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1 Part 1 - Principles of operation

This document describes the EP11 library, a cryptographic service provider (CSP) backend providing services typical of hardware
security module (HSM) firmware, and the interfaces it offers to hosts. In a typical production instance, the backend would be
deployed in hardware security modules (HSMs) and the host would dispatch to it through a shallow serialization library.

Disclaimer: The information on the product or specific features is not a commitment, promise, or legal obligation to deliver
any material, code or functionality.

The development, release, and timing of any features or functionality described for our products remains at our sole discretion.

The EP11 library1 provides an interface very similar to the industry-standard PKCS#11 API. While the application-visible
interface is essentially interchangeable, PKCS#11 manages sensitive data in a server-centric fashion. Unlike most PKCS#11
implementations, EP11 stores most secrets outside the crypto provider—secure hardware—in wrapped form, and backend
devices are kept essentially stateless [VDO14, Fig.2]. Wrapped secrets are attached to PKCS#11 calls by a host library.
Requests are dispatched as self-contained compounds, ready to be processed by any backend equipped with the necessary
wrapping key.

Storing state, and attaching it to requests enables EP11 host libraries to utilize multiple backends, offering unbounded potential
throughput. Utilizing multiple EP11 modules, the system may offer an arbitrarily high availability, subject to the aggregate
RAS of all backends.

EP11 functionality is accessible beneath a PKCS#11 library, which in turn can be a lightweight implementation. The layer
on top of EP11 must only provide a mapping between abstract PKCS#11 entities—such as key handles—and opaque state
objects. State includes wrapped keys, session state, or other sensitive “blobs”. If the handle-referenced objects are replaced by
their corresponding wrapped state, the result is self-contained call and may be dispatched directly to EP11. Apart from certain
object or session abstractions—which EP11 does not directly support—all functional PKCS#11 calls are directly implemented
by EP11, and the host PKCS#11 library does not need to provide them.

Requests and responses pass through the EP11 in the following steps:

1. An application calls a PKCS#11 function, passed to the EP11-aware host PKCS#11 library.
At this level, functions generally reference objects indirectly. Keys, for example, are referenced through key handles,
addressing state indirectly inside the PKCS#11 library.

2. Host PKCS#11 library replaces object references by actual wrapped objects. All references must be remapped, since
backing devices do not maintain any persistent objects, and therefore can not resolve a reference.
Non-symbolic data, such as user input, is passed through unchanged. Parameters of EP11 calls with types defined by
PKCS#11 (i.e., those with CK_... types) must be directly passed through the PKCS#11 layer.

3. Request parameters and data are encapsulated to standalone, self-contained, TLV (tag, length, value) encoded requests.
They are dispatched to the backend designated by the PKCS#11 library.
EP11 maintains a list of available backends, but the EP11-using host library is responsible for load balancing and traffic
control. Traffic routing and transfers are transparent between EP11 components, and are not by themselves security-
relevant. Malicious hosts are assumed to be able to compromise message transport, including routing, but are unable to
alter authenticated objects.

4. The request, once received by the EP11 backend, is parsed. Blobs are unwrapped at this point. If the request is improperly
formatted, or there are other inconsistencies, a transport error is returned without further processing.
Note that certain sanity checks are performed on the host, but everything is checked again in the HSM backend, since
anything from outside the HSM is untrusted.

5. After verifying request integrity, and basic consistency of the attached key (state etc.) material, the request is processed
as defined in the PKCS#11 specification [PKC04]) Backend-internal code is cleanly separated into a PKCS#11-specific
component containing all API-specific knowledge but lacking cryptographic functionality, and a “generic” crypto provider
unaware of PKCS#11.
Raw cryptographic functionality is provided by the crypto provider and underlying crypto engines. In EP11, the crypto
provider is a backend-specific port of Clic, the IBM Research/Zürich-originated crypto library.

6. Sensitive output is wrapped before being returned to the host. As described later (p. 9), objects are encrypted and
authenticated, with module-resident wrapping and MAC keys.

1�XCP�, a historical abbreviation, may be used interchangeably to EP11 in documentation or source code.
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Non-sensitive output objects, which must not be changed outside HSMs—such as exported public keys—are protected
by an HMAC. The dedicated HMAC key is derived from the transport wrapping key, so HSMs in a group of synchronized
keys will accept each others MACs.

7. Both sensitive and regular output are packed to a single TLV structure and returned to the host. Reverse transport
is assumed to be transparent between backend and host EP11, and it is not security-relevant (it may not compromise
blobs).

8. After submitting the response to the channel, all transient storage used is wiped and released. Apart from cached keys,
no request data persists in the backend after calls; any observable state updates are returned as part of the response.
Calls without observable state updates (such as ...Final calls) simply discard their state, and only output is returned.
One exception to data persistence is key caching, where unwrapped versions of blobs may remain in the module. This is
discussed later. Key caching is API-transparent, as the corresponding keys still need to be provided with every call.

9. The host library verifies response integrity. It returns a failure to the host if the response is not consistent with the
request, or other transport errors are detected.

10. Blobs returned to the host PKCS#11 library are saved on the host (but not returned to the application). GenerateKey
and similar object creation calls produce new state objects; other operations, such as ...Update calls, change an existing
object.
The host library must index blobs, so that each session etc. may be associated wit the proper blobs.

11. User-visible results of an operation, if any, are returned to the application.

The host-resident blob format combines attributes, including usage restrictions, and key material in encrypted, integrity-checked
tokens. PKCS#11 itself allows key transport to separate attributes and data. While we also support the standard PKCS#11
transport methods, we provide an additional transport mechanism to bind attributes and keys. Our attributes+key transport
format allows us to prevent attribute separation or modification, countering a known PKCS#11 weakness. When imported,
keys that have been so transported are excluded from keytransport interaction PKCS#11-compatible formats, i.e., combined
transport and less trustworthy imported PKCS#11 objects are intentionally kept separate. For functional calls, where keys are
not transported, both object types are available and are not differentiated.

As shown later, host-resident blobs may be bound to sessions, which are somewhat different from PKCS#11 host sessions, but
follow a similar logic. Sessions are represented by statistically random identifiers (HMAC output, i.e., PRF output); derived
from transport keys and user-accessible information. Hosts may further augment user-provided information by job or process
identifiers, outside EP11 visibility, such as when such information is logically part of session identity. The derived session
identifier diversifies blob encryption, separating sessions into different “cryptographic domains” (sessions’ effective wrapping
keys will be different). When a session logs out from a given backend, all key material bound to that session identifier becomes
inaccessible, even when stored on the host.
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Figure 1: Request transformations
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2 Sessions and state

The session model of EP11 differs from PKCS#11 due to the stateless nature of the EP11. PKCS#11 objects are assumed to
be unique and have a unique state. When these objects are replaced by selfcontained blobs, the session object is no longer a
symbolic reference, rather an instance of one of possible states. Since blobs may be cloned, their multiple instances can appear
as multiple sessions. Session destruction also becomes easier, since discarding a blob effectively destroys its state, without
needing to notify modules or EP11’s host library.

Note that stateless clients have definite security advantages over (more) stateful cryptographic providers: a stateless backend is
more resilient against unsafe/incorrect state if that is reachable through the interaction of multiple failures [SCA10, 1.3]. When
selfcontained requests are deserialized in their entirety, deserialization and type/content checking may be completely centralized,
simplifying analysis of those critical code sections. Similarly, since a stateless backend is in full control of per-request storage,
synchronization problems—a non-negligible source of errors [SCA10, 1.3-6]—are simpler to prevent.

An important security advantage of stateless PKCS#11 implementations is that standard API structures may be observed on
the wire, but the entire request state may be observed. Serialized objects may be unambiguously tracked, therefore a filter
intercepting traffic can identify the specific object/session state even if only observing ciphertext, assuming they have access
to past history. The combination of self-contained requests and standard PKCS#11 functionality allows our backends to be
extended with PKCS#11-aware filters if additional access control is expected around the PKCS#11 library [BCDS15, 3.1].

Since each call uses the object state of a particular instance, replicated blobs behave like individual sessions, starting in an
identical state. Obviously, if they are used in different incremental operations, their states will diverge. Unlike PKCS#11, for
example, EP11 can perform an Init call once, and perform different incremental calls on copies of the returned blob, saving
the cost of multiple initializations. This would not be possible in PKCS#11, where each session would need to be initialized
after terminating an operation sequence. Copies of the same initialized session are logically independent sessions in the EP11
model, diverging only when different data is passed to them subsequently.

Since EP11 objects do not permanently reside in modules, the number of simultaneously active instances is essentially un-
bounded, limited only by host memory. As a practical consequence, one would not expect EP11 to ever return CKR_DEVICE_MEMORY,
since module storage would be used only temporarily, released after each request. Similarly, several PKCS#11 specific limitations
are not meaningful in EP11 (such as number of parallel sessions or available free memory).

While the state model is different from pure PKCS#11, it can transparently accommodate PKCS#11 for applications that
are not aware of EP11’s internals. During incremental calls, both PKCS#11 and EP11 update “sessions”, either as a true
module-resident session, or an external state blob. Unlike PKCS#11 sessions, however, EP11 does not update or finalize state
blobs when not necessary. Calls where the useful output is not a blob, such as Final or one-pass calls (i.e., Encrypt), only
output is provided, and the input blob does not get updated to reflect a “finalized” state.

Failing to update host-resident state where not necessary differs from strict PKCS#11 rules, but this difference won’t be obvious
to a conforming PKCS#11 application. If the application issues traditional PKCS#11 calls, it will freshly Init sessions (state)
after completing an operation. Since this destroys the previous blob, it will transparently keep working for the PKCS#11
application, even if it may have simply discarded the previous state buffer.

Even if not strictly necessary, calling Init for identically initialized sessions is unique where session instances’ confidentiality
is required. Due to inherent randomness of blob generation, one would end up state objects of identical size, but different
actual bits, if the same initialization is performed multiple times. (The single exception to this, clearkey digest states, are not
interesting since they do not address confidentiality. When clearkey digest states are wrapped to blob form, they also end up
in non-deterministic form.)

Using cloned objects in different sessions does not compromise confidentiality after the first update, since updates change the
objects in different ways. As each blob contains a random IV when returned, blob clones updated with identical data streams
will diverge at the first update. Depending on host requirement and resource constraints, one may cache initialized, blank
objects for frequently used keys, and save the first Init calls, if the identity of blank sessions can not compromise security.
(An alternative solution, not involving temporary state, is the EP11-specific set of one-pass ...Single calls.)

One-pass (“nnnSingle”) calls are unique to EP11; they perform the frequently occurring nnnInit/nnn sequence for functional
calls (Encrypt, Decrypt, Sign, Verify, and Digest). The purpose of these calls is to skip unnecessary state construction
and updates if the operation may be completed in one step. Non-digest calls of this type need an initialized key object and
raw data, and return operation output directly, without manipulating state otherwise. Similar to “finalize” style calls, key blobs
used during the call are also unchanged, and do not need further administration. (PKCS#11 does not consider the cost of
additional transfers, but EP11’s state management overhead could dominate shorter operations.)

Since a host library could always restore the blob from its state before the call, destroying an object need not be performed as
an EP11 operation. Instead of explicit “dispose” calls, the host would simply need to release the buffer, or to reinitialize it.
Both of these is possible without calling EP11, or could be implicitly performed if a new Init is issued, overwriting previous
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state.

Note that most PKCS#11 state management calls are not useful in EP11, where state may be replicated or destroyed simply
by manipulating state blobs. Specifically, C_CopyObject needs to be replaced by other calls, unless a verbatim copy is needed.
Object destruction is unnecessary, since it may be performed by discarding the state blob, and does not need further EP11
involvement. C_DestroyObject therefore need not be implemented by EP11 itself, as it gets replaced by a blob manipulation
step in the EP11-aware library instead.

