Networks: Modeling Interactions

Jure Leskovec (@jure)
Stanford University

KDD Summer School, Beijing, August 2012

Models for networks

Graph:

Kronecker graphs

- Graph + Node attributes:
 MAG model
- Graph + Edge attributes:
 Signed networks
- Link Prediction/Recommendation: Supervised Random Walks

Networks with Metadata

- Many networks come with:
 - The graph (wiring diagram)
 - Node/edge metadata (attributes/features)
- How to generate realistic looking graphs?
 - 1: Kronecker Graphs
- How to model networks with node attributes?
 - 2: Multiplicative Attributes Graph (MAG) model
- How to model networks with edge attributes?
 - 3: Networks of Positive and Negative Edges
- How to predict/recommend new edges?
 - 4: Supervised Random Walks

Want to learn more? (1)

- Stanford Large Network Dataset Collection
 - http://snap.stanford.edu
 - 60+ large networks:
 - Social network, Geo-location networks, Information networks, Evolving networks, Citation networks, Internet networks, Amazon, Twitter, ...
- Stanford Network Analysis Platform (SNAP):
 - http://snap.stanford.edu
 - C++ Library for massive networks
 - Has no problem working with 1B nodes, 10B edges

Want to learn more? (2)

- Stanford CS224W:Social and Information Networks Analysis
 - http://cs224w.stanford.edu
 - Graduate course on topics discusses today
 - Slides, homeworks, readings, data, ...
- My webpage
 - http://cs.stanford.edu/~jure/
 - Videos of talks and tutorials
- Twitter: @jure

Kronecker Graphs Model

Reliably models the global network structure using only 4 parameters!

The Setting

- Want to have a model that can generate a realistic networks with realistic growth:
 - Static Patterns
 - Power Law Degree Distribution
 - Small Diameter
 - Power Law Eigenvalue and Eigenvector Distribution
 - Temporal Patterns
 - Densification Power Law
 - Shrinking/Constant Diameter
- For Kronecker graphs:
 - 1) analytically tractable (i.e, prove power-laws, etc.)
 - 2) statistically interesting (i.e, fit it to real data)

Degree Distribution

Classical example:

Heavy-tailed degree distributions

Flickr social network

n=584,207, m=3,555,115

Scale free networks

many hub nodes

Scaling of Network Properties

• How do network properties scale with the size of the network?

Densification *Average degree increases*

Shrinking diameter

Path lengths get shorter

Recursive Model of Networks

How can we think of network structure recursively?

Recursive model of network

- Kronecker graphs:
 - A recursive model of network structure

Kronecker Graphs

Kronecker product of matrices A and B is

given by
$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} \ a_{1,2}\mathbf{B} \ \dots \ a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} \ a_{2,2}\mathbf{B} \ \dots \ a_{2,m}\mathbf{B} \\ \vdots \ \vdots \ \ddots \ \vdots \\ a_{n,1}\mathbf{B} \ a_{n,2}\mathbf{B} \ \dots \ a_{n,m}\mathbf{B} \end{pmatrix}$$

 $N*K \times M*L$

- Define: Kronecker product of two graphs is a Kronecker product of their adjacency matrices
- Kronecker graph: a growing sequence of graphs by iterating the Kronecker product

$$K_1^{[k]} = K_k = \underbrace{K_1 \otimes K_1 \otimes \dots K_1}_{} = K_{k-1} \otimes K_1$$

Kronecker Initiator Matrices

1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1

1	1	1	1
1	1	0	0
1	0	1	1
1	0	1	1

Initiator K_1

 K_1 adjacency matrix

 K_3 adjacency matrix

Properties Kronecker Graphs

- Properties of deterministic Kronecker graphs (can be proved!)
 - Properties of static networks:
 - Power-Law like Degree Distribution
 - Power-Law eigenvalue and eigenvector distribution
 - Constant Diameter
 - Properties of evolving networks:
 - Densification Power Law
 - Shrinking/Stabilizing Diameter
- Can we make the model stochastic?

