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 Graph:  
 Kronecker graphs 

 

 Graph + Node attributes:  
 MAG model 

 

 Graph + Edge attributes:  
 Signed networks 

 

 Link Prediction/Recommendation: 
 Supervised Random Walks 
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 Many networks come with: 
 The graph (wiring diagram) 
 Node/edge metadata (attributes/features) 

 How to generate realistic looking graphs? 
 1: Kronecker  Graphs 

 How to model networks with node attributes? 
 2: Multiplicative Attributes Graph (MAG) model 

 How to model networks with edge attributes? 
 3: Networks of Positive and Negative Edges 

 How to predict/recommend new edges? 
 4: Supervised Random Walks 
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 Stanford Large Network Dataset Collection 
 http://snap.stanford.edu 
 60+ large networks: 
 Social network, Geo-location networks, Information 

networks, Evolving networks, Citation networks, Internet 
networks, Amazon, Twitter, … 

 Stanford Network Analysis Platform (SNAP): 
 http://snap.stanford.edu 
 C++ Library for massive networks 
 Has no problem working with 1B nodes, 10B edges 
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 Stanford CS224W:  
Social and Information Networks Analysis 
 http://cs224w.stanford.edu 
 Graduate course on topics discusses today 
 Slides, homeworks, readings, data, … 

 

 My webpage 
 http://cs.stanford.edu/~jure/  
 Videos of talks and tutorials 

 Twitter: @jure 
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Reliably models the global network  
structure using only 4 parameters! 



 Want to have a model that can generate a 
realistic networks with realistic growth: 
 Static Patterns 
 Power Law Degree Distribution 
 Small Diameter 
 Power Law Eigenvalue and Eigenvector Distribution 
 Temporal Patterns 
 Densification Power Law 
 Shrinking/Constant Diameter 

 For Kronecker graphs: 
1) analytically tractable  (i.e, prove power-laws, etc.) 
2) statistically interesting (i.e, fit it to real data) 
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 Classical example:  
 Heavy-tailed degree distributions 
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Flickr social network 
n= 584,207, m=3,555,115 

Scale free networks 
many hub nodes 

[Faloutsos^3, SIGCOM ‘99] 
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 How do network properties scale with 
the size of the network? 
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[Leskovec et al. KDD 05] 

time 

Densification 
Average degree increases 

Shrinking diameter 
Path lengths get shorter 
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 How can we think of network structure 
recursively? 
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=1K a b 
c d a edges d edges 

b edges 

c edges 

[Leskovec et al. Arxiv 09] 
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 Kronecker graphs:  
 A recursive model of network structure 
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Initiator 

(9x9) 
(3x3) 

(27x27) 

[Leskovec et al. PKDD ‘05] 

K1 
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 Kronecker product of matrices A and B is 
given by 

 

 
 

 

 Define: Kronecker product of two graphs is a 
Kronecker product of their adjacency matrices 

 Kronecker graph: a growing sequence of 
graphs by iterating the Kronecker product 
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N x M K x L 

N*K x M*L  

Jure Leskovec (@jure), KDD Summer School 2012 
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 Properties of deterministic Kronecker graphs 
(can be proved!) 
 Properties of static networks: 
 Power-Law like Degree Distribution 
 Power-Law eigenvalue and eigenvector distribution 
 Constant Diameter 

 Properties of evolving networks: 
 Densification Power Law 
 Shrinking/Stabilizing Diameter 

 

 Can we make the model stochastic? 
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 Create N1×N1 probability matrix Θ1 
 Compute the ith Kronecker power Θi 
 For each entry puv of Θk include an edge (u,v) 

with probability puv 

0.5 0.2 
0.1 0.3 
Θ1 

Instance  
matrix K2 

0.25 0.10 0.10 0.04 
0.05 0.15 0.02 0.06 
0.05 0.02 0.15 0.06 
0.01 0.03 0.03 0.09 

Θ2= Θ1 ⊗ Θ1 

flip biased 
coins 

Kronecker 
multiplication 

Probability 
of edge pij 

15 8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 

[Leskovec et al. PKDD ‘05] 