2.1 Retained content

For applications where RAS and throughput limitations are not relevant, the API may transparently accommodate backend-
resident blobs (“retained keys”). In such a setting, calls containing blobs may be replaced with indirect references to HSM-
resident persistent state (objects), which does not leave the backend. These keys are useful for high-assurance operations where
the loss of any single key may be mitigated against, but key material is of such value, that it must reside within secure hardware
for its operational life.

We provide a single mechanism for creating backend-resident objects, which we label “semi-retained keys” (since they were
host-visible, in encrypted form, at some point during their lifetime). An optional, custom variant of the Wrap call transforms
a valid token into a backend-internal key object, and returns a handle which may reference it. We retain all blob metadata,
specifically all session information, with the internal object. Authorization to use the retained object combines knowledge of
the handle, and controlling the session which the retained object is bound to. Retained objects are inaccessible, even with their
handle, when the controlling session has logged out of the backend.

A retained-content provides a service to enumerate its resident objects (in truncated form which does not reveal their handles),
and allows one to destroy retained objects. Removal of an object requires cooperation of the object owner, since it requires
both the object handle, and the controlling session. Note that we do not provide a service, even for module administrators, to
actually extract a retained object.

For single-pass services, use of retained keys is transparent. In cases where this is possible, a retained-key handle may double
as a “key blob”, and gets transparently routed to the module-resident object instead. Retained-object references may be
unambiguously differentiated from regular blobs, based on object size and type.

Since retained keys share finite-capacity backends, the number of active retained keys is limited by backend resources. We
also set a fixed limit on the maximum number of retained keys for efficiency reasons (we index them internally through a hash
structure which is optimized for a build-time constant upper bound). We return the object-count limit as part of the mechanism
information corresponding to the “mechanism” corresponding to creation of retained-key objects.

While infrastructure administrator services provide ways of replicating wrapping keys between multiple backends, retained-key
objects are intentionally excluded from such replication. This restriction allows our cryptographic users to keep their sensitive
retained-key material safe, even if their system is operated by untrusted infrastructure administrators.

Note that enterprise platforms discourage retained objects, and we do not consider retained-key operations necessary. Therefore
retained objects are an optional extension, configured as a compile-time option.

2.2 Object wrapping

When storing objects on the host, we use different formats for functional use and interoperability (“transport form”). We
mandate users to use transport-form objects when interfacing, with other providers, or when constructing their key material
from outside EP11.

Both functional and transport-mode objects are symmetric-encrypted, authenticated blobs, opaque to those without access to
their encryption key.

In our descriptions, we do not specify standard PKCS#11 formats, which are also available. Since standard PKCS#11 wrapped
keys do not include their attributes, they are kept separate from “attribute-bound” (AB) blobs, and may not be managed by
attribute-bound keys (2.2.3). By separating PKCS#11 objects from AB ones, we isolate high-assurance key material from the
known deficiencies of standard PKCS#11 key management. As these differences are within opaque wrapped objects, AB and
PKCS#11 keys may safely coexist within the same provider, and use the same functions, with differences restricted to key
un/wrapping. Since AB and PKCS#11 keys may not un/wrap each other, both types of key hierarchies are restricted to their
own types, and therefore PKCS#11 un/wrapping may not compromise the higher assurance of AB keys.

2.2.1 Functional objects

EP11 Principles of Operation 9 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Sensitive data exported from the module is retained in wrapped form. There is a single, symmetric key for each active domain
(outside mainframes, typically a single key); we treat domains as disjoint and refer to “the” key (meaning the domain-specific
one). The key may be generated within the module, or migrated from outside (from another module or key backup). It encrypt
exported objects directly, or provides the global key which is combined with a per-object virtualization key. Object integrity
is verified through an HMAC calculated over object plaintext. The blob HMAC uses a dedicated MAC key, derived from the
wrapping key. We use the Encrypt-then-MAC construct to couple integrity and confidentiality [Kra01] [Sma13, 4.3.1].

Exported objects are used in an end-to-end secure channel between backends. Anything between synchronized backends is
considered untrusted. Object integrities are verified before use, and outside entities may not modify contents without detection.
This assumption is necessary to be able to use an external, encrypted keystore without trusting anything over the EP11 API.

Wrapped objects are typed. Each module function verifies unwrapped objects’ types, and reacts accordingly. Internally, wrapped
objects contain Clic objects, and their type is derived from the Clic type system.

Wrapping steps are performed in the following order:

1. Serialize Clic object to memory, including Clic type information and object markers.
Object serialization may involve one indirect step, such as when serializing object state and a key—for example, for an
incremental signing operation. As with other sensitive state, such combined objects are stored on the host—internally,
they are just a different, compound object type.

2. Add/update attributes table, or reuse original (if rewrapping an object)

3. Pad to entire blocks of block cipher

4. Add object-specific virtualization key, if object is virtualized.
Plain objects start with an all-zero virtualization key, and use the global key directly. They correspond to PKCS#11
“token objects”, global entities available to all authorized to use the PKCS#11 crypto service provider (CSP).

5. Add object-specific, random IV
IVs contain two fixed bytes, which are used to recognize wrapped objects.

6. Encrypt object, skipping initial identifiers (session, TWK) and the IV.
Use global or virtualized, object-specific wrapping key (i.e., XOR of wrapping key and object-specific mask) if the object
is bound to a session.

7. Calculate blob MAC, including leading identifiers (clear) and token ciphertext. Use the TWK-derived MAC key.

Unwrapping reverses the procedure:

1. Verify that wrapped size is suitable for a wrapped object, and that it is indeed a wrapped object (has fixed IV bytes in
known location).

2. Construct object-specific wrapping key, if object is virtualized.
Virtualization key is in the clear. All-zero Virtualized key is used for plain objects.

3. Verify blob MAC.

4. Decrypt encrypted portions of object.

5. Verify that padding, if required, has the proper format

6. Verify that recovered Clic object encapsulation is consistent. This step is redundant (we verified the object MAC first),
but we further verify data recovered from such an integrity-checked object.

Type of unwrapped object must be verified by the caller. unwrap_blob returns a Clic pointer to the unwrapped payload, since
encapsulated content must have Clic object markers, and it will be used as a Clic object. (This is verified during unwrapping.)
The EP11 code itself is not aware of the internal structure of Clic objects.

Certain functions are polymorphic, accepting both clear and wrapped objects. One example is the sequence of _DigestNNN
calls, which may digest non-sensitive data using clearkey objects, or sensitive data with wrapped objects.

Wrapped objects are versioned, which permit migration between incompatible backends.

In addition to versioning, the object also stores restrictions within internal attributes. We only store restrictions enforced at
a blob level, including non-extractability, wrappability, and similar low-level limitations. Section 2.2.5 describes the actual
attribute encoding.
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2.2.2 Object integrity checking

In addition to verifying blob MACs before decrypting their payload, deserialized objects within blob plaintext are subject to
type-specific checks, during regular read procedures of the underlying CSP. These replacements within plaintext are considered
infeasible under regular operations, where host entities generally lack access to WKs, and by implication, derived MAC keys.
However, redundant checking is performed to ensure proper CSP operation, even against host-resident attackers with such
infeasibly potent error-injection capabilities. The redundant checks we perform on deserialized objects enable us to prevent
abnormal CSP termination even if host-based attackers attempt to inject them.

Integrity checks for keys of structured types, where bignumber components interact, include sanity-checking parameters for
DSA [KR02, 7.2] and RSA [KR02, 7.3]. EC objects are only supported based on specific curves (prime field, NIST [Nat13,
D.1.2] or Brainpool [LM10, 3]), therefore curve parameters are fixed, and may not be replaced by host-based attackers.

Note that the capability of injecting arbitrary plaintext also prevents us from detecting all blob-plaintext modifications, since
an attacker capable of signing arbitrary blob plaintext could also sign any proper signatures.

2.2.3 Attribute-bound keys

Recognizing the security weaknesses of standard PKCS#11 key transport, especially the capability to separate keys and their
attributes [Clu03, 2.3], EP11 adds capabilities to manage attribute-bound (AB) objects. The AB property is a proprietary
extension, a vendor Boolean attribute which prevents separation of keys and attributes. While the attribute is ignored by other
services, keys marked as AB may only be transported in an authenticated-encrypted, proprietary format. Note that none of
the standardized formats offer authenticated transport of keys AND attributes, so more secure replacements—those including
authentication—are all proprietary [BFSW13, 1] [Ste14, 2] [BCDS15, Appendix B]. The standard PKCS#11 formats, lacking
authentication, are flagged as insecure by several vendors [DKS10, 6.1, 6.2].

AB key transport is always authenticated, and all participating keys—key, key-encrypting key, and authentication key—must
be attribute-bound. Essentially, for key-transport purposes, AB keys form their own type hierarchies, which are incompatible
with non-AB keys. Since the AB property is just an EP11-specific usage restriction, for matters unrelated to key transport,
AB objects may be used with functional services using regular PKCS#11 requests. The attribute-bound property is read-only,
may not be changed after key generation.

Since AB transport is always authenticated and encrypted in one call, it also provides integrity for transported keys, preventing
key substitution [Clu03, 2.2]. Obviously, since the signing/MAC keys authenticating an AB-wrapped key may also sign fake
AB enclosures, AB transport is not immune to malicious owners of signing/MAC keys, but it is considered immune against
other attacks, including corruption. This consideration is documented under our security rationale (9.2.2, page 9.2.2).

While un/wrapping functionality of AB keys is incompatible with standard PKCS#11 services, they are otherwise used identically
with functional calls. Therefore, a typical application not managing its own keys may be easily updated to work with AB keys,
and benefit from the higher assurance provided by attribute binding.

2.2.4 Transport objects

Transport objects are generated for interoperability, and they may not be used for functional calls. We define an attribute-bound
transport form which preserves object attributes, therefore incompatible from standard PKCS#11 Un/Wrap calls. Our transport
form is an authenticated, encrypted representation of a key, including its access restrictions, providing assurance lacking from
standard PKCS#11 wrapped-key representations. Since pure-PKCS#11 key transport does not allow simultaneous attribute
transport, AB-keys are by construction incompatible with PKCS#11 ones, while they use the same Un/Wrap() functions.

We define transport forms in an implementation-independent way, allowing other implementations to generate or import EP11
key material. We strongly discourage constructing or parsing functional tokens, even if the controlling TWKs or KEKs may be
available, since we may extend or change internal representations.

Note that regular PKCS#11 objects support the usual PKCS#11 un/wrapping mechanisms. AB objects must be generated by
AB-keys, separating PKCS#11 blobs from AB ones: only AB KEKs are allowed to encrypt AB keys, and AB signing keys must
sign them. Complete separation of AB keys from regular PKCS#11 ones allows us to maintain both AB and PKCS#11 keys
within the provider, while maintaining them in different trust domains.

Transport forms intentionally restrict the choice of algorithms, and only support fixed combinations:

1. Symmetric encryption must be TDES or AES; other symmetric KEK types are rejected.

2. If an asymmetric KEK is used, the symmetric encryption is always AES/256, with the key being transported by an
algorithm corresponding to the KEK:
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Figure 2: Structure of transport-encoded keys
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• RSA keys encrypt with OAEP
• EC keys move the symmetric key through ECAES [SEC09, 5.1], in a static-ephemeral scheme similar to RSA [BJS07,

6.2.2.1]

3. Symmetric MAC keys generate/verify HMAC/SHA-256 signatures

4. Asymmetric sign/verify keys use

• RSA keys use PSS with SHA-256
• EC keys use ECDSA with SHA-256 hashes

Please see the wire specification for the layout of AB-wrapped objects.

Transport form is only defined for key objects; session objects such as incremental encrypting streams are never transformed to
or from AB form.

2.2.5 Attributes

Host-resident objects, both in functional and transport form, feature three attribute categories, in order of decreasing frequency:

1. Boolean attributes, encoding binary settings, the vast majority of attributes we use.

2. Numeric attributes, stored as fixed-size integer types and values. Note that fixed size encodings are possible for most
relevant PKCS#11 attributes.