Stochastic Kronecker Graphs

- Create $N_1 \times N_1$ probability matrix Θ_1
- Compute the ith Kronecker power Θ_i
- For each entry p_{uv} of Θ_k include an edge (u,v) with probability p_{uv}

Kronecker: Parameter Estimation

- Given a graph G
- What is the parameter matrix Θ?
- Find Θ that maximizes P(G| Θ)

			0.25	0.10	0.10	0.04	
ĺ	0.5	0.2	0.05	0.15	0.02	0.06	
	0.1	0.3	0.05	0.02	0.15	0.06	
			0.01	0.03	0.03	0.09	
		(9)			$\overline{arTheta_k}$		$\frac{1}{D}$

1	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

 $P(G/\Theta)$

$$P(G \mid \Theta) = \prod_{(u,v) \in G} \Theta_k[u,v] \prod_{(u,v) \notin G} (1 - \Theta_k[u,v])$$

Kronecker: Parameter Estimation

Maximum likelihood estimation

Naïve estimation takes O(N!N²):

$$\Theta_1 = \begin{array}{c|c} a & b \\ c & d \end{array}$$

- N! for different node labelings:
- N² for traversing graph adjacency matrix
- Do gradient descent

We estimate the model in O(E)

Epinions (n=76k, m=510k)

Real and Kronecker are very close:

The MAG Model

- For networks with node attributes
- Can do power-law and log-normal degrees

Modeling Questions

- When modeling networks, what would we like to know?
 - How to model the links in the network
 - How to model the interaction of node attributes/properties and the network structure
- Goal:
 - A family of models of networks with node attributes
 - The models are:
 - 1) Analytically tractable (prove network properties)
 - 2) Statistically interesting (can be fit to real data)

Our Approach: Node attributes

- Each node has a set of categorical attributes
 - Gender: Male, Female
 - Home country: US, Canada, Russia, etc.
- How do node attributes influence link formation?
 - Example: MSN Instant Messenger [Leskovec&Horvitz '08]

Chatting network

u's gender

u v	FEMALE	MALE
FEMALE	0.3	0.7
MALE	0.7	0.3

v's gender

Link probability

Link-Affinity Matrix

- Let the values of the *i-th attribute* for node u and v be $a_i(u)$ and $a_i(v)$
 - $a_i(u)$ and $a_i(v)$ can take values $\{0,\cdots,d_i-1\}$
- Question: How can we capture the influence of the attributes on link formation?
 - Key: Attribute link-affinity matrix Θ

$$a_{i}(v) = 0$$
 $a_{i}(v) = 1$
 $a_{i}(u) = 0$ $\Theta[0, 0]$ $\Theta[0, 1]$
 $a_{i}(u) = 1$ $\Theta[1, 0]$ $\Theta[1, 1]$

$$P(u,v) = \Theta[a_i(u), a_i(v)]$$

 Each entry captures the affinity of a link between two nodes associated with the attributes of them

Link-Affinity Matrix

- Link-Afinity Matrices offer flexibility in modeling the network structure:
 - Homophily: love of the same
 - e.g., political views, hobbies

0.9	0.1
0.1	0.8

- Heterophily: love of the opposite
 - e.g., genders

0.2	0.9
0.9	0.1

- Core-periphery : love of the core
 - e.g. extrovert personalities

0.9	0.5
0.5	0.2

From Attributes to Links

- How do we combine the effects of multiple attributes?
 - We multiply the probabilities from all attributes

Multiplicative Attribute Graph

- MAG model $M(n, l, A, \overrightarrow{\Theta})$:
 - A network contains n nodes
 - Each node has *l* categorical attributes
 - $A = [a_i(u)]$ represents the *i*-th attribute of node u
 - lacktriangle Each attribute can take d_i different values
 - lacktriangle Each attribute has a $oldsymbol{d}_i imesoldsymbol{d}_i$ link-affinity matrix $oldsymbol{arTheta}_i$
 - lacktriangle Edge probability between nodes u and v

$$P(u,v) = \prod_{i=1}^{l} \Theta_i[a_i(u), a_i(v)]$$

Analysis: MAG Model

- MAG can model global network structure!
- MAG generates networks with similar properties as found in real-world networks:
 - Unique giant connected component
 - Densification Power Law
 - Small diameter
 - Heavy-tailed degree distribution
 - Either log-normal or power-law

Analysis: Connected component

Theorem 1: A unique giant connected component of size $\theta(n)$ exists in $M(n, l, \mu, \theta)$ w.h.p. as $n \to \infty$ if $P(a_i(u) = 1) = \mu$

$$\left[(\mu \alpha + (1 - \mu)\beta)^{\mu} (\mu \beta + (1 - \mu)\gamma)^{1 - \mu} \right]^{\rho} \ge \frac{1}{2}$$

Simulation:

Analysis: Degree distribution

Theorem 3: $M(n, l, \mu, \Theta)$ follows **a log-normal degree distribution** as $n \to \infty$ for some constant R

$$\ln p_k \sim \mathcal{N}\left(\ln(n(\mu\beta + (1-\mu)\gamma)^l) + l\mu \ln R + \frac{1}{2}l\mu(1-\mu)(\ln R)^2, l\mu(1-\mu)(\ln R)^2\right)$$

if the network has a giant connected component.