 Given a graph G 
 What is the parameter matrix Θ? 
 Find Θ that maximizes P(G|Θ) 
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0.25 0.10 0.10 0.04 
0.05 0.15 0.02 0.06 
0.05 0.02 0.15 0.06 
0.01 0.03 0.03 0.09 

0.5 0.2 
0.1 0.3 

Θ Θk 

1 0 1 1 

0 1 0 1 

1 0 1 1 

1 1 1 1 
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[Leskovec-Faloutsos  ICML ‘07] 
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 Maximum likelihood estimation 
 

 

 Naïve estimation takes O(N!N2): 
 N! for different node labelings: 
 N2 for traversing graph adjacency matrix 

 Do gradient descent 

=Θ1
a b 
c d 

 

1ΘP( |  )  Kronecker 

arg max 

We estimate the model in O(E) 
17 

1Θ

[Leskovec-Faloutsos  ICML ‘07] 

Jure Leskovec (@jure), KDD Summer School 2012 8/10/2012 



 Real and Kronecker are very close: 
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=Θ1
0.99 0.54 

0.49 0.13 



- For networks with node attributes 
- Can do power-law and log-normal degrees 



 When modeling networks, what would  
we like to know? 
 How to model the links in the network  
 How to model the interaction of node 

attributes/properties and the network structure 
 Goal: 
 A family of models of networks with node attributes 
 The models are: 
 1) Analytically tractable  (prove network properties) 

 2) Statistically interesting (can be fit to real data) 
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 Each node has a set of categorical attributes 
 Gender: Male, Female 
 Home country: US, Canada, Russia, etc. 

 How do node attributes influence link 
formation?  
 Example: MSN Instant Messenger [Leskovec&Horvitz ’08] 

 
 𝒖            𝒗 FEMALE MALE 

FEMALE 0.3 0.7 

MALE 0.7 0.3 

𝒖 𝒗 

Chatting network 

Link probability 

𝑢’
s 

ge
nd

er
 

𝑣’s gender 

[Internet Math. ‘12] 
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 Let the values of the 𝒊-th attribute for node 𝑢 
and 𝑣 be 𝒂𝒊 𝒖  and 𝒂𝒊(𝒗) 
  𝑎𝑖 𝑢  and 𝑎𝑖(𝑣) can take values {0,⋯ ,𝑑𝑖 − 1} 

 Question: How can we capture the influence 
of the attributes on link formation? 
 Key:  Attribute link-affinity matrix 𝚯 
 
 
 
 Each entry captures the affinity of a link  between 

two nodes associated with the attributes of them 

𝑎𝑖 𝑢 = 0 𝚯[𝟎,𝟎] 𝚯[𝟎,𝟏] 

𝚯[𝟏,𝟎] 𝚯[𝟏,𝟏] 

𝑎𝑖 𝑣 = 0     𝑎𝑖 𝑣 = 1 

𝑷 𝒖,𝒗 = 𝚯[𝒂𝒊 𝒖 ,𝒂𝒊(𝒗)]  
𝑎𝑖 𝑢 = 1 

[Internet Math. ‘12] 
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 Link-Afinity Matrices offer flexibility in 
modeling the network structure: 
 Homophily :  love of the same 
 e.g., political views, hobbies 
 

 Heterophily :  love of the opposite 
 e.g., genders 

 

 Core-periphery :  love of the core 
 e.g. extrovert personalities 

 

0.9 0.1 

0.1 0.8 

0.2 0.9 

0.9 0.1 

0.9 0.5 

0.5 0.2 

[Internet Math. ‘12] 
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 How do we combine the effects of multiple 
attributes? 
 We multiply the probabilities from all attributes 

Node 
attributes 

Attribute 
matrices 

Link 
probability 

𝜶𝟏 𝜷𝟏 

𝜷𝟏 𝜸𝟏 

𝜶𝟐 𝜷𝟐 

𝜷𝟐 𝜸𝟐 

𝜶𝟑 𝜷𝟑 

𝜷𝟑 𝜸𝟑 

𝜶𝟒 𝜷𝟒 

𝜷𝟒 𝜸𝟒 
𝚯𝐢 = 

𝒂 𝒖 = [ 
𝒂 𝒗 = [ 

𝟎 
𝟎 

𝟎 
𝟏 

𝟏 
𝟏 

𝟎 
𝟎 

] 
] 