3. Variable-length attributes, either variable-length scalar values or recursively defined attributes.

We store the three attribute types in a variable-length, fully specified field. The packed format is used in both functional and
transport form, with two additional attributes in transport form (which are implicit in functional blobs, and therefore not stored
within the attribute area). We use an encoding which allows single-directional parsing (one pass, from lower to higher offsets).
In both functional and transport forms, a separate—redundant—length field prefixes the attribute field, allowing reading to
skip the attribute field completely. See the wire description for encoding details.
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Figure 4: Attribute encoding in functional and transport encapsulation

All attributes may be queried; see GetAttributeValue(), our adaptation of the PKCS#11 original.

Attributes may be changed through SetAttributeValue(). Currently, only Boolean attributes may be modified, and modifi-
cation requests containing numeric or variable-length attributes are rejected.

2.2.6 Boolean attribute listing

The following attributes match their PKCS#11 equivalents, set if the object has the equivalent CKA_... bit. The PKCS#11
attributes not on this list are ignored by the backend, and have no compressed—packed Boolean—representation.

1. EXTRACTABLE, may not be set once removed

2. NEVER_EXTRACTABLE, read-only

3. MODIFIABLE, preventing modification once removed

4. SIGN

5. SIGN_RECOVER

6. DECRYPT

7. ENCRYPT

8. DERIVE

9. UNWRAP

10. WRAP

11. VERIFY

12. VERIFY_RECOVER

13. LOCAL, set for objects which were generated internally, not imported. Read-only, not influenced by host.

14. WRAP_W_TRUSTED, set for objects which are only allowed to be wrapped by keys with the TRUSTED attribute.

15. TRUSTED, set for KEKs which are allowed to wrap objects flagged WRAP_W_TRUSTED.
Note that setting this attribute is not access-controlled, and depends on host cooperation, if administrative controls allow
its unauthenticated state.

Note that VERIFY and ENCRYPT are implicitly added to public-key objects which support this operations, because public-key
operations are not restricted. Since public-key objects are stored in authenticated cleartext form and operate on host-visible
plaintext, the host may perform those operations on its own. Therefore, verify or encrypt capabilities on host-visible data are
effectively always available, which we recognize with these defaults. The related WRAP functionality of public keys, since it
operates on sensitive—and therefore not host-visible—data, is not implicitly provided.

In addition to standard Booleans, the following extended ones are supported:

1. NEVER_MODIFIABLE, read-only, set for objects if there were created or imported to be non-MODIFIABLE.
We define CKA_IBM_NEVER_MODIFIABLE as the corresponding attribute.
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2. RESTRICTABLE, a weaker form of non-modifiability. Objects with this attribute set are still modifiable, but they may not
have attributes added, only removed.
The primary use of restrictability is to create multiple versions of restricted-use objects, such as sign-verify pairs, which
must not encrypt/decrypt. Creating objects with the superset of all final ones and RESTRICTABLE allows one to gradually
build the related versions of the object—removing attributes in multiple steps—without the capability of creating with
less restrictions. In such a setup, one would probably set the final versions to non-MODIFIABLE.
The corresponding vendor attribute is CKA_IBM_RESTRICTABLE.

3. ATTRBOUND, set for objects which may only be transported during attribute-bound (AB) key transport, in non-standard-
PKCS#11 form, which combines attributes and raw keybytes. A read-only attribute. See also attribute-bound objects
elsewhere (section 2.2.3).
AB keys must be wrapped and authenticated by other AB keys: the KEK, the MAC/signature key, and the transported
key must all be attribute-bound. For functional calls not related to un/wrapping, AB and non-AB keys may be freely
mixed. Note that AB-wrapping mechanisms do not need to provide attributes during key transport, since all attributes
are included in the encrypted and authenticated package.
The corresponding vendor attribute is CKA_IBM_ATTRBOUND.

4. USE_AS_DATA, set for keys where raw key bytes may be used as “data” of some cryptographic operation, such as hashing
(DigestKey()) or key derivation (DeriveKey()). This restriction further controls key-based operations which do not
involve key migration, therefore, are not controlled by EXTRACTABLE or transport-related control points.
The corresponding vendor attribute is CKA_IBM_USE_AS_DATA.

2.3 Login sessions

As a special case of session management, backends may store a list of logged-in sessions to map (groups of) host entities to
module-visible identifiers. These “login sessions” are an exception to backend statelessness: they have been added intentionally,
to allow host-originated revocation or activation of groups of keys, potentially entire keystores. Functionally, login sessions
resemble PKCS#11 PINs, mapping host-visible entities to EP11-visible user identities. Since virtualized hosts may have
different understanding of what constitutes a single identity—such as: do applications in separate partitions belong to different
entities—host assistance may be necessary when translating between application and EP11-visible PINs, as described below.

Login sessions are tracked through fixed-size identifiers, each derived from a user-provided PIN, and a corresponding, optional
nonce. The session-ID derivation process calculates a MAC—HMAC/SHA-256—over this input with a fixed key, effectively cal-
culating a hash of PIN and nonce. (Note: since this functionality is embedded within functional calls, no stronger authentication
is achievable beyond proof-of-possession. See also the security rationale.) The MAC on the returned session identifier—i.e.,
“PIN blob”—may be verified by any other module.

The two session-management commands, Login() and Logout(), must be called on a per-module basis, since they manage
per-backend state. Hosts supporting single sign-on or comparable techniques may automatically log in a set of sessions, if a
new module appears in the system. Once the same session has been established within a newly added module, it may access
any session-bound object even if created within other modules.

Host entities sharing the same PIN and nonce are, for practical purposes, the same identity even if multiply instantiated—they
will derive the same, identical session identifier. Especially in virtualized environments, host libraries are expected to augment
PINs and nonces, such as appending “application/partition identifiers” or other differentiating information to the parameter, if
multiple instances represent different identities. Since backends lack host context, such as job, process, or application identity,
all relevant diversification must be embedded to PIN/nonce before calling session-management services.

Session identifiers need to be retained by the originating user, as they are identified through proof-of-possession. Therefore,
while a session identifier is insufficient to reconstruct the original PIN—and optionally, nonce—it still needs to be controlled by
the owner, as it is used to demonstrate ownership. Note that session identifiers are effectively hashed versions of the originating
input, containing neither PIN nor nonce directly, therefore they are assumed to be non-reversibly mapped, and do not endanger
the originating PIN/nonce when “exposed” [Mur08, 3]. This protection resembles the traditional security assumptions of
device-bound credentials, allowing “loss of device” to prevent disclosure of the originating user information [Goo08, Auto-login].

Session identifiers may be supplied to commands generating or importing new keys, and binds the created objects to both
the controlling WK and the session. Blobs contain a part of the controlling session in their clear header, which by itself is
insufficient to create new objects bound to the same session.

Since EP11 login sessions do not completely map to PKCS#11 token/slot-level sessions, application-level management functions
are not implemented. Host libraries are expected to map host-visible applications and entities to sessions, without passing
CloseAllSessions or similar PKCS#11 calls to backends.

EP11 Principles of Operation 14 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Login sessions are orthogonal to WKs, and are unaffected by WK removal or rollover. Obviously, session-bound blobs expire if
the underlying WK changes, but the controlling session may then be used to create keys for the updated WK.

Session checking is centralized: blobs—including session-bound public keys—are rejected if the controlling session is not present
in the targeted module. Individual PKCS#11-visible services therefore need not interact directly with session checking, although
they may return an inherited error, indicating that the attempted blob is controlled by a missing session.

Note that Logout requires the entire session identifier (but not the originating PIN or nonce). Therefore, observing a session-
bound blob—containing only a part of the identifier—is insufficient to log out the corresponding session. Similarly, intercepting
Logout is insufficient to recreate the same session by unauthorized users. If the session identifier is lost, and may not be
reconstructed, the session is effectively locked within the affected module. For such emergencies, or forced removal of sessions,
an administrative command is available to trim the session list. Note that while they can force removal of sessions, administrators
are assumed to be incapable of establishing the same session without access to the originating Login credentials. (Obviously,
administrators able to access user memory can impersonate users at will, therefore they are able to re-establish their sessions.)

As with other functionality, all administrators are more privileged than any PKCS#11 entity, therefore allowing forced removal
of a lower-privileged entity—i.e., a PKCS#11-level login session—is consistent with our security assumptions. Note that by
lacking the ability of logging in a specific session identifier, even administrators may not impersonate a user unless they can
intercept the transmitted PIN/nonce. Since any host entity capable of such interception may impersonate the originator, EP11
administrators have no special advantages to launch such attacks. Obviously, against host administrators capable of observing
an entire user session—such as full-machine administrators capable of accessing memory of the user partition—sessions offer
no security.

The number of available sessions is finite, with a count limit reported to the host. As with other, similar limits, we expect to
increase the limit in future releases, but do not publish the limit as an official constant, relying on automatic discovery instead.

Note that sessions form a flat system currently, and therefore grouping etc. of sessions is not supported. However, session-
identifiers have been defined with some expansion-capability—see the wire section for details—and therefore hierarchical group-
ing, or other session-management extensions may be added in the future. We currently foresee hierarchical sessions, such as
groups of sessions, as a feasible extension.

2.4 Read-only backend

When the backend is in read-only mode, persistent backend state may no longer be updated. Objects belonging to host-resident
databases are still updated, so operations .

The following operations are prohibited by a read-only backend:

1. Retained keys may no longer be loaded. Existing keys remain available.

2. Sessions may not be added to removed by the backend. Existing sessions remain available.

3. State-changing administrative operations are prohibited. This includes all signed commands, and the few unsigned,
state-changing ones (such as WK commit).

4. The audit subsystem is stopped, as it may no longer save its state to persistent storage, which is a prerequisite of
event-chain consistency. Operations which would generate new audit entries, such as key generation, are rejected.

Note that a PKCS#11 vendor-extension return value indicates rejection by a read-only backend (CKR_IBM_READONLY).

Read-only mode may be imposed on our backend code by the underlying infrastructure—such as an ongoing concurrent
firmware update which prevents filesystem access. In addition to such environmental conditions, test additions allow us to set
read-only mode with diagnostics builds (to allow testing checks related to enforcement of read-only mode).

2.5 Backend-internal persistent data

Persistent data stored by the backend is not directly visible over the wire interface; internally, they are files in BBRAM or flash-
based filesystems. Since our target environment in HSMs may be powered down at arbitrary times, backends must be prepared
for atomic file updates, in addition to any file-integrity checking. Since the backend stores multiple, partially coordinated files,
there is an additional requirement for consistency of multi-file updates.

Incremental writes for persistent files are not supported: each file-write replaces previous contents by replacing the entire file
in a two-stage commit. Updates to files are individually atomic by design. This “whole-file write and replace” update process,
without updating files in-place, substantially resembles the update process of state-of-the-art logging filesystems [RBM13, 3].
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File integrity is provided by including a cryptographic hash, added and removed transparently by persistent-storage functions.
Since partial file access is not supported, each file write() and read() may transparently add or verify the file-hash, without
exposing it to the calling function. If the calculated hash of non-hash file bytes does not match the hash section of the
file, contents are reported as corrupted, leaving the caller to respond in a context-specific manner. If the system is restarted
with file contents reflecting partially committed writes [PCA+14, 2.1], we assume to detect corruption due to lacking a proper
hash field—therefore, by providing our own file-hashes, we expect to run safely even on filesystems with no atomicity guarantees.
Our only atomicity expectation is the POSIX-mandated atomic file-replacement afforded by calling fsync(2) on the file, then
on its directory [Man14] [Gro97]. This double-synchronized replacement sequence is de facto atomic on relevant filesystems
[PCA+14, 4.4.3] even if not all implementations fully comply with POSIX-mandated atomicity rules.