Simulation:

Analysis: Power-law in MAG

Theorem 4: MAG follows a power-law degree

distribution

$$p_k \propto k^{-\delta-0.5} \ \ \textit{for some } \delta > 0$$
 when we set
$$\frac{\mu_i}{1-\mu_i} = \left(\frac{\mu_i\alpha_i + (1-\mu_i)\beta_i}{\mu_i\beta_i + (1-\mu_i)\gamma_i}\right)^{-\delta}$$

Simulation:

Fitting the MAG model

- MAG model is also statistically "interesting"
- Estimate model parameters from the data
 - Given:

Links of the network

- Estimate:
 - Node attributes
 - Link-affinity matrices
- Formulate as a maximum likelihood problem
- Solve it using variational EM

$$\mathbf{\Theta}_{i} = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.8 \end{bmatrix}$$

Fitting the MAG model

Edge probability:

$$P(u,v) = \prod_{i=1}^l \Theta_i[a_i(u), a_i(v)]$$

Network likelihood:

•
$$P(G|A,\Theta) = \prod_{G_{uv}=1} P(u,v) \cdot \prod_{G_{uv}=0} 1 - P(u,v)$$

- G ... graph adjacency matrix
- A ... matrix of node attributes
- Θ... link-affinity matrices

Want to solve:

• $\underset{A,\Theta}{\operatorname{arg\,max}} P(G|A,\Theta)$

Variational EM

Experiments: Global Structure

LinkedIn network

- When it was super-young (4k nodes, 10k edges)
- Fit using 11 latent binary attributes per node

Experiments: AddHealth

- Case study: AddHealth
 - School friendship network
 - Largest network: 457 nodes, 2259 edges
 - Over 70 school-related attributes for each student
 - Real features are selected in the greedy way to maximize the likelihood of MAG model
 - We fit only Θ (since A is given): $\underset{\Theta}{\operatorname{arg max}} P(G, A|\Theta)$
 - 7 features
- Model accurately fits the network structure

Experiments: AddHealth

Most important features for tie creation

Affinity matrix	Attribute description
$[0.572\ 0.146;\ 0.146\ 0.999]$	School year $(0 \text{ if } \geq 2)$
$[0.845 \ 0.332; 0.332 \ 0.816]$	Highest level math $(0 \text{ if } \geq 6)$
[0.788 0.377; 0.377 0.784]	Cumulative GPA (0 if ≥ 2.65)
[0.999 0.246; 0.246 0.352]	AP/IB English (0 if taken)
$[0.794\ 0.407; 0.407\ 0.717]$	Foreign language (0 if taken)

Models of Networks with Signed Edges

- How people determine friends and foes?
- Predict friend vs. foe with 90% accuracy

Friends vs. Foes

 So far we viewed links as positive but links can also be negative

• Question:

- How do edge signs and network interact?
- How to model and predict edge signs?

Applications:

- Friend recommendation
 - Not just whether you know someone but what do you think of them

Networks with Explicit Signs

- Each link A→B is explicitly tagged with a sign:
 - Epinions: Trust/Distrust
 - Does A trust B's product reviews?(only positive links are visible)
 - Wikipedia: Support/Oppose
 - Does A support B to become Wikipedia administrator?
 - Slashdot: Friend/Foe
 - Does A like B's comments?
- **Epinions** Slashdot Wikipedia Nodes 119.217 82.144 7.118 549,202 Edges 841,200 103,747 85.0% 77.4% 78.7% + edges edges 22.6% 21.2% 15.0%

- Other examples:
 - Sentiment analysis of the communication

Theory of Structural Balance

- Start with intuition [Heider '46]:
 - Friend of my friend is my friend
 - Enemy of enemy is my friend
 - Enemy of friend is my enemy
- Look at connected triples of nodes:

Consistent with "friend of a friend" or "enemy of the enemy" intuition

Inconsistent with the "friend of a friend" or "enemy of the enemy" intuition

Theory of Status

- **Status theory** [Davis-Leinhardt '68, Leskovec et al. '10]
 - Link A $\stackrel{+}{\rightarrow}$ B means: B has higher status than A
 - Link A → B means: B has lower status than A
 - Signs/directions of links to X make a prediction
- Status and balance make different predictions:

Undirected Links: Balance

- Consider networks as undirected
- Compare frequencies of signed triads in real and shuffled data
 - 4 triad types t:

- **Surprise** value for triad type *t*:
 - Number of std. deviations by which number of occurrences of triad t differs from the expected number in shuffled data

Undirected Links: Balance

Surprise values:

i.e., **z-score** (deviation from random measured in the number of std. devs.)

