Networks:
Modeling Interactions



Models for networks

Graph:
Kronecker graphs

Graph + Node attributes:
MAG model

Graph + Edge attributes:
Signed networks

Link Prediction/Recommendation:
Supervised Random Walks
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Networks with Metadata

Many networks come with:

The graph (wiring diagram)

Node/edge metadata (attributes/features)
How to generate realistic looking graphs?

1: Kronecker Graphs
How to model networks with node attributes?

2: Multiplicative Attributes Graph (MAG) model
How to model networks with edge attributes?

3: Networks of Positive and Negative Edges
How to predict/recommend new edges?

4: Supervised Random Walks
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Want to learn more? (1)

Stanford Large Network Dataset Collection
http://snap.stanford.edu

60+ large networks:

Social network, Geo-location networks, Information
networks, Evolving networks, Citation networks, Internet
networks, Amazon, Twitter, ...

Stanford Network Analysis Platform (SNAP):
http://snap.stanford.edu

C++ Library for massive networks

Has no problem working with 1B nodes, 10B edges
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http://snap.stanford.edu/
http://snap.stanford.edu/

Want to learn more? (2)

Stanford CS224W:
Social and Information Networks Analysis

http://cs224w.stanford.edu
Graduate course on topics discusses today

Slides, homeworks, readings, data, ...

My webpage
http://cs.stanford.edu/~jure/

Videos of talks and tutorials
Twitter: @jure
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Kronecker Graphs Model



The Setting

Want to have a model that can generate a
realistic networks with realistic growth:

Static Patterns
Power Law Degree Distribution
Small Diameter
Power Law Eigenvalue and Eigenvector Distribution
Temporal Patterns
Densification Power Law
Shrinking/Constant Diameter
For Kronecker graphs:

1) analytically tractable (i.e, prove power-laws, etc.)
2) statistically interesting (i.e, fit it to real data)
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[Faloutsos”3, SIGCOM ‘gqg]

Degree Distribution

Classical example:
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[Leskovec et al. KDD o5]

Scaling of Network Properties
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[Leskovec et al. Arxiv og]

Recursive Model of Networks

How can we think of network structure
recursively?

b edges

N
1
Q| o
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[Leskovec et al. PKDD ‘ox]

Recursive model of network

A recursive model of network structure

1[1]0 K [ K [0
L)l :> KKK :>
L e | 05K

K, (9%9)
0 00 Ko = K1 ® K;q

Initiator

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 11



Kronecker Graphs

of matrices Aand B is

given by [011B a15B ... a1, B
ar 1B as B ... av,,B
C=A®B= . .. .

NxM KxL

\a_..n:lB a.-.n‘.QB .. a..n‘.;nB )
N*K x M*L

Define: Kronecker product of two graphs is a

Kronecker product of their

Kronecker graph: a growing sequence of

graphs by iterating the
KV=K,= KioKi®... K = K_, 0k

-~
.

k times
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[Leskovec et al. PKDD ‘ox]
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Properties Kronecker Graphs

Properties of deterministic Kronecker graphs
(can be proved!)
Properties of static networks:
Power-Law like Degree Distribution

Power-Law eigenvalue and eigenvector distribution
Constant Diameter

Properties of evolving networks:
Densification Power Law
Shrinking/Stabilizing Diameter
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[Leskovec et al. PKDD ‘ox]

Stochastic Kronecker Graphs

Create N;xN, O,

Compute the it" Kronecker power O,

For each entry p,, of &, include an edge (u,v)
with probability p,,

Probability
of edge pj

Kronecker [0.25(0.10/0.10|0.04]
0.5/0.2 m“'“p“catg‘ 0.05|0.150.02 | 0.06 Instance
0.1/0.3 0.05(0.02 0.15|0.06 )

o, 0.01/0.03 0.03|0.09 i biased
0,= 6,9 0, coins
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Kronecker: Parameter Estimation

[Leskovec-Faloutsos ICML ‘o7]

Given a graph G
What is the parameter matrix @7
Find ® that maximizes
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[Leskovec-Faloutsos ICML ‘o7]

Kronecker: Parameter Estimation

[ ] ° - . .
Maximum likelihood estimation
PR Lt

T

arg max AR

Naive estimation takes O(N!N?): O, =
N! for different node labelings:

N? for traversing graph adjacency matrix
Do gradient descent

e estmate the model in o(e) S
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Epinions (n=76k, m=510k)
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The MAG Model



Modeling Questions

When modeling networks, what would
we like to know?
How to model the links in the network

How to model the interaction of node
attributes/properties and the network structure

Goal:
A family of models of networks with node attributes
The models are:
1) Analytically tractable (prove network properties)
2) Statistically interesting (can be fit to real data)

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 20



[Internet Math. '12]

Our Approach: Node attributes

Each node has a set of categorical attributes

Gender: Male, Female
Home country: US, Canada, Russia, etc.