We generally do not distinguish between transient and persistent failures: we attempt to “repair” module state by ignoring
any invalid data, and recreating the affected files in a known-good—generally, factory—state. While guessing or recovering
partial data is used by certain filesystems when encountering corruption [PBA+05, 3.3], we categorically reject any data found
in corrupted files. Note that since HSMs are expected to be zeroized at any time, HSM-aware host code is already expected to
gracefully handle new HSMs showing up in “factory state”.

File corruption is reported differently from a missing file, so an initial module setup—upon first boot—may be differentiated from
finding a corrupted file. The first successful startup in a factory state—i.e., no previously existing files—creates all persistent
files, even if in an initially-empty state; subsequent module startup detects and log the lack of expected files.

Certain persistent structures storing mixed types of data may be further split into multiple files. As an example, administra-
tor certificates require separate de/serialization, and are expected to change infrequently. At the same administrator level,
transaction counters reside in fixed-length structures, are trivial to de/serialize, and will be updated during each state-changing
command. These structures are then stored in two files, and their cross-consistency is separately checked, see “Recovery of
persistent data” below.

Note that designated transient files, such as test procedures’ intermediate state, are excluded from hashes and transparent
integrity checks. These files are either absent from production, or they are discarded if the module is ever restarted—and may
feature their own integrity checks. For backend purposes, they effectively replace transient memory structures, not persistent
storage, even if they are stored in a filesystem. Production code only stores intermediate files during state import and export,
which are covered by digital signatures in their entirety, so the lack of integrity checking of partial files is irrelevant.

2.5.1 Recovery of persistent data

While files are individually integrity-checked in an all-or-nothing fashion, logical dependencies between multiple files are resolved
when all or some of them are read back and verified. Interconnections are generally caused by the backend separating variable-
sized and infrequently updated structures from inflexible, fixed-size, more frequently updated ones:

Administrative certi�cates and the corresponding transaction counters etc. form a single logical unit, but are separate
files. Since the fixed-format structure also includes attributes relevant to certificates—such as: administrative thresholds
controlling their use—these two files must remain consistent.
Administrative data is split both at the module and domain levels. Domain data is serialized in a single structure, so
there is a single domain structure for both certificates and other settings.

(Semi-)retained keys and their attributes, including usage counters, form a single logical unit, but are stored in two files.
Only attributes are expected to be regularly updated, but the files must not be separated or mismatched.

Note that only certificate-management services need to modify both administrative certificates and other attributes within a
single administrator command. During these updates, the only attribute changing within attributes is a transaction counter:
no command allows simultaneous modification, as an example, of signature thresholds and certificates by a single command.
If we allow the transaction counter to be updated before the certificate list, there is no need to add proper transactions around
commands updating both structures.

We special-case administrator certificate-list updates to allow consistent completion without proper transactions, but still
preventing replay of administrator commands. allowing the host to recover from the pathological case of a module restart
interrupting this two-file update:

1. When accepting a command changing the certificate list, verify that it advances the transaction counter from M < N
to N , while changing the certificate list from C1 to C2. By implication, this command will not be accepted once the
counter reaches N or higher. (Note that the signed command does not include M or C1 directly, containing only N and
the difference of C1 and C2. We include them to clarify context.)
The C1 → C2 and M → N state changes need to be stored in separate files, “simultaneously” during command
processing. This is the original restriction which raises the question of transactional updates of two files.
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2. Update certificate list and transaction counters in memory. Both structures differ from their saved versions at this point:
memory contains (C2, N) with the filesystem still at (C1, M).

3. First, commit the updated attribute structure to file. This “inconsistent” state advances the transaction counter only,
but does not yet update the persistent certificate-list copy.

4. Upon successful commit of attributes, persistent structures contain (C1, N). If the same update command is received,
it will be rejected, since the transaction counter is no longer below N . At the same time, the file-persistent state still
contains C1, so the system will be successfully started in the (C1, N) state if interrupted at this point.

5. Commit the certificate list to file from memory. Upon successful completion, filesystem state advances to (C2, N).
After this commit, the module reached (C2, N) as a final state.

Note that even the intermediate persistent state is consistent, even if it has yet failed to update the administrator certificate
list. The only problem with the above process is that a module, when in the intermediate state, may not reapply the originating
command due to the transaction counter advancing first. If the system is interrupted in the above (C1, N) state, administrators
need to sign the command again, with an updated transaction counter X > N , and re-submit to the same module. This
limitation is acknowledged and documented; we already require administrators to react to the certain recovery steps, and do not
resolve those within the module. Our state model simply special-cases the intermediate state as a possible one, acknowledging
that these updates pass through three states atomically, unlike most others which only force one atomic transaction.

Since persistent structures form multiple, hierarchical groups, recovery from an inconsistent/partial set of files is possible, at
the cost of removing some invalid files (Fig. 6):

1. Logged-in sessions (section 2.3) have only functional-level relevance; they are discarded if their backing file is corrupted.
This loss has an influence at the PKCS#11 level (i.e., Login() state), and must be recovered from the host, but it has
no other module impact.

2. (Semi-)retained keys and their usage restrictions form a single, functional-level group. If any of them is corrupted, the
other one is discarded, and host code must recover from the loss of files. No other persistent structure is affected.

3. Domain-level structures separate administrator certificates, from all other—frequently updated—administrative data, in
a single structures collating information for all domains. If either file is missing or corrupt, the other one is discarded if
it is present.
Domain-level recovery zeroizes all domains, and any functional data which has depended on WKs or other functional-level
setting (sessions, retained keys). Module-level structures are unaffected.

4. Module-level structures (administrator certificates, all other administrative data) must be both present. If either one is
missing or invalid, the other one is discarded if present, and the module enters administrative imprinting, just as it started
in factory state.
Card-level reinitialization forces removal of domain-level administrative structures, and any additional implied changes.
The audit subsystem, since it is not influenced by any administrator, is unaffected. Any transaction-marking file will have
been removed by the time of administrator recovery, so transaction files are unaffected.

5. Audit state structures, if ever corrupted, are discarded and recreated in a new, randomly-instantiated audit root (see
section 9.4.2). The newly created audit-event root logs the detected file corruption and recovery as its first event, but
no other action is taken.
Since the audit subsystem operates independently of any other module subsystem, its file recovery does not change any
other persistent file.

6. Transaction identifiers are only stored during transactional operations, such as when marking an entire filesystem being
updated during state import. (The transaction identifier is simply an integer, stored in the filesystem, identifying the
target final state.) These files only exist before transaction start and completion, and may be encountered during startup
if the module has been restarted before commit.
Transactions are resolved as the first action when a transaction file is found, so they may affect other files.
A malformed transaction file, when encountered, is interpreted as a catastrophic failure. All persistent files, except any
existing audit-state file, are removed in such cases.

Audit events are generated for all forced file removals. The host may also observe the loss of structures through regular queries,
but no other notification is provided when files are removed due to corruption.
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2.5.2 Persistent data versioning

While backend-internal file formats are not exposed through the wire interface, and are not documented here, IBM internal
documentation exists for them. Since these structures are designed to be migrated to future formats, we require versioning and
well-defined structures for all of them.

2.6 Usage restrictions, representation and enforcement

Restrictions on the use of attribute-equipped blobs, which includes all keys and incremental-session state, are enforced in a
hierarchical set of checks. Allowing or rejecting use of any object is controlled by the combination of all restriction categories
(Fig. 5), allowing only the subset of objects allowed by all:

1. CPs of the responsible domain for all non-administrative requests, and a few domain-specific administrative-related ones
While CPs restricting keytype/strength/mode form clearly defined groups, most CPs are not so categorized. These
“other” CPs impose usage restrictions on very diverse points of backend control flow (therefore the highlight in Fig. 5
with no direct connection: these CPs interact with almost all other shown attributes/restrictions).
CPs may represent other infrastructure-derived restrictions, such as those imposed on the hosting platform (see FCV).
These architecture-imposed restrictions are processed as regular CP-controlled ones are.

2. Administrative attributes derived from per-domain CP setup, or their card-level aggregated equivalents. Fig. 5 shows this
relationship, when domain/card compliance attributes are derived from CPs.
Note that compliance attributes, as an example, are a condensed representation of multiple CPs. They are provided as
read-only attributes to show compliance—or lack thereof—with security standards or regulations (see 6.7)

3. Key size, type, initialization state, usage restrictions of the blob-internal key/state, as recovered from the blob.

4. The list of sessions maintained adapted forms of PKCS#11 commands (2.3)

5. Restrictions on key size, type, initialization state, operational mode etc. imposed by the PKCS#11 API. These restrictions
are encoded in control flow, are not runtime-controlled, and are inherited from [PKC04], adapted to our backend.
API-imposed restrictions specify tuples such as: Encrypt() requires an encrypt/state object output by EncryptInit(),
which has not yet used by an incremental EncryptUpdate(). The base key initalizing encryption state must have been
an encryption-capable keytype, and had its CKA_ENCRYPT attribute set. Data passed to Encrypt() may have size/format
restictions based on algorithm/mode etc.

As shown in Fig. 5, the different types of restrictions force decisions based on different properties of each object:

• the availability of PKCS#11 services may be prohibited by CPs. As an example, use of the WrapKey() service is
prohibited if CPs of the responsible domain prohibit any kind of key export, even before checking whether the supplied
blob is WRAP-capable

• services generally accept only a subset of objects, which must be of the given mode; see Encrypt() example above.
Object checking combines base functionality (Encrypt() requiring state initialized for encryption), past history (incre-
mental and single-call Encrypt() calls may not be mixed), and other similar calls.

• both keytype and cryptographic strength of the object must be permitted by the current CP setup.
Key type checks implicitly include algorithm-category checking: use of any kind of private key is separately controlled
from use of elliptic-curve keys (or even use of specific categories of elliptic curves, see the defined CPs).

• the entire set of object attributes must be consistent with the CP set of the responsible domain. As an example, if
the CP setup prohibits use of keys capable of both en/decryption and un/wrapping, en/decryption and un/wrap-related
object attributes are cross-checked (such as: reject attacks mixing keys and data through encrypt+unwrap-capable
dual-use keys [Clu03, 4]).
Since these interactions involve entire sets of attributes, they are not separately shown in Fig. 5.

• if an object is session-bound, its controlling session must be active (present) in the targeted backend
The PKCS#11 notion of a “private object”—those bound to logged-in PKCS#11 sessions—map to EP11 sessions,
therefore we show a connection between sessions and PKCS#11-derived restrictions.

• for functional use, the compliance mode of the object must match the then-current administrative compliance attribute.
(This, in turn, is a condensed representation of the full set of CPs.)
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Figure 5: Usage restrictions: hierarchical enforcement

Objects must be allowed by each of these restrictions to become eligible for use. Failures are reported as a combination of
standard PKCS#11 errors, such as CKR_KEY_TYPE_INVALID, and some IBM-extended ones, mainly for CP-mandated errors
(which have no PKCS#11 equivalent).

To somewhat simplify policy/setup-induced error reporting, we distinguish between policy rejections which may be disabled
by CP changes, and failures where the responding backend can not be configured to accept that object. As an example, a
future backend removing support for deprecated algorithms would reject existing blobs of this deprecated types with the latter
policy rejection error.

Most of restrictions-enforcement is centralized: the backend uses a single unwrap_blob() service, which is responsible for all
context-independent checking. Since most restrictions may change at runtime, all checking is applied against the then-current
setup. As with Unix file-permission checking, once an call is approved, it may be allowed to complete, even if the setup changes
after the check, during execution (which, under regular operations, does not generally happen).

The specific order of checking restrictions is not specified. We generally minimize unnecessary computation, therefore restrictions
which may be evaluated on plaintext-visible information—such as mechanisms—are applied before those dependent on blob-
plaintext (such as blob-internal stream state). We intentionally do not specify the specific order of evaluation, since that may
need to change when restrictions are added in the future.

