
Applications of Redundant Number
Representations to Decimal Arithmetic

R. Sacks-Davis
Department of Computer Science, Monash University, Clayton, Victoria, 3168, Australia

A decimal arithmetic unit is proposed for both integer and floating-point computations. To achieve comparable speed
to a binary arithmetic unit, the decimal unit is based on a redundant number representation. With this representation
no loss of compactness is made relative to binary coded decimal (BCD) form. In this paper the hardware required for
the implementation of the basic operations of addition, subtraction, multiplication and division are described and the
properties of floating-point arithmetic based on a redundant number representation are investigated.

1. INTRODUCTION

When representing.numbers, positional notation using
radix r is defined by the rule

a0 a2r ~2

and conventional number systems are obtained when r is
a positive integer and the a's are restricted to be integers
in the range 0 < aj < r. Thus the a's are allowed to assume
r different values.

In a series of papers, Avizienis described a class of
number systems called signed-digit representations. '~3

With these representations the a's are allowed to assume
more than r values and both positive and negative digit
values are allowed for this purpose. (A signed-digit
number representation is sometimes referred to as a
redundant representation.) For example, if negative
values are identified by a bar over the d_igitLthen the
decimal (r = 10) signed-digit number 3 5 4 . 5 has the
algebraic value 3 x 102 - 6 x 101 + 4 x 10° - 5 x 10"'
= 243.5.

Let A be a signed-digit number represented by the
n + m + 1 digits at, i = —n, . . ., — 1, 0, 1, . . . , m with
the algebraic value

A = of 0)
i= -n

Then some of the properties of signed-digit number
systems are the following.

(i) The sign of the algebraic value A is indicated by the
sign of the most significant non-zero digit.

(ii) The algebraic value of A is zero if, and only if, each
of the digits of its signed-digit representation has the
value 0.

(iii) Given a signed-digit representation of the algebraic
value A, the signed-digit representation of —A is
formed by changing the sign of each of the non-zero
digits a,.

However, the property of a signed-digit number system
that makes it so attractive to designers of arithmetic
units is the following:

(iv) Each of the digits of two signed-digit numbers may
be added or subtracted in a parallel fashion so that

the time required for addition or subtraction is
independent of the length of the arguments.

Redundant number representations are used implicitly
in many algorithms for which the final result appears in
a conventional non-redundant form. Examples of such
algorithms are carry-save schemes for multiplication and
SRT division algorithms. A survey of the role of
redundancy in computer arithmetic is given in Ref. 4.

In this paper we consider using a signed-digit repre-
sentation to implement decimal arithmetic. Because base
10 is the preferred radix for machine/human interface,
the use of decimal arithmetic has been advocated by a
number of people.5"7 We will consider a representation
of decimal numbers for which the allowed values of the
digits a, are - 6 , - 5 , - 1 , 0, 1, . . . , 5, 6. In the
notation of Avizienis, this range of 13 permissible values
is called the minimally redundant range. Since with this
choice, only 4 bits are required to store 13 values, no loss
of compactness of representation is made relative to
BCD representation. However, this choice does preclude
Chen's 10 bit encoding of 3 BCD digits which gives
almost the same density of decimal and binary numbers.8

It will be seen that conversion from BCD notation to the
redundant representation is easily achieved and, of
course, no errors are introduced when converting between
representations.

Based on signed-digit representation, the basic opera-
tions of addition, subtraction, multiplication and division
can be performed very efficiently. Implementations of
these basic operations are described in the following
section. Multiplication is performed in a similar fashion
to carry-save multiplication so that the time required is
O(w) for n digit arguments. An iterative process is
proposed for division and with this technique, the time
required for division is approximately 2$ times the
multiplication time. The hardware used to implement
these algorithms is very simple being based on bipolar
read-only-memories (ROMs) and conventional MSI 4-bit
adders.