𝑷 𝒖,𝒗 = 𝜶𝟏   ×   𝜷𝟐  ×   𝜸𝟑   ×  𝜶𝟒 

+ 

[Internet Math. ‘12] 
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 MAG model  𝑴(𝒏, 𝒍,𝑨,𝜣) : 
 A network contains 𝒏 nodes 
 Each node has 𝒍 categorical attributes 
 𝐴 = [𝑎𝑖(𝑢)] represents the 𝒊-th attribute of node 𝒖 
 Each attribute can take 𝒅𝒊 different values 
 Each attribute has a 𝒅𝒊 × 𝒅𝒊 link-affinity matrix  𝜣𝒊 
 Edge probability between nodes 𝑢 and 𝑣 

𝑷(𝒖,𝒗) =  �𝚯𝒊[𝒂𝒊 𝒖 ,𝒂𝒊 𝒗 ]
𝒍

𝒊=𝟏

 

[Internet Math. ‘12] 

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 25 



 MAG can model global network structure! 
 

 MAG generates networks with similar 
properties as found in real-world networks: 
 Unique giant connected component 
 Densification Power Law 
 Small diameter 
 Heavy-tailed degree distribution 
 Either log-normal or power-law 

 

[Internet Math. ‘12] 
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 Simulation: 
 
 
 
 

Theorem 1:  A unique giant connected 
component of size 𝜃(𝑛) exists in 𝑀 𝑛, 𝑙, 𝜇,𝛩  
w.h.p. as 𝑛 → ∞  if 
 
 
 

[Internet Math. ‘12] 
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𝑃 𝑎𝑖 𝑢 = 1 = 𝜇 



 
 
 
 

 

 Simulation: 
 

Theorem 3: 𝑀 𝑛, 𝑙,𝜇,𝛩  follows a log-normal 
degree distribution as 𝑛 → ∞ for some constant 𝑅 
 
  
if the network has a giant connected component. 

[Internet Math. ‘12] 
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 Simulation: 
 
 
 
 
 

Theorem 4: MAG follows a power-law degree 

distribution 
𝑝𝑘 ∝  𝑘−𝛿−0.5   for some 𝛿 > 0   

when we set   𝜇𝑖
1−𝜇𝑖

= 𝜇𝑖𝛼𝑖+(1−𝜇𝑖)𝛽𝑖
𝜇𝑖𝛽𝑖+(1−𝜇𝑖)𝛾𝑖

−𝛿
 

[Internet Math. ‘12] 
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 MAG model is also statistically “interesting” 
 Estimate model parameters from the data 
 Given:  

Links of the network 

 Estimate: 
 Node attributes 
 Link-affinity matrices 

 Formulate as a  
maximum likelihood problem 

 Solve it using variational EM 
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0.9 0.1 

0.1 0.8 

𝒂 𝒖 = [… ] 

𝚯𝒊 = 



 Edge probability: 
 𝑷(𝒖,𝒗) =  ∏ 𝚯𝒊[𝒂𝒊 𝒖 ,𝒂𝒊 𝒗 ]𝒍

𝒊=𝟏  
 Network likelihood: 
 𝑃 𝐺 𝐴,Θ = ∏ 𝑃(𝑢, 𝑣)𝐺𝑢𝑣=1  ⋅  ∏ 1 − 𝑃 𝑢, 𝑣𝐺𝑢𝑣=0  
 G … graph adjacency matrix 
 A … matrix of node attributes 
 Θ… link-affinity matrices 

 Want to solve: 
 arg max

𝐴,Θ
𝑃(𝐺|𝐴,Θ) 
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Node 
attribute 

estimation 

𝑃(𝐴|𝐺,Θ) 

M-step: 

Gradient method 

Model 
parameter 
estimation 

Θ 
E-step: 