We note here that a significant complexity of our regression suite is present only to ensure that specific usage-restriction errors
are encountered where expected. While constructing error cases is not very complicated, ensuring that CP and other setup lets
those invalid requests through to the targeted check, without triggering other errors, is quite complex. Recognizing the futility
of completing this manually, we constructed many of these compound conditions based on conditionals derived by static analysis
tools—note that BEAM, the IBM-developed static analyzer constructs compound statements immediately suitable for turning
into such erroneous conditions [Bra00, 7] [BBS06, 6].
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3 Non-sensitive external structures

In addition to wrapped data, certain operations export state in cleartext objects. These objects contain public keys and related
non-secret information, which need not be stored in wrapped objects.

3.1 Public keys

Public-key related data is exported in three related formats, all based on standard SubjectPublicKeyInfo (SPKI) ASN.1/DER
structures[PHB02]. In addition to SPKIs, minimal additional data is added to turn the SPKI into a native EP11 “object”:

1. WK identifier, showing the controlling WK

2. Session identifier, allowing the SPKI to be bound to a logged-in session

3. Salt, generated within the module. The salt prevents host entities from generating a MAC of entirely user-specified
content.

4. Object attributes (see 2.2.5)

SPKIs encode both key type and public parameters. For RSA keys, modulus and exponent are the only two parameters, which
are prefixed by an “RSA” object identifier. Such compounds (ASN.1/DER SEQUENCEs) are widely recognized as standard
containers for RSA public keys. EC SPKIs contain more fields, but are similarly standard formats. (Note that the backend only
contains a number of fixed EC curves, and currently does not support custom domain parameters, relying on curves specified
through object identifiers.)

Plain SPKIs are used where a mechanism is available, and the public key does not need to be imported to an EP11 entity.
Digital signature verification, is possible with plain SPKIs, as the mechanism is available as a separate parameter. (Verify calls
are actually polymorphic, accepting an SPKI with a MAC, if that is provided.)

Integrity-protected SPKIs with MAC, without an embedded mechanism, are needed where one may not use a public key without
trusting it, specifically wrapping other keys. Key wrapping requires wrap-capable public keys, unless the transported key allows
transport with raw SPKIs. For keys not labeled as “wrap with trusted”—those without the WRAP_WITH_TRUSTED attribute—
WrapKey accepts public key KEKs (i.e., SPKIs) that are not MACed. (Setting a key as trusted is a standard PKCS#11
operation. We support it, with CP-based access control, as it requires host cooperation.)

Operations where one needs to bind a mechanism to a public key use a variant of MACed SPKIs. While these structures are
primarily useful to retain combined key/mechanism as a single unit (such as between EncryptInit and Encrypt calls), they
also protect the “session” from modification. Note that unlike symmetric Encrypt operations, one does not need to maintain
state for RSA Encryption, as supported RSA/EC encrypt mechanisms do not allow incremental operations [PKC04, Table 34]
[PKC15a, 2.1].

In combined structures, the mechanism is stored as an additional field within an SPKI compound, storing the mechanism in
addition to the SPKI. Backend functions verify that the enclosed mechanism is consistent with the intended operation. RSA
encrypt and sign/verify accept the same structure for mechanisms that can both Encrypt and Verify.

Standard ASN.1/DER parsing can trivially retrieve the length of EP11’s embedded SPKI. Due to inherent limitations—limited
range of supported public-key sizes—SPKI tag/length fields always fit within the first four bytes of the SPKI, which may be
used to quickly verify object length.

Due to the nature of ASN.1/DER parsers, SPKIs with an appended MAC are usually accepted and parsed without additional
effort, as the DER header uniquely encodes the length of the SPKI. Structures starting with a mechanism must skip that field
to parse the SPKI.

Since authenticated SPKIs include attributes, in addition to keytype/size checks, their attributes are cross-checked as regular
blob attributes are (see 2.6).
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4 Structured state blobs

Table 1. summarizes interactions of object states and groups of functionality. The following state types are stored on host:

1. Mechanism and SPKI, protected by an HMAC. These objects are used for mechanisms where a public key is sufficient
(such as digital signature verify).
These state objects are stored in clear on the host (they do not contain sensitive information, keys, or state).

2. Digest state (including mechanism) and corresponding SPKI.
Digest+SPKI is stored where a public-key operation needs state (i.e., incremental digital signature verify). These objects
are encrypted, as the digest state contains plain data bytes.

3. Mechanism and private RSA key. Used for one-pass (“stateless”) RSA decrypt or sign, where no hashing is involved.
These operations are only used in nnnInit and one-pass nnn calls, where no state is maintained (no nnnUpdate calls).

4. Digest state and private RSA key, including mechanism.
Used during digital signature generation, with incremental calls.

5. HMAC states, used during symmetric-key based signing and signature verification.

6. Symmetric cipher states, used for symmetric-key encryption and decryption.

With the exception of mechanism+SPKI, all above states are encrypted and integrity-protected (p. 9). Composite states insert
their own types to the Clic type system (XCP_T_... constants). Objects are serialized to single wrapped blobs, as described
elsewhere. Clear objects are MAC-protected.

Certain entries of the table are crossed out with dashes. These combinations are not selected by PKCS#11 mechanisms, as
they have no cryptographic meaning (i.e., RSA Decrypt with hashed private-key mechanisms).

Calls without intermediate storage (such as SignSingle) accept state inputs that are accepted by the corresponding ...Init
call. As an example, EncryptSingle accepts MACed SPKIs, while VerifySingle accepts raw SPKIs as well.

Note that EncryptInit and VerifyInit are different in one important detail: EncryptInit requires an SPKI of an already
imported key, while VerifyInit works with any SPKI. Therefore, EncryptInit requires a MACed SPKI, while VerifyInit
accepts SPKIs both with a MAC or “without MAC” [WM].

Function
mechanism
+SPKI
(in clear)

mechanism
+state
+SPKI

mechanism
+priv. key

mechanism
+state
+priv. key

HMAC
state

Symmetric
cipher

EncryptInit X — X
Encrypt X — X
EncryptUpdate — X
EncryptFinal — X

DecryptInit X — X
Decrypt X — X
DecryptUpdate — X
DecryptFinal — X

SignInit X X X
Sign X X X
SignUpdate X X
SignFinal X X

VerifyInit X[WM] X X
Verify X X X
VerifyUpdate X X
VerifyFinal X X

Table 1: State types vs. functions
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5 Message encapsulation

Traffic between host and backend formatted in a simple TLV (tag, length, value) encoding. The set of patterns is an extremely
limited form of ASN.1 encoding, representing all fields as OCTET STRINGs (tag 04), and encapsulating them in a single
SEQUENCE (tag 0x30). The only variation is the number of fields, which is call-specific.

We assume that a reliable pipe is provided between host and backend code, there are no further requirements. Transport
may need to add further headers and encapsulation when transporting request/response data. With the exception of standard
in-band headers used in IBM mainframes, such transport additions are generally not covered in this document, and we assume
EP11 code is augmented to deal with them transparently. (In practice, host libraries provided as part of EP11 development
already includes several platform-transport variants as build-time configuration options.)

There are two kinds of parameters passed within messages, integers and buffers. Both integers and buffers are encoded as
OCTET STRINGs; decoding must differentiate between the two. As the order and number of integer and buffer parameters is
fixed for each handler function, this decoding is unambiguous. Fields are big-endian.

In addition to a command-specific number of “user” fields, a fixed number of system-level fields are inserted first. These fields
are consumed by the transport layers, and are not visible to dispatch functions themselves. If system fields are missing or
inconsistent, transport reports an error, and rejects the given message.

For requests, the main dispatcher verifies that the number of fields is consistent with the function code. Internal dispatch
functions must verify the consistency of individual fields.

Responses are checked for consistency by transport. If the returned ASN.1 structure is inconsistent with its embedded function
code, or the function code does not match that of the request, host code will stop parsing. Host functions are responsible for
parsing individual fields, once basic consistency has been verified.

Error returns are regular module-to-host TLV packages, but only with system fields, and a single return value. This is a special
case, where the returned structure is not checked against the corresponding field count. Certain functions do not return buffers,
just values (such as C_Verify); those are flagged as having zero return buffers.

Optional or empty fields, possible for certain commands, are not removed from transfers. They are sent as empty fields, i.e.,
OCTET STRINGs with zero length—this encoding is valid, but unusual, although BER-parsing tools may legitimately flag it
with a warning. The alternative, changing the number of fields, would make parsing ambiguous. Individual functions must
verify that the structure of fields is what’s expected; an error is returned otherwise.

Table 6 summarizes parameters of PKCS#11-derived EP11 functions, including parameter count and names. Parameters
in parentheses are optional, parsing functions must detect their presence and act accordingly. Similarly, Table 7 describes
non-PKCS#11 functions. (Note that both tables are automatically generated from EP11 source code.)

5.1 Transport message structure

Transfers are designed for single-pass processing: messages are self-contained. All required data is encapsulated in a single
message, no further host interaction is needed once a request is received. Module-to-host responses are similarly self-contained,
requiring no further interaction with the module.

Host code is responsible for routing returned values. Return values and user-visible results are returned or copied to the caller.
Internal objects, such as opaque key blocks, are retained in by the EP11-aware host library.

The same transport structure is applicable to the real HSM backend, or software simulations (socket, DLL, or standalone code).
The only difference is in transport mechanism. As long as the underlying transport passes opaque buffers reliably, the interface
protocol is unchanged (in fact, it stays binary compatible if the backing CLiC versions are).

Transport implementation details are described in the shared header file transport.h. This file, intended for inclusion in both
HSM and host (EP11) code, contains the table of parameter counts, ASN.1 formats, symbolic function identifiers, and all other
low-level details. (The header file is also used to generate the summary tables in this document.)
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6 Administration

Administrative commands are below the PKCS#11 level, and provide an almost orthogonal set of services. Not directly
represented as PKCS#11 commands, administration involves the following groups of functionality:

1. Import transport wrapping keys in whole or parts

2. Export transport wrapping keys in whole or parts

3. Reencrypt key material between different transport wrapping keys (within the same domain)

4. Manage administrators

5. Change administrator signature (and revocation signature) thresholds

6. Change protection/operating mode of module (to non-FIPS, for example)

7. Disable features (such as key import or export)

The above manipulation is grouped into management of certificates, attributes—integers and bitfields—and controlpoints
(Table. 2). Generally, state-changing commands must be signed by the appropriate number of administrators, with the specific
exceptions of commands requiring no signatures. (The latter require host cooperation, and are assumed to be restricted by
policies. None of the zero-signature commands reveal card-resident secrets, but they may advance backend state in accordance
with the card security assumptions.)

At first power-up, or after zeroization, in “imprint mode”, modules are activated without registered administrators, and they start
accepting administrator identities—certificates—without signatures. This mode is terminated by an administrator command,
and would be performed under controlled conditions, before allowing user access to new cards. Once the card has been
“imprinted” with its administrators’ identities, it may be controlled over end-to-end channels, and may be made accessible to
users.

We rely on x509 certificates representing administrators. No certificate(signature) validation happens when adding an admin-
istrator; certificates are only used as portable public key containers. We do not interpret PKI context of any certificates we
encounter. Since we only parse actual public keys, backends are immune to any “vulnerabilities” of certificate verification—
i.e., any logical PKI-hierarchy problems which may manifest in attributes or the hierarchy itself, not within the public key
itself [BJR+14, IX] [GIJ+12, 7] [ASVH13, 4]. Unlike PKI clients which unintentionally do not validate certificate attributes
[FHM+12, 5.3, 4.3], we ignore non-publickey parts by design. (Note that certificate attributes, even of certificates used by
high-risk industries, are frequently assigned inconsistently [DKCC16].)

Public keys returned by the card are generally SPKIs, self-contained standard public-key formats; we do not construct proper
certificates for these activities.

Administrator commands must be signed by a sufficient number of administrators, as described below. Changing the generic
administration threshold, and a separate one for revocation, one can implement many feasible multi-administrator schemes.