	Triad	Epin	Wiki	Slashdot
Unbalanced Balanced	+ +	1,881	380	927
	- 0-	249	289	-175
	+ + +	-2,105	-573	-824
		288	11	-9

Observations:

- Strong signal for balance
- Epinions and Wikipedia agree on all types
- Consistency with Davis's ['67] weak balance

Evolving Directed Networks

- Links are directed and created over time
- To compare balance and status we need to formalize two issues:
 - Links are embedded in triads which provide contexts for signs
 - Users are heterogeneous in their linking behavior

16 Types of Link Contexts

Link contexts:

A contextualized link is a triple (A,B;X) such that

directed A-B link forms after there is a two-step semi-path A-X-B

A-X and B-X links can have either direction and either sign:

16 possible types

Heterogeneity in Linking Behavior

- Different users make signs differently:
 - Generative baseline (frac. of + given by A)
 - Receptive baseline (frac. of + received by B)
- How do different link contexts cause users to deviate from baselines?
- Surprise: How much behavior of A/B deviates from baseline when they are in context

Status: Two Examples

Two basic examples:

More **negative** than gen. baseline of A More **negative** than rec. baseline of B

More **negative** than gen. baseline of A More **negative** than rec. baseline of B

Status: Summary of results

Out of 16 triad contexts

- Generative surprise:
 - Balance-consistent: 8
 - Status-consistent: 14
 - Both mistakes of status happen when A and B have low status
- Receptive surprise:
 - Status-consistent: 13
 - Balance-consistent: 7

Predicting Edge Signs

Edge sign prediction problem

 Given a network and signs on all but one edge, predict the missing sign

Machine Learning formulation:

- Predict sign of edge (u,v)
- Class label:
 - +1: positive edge
 - -1: negative edge
- Learning method:
 - Logistic regression

$$P(+|x) = \frac{1}{1 + e^{-(b_0 + \sum_{i=0}^{n} b_i x_i)}}$$

- Dataset:
 - Original: 80% +edges
 - Balanced: 50% +edges
- Evaluation:
 - Accuracy and ROC curves
- Features for learning:
 - Next slide

Features for Learning

For each edge (u,v) create features:

Triad counts (16):

- Counts of signed triads edge u→v takes part in
- Degree (7 features):
 - Signed degree:
 - d⁺_{out}(u), d⁻_{out}(u), d⁺_{in}(v), d⁻_{in}(v)
 - Total degree:
 - d_{out}(u), d_{in}(v)
 - Embeddedness of edge (u,v)

Edge Sign Prediction

Error rates:

Epinions: 6.5%

Slashdot: 6.6%

Wikipedia: 19%

- Signs can be modeled from network structure alone
- Performance degrades for less embedded edges
- Wikipedia is harder:
 - Votes are publicly visible

Generalization

- Do people use these very different linking systems by obeying the same principles?
 - Generalization of results across the datasets?
 - Train on row "dataset", predict on "column"

All23	Epinions	Slashdot	Wikipedia
Epinions	0.9342	0.9289	0.7722
Slashdot	0.9249	0.9351	0.7717
Wikipedia	0.9272	0.9260	0.8021

 Nearly perfect generalization of the models even though networks come from very different applications

Final Remarks

- Signed networks provide insight into how social computing systems are used:
 - Status vs. Balance
- Sign of relationship can be reliably predicted from the local network context
 - ~90% accuracy sign of the edge

Final Remarks

- More evidence that networks are globally organized based on status
- People use signed edges consistently regardless of particular application
 - Near perfect generalization of models across datasets
- Many further directions:
 - Status difference [ICWSM '10]

Final Remarks: Status

Status difference on Wikipedia:

Supervised Random Walks

- Learning to rank nodes on a graph
- For recommending people you may know

Supervised Link Prediction

- How to learn to predict/recommend new friends in networks?
 - Facebook People You May Know
- Let's look at the data:
 - 92% of new friendships on FB are friend-of-a-friend
 - More common friends helps