Variational inference 

[UAI. ‘11] 



 LinkedIn network 
 When it was super-young 

(4k nodes, 10k edges) 
 

 Fit using 11 latent binary 
attributes per node 
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 Case study: AddHealth 
 School friendship network  
 Largest network: 457 nodes, 2259 edges 
 Over 70 school-related attributes for each student  
 Real features are selected in the greedy way to 

maximize the likelihood of MAG model  
 We fit only Θ (since A is given):  arg max

Θ
𝑃(𝐺,𝐴|Θ)  

 7 features 
 

 Model accurately fits the network structure 
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 Most important features for tie creation 
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- How people determine friends and foes? 
- Predict friend vs. foe with 90% accuracy 



 So far we viewed links as positive but links  
can also be negative 

 

 Question: 
 How do edge signs and network interact? 
 How to model and predict edge signs? 

 

 Applications: 
 Friend recommendation 
 Not just whether you know someone  

but what do you think of them 
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 Each link AB is explicitly tagged with a sign: 
 Epinions: Trust/Distrust 
 Does A trust B’s product reviews? 

(only positive links are visible) 

 Wikipedia: Support/Oppose 
 Does A support B to become 

Wikipedia administrator? 

 Slashdot: Friend/Foe 
 Does A like B’s comments? 

 Other examples:  
 Sentiment analysis of the communication 
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 Start with intuition [Heider ’46]: 
 Friend of my friend is my friend 
 Enemy of enemy is my friend 
 Enemy of friend is my enemy 

 Look at connected triples of nodes: 
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+ + 
+ 

- - 
+ 

+ + 
- 

- - 
- 

Unbalanced Balanced 
Consistent with “friend of a friend” or 

“enemy of the enemy” intuition 
Inconsistent with the “friend of a friend” 

or “enemy of the enemy” intuition 



 Status theory [Davis-Leinhardt ‘68, Leskovec et al. ‘10] 

 Link A  B means: B has higher status than A 
 Link A  B means: B has lower status than A 
 Signs/directions of links to X make a prediction 

 Status and balance make different predictions: 
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+ 
– 

A B 

X - - 
A B 

X 
+ + 

Balance: + 
Status:   – 

Balance: + 
Status:   – 

A B 

X - + 

Balance: – 
Status:   – 

[CHI ‘10] 



 Consider networks as undirected 
 Compare frequencies of signed 

triads in real and shuffled data 
 4 triad types t: 

 
 

 Surprise value for triad type t: 
 Number of std. deviations by which 

number of occurrences of triad t 
differs from the expected number in 
shuffled data 
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 Surprise values: 
i.e., z-score 

 (deviation from  
random measured  
in the number of  
std. devs.) 

 
 

 Observations: 
 Strong signal for balance 
 Epinions and Wikipedia agree on all types 
 Consistency with Davis’s [‘67] weak balance 
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Triad Epin Wiki Slashdot 
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249 289 -175 
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288 11 -9 
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 Links are directed and created over time 
 To compare balance and status we need to 

formalize two issues: 
 Links are embedded in triads  

which provide contexts for signs 
 Users are heterogeneous  

in their linking behavior 

43 

[CHI ‘10] 
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X 
- - 

? 
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 Link contexts: 
 A contextualized link is a triple  (A,B;X)  such that 

directed A-B link forms  
after there is a  
two-step  
semi-path A-X-B 
 A-X and B-X links can  

have either  direction  
and either sign:  
16 possible types 
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 Different users make signs differently: 
 Generative baseline (frac. of + given by A) 

 Receptive baseline (frac. of + received by B) 
 How do different link contexts cause users to 

deviate from baselines? 
 Surprise: How much behavior of A/B deviates 

from baseline when they are in context 
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 Two basic examples: 