We assume that administrators will disable unneeded capabilities depending on deployment before establishing transport wrap-
ping keys. The backend does not enforce any policies on order of management, other than verifying the then-current number
of signatures on commands.

6.1 Administrator setup

When a backend is first initialized, it starts in “imprint mode”, without transportkey or administrator. As the first administrative
actions, the card must be populated administrator certificates, which will be accepted without authentication (Fig. 7). We
essentially instantiate “trust on first use” [WAP08, 1], and rely on externally verifiable auditing backed by module-resident
signing keys (unlike online services [WAP08, 3.3], we provide queries to establish the provenance of keys).

As soon as a sufficient number of administrators is present, and a special signed request is submitted, the card leaves imprint
mode. Imprint mode is no longer entered, unless the card (or domain) is zeroized, or a recoverable file failure removes
administrators from it; in both cases, the affected unit/s revert to imprint mode.

If the card has administrators, but they may not be restored from persistent storage, we treat this as a failure and purge
all persistent administrator and key storage state. Note that administrators are higher priority in this case; if persistent
administrators are corrupt, the keyfile must also be invalidated (erased). In the other direction, when key restoration fails,
administrators need not be removed (but the module will start without a key, which must be generated or restored from
outside). Fig. 6 shows the relative hierarchy of removing/recreating module files after file corruption or other failure.

See also: Imprint mode
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6.2 Administrator revocation

We provide a service to remove administrators, as part of regular administrator rollover. Revocation may not reduce the number
of administrators to below the current signature threshold (in which case, the card would become impossible to administer).

Note that when active administrator private keys are lost, the backend may become unmanageable even without revocation.
The transaction set is still consistent, card integrity is not compromised, but the card will no longer accept signed administrator
commands (see the “Unmanageable” state in Fig. 7). Users are encouraged to supply additional, spare administrators, to reduce
the chance of hitting this special case.

As a special case of revocation, we provide services to replace existing administrators. This may be performed as an atomic
action, without changing thresholds, and without even transiently changing the number of active administrators.

6.3 Administrator authentication

Administrator commands are authenticated based on public-key cryptography, through public keys. An administrator identity
is proven through the capability to sign with a private key corresponding to the administrator public key.

Administrator public keys are supplied during administrator login, through X.509 certificates, which are only used to retrieve
public keys. Other parameters of certificates, including signer identity and usage restrictions, are ignored. Since there is no way
of establishing external trust at this level, and some signing devices may have self-signed certificates, verifying signer identity
is not considered feasible.

To provide a verifiable trust base, stored administrator keys are available through a dedicated query. One may obtain a list
of certificate hashes, or actual certificates individually. This compensates the lack of discrimination based on CA signer; it is
always possible to verify who is controlling a module.

Note that administrator authentication is not related to PKCS#11 services. Administrator identities are established before
PKCS#11 commands are issued.

6.4 Administrative commands

Administrator commands must be authenticated, by administrators signing the command payload. The proposed method
to authenticate is through PKCS#7 SignedData messages, possibly involving multiple signers (each administrator generates
a single signature). Administrators can build such multi-signed messages easily, since the process can be partitioned into
generating individual signatures (only RSA signature, no additional formatting), which could be performed on any signing
device. A TKE workstation, smartcards, or even softtokens could trivially generate each administrator’s signature. A trivial
amount of wrapping code, as demonstrated by the existing Clic-based prototype, can combine individual signatures into a
multi-signed PKCS#7 message.

There are several advantages of using multi-signer PKCS#7 messages for command authentication:

• The scheme works for an arbitrary number of administrators (including N = 1), without modification.

• No intermediate administration state—i.e., “partial commands” or similar state machines—need to be maintained inside
the module (administrator code). PKCS#7 verification is atomic, regardless of the number of signers.
State needs to be maintained by the external administrative process, but that complexity may be hidden trivially, as shown
below. The result is moderate overhead on administrator hosts, no additional complexity inside the module. Specifically,
since we do not expose a multi-stage state machine through chained transactions, host-induced attacks targeting the
control flow of state machines are preempted [BBDL+15, II.]
Operating only on reassembled, full commands allow us to prevent attacks on state sequences, such as combining partial
transactions in insecure sequences, or similar abuse attempting to disrupt crypto-related state machines [BDLF+14, V]
[BA01, 3.1] [Zol11, 4] [BBDL+15, IV.]. Obviously, our backend only exports the problem to host (administrators), but
this radically simplifies the backend implementation—i.e., the only security-critical component.

• Host (administrator) overhead is limited to handling a single binary buffer (passing it through the list of administrators).
With a suitable support library—see below—the only required administrator capability is to generate a single signature,
and to pass the result reliably to the next administrator. Digital signatures make error-detection easy even during the
incremental signature collection phase.

• Since PKCS#7 is a standard format, administrative messages could be constructed by existing tools.
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Note that while we use individual PKCS#7 structures such as signerInfos, we repackage them into a proprietary
transport package. However, we have implemented our transport with standard PKCS#7-packaging code as a technology
demonstration, so we simply refer to PKCS#7 transport (primitives) in our documents.

A prototype implementation, based on Clic, is available. It can be trivially extended to handle non-Clic signers (such as signing
devices), or replaced by equivalent utilities for platforms where Clic is not available. The process is straightforward:

1. Generate an empty PKCS#7 SignedData envelope with the given command payload, but without any signers.
Such a “zero-signer” PKCS#7 message is technically legal, but obviously not very useful. It is not used on its own
(lacking signatures, the module would reject it), but it’s convenient to be able to separate PKCS#7 envelope creation
and signing.

2. Each administrator uses an accessor function to parse and inspect the signed command (admin_signature_payload).

3. If the command is recognized as valid, generate an RSA signature through any signing device. Append the signature and
the signer’s certificate (append_admin_signature).

4. Repeat the previous two steps for all administrators.

The PKCS#7 payload obviously must use the certificates that are deposited to the module.

6.5 Administration lifecycle

Administration is divided into two distinct stages, initial administrator setup—imprinting—and operational administrator com-
mands, both for card-level and domain-level administration (Fig. 7). Initial setup is limited to queries, and administrator
management; setup must be terminated before functional requests are submitted to the module. Once all administrators have
been registered, the module is ready to authenticate administrator commands, and may start receiving functional requests. At
this point, all administrator commands become available, and every administrator action must be authenticated.

Note that in development builds, we may support thresholds of zero—all commands will be accepted without signatures. This
is not possible in production code.

Registered certificates may be queried as lists of public key hashes—SKIs, SubjectKeyInfo’s—or individual certificates (which
return ASN.1/BER form). Certificates provide the public keys which are used to verify administrator signatures; other than
providing a standard form of public-key storage, other certificate properties—such as expiration dates—are not verified. The
lack of expiration verification mirrors PKCS#11 [PKC04, 10.6.2]; we apply the same rationale.

Administrative traffic is intentionally stateful, as opposed to the rest of functionality, to prevent replay of administrative traffic.
Administration state tracking combines salt-like quantities and transaction counters to keep a strict order of administrator
commands and prevent replay:

• Administrator transaction counter, a “sufficiently long” counter that starts at zero during installation, and is retained
across module restarts. In order for a signed administrator command to succeed, the request must include a larger value
of the same size. Once accepted, the counter is advanced to the provided value.
State-changing commands which are accepted without signatures increment the transaction counter, ignoring any user-
supplied value.
There are separate transaction counters for the entire module, and for each domain.

• Module identifier, generated fresh upon every module zeroization or during first startup. Prevents replay of administrative
traffic to the same module, if after zeroization it is populated by the same administrators as in any previous instance.

• Domain instance identifier, similar to the module instance identifier, restricting replay across the same domain.

Instance identifiers are populated with random data during first access, are reset during zeroization, and are retained across
backend restarts.

We do not support transaction counter wrap-around; administration becomes impossible once the counter has advanced to its
largest possible value. Note that counter size is selected to be infeasible to exhaust under reasonable circumstances.

Initial setup, typically performed by drivers performed before activating the card, allows registering initial admins (“imprint
mode”). No authentication is performed during this stage; the only available commands perform administrator management.
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Figure 6: List and interactions of backend-resident �les

At the end of administrator lifecycle, administrator revocation may be initialized by the administrator, or other administrators.
If an administrator removes his own certificate, no countersignatures are required, regardless of active administrator signature
threshold. If other admins are removing a certificate, their signature must be over the—revocation—threshold.

If the number of administrators reaches N , the current threshold, the last remaining administrator may not revoke further ones.

6.5.1 Administrator signature counts

Administrator signatures are applied in the internal two-level hierarchy: card-level administrators may override domain-level
ones. When counting signatures, the following rules apply:

1. All present signatures (SignerInfo’s, see the wire section for details) must apply to the same payload, and all must be
valid.
Only administrator signatures from authorized keys are counted.

2. Card-level commands must be signed by only card-level administrators.

3. When counting domain-level signatures, a card-level signature also counts as one.

4. Only one signature per administrator key (SKI) is accepted per command.

5. The total number of signatures must be over the generic threshold, or the applicable revocation one (administrator
revocation only). The threshold is unambiguously the card-level one, or that in the targeted domain, depending on
command.

It is generally assumed that card-level administrator keys are used infrequently, and most administration uses lower-assurance,
domain-level keys. In practice, we assume that domain and card-level signatures will not be mixed.
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6.5.2 Imprint mode

Administration starts without predefined certificates or CAs in the factory state, or after zeroization. In this state, “imprint
mode,” the initial population of administrator certs is deposited to the card/domain, initial thresholds are established, then
imprint mode is terminated. Our assumption of initially connecting entities allowed to take control, then subsequent attacks
protected by end-to-end authentication, mirror security expectations of distributed applications under comparable security goals
[WAP08, 1] [EPS15, 1].

The following special rules apply to imprint mode:

1. Commands are accepted without signatures. The first successful command increasing the signature threshold from zero
terminates imprint mode: all subsequent commands must be signed as described in Table 2.

2. Only the following commands are available in imprint mode:

• Login administrator
• Logout administrator
• Replace administrator
• Set attribute/s
• Set FCV (card-level imprint only)
• Zeroize

Queries may be issued without restrictions. Note that certain queries—such as those involving WKs—may not produce
meaningful results, but they are not otherwise restricted.

3. Administrator-management commands are accepted without signatures. Setting attributes requires one or more signa-
tures when setting the signature threshold. Setting attributes other than the signature threshold—such as the revoke
threshold—is allowed without signatures.

4. Once a threshold has been raised from non-zero, it may not be lowered back to zero.

5. Imprint mode may only be terminated if both signature and revoke threshold has been increased to non-zero. It is not
relevant whether the revocation threshold has been increased first, or both new thresholds are specified in a single “set
attribute” command.

6. The command to terminate imprint mode—increasing the signing threshold from zero—may be signed by a single signer,
even if “set attribute” is otherwise an N-signed command (see Table 2).
Note that when the command is issued, the then-current threshold would be zero, we just interpret it as 1 in this case.

7. The command to terminate imprint mode, when increasing threshold from zero to N , must be signed by at least N
currently registered administrators.

Any additional checks apply to imprint mode unchanged. As the most relevant example, none of the thresholds may be increased
to N if the targeted card/domain has less than N current administrators.
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6.6 Control points (CPs)

Control points restrict specific capabilities within a domain. They are represented in an array of individual CP bits (CPBs),
with a set bit enabling the capability. Future additions will preserve this positive-active logic, therefore zero-extending a set of
CPs from a previous release to a more recent version will remain a safe operation.
The following CPs influence core infrastructure:

• Allow addition/activation of CPBs (ADD_CPBS). A separate CPB allows removal of CPBs (RESTRICT_CPBS).
To make the setup read-only, deactivate both of these CPBs. Removing only addition, but not deletion, turns the setup into a
form that may be further restricted, but missing capabilities may no longer be activated.