How do node attributes influence link
formation?
Example: MSN Instant Messenger [Leskovec&Horvitz '08]

v’s gender
y . 5 N FEMALE | MALE
2; FEMALE |o.3 0.7

Chatting network (Q MALE 0.7 0.3

Link probability

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 21



[Internet Math. '12]

Link-Affinity Matrix

Let the values of the i-th attribute for node u
and v be a;(u) and a;(v)

a;(u) and a;(v) can take values {0, ---,d; — 1}
Question: How can we capture the influence
of the attributes on link formation?

Key: Attribute link-affinity matrix ©

a(v) =0 aq)=1

a;(u) =0 0[0,1]

P(u,v) = 0[a;(u), a;(v)]

ww=1 | ©[1,0] | O[1,1]

Each entry captures the affinity of a link between
two nodes associated with the attributes of them

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 22



[Internet Math. '12]

Link-Affinity Matrix

Link-Afinity Matrices offer flexibility in
modeling the network structure:
Homophily : love of the same

e.g., political views, hobbies

Heterophily : love of the opposite
e.g., genders

Core-periphery : love of the core

e.g. extrovert personalities 0.5 | 0.2

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 23



[Internet Math. '12]

From Attributes to Links

How do we combine the effects of multiple
attributes?

We multiply the probabilities from all attributes

a(u) — [ O 1 Node
watetdF I IF

|_# +

— B1 a | B2 as 3 Attribute

Gi T matrices
Bi | V1 || B2|VY2||B3s|V3||Ba|Va *

P(u,v): a,; X X VY3 X Oy
probability
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[Internet Math. '12]

Multiplicative Attribute Graph

MAG model M(n, L, A, 5) :
A network contains n nodes
Each node has I categorical attributes
A = [a;(u)] represents the i-th attribute of node u
Each attribute can take d; different values
Each attribute has a d; X d; link-affinity matrix 0;
Edge probability between nodes u and v

l
Pav) = | |0ifaiw),a)
i=1

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012



[Internet Math. '12]

Analysis: MAG Model

MAG can model global network structure!

MAG generates networks with similar
properties as found in real-world networks:

Unique giant connected component
Densification Power Law

Small diameter

Heavy-tailed degree distribution
Either log-normal or power-law

26
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[Internet Math. '12]

Analysis: Connected component

Theorem 1: A unique giant connected
component of size 8 (n) existsin M(n, [, u, ©)
w.h.p.asn — oo if P(a;(w) = 1) = p

(po+ (1= @) (s + (1= ppy)' =" > 4

Simulation:
g 1 \ \ e % 1 | | | \ |
é 09 - 5 09 - .
g 08} 1 & 08¢ -
8 07F 7 8 0.7 - =
3 0.6 - N 3 06 - .
5 05 4 B 05F -
S 04| 1 2 04r :
8 03 7 8 0.3 - .
5 02 7 = 02 - n
> 01F 18 01 ]
@ 0 4 ‘ ‘ ‘ ‘ ' o o P — | | | | \ |
0.1 02 0.3 04 05 06 0.7 0.8 09 - 010203040506070809 1
u o

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 27



[Internet Math. '12]
Analysis: Degree distribution

Theorem 3: M(n, [, u, ©) follows a log-normal
degree distribution asn — oo for some constant R

Inp ~ N (hl(n(p)’ +(1 =Y +Iluln R+ ;[;1(1 —1)(n R)?, 1p(1 — p)(In R}z)

if the network has a giant connected component.