Link Prediction: Challenges

How to learn models that combine:

- Network connectivity structure
- node/edge metadata

Class imbalance:

- You only have 1,000 (out of 800M possible) friends on Facebook
- Even if we limit prediction to friends-of-friends a typical Facebook person has 20,000 FoFs

Link Prediction: Solution

- Want to predict new Facebook friends!
- Combining link information and metadata:
 - PageRank is great with network structure
 - Logistic regression is great for classification
 Lets combine the two!
- Class imbalance:
 - Formulate prediction task a ranking problem
- Supervised Random Walks
 - Supervised learning to rank nodes on a graph using PageRank

Supervised Link Prediction

- Recommend a list of possible friends
- Supervised machine learning setting:
 - Training example:
 - For every node s have a list of nodes she will create links to $\{v_1, ..., v_k\}$
 - E.g., use FB network from May 2011 and $\{v_1, ..., v_k\}$ are the new friendships you created since then
 - Problem:
 - For a given node s learn to rank nodes $\{v_1, ..., v_k\}$ higher than other nodes in the network
- Supervised Random Walks based on work by Agarwal&Chakrabarti

positive examplesnegative examples

Supervised Link Prediction

- How to combine node/edge attributes and the network structure?
 - Learn a strength of each edge based on:
 - Profile of user u, profile of user v
 - Interaction history of u and v
 - Do a PageRank-like random walk from s to measure the "proximity" between s and other nodes
 - Rank nodes by their "proximity" (i.e., visiting prob.)

Supervised Random Walks

- Let s be the center node
- Let $f_w(u,v)$ be a function that assigns a strength to each edge:

$$a_{uv} = f_w(u, v) = exp(-w^T \Psi_{uv})$$

- Ψ_{uv} is a feature vector
 - Features of nodes u and v
 - Features of edge (u,v)
- w is the parameter vector we want to learn
- Do Random Walk with Restarts from s where transitions are according to edge strengths
- How to learn $f_w(u,v)$?

Personalized PageRank

Random walk transition matrix:

$$Q'_{uv} = \begin{cases} \frac{a_{uv}}{\sum_{w} a_{uw}} & \text{if } (u, v) \in E, \\ 0 & \text{otherwise} \end{cases}$$

PageRank transition matrix:

$$Q_{ij} = (1 - \alpha)Q'_{ij} + \alpha \mathbf{1}(j = s)$$

• with prob. α jump back to s

- Compute PageRank vector: $p = p^T Q$
- Rank nodes by p_u

The Optimization Problem

- Each node u has a score p_u
- Destination nodes $D = \{v_1, ..., v_k\}$
- No-link nodes $L = \{the \ rest\}$
- What do we want?

Want to find w such that $p_l < p_d$

$$\min_{w} F(w) = ||w||^2$$

such that

$$\forall d \in D, l \in L: p_l < p_d$$

Hard constraints, make them soft

Making constraints soft

Want to minimize:

$$\min_{w} F(w) = ||w||^{2} + \lambda \sum_{ld} h(p_{l} - p_{d})$$

Loss: h(x) = 0 if x < 0, x^2 else

Solving the problem: Intuition

How to minimize F?

$$\min_{w} F(w) = ||w||^{2} + \lambda \sum_{ld} h(p_{l} - p_{d})$$

- p_l and p_d depend on w
 - Given w assign edge weights $a_{uv} = f_w(u, v)$
 - Using transition matrix $Q=[a_{uv}]$ compute PageRank scores p_u
 - Rank nodes by the PageRank score
- Want to find w such that $p_l < p_d$

Gradient Descent

How to minimize F?

$$\min_{w} F(w) = ||w||^{2} + \lambda \sum_{l} h(p_{l} - p_{d})$$

■ Take the derivative!

$$\frac{\partial F}{\partial w} = 2w + \sum_{l,d} \frac{\partial h(p_l - p_d)}{\partial w}$$

$$= 2w + \sum_{l,d} \frac{\partial h(\delta_{ld})}{\partial \delta_{ld}} \left(\frac{\partial p_l}{\partial w}\right) - \left(\frac{\partial p_d}{\partial w}\right)$$

We know:

$$p = p^T Q$$
 i.e. $p_u = \sum_j p_j Q_{ju}$

So:

$$\frac{\partial p_u}{\partial w} = \sum_{j} Q_{ju} \frac{\partial p_j}{\partial w} + p_j \frac{\partial Q_{ju}}{\partial w}$$

Solve using power iteration!