46 

B 

X 
- - 

B 

X 

+ + 

More negative than gen. baseline of A 
More negative than rec.  baseline of B 

More negative than gen. baseline of A 
More negative than rec.  baseline of B 

A A 
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Out of 16 triad contexts 
 Generative surprise: 
 Balance-consistent: 8 
 Status-consistent: 14 
 Both mistakes of  

status happen when  
A and B have low status 

 Receptive surprise:  
 Status-consistent: 13 
 Balance-consistent: 7 
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Edge sign prediction problem 
 Given a network and signs on  

all but one edge,  
predict the missing sign 

Machine Learning formulation: 
 Predict sign of edge (u,v) 
 Class label:  
 +1: positive edge 
 -1: negative edge 

 Learning method: 
 Logistic regression 
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 Dataset: 
 Original: 80%  +edges 
 Balanced:  50%  +edges 

 Evaluation: 
 Accuracy and ROC 

curves 
 Features for learning: 
 Next slide 
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For each edge (u,v) create features: 
 Triad counts (16): 
 Counts of signed triads  

edge uv takes part in 
 Degree (7 features): 
 Signed degree:  
 d+

out(u), d-
out(u),  

d+
in(v),  d-

in(v) 
 Total degree:  
 dout(u), din(v) 

 Embeddedness  
of edge (u,v) 
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 Error rates: 
 Epinions: 6.5% 
 Slashdot: 6.6% 
 Wikipedia: 19% 

 Signs can be modeled 
from network structure 
alone 

 Performance degrades 
for less embedded edges 

 Wikipedia is harder: 
 Votes are publicly visible 
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Epin 
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Wiki 
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 Do people use these very different linking 
systems by obeying the same principles? 
 Generalization of results across the datasets? 
 Train on row “dataset”, predict on “column” 

 
 
 
 
 

 Nearly perfect generalization of the models 
even though networks come from very 
different applications 
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 Signed networks provide insight into how 
social computing systems are used: 
 Status vs. Balance 

 

 Sign of relationship can be reliably predicted 
from the local network context 
 ~90% accuracy sign of the edge 
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 More evidence that networks are globally 
organized based on status 

 

 People use signed edges consistently 
regardless of particular application 
 Near perfect generalization of models across 

datasets 
 

 Many further directions: 
 Status difference [ICWSM ‘10] 
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 Status difference on Wikipedia: 
 

 

Status difference (sA-sB) 
54 
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- Learning to rank nodes on a graph 
- For recommending people you may know 



 How to learn to predict/recommend  
new friends in networks? 
 Facebook People You May Know 

 Let’s look at the data:  
 92% of new friendships on  

FB are friend-of-a-friend 
 More common friends helps 
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 How to learn models that combine: 
 Network connectivity structure 
 node/edge metadata 

 Class imbalance: 
 You only have 1,000 (out of 800M possible)  

friends on Facebook 
 Even if we limit prediction to friends-of-friends a 

typical Facebook person has 20,000 FoFs 
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 Want to predict new Facebook friends! 
 Combining link information and metadata: 
 PageRank is great with network structure 
 Logistic regression is great for classification 

 Lets combine the two! 
 Class imbalance: 
 Formulate prediction task a ranking problem 

 Supervised Random Walks 
 Supervised learning to rank nodes on a  

graph using PageRank 
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 Recommend a list of possible friends 
 Supervised machine learning setting: 
 Training example:  
 For every node s have a list of nodes  

she will create links to {v1, …, vk} 
 E.g., use FB network from May 2011 and  

{v1, …, vk} are the new friendships  
you created since then 

 Problem: 
 For a given node s learn to rank  

nodes {v1, …, vk} higher than other  
nodes in the network 

 

 Supervised Random Walks based  
on work by Agarwal&Chakrabarti 
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 How to combine node/edge attributes and 
the network structure? 
 Learn a strength of each edge based on: 
 Profile of user u, profile of user v 
 Interaction history of u and v 
 Do a PageRank-like random walk  

from s to measure the “proximity”  
between s and other nodes 
 Rank nodes by their “proximity”   

(i.e., visiting prob.) 
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 Let s be the center node 
 Let fw(u,v) be a function that assigns 

a strength to each edge: 
auv = fw(u,v) = exp(-wTΨuv) 
Ψuv is a feature vector 
 Features of nodes u and v 
 Features of edge (u,v) 
w is the parameter vector we want to learn 

 Do Random Walk with Restarts from s where 
transitions are according to edge strengths 

 How to learn fw(u,v)? 
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 Random walk transition matrix: 
 

 

 
 PageRank transition matrix: 

 
 with prob. α jump back to s 

 
 

 Compute PageRank vector: p = pT Q  
 

 Rank nodes by pu 
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 Each node u has a score pu 
 Destination nodes  D ={v1,…, vk} 
 No-link nodes  L = {the rest} 
 What do we want? 