One possibility for implementing decimal arithmetic
is to use a conventional representation together with a
fast carry-look-ahead adder such as the one proposed in
Ref. 7. Signed-digit representation can then be used for
the implementation of multiplication and division algo-
rithms. Alternatively, the internal representation of
numbers and all the basic operations can be based on a

CCC-0010-4620/82/0025-0471 $03.50

© Wiley Heyden Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 7 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/25/4/471/366388 by guest on 24 June 2020

R. SACKS-DAVIS

redundant number system. However, the properties of
floating-point arithmetic based on a signed-digit repre-
sentation are different to those resulting from a conven-
tional representation. Some of these properties are
described in Section 3. In particular, for floating-point
arithmetic based on a signed-digit representation, a
round-off process that is based on truncation yields errors
that are unbiased and small in magnitude. Finally, in
Section 4 we show that signed-digit arithmetic can also
facilitate algorithms for multiprecision arithmetic.

2. IMPLEMENTATION OF BASIC
OPERATIONS

When adding signed-digit numbers, the carries are
propagated just one position. The propagation of carries
over the whole number associated with the addition of
numbers using standard arithmetic is therefore elimi-
nated by using a redundant representation. Given two
signed-digit numbers, X and Y,

addition is performed in two stages. Firstly, from each of
the terms x,• + y^, / = — « , . . . , m, a transfer (or carry)
digit tt _! and an interim sum digit w, are formed satisfying

Xt+ J>;= 10fi_! + Wi

The values for ?,_] and wt are given in Table 1.
In the second stage the digits, sh of the sum are formed:

It may be observed from the addition table that \w{\ <
5 and |f,| < 1 so that st will be formed without any further
carry propagation.

The formation of each of the pairs of digits tt. { and H>,
in the first stage and the formation of each of the sum
digits Si in the second stage may be performed in a totally
parallel fashion. Thus the addition time in signed-digit
arithmetic is a constant (independent of the number of
digits in the arguments) number of gate delays. An
example of addition is given in Fig. 1 and a block
diagram of a totally parallel adder is given in Fig. 2.

In order to implement Fig. 2, some 4-bit encoding for
the signed-digits —6, — 5,. . . , 6 must be chosen. In the
following we will assume that a 1 's complement represen-
tation is used. As discussed earlier, in order to comple-
ment a signed-digit number, A, it is necessary to
complement each of the digits of A in parallel. This will
simply involve inverting each of the bits of A if a l's
complement representation for the signed-digits is
chosen.

With this representation for the signed-digits, a
detailed section of a parallel add/subtract unit is given in
Fig. 3. The unit consists of identical 256 x 7 ROMs for
generating the interim sum and transfer digits and 4-bit

x,: 2 4 3 5 1 (Algebraic value 23749)

y,: 1 1 5 1 6 (Algebraic value 10416)

v/-. 3 5 1 4 5

?,: 0 T 1 0 0

s,: 3 4 2 4 5 (Algebraic value 34165)

Figure 1. An example of addition using signed-digit arithmetic.

xi-2

J7-2

• * / - !

-V/-1

•* / •+1

-V.-+I

Figure 2. Section of a totally parallel adder.

binary adders for generating the sum digits. Note that an
extra output from the ROMs is used to predict the end-
around carry required in l's complement addition.

To give an indication of the time required to perform
addition we list below typical speeds of the components
used in the adder. Schottky TTL circuits will be assumed
for the 4-bit adders and AND gates and Bipolar ROMs
are assumed for the first stage. The following times are
taken from a Signetics data manual :9

Component

82S114(PROM)
74LS283(4-BIT ADDER)
74SO7(AND gate)

Typical
time

35 ns
16 ns

4.5 ns

Maximum
time
60 ns
24 ns
7 ns

Table 1. Addition Table

x, + y, - 1 2 - 1 1 - 1 0 - 9
<_, - 1 - 1 - 1 - 1
w, - 2 - 1 0 1

- 8
- 1

2

- 7
- 1

3

- 6
- 1

4

- 5
0

- 5

- 4
0

- 5

- 3
0

- 3

- 2
0

- 2
0

- 1

0
0
0

1
0
1

2
0
2

3
0
3

4
0
4

5
0
5

6
1

- 4

7
1

- 3

8
1

- 2

9
1

- 1

10
1
0

11
1
1

12
1
2

4 7 2 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/25/4/471/366388 by guest on 24 June 2020

APPLICATIONS OF REDUNDANT NUMBER REPRESENTATIONS TO DECIMAL ARITHMETIC

sign Y sign X

Figure 3. Detailed section of a parallel add/subtract unit.