Simulation: .
10° ¢ Tl
- Ty
g I &
3 102 g #ﬁ#
@) : ﬁ#
1L 4 i
. +
L i
0 IIII| I I |
10 ]
10° 10" 102 103
8/10/2012

Degree
Jure

Leskovec (@jure), KDD Summer School 2012

28



[Internet Math. '12]
Analysis: Power-law in MAG

Theorem 4: MAG follows a power-law degree
distribution

pe < k%795 forsomed > 0
ni  (ujoi+(1—p;)pBi 0
when we set o (ﬂiﬁi+(1—ﬂi))’i)

1—-u;
Simulation: 1*,

1 1 . 1 .!E:E ',...Ili.i-.!.Jl,. .. 1 1 I N |
10° 10’ 102 103
8/10/2012

Degree
Jure Leskovec (@jure), KDD Summer School 2012
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Fitting the MAG model

MAG model is also statistically “interesting”
Estimate model parameters from the data

Links of the network

Node attributes

Link-affinity matrices
Formulate as a
maximum likelihood problem

Solve it using variational EM 0, =

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 30



Fitting the MAG model

Edge probability:
P(uv) = %:1 0;[a;(u), a;(v)]
Network likelihood:
P(GlA,0) =]l =1 P(w,v) - [lg, =01 — P(u,v)

G ... graph adjacency matrix
A ... matrix of node attributes
0... link-affinity matrices

Want to solve:
arg IB’%X P(G|A,0)

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012



Variational EM

M-step:
Gradient method

Node
attribute
estimation

P(A|G,©)

E-step:

Variational inference

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012

\VileYe [
parameter
estimation

®
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Experiments: Global Structure

LinkedIn network

When it was super-young
(4k nodes, 10k edges)

Fit using 11 latent binary
attributes per node

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012
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Experiments: AddHealth

AddHealth
School friendship network
Largest network: 457 nodes, 2259 edges
Over 70 school-related attributes for each student

Real features are selected in the greedy way to
maximize the likelihood of MAG model

We fit only O (since A is given): arg max P(G,A|0)

7 features

Model accurately fits the network structure

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 34



Experiments: AddHealth

Most important features for tie creation

Affinity matrix

Attribute description

T0.572 0.146; 0.146 0.999

School year (0 if > 2)

'10.8450.332; 0.332 0.816

Highest level math (0 if > 6

10.7880.377; 0.377 0.784

)
Cumulative GPA (0 if > 265)

0.099 0.246; 0.246 0.352]

AP/IB English (0 if taken)

10.7940.407; 0.407 0.717]

Foreign language (0 if taken)

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012



Models of Networks
with Signed Edges



Friends vs. Foes

So far we viewed links as but links
can also be

How do edge signs and network interact?
How to model and predict edge signs?

Not just whether you know someone
but

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 37



Networks with Explicit Signs

Trust/Distrust

Does A trust B’s product reviews?
(only positive links are visible)
Support/Oppose

Does A support B to become
Wikipedia administrator?

Epinions | Slashdot | Wikipedia

. Nodes 119217 | 82.144 7.118
Frlend/Foe Edges 841,200 | 549,202 103,747

+ edges 85.0% 17.4% 18.7%

Does A like B’s comments? — edges 15.0% | 22.6% 21.2%

Other examples:

Sentiment analysis of the communication

Jure Leskovec (@jure), KDD Summer School 2012

38



Theory of Structural Balance

Start with intuition [Heider "46]

of my is my
of is my
of is my

Look at connected triples of nodes:

Lo Lo

Consistent with “friend of a friend” or Inconsistent with the “friend of a friend”
“enemy of the enemy” intuition or “enemy of the enemy” intuition

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 39




[CHI *10]
Theory of Status

Status thEOry [Davis-Leinhardt ‘68, Leskovec et al. ‘10]

Link A= B means: B has status than A

Link A — B means: B has status than A

Signs/directions of links to X make a prediction
Status and balance make predictions:

Balance: + Balance: + Balance: -
Status: - Status: - Status: -

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 40



Undirected Links: Balance

Compare frequencies of signed
triads in real and shuffled data

PP

by which
number of occurrences of triad t
differs from the expected number in
shuffled data Shuffled data

vec (@jure), KDD Summer School 2012
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Undirected Links: Balance

] - o
i.e., z-score 5 oA ‘ e o7
(deviation from 5 ¥
random measured o C& ‘ 249 289 -175
in the number of ¥
o
std. devs.) Y (’& ‘-2,105 -573 -824
% .
©
= C& ‘ 288 11 -9
- | -

Strong signal for balance
Epinions and Wikipedia agree on all types
Consistency with Davis’s weak balance

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 42



Evolving Directed Networks

Links are and
To
formalize two issues:

Links are
which provide

Users are
in their

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012
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16 Types of Link Contexts

8/10/2012

A

after there is a
two-step

semi-path A-X-B

A-X and B-X links can

have either direction
and either sign:
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Heterogeneity in Linking Behavior

Different users make signs differently:
baseline (frac. of + A)
baseline (frac. of + B)