• Allow the backend to save blobs as semi-retained keys (RETAINKEYS), see (2.1).
Note that this setting does not influence key caching, which may not be externally controlled, and is host-opaque.

• Allow modification of object attributes (MODIFY_OBJECTS). Removing this attribute makes all objects read-only.
Note that currently, only Boolean attributes may be modified.

• Allow mixing of external seed to the backend, if it is supported (RNG_SEED).
• Allow generating asymmetric keys without selftests—private/public key operation consistency checks—upon asymmetric key(pair)

generation (SKIP_KEYTESTS).

The following control points influence groups of functionality:

• Allow signing with asymmetric (private) keys, symmetric keys (SIGN_ASYMM, SIGN_SYMM) or verification with symmetric keys
(SIGVERIFY_SYMM).
Note that one can not restrict signature verification with public keys, which are available to the host.

• Allow encryption of data with with symmetric keys (ENCRYPT_SYMM), decryption with symmetric or asymmetric ones (DECRYPT_SYMM,
DECRYPT_ASYMM).
Encryption with public keys can not be prevented, therefore there is no such CPB. (Note that wrapping keys is separately controlled.)

• Allow generation of symmetric or asymmetric keys (KEYGEN_SYMM, KEYGEN_ASYMM) or key derivation creating new symmetric keys
DERIVE.

• Allow wrapping keys with symmetric or asymmetric keys (WRAP_SYMM, WRAP_ASYMM).
• Allow unwrapping keys with symmetric or asymmetric keys (UNWRAP_SYMM, UNWRAP_ASYMM).
• Allow cryptographic strength windows: below 80 bits, 80 to below-112, 112 to below-127, 128 to below-192, 192 to below-256, or

256-bit (KEYSZ_BELOW80BIT, KEYSZ_80BIT, KEYSZ_112BIT, KEYSZ_128BIT KEYSZ_192BIT, KEYSZ_256BIT).
• Allow algorithms not allowed by NIST or BSI rules of a specific date (ALG_NFIPS2009, ALG_NBSI2009, ALG_NFIPS2011, ALG_NBSI2011)

These CPBs control entire sets of algorithms. They may be further restricted.

The following CPBs are specific to algorithms or other PKCS#11-level functionality:

• Allow keywrapping without attribute-binding (NON_ATTRBOUND). This CPB must be set for standard PKCS#11 key transport,
which uses key forms without attributes.

• Allow raw—unpadded—RSA operations (ALG_RAW_RSA)
• Allow HMAC keys below the minimum FIPS-198 keysize (half of state size) (KEYSZ_HMAC_ANY)
• Allow RSA public keys below 216 + 1 (KEYSZ_RSA65536). This restriction corresponds to the lower limit introduced by FIPS 186–3

(at the end of 2010).
• Allow functional use of RSA, DSA, Diffie-Hellman or elliptic curves (ALG_RSA, ALG_DSA, ALG_DH, ALG_EC)
• Allow EC operations over NIST or Brainpool (E.U.) curves (ALG_EC_NISTCRV, ALG_EC_BPOOLCRV).
• Allow non-administrators to set objects’ CKA_TRUSTED attribute, which in turn allows export of keys restricted to transport with

trusted keys (USER_SET_TRUSTED).
Note that non-administrator-controlled TRUSTED attributes are inherently unsafe, and need proper privilege separation on the host.

• Allow creation/use of keys which can un/wrap and en/decrypt simultaneously (WRAP_CRYPT_KEYS). Similar restrictions are possible
to prevent sign/verify and and en/decrypt SIGN_CRYPT_KEYS) or un/wrap and sign/verify (WRAP_SIGN_KEYS). The CPs apply to
all combinations of symmetric and asymmetric keys.
These restrictions, when enforced, prevent compromise of key material through misuse of blob attributes, such as mixing encrypted
keys and data [BCFS10, Clu03]. Adding such restrictions prevents the entire category of such attacks.

Control point restrictions are cumulative: all applicable CPs must be enabled for an operation to succeed (see section 2.6).
Error reports are not—currently—specific about which CP has caused the request to be rejected. Since CP verification is
essentially searching for an intersection of permissions’ and requirements’ bitvectors, once CP count gets sufficiently high,
bitvector-aggregation techniques used by firewalls are directly applicable [LLS03, III.B].
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While CP restrictions are basically dynamic, backends MAY reject certain configurations completely. This would prevent, for
example, certain CPs from being ever activated, which is backend-dependent. To indicate such possibility, in addition to
the regular “policy prevents operation” return value, we reserved another vendor-extension return value to indicate “policy
prevents operation,and this backend will never allow reconfiguration to allow it”. Host code MAY choose to log these conditions
separately.

We currently do not support Control point “profiles”, symbolic references to full collections of control points. Host applications
therefore must specify the full set of CPBs to set modes. Since profiles would be unambiguously distinguishable from sets of
CPBs, profile support may be transparently added in the future.

6.7 Operational modes (compliance)

The backend supports a number of Boolean operational modes, predefined lists of control points which correspond to specific—
security—standards. The specific combinations they represent is detected, whenever the combination of control points fulfills
the requirements. Mode settings are controlled indirectly: attributes reporting compliance are read-only, updated once CPs
have been set.

Operational modes correspond to compliance with the supported standards. By including expected compliance bits within
objects, we bind objects to specific sets of standards, and prevent their use in any other environment. Compliance effectively
segments host-based keystores into mutually incompatible subsets, where objects of different compliance setups are prevented
from functional interaction.

Operational modes are reported hierarchically: card-level mode bits show the logical AND of all domains with WKs (domains
without WKs may not service functional requests, therefore are ignored for API-level standard compliance). Since card-level
mode state is a conservative overview of all domains’ modes, it serves as a single query when reporting card-level state (i.e.,
can be used to provide a single “FIPS mode” or “BSI mode” indicator for a card with multiple active domains).

Domain and card modes are recalculated after the following administrative actions:

1. Modification of control points

2. Domain “activation,” when a domain WK gets activated (i.e., the domain becomes capable of accepting functional
requests)

3. Domain deactivation or zeroization, if it turns a previously functional domain inactive

We ignore compliance settings for domains without WKs as they may not process functional requests. Our definition of
compliance modes—see the security policy—states that we only enforce their restrictions for functional requests.

We support multiple revisions of FIPS-140 and BSI (HSM) protection profile compliant modes. These compliance settings
are usually comparable, and domains may be in a mode which simultaneously compliant with more of them. Simultaneously
activated modes support only the intersection of algorithm lists, and observe the union of usage restrictions.

We foresee the list of these mode-selecting options to grow in the future, such as with future revisions of the underlying
standards. As with control points, we will append future mode settings to the list without changing existing ones.

6.7.1 Compliance mode inheritance rules

Compliance mode settings are enforced for blobs and MACed SPKIs, including non-key objects embedded within blobs (such
as encrypted state structures of incremental operations). Enforcement of compliance follows the following lifecycle rules:

1. Compliance mode may be supplied as an attribute during key generation, unwrapping, or derivation. Attributes are
supplied as one or more integer attributes containing a bitmask of compliance bits (see CKA_IBM_STD_COMPLIANCE...).

2. If no compliance mode is supplied during key generation or unwrapping, the current setup of the domain is inherited.

3. Newly generated keypairs’ compliance settings are supplied separately, each within the corresponding public/private-key
attributes.

4. If a key is derived from another one, and no compliance mode is provided, the derived key inherits the compliance mode
of the originating blob.

5. If keypair generation provides private attributes with an explicitly supplied compliance mode, and the public key does not
provide one, the public key mode is inherited from those of the private key.
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6. Object creation may succeed, even if the resulting objects’ compliance mode differs from the current setup of the
generating domain, if key generation methods are permitted by both the current and targeted compliance modes (see
exception below).

7. Object creation may be rejected, reporting a policy failure, if the selected key generation method would not be acceptable
for the requested compliance mode, even if it is accepted by the current domain setup.
Note that currently, we do not support algorithms with such conditions, therefore no such rejections are performed.
However, we list this option as a future possibility, if algorithms and compliance modes are added in the future.

8. For functional calls, objects are rejected if their compliance mode does not match that of the domain it is submitted to.
Queries or modification—i.e., non-functional access to object contents—of object compliance (see below) are possible
even if object and domain compliance differ.

9. Attribute-bound objects transport their compliance settings, as part of the full set of attributes they include.

10. Objects derived from blobs, such as incremental operation states, inherit their compliance mode from the originating
object.
Note that this differs from key derivation, where a new set of attributes may be supplied: when initializing a state object
from a blob, one may not supply attributes of the newly created state object.

Compliance mode bits are stored in two locations, within blob attributes and a separate copy—a dedicated field—in the blob
header. A newly created object will contain identical copies, but the two fields may subsequently diverge.

6.7.2 Compliance mode modi�cation

When an object compliance is modified, only the dedicated header field is updated. The original compliance field, within object
attributes, is never updated, and therefore it represents “object compliance history.” Currently, original compliance is not used
functionally, but it may be in the future—such as evaluating whether an object has been created under certain conditions
(which may be inferred from its original compliance settings).

Compliance mode is updated through calls to SetAttributeValue(), which is allowed even if current domain and object
compliance differ (6.7.1). Modification rules are the following:

1. Updates may add, but not remove, compliance bits from an object. New compliance is supplied as a change to the
corresponding attribute (bitfield).
Preventing removal of updates prevents objects from being migrated to more relaxed environment, but allows adding
further restrictions to an existing object. (Since objects also retain their original compliance, more granular cross-checks
may be added in the future.)

2. The targeted new compliance need not match the current mode of the targeted domain. Objects so updated become
functionally inactive until the domain mode is subsequently changed. Such mismatch would be intentional, for example,
when migrating a keystore to a preannounced, stricter setup due to a future domain mode change.

3. Specifying all-zeroes as the “new compliance” bitmask update the object to the then-current mode of the targeted domain.
(If the current mode is a subset of existing object compliance, the update is rejected.)
Note that all objects contain at least one compliance bit, therefore all-zeroes is not a valid “new compliance” combination,
and the special case is unambiguous.

The effective compliance mode is the stricter subset of the two compliance bit fields; by construction, the blob-embedded
version is read-only (it may not be modified after blob creation).

Currently, all domains operate in a mode compliant with FIPS-140 in the setup corresponding to settings allowed 2009. Future
default modes may add further restrictions by default.

6.7.3 Irreversible attribute settings

The most critical set of card/module attributes are controlled through a two-step process, which allows modification of the
attribute, and provides settings (“meta-attribute”) to prevent subsequent modification of the attribute itself. For each such
critical attribute, a corresponding “CHANGE-...” attribute is also available, initially in an enabled state. Removal of the
meta-attribute permission prevents reactivation of the meta-attribute or any further change to the controlled attribute.
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The capability to prevent further modification makes it possible to create setups for specific uses, and ensure that no further
administrator action may subsequently relax the security setup. Especially in high-security scenarios, additional assurance may
be derived from the fact that even administrators are unable to change some of the setup, such as to disable restrictions which
are currently enabled. A typical application would be to prohibit key or state export, then remove the capability to reactivate
it: any user keys subsequently loaded into a backend in such a state would be de facto non-extractable until the module is
reset to factory state (through firmware management, outside EP11 control).

Since meta-attributes may not be reactivated, the irreversibility of their removal allows others to partially distrust even admin-
istrators. Administrators may therefore demonstrate full commitment by removing their own ability to control certain settings,
when activating—without the capability to subsequently deactivate—security controls [Kub64].

The list of attributes which are mirrored to a meta-attribute allowing modification is currently:

1. Allow state export

2. Allow state import

3. Allow WK export

4. Allow WK import

5. Allow WK transport in one piece (i.e., without use of multiple keyparts)

6. Allow use of randomly generated WKs

7. Allow changing signature or revocation thresholds (separately)

8. Enable single-signed administration (i.e., setting thresholds to 1)

9. Enable single-signed CP changes

10. Enable single-signed zeroization changes

Settings allowing change of the above attributes are initialized as all-permissive. They may be removed, but may not be added
back. See 8.5.1 for examples setups which are controlled through elements of the meta-controlled attribute list.