It can be seen that decimal addition can be achieved in
under 60 ns and this addition time is independent of the
length of the adders.

Multiplication is achieved by a sequence of additions
or subtractions and right shifts. Given a multiplicand, X,
and a multiplier Y, the formation of XY proceeds as
follows. At each stage of the multiplication, an integer
multiple, yh — 6 < y, < 6 of the multiplicand is added to
the current partial sum and at the same time the next
multiple, Xyt-i is formed. The redundancy of represen-
tation permits the formation of an integer multiple of X
by a parallel process similar to that used for addition.

Let successive digits of A' be . . . xi_Ix1-jfj+1 . . . and
suppose it is required to form mX, — 6 < m < 6. For each
digit, xh of X a transfer digit, *,_,, and an interim sum
digit, wit satisfying

mx^lOt^+Wt (2)

are formed. However, in this case, the transfer digits
may have modulus greater than one, so extra care must
be taken to ensure that the condition w, + ?, < 6 is not
violated during the second stage. Now, the sign of r, is
determined by the signs of m and xi+l. Hence if the sign
of jcj+i is inspected when recoding xt according to Eqn
(2) then in those cases for which the redundancy of
representation allows a choice of values for wt and f,_,,
w, may be chosen to have the opposite sign to tt. The
cases for which there is no choice of representation in wt
are those for which |*vj < 3. Since |r,| < 3, the condition
W; + tt < 6 may be achieved in all cases. A configuration
similar to Fig. 2 is then used to implement the formation
of mX. One possible implementation is given in Fig. 4
where both stages are implemented using ROMs.

A diagram of a multiply unit is given in Fig. 5. Initially,
A holds the multiplicand, M is set to zero and Q holds the
multiplier. The double length product is formed in the
MQ registers. To achieve a multiplication time of
approximately n times the addition time, the formation

, 1 1

—••

5 1 2 X 8 ROM

5 1 2 X 8 ROM

m

'i-2

256 X 4 ROM

' i - l

' IV,-

Sign xi+l

Figure 4. Forming mX, — 6 <, m < 6.

L.S.D. of Q register

ROMs for generating
mX

V Add/Sub

±
1
M

1
Q

\ 1
Shift Shift

Figure 5. Multiply unit.

of integer multiples of the multiplicand proceeds in
parallel to the additions to the partial sums.

Signed-digit division may be performed as a sequence
of additions or subtractions and left shifts based on an
algorithm due to Robertson.10 The redundancy of
representation allows an inexact selection of quotient
digits and at each stage only the leading digits of theyth
partial remainder need be inspected to determine the
correct quotient digit. However, the resulting circuitry is
still relatively complex for the decimal arithmetic that
we are considering and we describe a division algo-
rithm based on a quadratically convergent iterative
process.'' •'2 The iterative process is based on repeated
multiplication and requires no extra hardware beyond a
ROM look-up which is used for starting the iteration.