Surprise: How much behavior of A/B
from baseline when they are in context




Status: Two Examples

More negative than gen. baseline of A
More negative than rec. baseline of B

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012

More negative than gen. baseline of A
More negative than rec. baseline of B
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Status: Summary of results

Out of 16 triad contexts Q1 R

O
O O O
Balance-consistent: 8 r& i) -
Status-consistent: 14 +8 c& +8
D
* O
oﬁo

Both mistakes of

, o
status happen when CX’&D -;

A and B have low status

GenSu_r:+207 GenSQr:96 GenSur: -7
Status-consistent: 13 RecSur: -240 ||| RecSur: 197 || RecSur: -260

Balance-consistent: 7

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 47



Predicting Edge Signs

Given a network and signs on
all but one edge,
predict the missing sign

Predict sign of edge (u,Vv)

+1: positive edge
-1: negative edge

Logistic regression

, 1
P(+]r) = 1 + e (bo+37 bizi)

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012

Original: 80% +edges
Balanced: 50% +edges

Accuracy and ROC
curves

Next slide
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Features for Learning

Counts of signed triads
edge u—v takes partin

Signed degree:

d*oui(u), dioulu),
d+in(v)' d-in(v)

Total degree: &
doy(U), din(v)

Embeddedness Q&

of edge (u,v) C&

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 49



Edge Sign Prediction

Epinions: 6.5%
Slashdot: 6.6%
Wikipedia: 19%

Wikipedia is harder:
Votes are publicly visible

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012

Predictive accuracy

Slash

Wiki

A
&
=9
=]
=2

99139(]

SpeLL] 9]

ey
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i ] [WWW '10]
Generalization

Train on row “dataset”, predict on “column”

All23 Epinions | Slashdot | Wikipedia
Epinions 0.9342 0.9289 0.7722
Slashdot 0.9249 0.9351 0.7717
Wikipedia 0.9272 0.9260 0.8021
Nearly of the models

even though networks come from very
different applications

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 51



Final Remarks

Status vs. Balance

of relationship can be reliably
from the

~90% accuracy sign of the edge

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 52



Final Remarks

More evidence that

People use sighed edges

Near perfect generalization of models across
datasets

Status difference

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 53



Final Remarks: Status

[ICWSM *10]

Fraction of positive votes

8/10/2012

0.88
0.86
0.84
0.82

0.8
0.78
0.76
0.74
0.72

0.7
0.68

Baseline

-5

Status difference (s,-sg)

Jure Leskovec (@jure), KDD Summer School 2012
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Supervised Random Walks



Supervised Link Prediction

[WSDM '11]

How to learn to predict/recommend
new friends in networks?

16088

‘E 1868 ‘ \
8 | No Path

92% of new friendships on
FB are friend-of-a-friend

More common friends helps

8/10/2012




Link Prediction: Challenges

8/10/2012

Network connectivity structure
node/edge metadata

You only have 1,000 (out of 800M possible)
friends on Facebook

Even if we limit prediction to friends-of-friends a
typical Facebook person has 20,000 FoFs

Jure Leskovec (@jure), KDD Summer School 2012 57



Link Prediction: Solution

PageRank is great with network structure

Logistic regression is great for classification
Lets combine the two!

Formulate prediction task a ranking problem
Supervised Random Walks

Supervised learning to rank nodes on a
graph using PageRank

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 58



Supervised Link Prediction

Recommend a list of possible friends

For every node S have a list of nodes

she will create links to {v,, ..., V;} <

E.g., use FB network from May 2011 and
{vy, ..., Vi } are the new friendships
you created since then

For a given node S
nodes {Vy, ..., V;} than other
nodes in the network

based
on work by Agarwal&Chakrabarti

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012

V3

positive examples
negative examples
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Supervised Link Prediction

Learn a of each edge based on:
Profile of user u, profile of user v
Interaction history of uand v 4
N
@)
Q $

Rank nodes by their
(i.e., visiting prob.)