Want to find w such that  pl < pd 
 
 
 
 
 Hard constraints, make them soft 
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 Want to minimize: 
 
 
 Loss: h(x) = 0   if x < 0,  x2 else 
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 How to minimize F? 
 
 

 pl and pd depend on w 
 Given w assign edge weights auv=fw(u,v) 
 Using transition matrix Q=[auv]  

compute PageRank scores pu 

 Rank nodes by the PageRank score 
 

 Want to find w such that  pl < pd 
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 How to minimize F? 
 

 Take the derivative! 
 
 
 

 We know: 
     i.e. 
 So: 

 
 

Solve using 
power iteration! 



 To optimize F, use gradient based method: 
 Pick a random starting point w0 

 Compute the personalized  
PageRank vector p 
 Compute gradient with  

respect to weight  
vector w 
 Update w 
 Optimize using  

quasi-Newton method 
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 Facebook Iceland network  
 174,000 nodes (55% of population) 
 Avg. degree 168 
 Avg. person added 26 new friends/month 

 For every node s: 
 Positive examples: 
 D={ new friendships of s created in Nov ‘09 } 
 Negative examples: 
 L={ other nodes s did not create new links to } 
 Limit to friends of friends  
 on avg. there are 20k FoFs (max 2M)! 
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 Node and edge features: 
 Node:  
 Age, Gender, Degree 

 Edge: 
 Edge age, Communication, Profile visits, Co-tagged photos 

 Baselines: 
 Decision trees and logistic regression: 
 Above features + 10 network features (PageRank, common 

friends, …) 
 Evaluation:  
 AUC and Precision at Top20 
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 Facebook: 
predict future 
friends 
 Adamic-Adar 

already works 
great 
 Logistic regression 

also strong 
 SRW gives slight 

improvement 
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 Arxiv Hep-Ph 
collaboration 
network: 
 Poor performance 

of unsupervised 
methods 

 Logistic regression 
and decision trees 
don’t work to well 

 SRW gives 10% 
boos in Prec@20 
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 Kronecker Graphs: An approach to modeling networks by J. Leskovec, 
D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani. Journal of 
Machine Learning Research (JMLR) 11(Feb):985-1042, 2010. 
 

 Multiplicative Attribute Graph Model of Real-World Networks by M. 
Kim, J. Leskovec. Internet Mathematics 8(1-2) 113--160 , 2012. 

 
 Modeling Social Networks with Node Attributes using the 

Multiplicative Attribute Graph Model by M. Kim, J. 
Leskovec. Conference on Uncertainty in Artificial Intelligence (UAI), 
2011. 

 
 Latent Multi-group Membership Graph Model by M. Kim, J. 

Leskovec. International Conference on Machine Learning (ICML), 2012.  
 

 Supervised Random Walks: Predicting and Recommending Links in 
Social Networks by L. Backstrom, J. Leskovec. ACM International 
Conference on Web Search and Data Mining (WSDM), 2011. 
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Kleinberg. ACM SIGCHI Conference on Human Factors in Computing 
Systems (CHI), 2010. 

 
 Predicting Positive and Negative Links in Online Social Networks by 

J. Leskovec, D. Huttenlocher, J. Kleinberg. ACM WWW International 
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 Governance in Social Media: A case study of the Wikipedia 

promotion process by J. Leskovec, D. Huttenlocher, J. 
Kleinberg. AAAI International Conference on Weblogs and Social 
Media (ICWSM), 2010. 

 
 Effects of User Similarity in Social Media by A. Anderson, D. 
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