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 7 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/25/4/471/366388 by guest on 24 June 2020

R. SACKS-DAVIS

Given a numerator, N, and a denominator, £>, the
quotient Q = A7£> is obtained by multiplying both N and
D by the same factor Rk so the resultant denominator
converges quadratically towards one and the resultant
numerator converges towards Q. Thus if No = N and
Do = D we form

Nk+1 = NkRk, Dk+, = ZV?k, fr = 0, 1, . . .

so that Dk -> 1 and Nk -> Q. Writing

Dk=l-xk

where \xk\ < e, the multiplier Rk is given by

Rk = 1 + xk

so that Dk+l = 1 — xk = 1 — xk+i where \xk+i\ < e2.
Given Dk is of the form

Dk=l.00...0dmdm+1...dM

the multiplier Rk is

Rk=l.00...0dmdm+l ...dM

Unlike implementations based on conventional num-
ber representations, no explicit calculation of Rk from Dk
is required. All that is needed is that Dk be copied into
the Q register of the multiply unit prior to -the next
iteration and that the function control lines to the
add/subtract unit be set during each stage of the
multiplication. If Dk = 1.00 . . . 0dmdm+ X .. .dM then for
i = M, M' — 1 . . .m, the multiple of the multiplicand
stored in the fi-register will be subtracted from the partial
sum.

Of course, if the number of digits in the multiplier
could be reduced, the time for each multiply would be
reduced. For the multiplication algorithm proposed in
this paper, the time required is directly proportional to
the number of digits in the multiplier and is independent
of the number of digits in the multiplicand. Thus for the
division process, it makes sense to use reduced length
multipliers when this is possible. Now consider a typical
stage of the division process. We have

= 1 - xk

so

Rather than use Rk as the multiplier let us consider
using a reduced length multiplier, R\, for the next step.
The quotient is not affected provided we multiply both
the numerator and denominator by the same multiplier
and the time for the multiplications will be reduced.

Let

= Rk + Ik

Then

Y-2
Xk

If |(1 — x^tfol is of the same order of magnitude as 1**1
then using R,, rather than Rk will hardly affect the rate of
convergence. For example, suppose that xk ~ 10"2, then
\ ~ 10~4^If Rk = 1.00 d^dA . . . dm then we might use
k= 1.00 d3d^ as the multiplier for the next step without

very much affecting the rate of convergence. For division
based on this approach, the number of digits in the
multipliers approximately doubles with each iteration.
Further increase in the speed of each multiplication is

achieved by skipping over the string of zeros in each
multiplier.

As a final remark, it should be noted that since the
division process consists of a sequence of multiplications,
the intermediate terms NkR\ and DkR\ must be formed to
a slightly greater precision than the final result in order
that the accumulated 'roundoff' errors of these interme-
diate calculations do not affect the final result.

We will now briefly describe how numbers represented
in BCD notation may be converted to signed-digit
representation. The recoding of the BCD digits is done
by a similar parallel process to those described previously.
If C/ = UL_nMi10"i, where 0 < u, < 9, then we may
determine wt and f, satisfying

where |w,| < 5 and |f,_,| < 1. The w(and tt are added in
parallel in the second stage of the conversion process.

This parallel process may be implemented using the
same hardware used for the addition process; no extra
hardware is required. To see this, note that for addition
the inputs xt and yt of Fig. 2 are restricted to the range,
— 6 to 6. Since we are using a 4-bit l's complement
representation of the digit values - 6 to 6, two values,
+ 7, are not used by the hardware for addition. Thus to
implement conversion from BCD to signed-digit repre-
sentation we might input the digits M, as one of the
arguments to the parallel adder (say x,) and input -I- 7 or
— 7 to the other input (y^. With these inputs the ROMs
would be configured for conversion rather than addition.

Conversion from signed-digit representation to BCD
representation may be achieved by the serial process
described in Fig. 6. Here a signed-digit number, X, is
converted to BCD form using a simple carry-propagate
converter. Another alternative would be to implement
conversion to BCD form using a conventional BCD
adder.

A characterization of an arithmetic unit for performing
both single and double precision arithmetic is given in
Fig. 7. It consists simply of two multiply units as

C/-2

sign X

3 2 X 5 ROM 32 X 5 ROM 32 X 5 ROM

n i T TITT TTTT
Figure 6. Serial signed-digit to BCD conversion.

Multiplier 2

Registers

Multiplier 1

N
Exponent
processor

Figure 7. Arithmetic unit.