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 60



[WSDM "11]
Supervised Random Walks

Let S be the center node " G
Iz;et f,(U,v) be a function that assigns ¢ 4
dyy = W(U1V) = exp(-WT Squ) O

¥, is a feature vector A 9

Features of nodes U and v
Features of edge (u,v) e

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 61
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[WSDM "11]
Personalized PageRank

te— if (u,0) € F,

0 otherwise -

Qi; = (1— r:'_r)Q.’;j +al(j = s) A }

with prob. a jump back to s

Q!

v ur

Compute PageRank vector: p = p' Q
Rank nodes by p,

8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 62



The Optimization Problem

Each node U has a score p, v,

Destination nodes D ={v,,..., v, } 2
No-link nodes L = {the rest}

S

Want to find w such that p, < p, A>
‘2

min F'(w) = ||w v
i

3

such that
VdeD,leL : p; < pyg

Hard constraints, make them soft
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[WSDM '11]
Making constraints soft

min F'(w) = |
.

"+ A h(pi— pa)

ld
Loss: h(x) =0 ifx <0, x%else

w

© o © o o0 o o ©o
P N W S~ 1Oy 0O R

----- 8 -0.6 4

Pi<Pg P=Pq
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Solving the problem: Intuition

min F'(w) = ||w| © 4+ Z h(pt — pa)

[d

P, and p, depend on w
Given W assign edge weights a,,=f,(u,v)

Using transition matrix Q=[a,, ]
compute PageRank scores p,

Rank nodes by the PageRank score

Pr= Py
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Gradient Descent

Vl
V2
min F(w) = ||w L\ Z h(pi — pa)
| [d
OF oh(p; — pa)
T — ) y S
Ow W Z Ow
Oh( md ()p; Opd
p— ) ! L )
W Z 0014 ()?_L-' Jw ) 8
3
We know:
T ~ -
p=2p C,? .€. PDu — Z j Pj Q Ju
So:
Opu Z 0. Op; | . 0Q ju Solve using
Ow ““ow 7 Ow  poweriteration!
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Optimizing F

8/10/2012

Pick a random starting point w,,

Compute the personalized
PageRank vector p

Learning Curve for Facebook Data

Compute gradient with 083 — 205
rESpeCt tO Weight 0.825 f- - D e PV
VeCtor W 0.82 17 /// Training AUC ——— ] 195
éj : I“‘f’f Tra izﬁ% f\gscs -------- g

Update W 0.815 |- /,/ TestingLoss - | 4g
Optimize using ool | tes

quasi-Newton method | e
0.8050 10 20 30 40 50 60 70 80 90 10018

lteration
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Data: Facebook

8/10/2012

Y3

174,000 nodes (55% of population) (2 >

Avg. degree 168
Avg. person added 26 new friends/month

A O

D={ new friendships of s created in Nov ‘09 }

L={ other nodes s did not create new links to }

Limit to friends of friends
on avg. there are 20k FoFs (max 2M)!
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Experimental setting

Node:
Age, Gender, Degree

Edge:

Edge age, Communication, Profile visits, Co-tagged photos

Decision trees and logistic regression:

Above features + 10 network features (PageRank, common
friends, ...)

AUC and Precision at Top20
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Results: Facebook Iceland

Learning Method AUC | Prec(@20

Random Walk with Restart || 0.81725 6.80

predict futu re Adamic-Adar 0.81586 7.35
. Common Friends 0.80054 7.35
friends Degree 0.58535 3.25
Adamic-Adar DT: Node features 0.59248 2.38
DT: Network features 0.76979 5.38

already works DT: Node+Network 0.76217 5.86
great DT: Path features 0.62836 2.46
Logistic regression _DT: All features 0.72986 5.34
also strong LR: Node features 0.54134 1.38
LR: Network features 0.80560 7.56

SRW gives slight LR: Node+Network 0.80280 7.56
improvement [LR: Path features 0.51418 0.74
LR: All features 0.81681 7.52

SRW: one edge type 0.82502 6.87

SRW: multiple edge types 0.82799 7.57
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Results: Co-authorship

Poor performance
of unsupervised
methods

Logistic regression
and decision trees
don’t work to well

SRW gives 10%
boos in Prec@20

8/10/2012

Learning Method AUC | Prec@?20
Random Walk with Restart || 0.63831 3.41
Adamic-Adar 0.60570 3.13
Common Friends 0.59370 3.11
Degree 0.56522 3.05
DT: Node features 0.60961 3.54
DT: Network features 0.59302 3.69
DT: Node+Network 0.63711 3.95
DT: Path features 0.56213 1.72
DT: All features 0.61820 3.77
[LLR: Node features 0.64754 3.19
LR: Network features 0.58732 3.27
[LR: Node+Network 0.64644 3.81
LR: Path features 0.67237 2.78
LR: All features 0.67426 3.82
SRW: one edge type 0.69996 4.24
SRW: multiple edge types 0.71238 4.25
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