Optimizing F

- To optimize F, use gradient based method:
 - Pick a random starting point w_0
 - Compute the personalized PageRank vector p
 - Compute gradient with respect to weight vector w
 - Update w
 - Optimize using quasi-Newton method

Data: Facebook

- Facebook Iceland network
 - 174,000 nodes (55% of population)
 - Avg. degree 168
 - Avg. person added 26 new friends/month
- For every node s:
 - Positive examples:
 - D={ new friendships of s created in Nov '09 }
 - Negative examples:
 - L={ other nodes s did not create new links to }
 - Limit to friends of friends
 - on avg. there are 20k FoFs (max 2M)!

Experimental setting

Node and edge features:

- Node:
 - Age, Gender, Degree
- Edge:
 - Edge age, Communication, Profile visits, Co-tagged photos

Baselines:

- Decision trees and logistic regression:
 - Above features + 10 network features (PageRank, common friends, ...)
- Evaluation:
 - AUC and Precision at Top20

Results: Facebook Iceland

Facebook: predict future friends

- Adamic-Adar already works great
- Logistic regression also strong
- SRW gives slight improvement

Learning Method	AUC	Prec@20
Random Walk with Restart	0.81725	6.80
Adamic-Adar	0.81586	7.35
Common Friends	0.80054	7.35
Degree	0.58535	3.25
DT: Node features	0.59248	2.38
DT: Network features	0.76979	5.38
DT: Node+Network	0.76217	5.86
DT: Path features	0.62836	2.46
DT: All features	0.72986	5.34
LR: Node features	0.54134	1.38
LR: Network features	0.80560	7.56
LR: Node+Network	0.80280	7.56
LR: Path features	0.51418	0.74
LR: All features	0.81681	7.52
SRW: one edge type	0.82502	6.87
SRW: multiple edge types	0.82799	7.57

Results: Co-authorship

Arxiv Hep-Ph collaboration network:

- Poor performance of unsupervised methods
- Logistic regression and decision trees don't work to well
- SRW gives 10% boos in Prec@20

Learning Method	AUC	Prec@20
Random Walk with Restart	0.63831	3.41
Adamic-Adar	0.60570	3.13
Common Friends	0.59370	3.11
Degree	0.56522	3.05
DT: Node features	0.60961	3.54
DT: Network features	0.59302	3.69
DT: Node+Network	0.63711	3.95
DT: Path features	0.56213	1.72
DT: All features	0.61820	3.77
LR: Node features	0.64754	3.19
LR: Network features	0.58732	3.27
LR: Node+Network	0.64644	3.81
LR: Path features	0.67237	2.78
LR: All features	0.67426	3.82
SRW: one edge type	0.69996	4.24
SRW: multiple edge types	0.71238	4.25

References

- Kronecker Graphs: An approach to modeling networks by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani. *Journal of Machine Learning Research (JMLR)* 11(Feb):985-1042, 2010.
- Multiplicative Attribute Graph Model of Real-World Networks by M. Kim, J. Leskovec. Internet Mathematics 8(1-2) 113--160, 2012.
- Modeling Social Networks with Node Attributes using the Multiplicative Attribute Graph Model by M. Kim, J. Leskovec. Conference on Uncertainty in Artificial Intelligence (UAI), 2011.
- <u>Latent Multi-group Membership Graph Model</u> by M. Kim, J.
 Leskovec. *International Conference on Machine Learning (ICML)*, 2012.
- Supervised Random Walks: Predicting and Recommending Links in Social Networks by L. Backstrom, J. Leskovec. ACM International Conference on Web Search and Data Mining (WSDM), 2011.

References

- <u>Signed Networks in Social Media</u> by J. Leskovec, D. Huttenlocher, J. Kleinberg. ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), 2010.
- Predicting Positive and Negative Links in Online Social Networks by J. Leskovec, D. Huttenlocher, J. Kleinberg. ACM WWW International conference on World Wide Web (WWW), 2010.
- Governance in Social Media: A case study of the Wikipedia promotion process by J. Leskovec, D. Huttenlocher, J. Kleinberg. AAAI International Conference on Weblogs and Social Media (ICWSM), 2010.
- <u>Effects of User Similarity in Social Media</u> by A. Anderson, D. Huttenlocher, J. Kleinberg, J. Leskovec. ACM International Conference on Web Search and Data Mining (WSDM), 2012.