4 7 4 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/25/4/471/366388 by guest on 24 June 2020

APPLICATIONS OF REDUNDANT NUMBER REPRESENTATIONS TO DECIMAL ARITHMETIC

described in Fig. 5 together with a register set and
exponent processor for floating-point arithmetic.

Single precision addition or subtraction (integer or
floating-point) can be achieved using either of the adders
in the two multipliers. In order to perform double-
precision addition the overflow digit from the adder in
Multiplier 1 is fed via a multiplexor to the least significant
transfer digit position of Multiplier 2. The time required
for double precision addition or subtraction will be the
same as the single precision time.

Single precision multiplication (integer or floating-
point) can be performed using either multiply unit.
Alternatively, a fast scheme for multiplication consists of
splitting the multiplier digits between the two multiply
units and performing a double precision addition at the
end. With this technique, sometimes referred to as split-
multiplication,13 the time required for multiplication is
just over «/2 times the addition time. In order to perform
double precision multiplication, the shift paths illustrated
in Fig. 8 must be enabled. The multiplier is initially
loaded into Q2 — Q\ and the quadruple precision product
is formed in M2 - Mx - Q2 - Qi. In order to achieve
the correct transfer-digit paths during the formation of
the multiples of the multiplicand and during the addition
to the partial sums, a few extra multiplexors are required
to control the inputs to some of the ROM's in Figs 3 and
4.

The basic step in the division process is the multipli-
cation of the numerator and denominator by the same
factor. Since the arithmetic unit contains two multiply
units these multiplications may proceed in parallel for
single precision division. Double precision division is
based on sequences of double precision multiplications.
It should be noted that since division is based on a
sequence of multiplications, intermediate results must be
computed to a slightly higher accuracy so that accumu-
lated round-off error does not affect the final result. If the
length of the internal registers of the arithmetic unit
correspond to the length of single-precision integers and
therefore exceed the length of the mantissa or fraction
parts of floating-point numbers, then the iterative
division algorithm will be suitable for floating-point
calculations but not for integer division. Single precision
integer division may, however, be based on the double-
precision floating-point algorithm.

3. FLOATING-POINT ARITHMETIC

In this section we consider floating-point arithmetic
based on a redundant number representation. We will
consider floating-point numbers of the form / x 10e

where/= £|= t a/10~J is a /-digit mantissa normalized so
that ax # 0. This normalization criterion is the simplest

to implement in hardware. However, because the allowed
digit values, a,, are —6 . . . 6 the permissible range of
mantissas differs from the range h"s, 1) obtained from a
conventional representation of decimal numbers. We
have

0 . 1 6 6 . .. 6 < I/I < 0.66 . . . 6

m <.\f\< M

A/= 1-110"'

(3)
or

where

and

Avizienis1 considers more complicated normalization
criteria for which the resultant range of mantissas is close
to[A,l].

It was noted that with a signed-digit representation,
one algebraic number may be represented in more than
one way. Thus a value,/, such as 0.5 may be represented
as 1.5. Although the algebraic value of/lies within the
permissible range (3), the latter representation of/will
cause an overflow indication if/represents the mantissa
of a floating-point number. The range of values for which
this may occur is called the 'potential overflow' range by
Avizienis1 and based on the normalization criteria above

M - e < | / | < M
is

where

The most attractive feature of floating-point arithmetic
based on a signed-digit representation is that an accurate
round-off process is obtained by truncation. Since the
allowed digit values are symmetric around zero, the
average error introduced by truncation is zero and the
round-off is without bias. If x is a floating-point number
with a t + I digit mantissa, and if we denote by./7(.x) the
representation of x based on truncating x to t digits then
we have

^ 4 < 2xio
\x\ fs

We note that this bound on the relative error is over-
pessimistic by a factor of 10 or more when the mantissa
of x lies in the potential overflow range.

