r that contain p_{r+1}
- these are the triangles that will be destroyed when p_{r+1} is inserted; $\mathcal{T}_r \setminus \mathcal{T}_{r+1}$
- Rewrite our sum as:

$$E\left[\sum_{\Delta\in\mathcal{T}_r\setminus\mathcal{T}_{r-1}}\operatorname{card}(K(\Delta))\right]\leqslant 3\left(\frac{n-r}{r}\right)E\left[\operatorname{card}(\mathcal{T}_r\setminus\mathcal{T}_{r+1})\right].$$

Remember, number of triangles in triangulation of n points with k points on convex hull is 2n-2-k

- T_m has 2(m+3)-2-3=2m+1
- T_{m+1} has two more triangles than T_m

Thus, $card(\mathcal{T}_r \setminus \mathcal{T}_{r+1})$

- = card(triangles destroyed by p_r)
- = card(triangles created by p_r) 2
- $= \operatorname{card}(\mathcal{T}_{r+1} \setminus \mathcal{T}_r) 2$

We can rewrite our sum as:

$$\mathbb{E}\left[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leq 3\left(\frac{n-r}{r}\right) \left(\mathbb{E}\left[\operatorname{card}(\mathcal{T}_{r+1} \setminus \mathcal{T}_r)\right] - 2\right).$$

Remember we fixed P_r earlier...

• Consider all P_r by averaging over both sides of the inequality, but the inequality comes out identical.

 $E[number\ of\ triangles\ created\ by\ p_r]$

= $E[number\ of\ edges\ incident\ to\ p_{r+1}\ in\ T_{r+1}]$

=6

Therefore:

$$E\left[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant 12\left(\frac{n-r}{r}\right).$$

Analysis Complete

$$\mathbb{E}\left[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant 12\left(\frac{n-r}{r}\right).$$

If we sum this over all r, we have shown that:

$$\sum_{\Lambda} \operatorname{card}(K(\Delta)) = O(n \log n),$$

And thus, the algorithm runs in $O(n \log n)$ time.