In order to obtain a statistical measure of the accuracy
of the round-off scheme based on truncation, it is
necessary to know the distribution of the trailing digits of
floating-point mantissas. Since the fundamental opera-
tion performed by the processor is the addition algorithm
of Section 2, an indication of the distribution of the

MSD

M2 02

LSD

M, Qi

77

Figure 8. Double precision right-shift used in multiplication.

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 475

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/25/4/471/366388 by guest on 24 June 2020

R. SACKS-DAVIS

trailing digits may be obtained by determining the
distribution of digits that is invariant under the addition
algorithm. That is, if p(i) is the probability that a digit is
equal to i, — 6 < i < 6, and the corresponding probability
distribution after addition (assuming no correlation
between the digits) is F(p{i)), then p(i) = F{p(i)). The
values forp(/) are given in Table 2.

Table 2. Probability distribution that is invariant under the
add/subtract algorithm of Section 2

±6
±5
±4
+ 3
±2
+ 1

0

Pin
5.2296
5.0000
9.4770
1.0000
1.0000
1.0000
1.0000

X

X

X

X

X

X

X

io-3

10-2

io-2

10-'
10-'
10-'
10-'

The distribution of digit values given in Table 2
indicates that rounding by truncation is likely to be much
more accurate than a worst-case analysis suggests. Let

f — \~J

denote a t +1 digit fraction and let e,+, denote the
absolute error incurred by truncating,/^;to t digits. Then
we may define

Et = {expected value (<?,*+,)}1/2

Values for Et based on the distribution of signed digits
given in Table 2 appear in Table 3. For a comparison we
also give the corresponding values obtained from exact
rounding on a decimal machine based on a conventional
(non-redundant) representation and for which all digit
values (0-9) are equally likely.

Table 3. Comparison of RMS values

Define
g, + 10-' if r, > 0.5, g, < M
gt if r{ > 0.5, g, = M

S-round (fl+l) = { gt if 0.5 > r, > -0.5
& if -0 .5 >r, , g, = - M

L ft-10"' if -0 .5 >r, , g,> -M

Thus conventional rounding occurs in all cases except for
when

(i) g, = M and rt > 0.5

or

(ii) g,= — Afandr, < -0 .5 .

Note that when

gt = M = 0.66 . . . 6 and r, > 0.5

/ digits

conventional rounding would dictate that g, be rounded
up to

0 .66 . . . 67

t digits

But this is not representable as a /-digit signed-digit
fraction and the most accurate rounding is achieved by
truncation in these cases.

To implement S-rounding we need to determine
whether r,e[-0.5, 0.5]. Now r, = 5]j=t+1 aj10t"j. If at+l

= 6 then /•, > 0.5. Similarly, if at+, = — 6 then r, < - 0.5.
If - 4 < at+l < 4 then -0 .5 < r, < 0.5. The only cases
which cause some difficulty are those for which at+, = 5.
Then it is necessary to determine the sign of r, =

When performing floating-point addition or subtrac-
tion this sign may be determined by detecting the sign of
the last non-zero digit which is shifted past the {t + l)st
digit-position during the pre-alignment shift. This is akin
to the incorporation of a sticky-bit for the implementation
of exact rounding on a conventional machine. A similar
technique can be applied when performing multiplica-
tion. However, for floating-point division the situation is
more difficult and a multiplication of the quotient by the
denominator may be required to implement S-rounding.

1
>2

Rounding
by truncation

0.1588 x 10"'
0.2966 x 10"'

Exact
rounding

0.1581 x 10"
0.2887 x 10"

Other rounding schemes are more difficult to imple-
ment. We will illustrate some of the problems involved
by considering the implementation of what we call S-
rounding. The implementation of rounding schemes such
as directed rounding, used for interval arithmetic, will
pose similar problems.

Suppose it is required to reduce at + l digit mantissa,
f,+l, to / digits. We may express^+, as

where g, = £,-=i0jlO J and rl = ̂ =t+lajl(f~
J. Then

— M<gt<M where M = | — f 10"'. The action to be
taken on S-rounding will depend on the magnitude of r(.

4. SOME FURTHER EXAMPLES

There are a number of properties of redundant number
representations which may be usefully exploited in
applications such as multiprecision arithmetic. We will
illustrate these properties with a couple of examples.

With 2's complement representation for binary arith-
metic the algebraic value associated with the n bit integer,
an_ifln_2 . . . a0, is -an,xr

n~x + T!j=oair> where r is the
radix. Thus only the leading digit, an_x, has negative
weight. This leads to the problem of sign-extension when
right-shifting numbers. A similar problem occurs with
the choice of 9's or 10's complement arithmetic for
decimal arithmetic. This problem does not arise with
signed-digit arithmetic and this is useful when imple-
menting multiplication algorithms where an array of
numbers must be added to form the result. With signed-
digit representation no account of the signs of the
numbers forming the array need be taken. However for

4 7 6 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/25/4/471/366388 by guest on 24 June 2020

APPLICATIONS OF REDUNDANT NUMBER REPRESENTATIONS TO DECIMAL ARITHMETIC

2's or 10's complement representations, sign extension
must be considered and the final array to be added might
be represented as in Fig. 10 rather than in Fig. 9. (Gosling
shows how sign-extension for 2's complement arithmetic
may be implemented efficiently.13)

As another example of how signed-digit representation
can be utilized, consider the problem of adding two
multiprecision floating-point numbers, u and v. With
conventional number representations, the normalization
of the result, w, must follow the addition of the mantissas.

x
x

x
x
x

x
x
x
x

x
x
x

x
x

x
x
x
x

x
x
x
x

X

X

X

X

X

X

X X

X X

X

X

Figure 9. Array of numbers to be added in multiplication.

Figure 10. Array when the numbers are negative and sign exten-
sion is required.

However, with a signed-digit representation, these two
processes can proceed in parallel. Because there are no
carry propagation chains in addition, it is possible to add
the mantissas of u and v from left to right (i.e. most
significant part to least significant part). Thus the most
significant digits of w are calculated first and the
normalization of w can proceed in parallel with the
addition of the mantissas. Early detection of overflow is
possible and the same algorithm is directly applicable to
subtraction.

REFERENCES

1. A. Avizienis, Signed-digit number representations for fast
parallel arithmetic. IRE Trans. Electronic Computers 10, 389-
400(1961).

2. A. Avizienis, On a flexible implementation of digital computer
arithmetic, in Information Processing, ed by C. M. Popplewell,
pp. 664-670. North-Holland, Amsterdam (1963).

3. A. Avizienis, Binary-compatible signed-digit arithmetic. Pro-
ceedings of Fall Joint Computer Conference, 1964, pp. 663-
672(1964).

4. D. E. Atkins, Introduction to the role of redundancy in computer
arithmetic. Computer 8, 74-77 (1975).

5. T. E. Hull, Desirable floating-point arithmetic and elementary
functions for numerical computation. ACM Signum Newsletter
14 (No. 1), 96-99(1979).

6. G. J. Myers, Advances in Computer Architecture. Interscience,
New York (1978).

7. M. S. Schmookler and A. Weinberger, High speed decimal
addition. IEEE Trans. Computers 20, 862-866 (1971).

8. T. C. Chen and I. T. Ho, Storage-efficient representation of
decimal data. Communications of the ACM 18, 49-51 (1975).

9. Signetics Data Manual (1976).
10. J. E. Robertson, A New Class of Digital Division Methods. IRE

Trans. Electronic Computers 7, 218-222 (1958).
11. S. F. Anderson, J. G. Earle, R. E. Goldschmidt and D. M. Powers,

The IBM system/360 Model 9 1 : floating-point execution unit.
IBM Journal of Research and Development 11, 34-53 (1967).

12. C. S. Wallace, A suggestion for a fast multiplier. IEEE Trans.
Computers 13, 14-17 (1964).

13. J. B. Gosling, Design of Arithmetic Units for Digital Computers,
Macmillan, London (1980).

Received January 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 477

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/25/4/471/366388 by guest on 24 June 2020