Host tools are recommended to warn users about making irreversible changes. Note that all these changes persist until
zeroization, and are therefore irreversible only in the current instance of the targeted card/domain.
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7 Administration message formats

Administrative requests are packaged in a single, sub-typed administrative structure. The single administrative interface manages
all state through the single, non-PKCS#11 function (m_admin()).

Administrative blocks combine the following information into SEQUENCEs (see xcpAdminBlk):

1. administrative function identification

2. target domain (if applicable, otherwise fixed 0 for card-level blocks)

3. module identification

4. new transaction counter (module or domain-level), mandatory empty for queries

5. command-specific payload, possibly empty

Module identification combines the module serial number, and an “instance identifier,” a random value generated upon first
run (with a negligible chance of repeating). We combine these values to distinguish different instances of the same firmware
on the same module, preventing replay between different runs of the same firmware.

On modules without persistent serial numbers, such as soft-HSMs (software-backed, socket-attached backends), module iden-
tification may be constructed completely randomly.

The size of instance identifiers and randomly generated components makes collisions’ frequencies negligible, but backends do
not check explicitly for repetition. We intentionally tolerate a negligible chance of collision, assuming procedural controls will
detect if a card or domain is zeroized too frequently—which is the only way of regenerating instance IDs.

The new transaction counter must exceed the current one (within the target domain, or the card-global one, depending on the
command target). The field is sufficiently large to allow large increments; we do not support counter wrapping. If the counter
ever reaches its—infeasibly large—limit, no more commands may be issued. Counters are reinitialized to zero upon firmware
reload, or upon domain zeroization.

Administrative blocks, when constructed, are further embedded into a request to the administrative call, as its payload field
(see the xcpAdminReq definition in the wire section). Administrators sign the entire administrative block as a constructed
SEQUENCE, and their signatures are collected into a separate parameter, which must all apply to the same “payload” (i.e.,
the administrative block). The number of required signatures depends on block type—see the threshold (Thr.) columns in the
command tables—while queries are all unsigned.

Card-level administrative traffic must be targeted to a domain at a transport level, but requires an all-zero domain field within
its command request block. We depend on the capability to unambiguously distinguish card-level requests from domains based
on the function identifier. Domain field within the request must be consistent with transport-level domain fields—such as within
the CPRB header for domain-level actions.

Queries may always be issued, even during imprinting.

Individual administrator services accept the following input, and return the following output on success:

Login card administrator, Login domain administrator supply certificate to add; returns updated list of SKIs in the
modified set (card or domain).

Returns CKR_USER_ALREADY_LOGGED_IN, failing, if the provided certificate is already registered. When attempting an unsigned—
imprinting—addition, CKR_SESSION_CLOSED is returned if imprinting mode has been terminated. If the number of adminis-
trators would rise to over the supported maximum (XCP_MAX_ADMINS) in the targeted unit–card or domain–the return value is
CKR_USER_TOO_MANY_TYPES.

Unlike most administrator commands, Login may advance the system through more than two states atomically (section 2.5.1).
This distinction is not observable, unless execution of the command is interrupted, which may require administrators to re-submit
the same request with an updated transaction counter.

Logout card administrator, Logout domain administrator supply a list of SKIs of certificate(s) to remove; returns updated
list of SKIs in the modified set (card or domain). Note that the number of required signers differs from generic removal of any
certificate (N signatures needed) and an administrator removing himself (a single self-signature is sufficient).

Removal may not reduce the number of administrators below the current threshold (N). Note that reducing the number
to exactly N is technically possible, but discouraged: losing any key due to malice or malfunction leaves the backend—or
domain—in a state where it may be no longer managed.
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Function Payload (request/response) Thr. Notes

Administrator management

Login card administrator certi�cate N/0 domain is zero; not signed during imprinting
updated list of administrator SKIs

Login domain administrator certi�cate N/0 not signed during imprinting
updated list of administrator SKIs

Logout card administrator SKI of administrator N/1/0 domain is zero; self-logout requires single signature; not
signed during imprinting

updated list of administrator SKIs
Logout domain administrator SKI of administrator N/1/0 self-logout requires single signature; not signed during

imprinting
updated list of administrator SKIs

Replace card administrator SKI of previous administrator; certi�cate of new one N/1/0 domain is zero; self-replacement needs single signature;
not signed during imprinting

updated list of administrator SKIs
Replace domain administrator SKI of previous administrator; certi�cate of new one N/1/0 self-replacement needs single signature; not signed during

imprinting
updated list of administrator SKIs

Key migration and management (domains only)

Create random WK N/A 1
veri�cation pattern of new WK

Import domain WK list of parts, individually signed 0 domains only see reassembly rules; signatures checked
independently

list of VPs: committed WK, those of originating keyparts special case for single-part WKs (see text)
Commit pending WK veri�cation pattern of pending WK N must have pending, reassembled, matching WK

list of VPs: committed WK, those of originating keyparts special case for single-part WKs (see text)
Finalize WK veri�cation pattern of pending WK 0 erases previous key; activates (pending) current key

veri�cation pattern of current WK

Export domain WK list of certi�cates (recipients) N domains only
list of encrypted keyparts

Reencrypt (WK transfer) blob (current WK, active session) 0 domain must have current and pending WK
blob (next WK, same session) response is not signed

Clear WK (empty) 1 domains only
(empty)

Clear pending WK (empty) 1 domains only
(empty)

Importer public key management

Generate importer key key type 1 domain
SPKI of new importer

Generate module importer key type 1 card command
SPKI of new importer, with signature signature concatenated without further formatting

State cloning (card-level commands only)

Export state (empty) N (see format)
bytecount of serialized state and keyparts' �le

Import �le (part) �le contents with �le-part header 1 (see format)
�le-part header of written data

Commit imported state (empty) N full state and KPs must have been imported
(empty)

Remove cloning state �le-part header (optional) 1 erases all state �les without payload; only designated �le
if present

�le-part header, or empty original input payload

Administrative settings

Set card attributes attributes to change (packed) N domain is zero
updated card attributes, full set (packed)

Set domain attributes attributes to change (packed) N
updated domain attributes, full set (packed)

Control point management

Set control points full CPB set N/1 threshold attribute-dependent
updated CPB set

Add control points full CPB set N/1 ORs CPBs with current set; threshold attribute-
dependent

updated CPB set
Remove control points full CPB set N/1 removes CPBs from current set; threshold attribute-

dependent
updated CPB set

Table 2: Administrator commands (administrative actions)
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Function Payload (request/response) Thr. Notes

Infrastructure control

Set clock current date/time (UTC) 1 domain is zero; card-level only
current (updated) date/time (UTC)

Set FCV new FCV 0 domain is zero; card-level only ; accepted only once
retained until card restart/zeroization

public parts of FCV, packed FCV intentionally not reported (is export-controlled)

Zeroization and other deletion

Zeroize domain WK (empty) N/1/0 domain from encapsulation; single signed with system
certi�cate; not signed during imprinting

(empty)
Multi-domain zeroize domain mask N/1/0 card command; single signed with system certi�cate; not

signed during imprinting
domain mask (updated)

Zeroize card (empty) N/1/0 Application-level zeroize, does not a�ect OA; single
signed with system certi�cate; not signed during imprint-
ing

(empty)
Zeroize card (system) (empty) N/1/0 Zeroizes card, leaving any system certi�cate unchanged;

single signed with system certi�cate; not signed during
imprinting

(empty)
Remove (semi-) retained key (S)RK identi�er 1 Truncated identi�er

(S)RK list updated list, after removal

Table 3: Administrator commands (infrastructure)

Query Payload (request/response) Thr. Notes

List card administrators SKI (speci�c cert) or empty (full list) - domain is zero; SKI is raw (no encapsulation)
requested certi�cate, or list of SKIs

List domain administrators SKI (speci�c cert) or empty (full list) - SKI is raw (no encapsulation)
requested certi�cate, or list of SKIs

Query OA certi�cate/s index (single) or empty (certi�cate count) - index is retroactive, 1: current, 2: previous. . .
requested certi�cate (in native form)

Query importer (public) key N/A - for domains
SPKI of current importer

Query module importer N/A - for module
SPKI of current importer, incl. signature

Query card control points N/A - domain is zero
CPB set

Query domain control points N/A -
CPB set

Query card attributes domain-aggregate mask (optional) - domain is zero; see note
current card attributes (packed)

Query domain attributes N/A -
current domain attributes (packed)

Query current WK N/A - for domains only
VP of currently active key full veri�cation pattern, not truncated

Query pending WK N/A - for domains only
VP of imported pending (next) key full veri�cation pattern, not truncated

Query WK origins N/A - for domains only
list of VPs: committed WK, those of originating keyparts special case for single-part WKs (see text)

Query FCV N/A -
public parts of FCV, packed not reporting full structure

Query retained keys N/A -
list of module-resident (S)RKs truncated IDs only

Query cloning state (�le) �le/part speci�cation - card query
�le/part speci�cation, updated bytecount �eld see wire format

Query audit state audit event speci�cation, if any - card query
audit record see wire format

Table 4: Administrator queries
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Returns CKR_USER_TYPE_INVALID, failing, if not all supplied certificates—those to replace—are already registered administra-
tors. Note that this failure differs from what’s returned if invalid signers authenticate the command.

See comments about atomicity under Login (above) and in section 2.5.1.

Replace card administrator, Replace domain administrator supply an SKI of certificate to replace, and the replacement
certificate; returns list of SKIs in modified set (card or domain). Note that an administrator replacing himself requires only a
self-signature, but replacing other administrators requires the usual consensus (N signatures).

Return values are those of “Logout” or “Login”, with checks for Logout performed first.

See comments about atomicity under Login (above) and in section 2.5.1.

Generate importer key creates a new importer keypair for the target domain, with a caller-supplied type (see XCP_IMPRKEY_...
constants).

Returns CKR_KEY_TYPE_INCONSISTENT if the provided keytype is not valid, or CKR_KEY_SIZE_RANGE if the backend does not
support this keytype. Backends must support at least one of the possible importer types.

Generate module importer is functionally identical to Generate importer key, creating a module-level private key importer
for state cloning (import). Note that due to historical compatibility reasons, module importers are returned with a directly
concatenated signature; see importer queries for details.

Create random WK initializes a domain WK, or a pending WK with a new, internally generated uniform-random one. If
there is no domain WK, a new one is generated. If there is a current WK present, but no pending one, a pending WK is
generated and committed, allowing immediate WK migration, and subsequent finalization (Fig. 8).

If current and pending WKs are both present in the targeted domain, the command fails and returns CKR_OPERATION_ACTIVE.

Import domain WK accepts a set of encrypted keyparts (i.e., RecipientInfo’s), all targeting the current importer, individually
signed, wrapped in a single unsigned “import domain WK” envelope. It returns the verification pattern of the entire key,
followed by verification patterns of all accepted keyparts, the latter in arbitrary order. KPHs must verify that their keypart’s
verification pattern is present in the response.

May return the following failures, in decreasing priority:

1. CKR_KEY_HANDLE_INVALID if no importer is present.

2. CKR_KEY_CHANGED if not all KPs target the same, current importer.
Importers are implicitly targeted, within the command (i.e., KPs are encrypted for a particular, single-use importer). This
targeting information is host-visible.

3. CKR_TEMPLATE_INCONSISTENT if keyparts do not correspond to the same reassembled WK. This can only happen with
KPs exported from another module, or a setup where KPHs can verify the full key while holding only a part.

Keypart signers must all be administrators authorized for the target—module or domain—but need not be distinct: all parts
may be signed by the same administrator. Dual control is enforced during the commit of keyparts, but not during actual import.

Domain targeting, transaction counter, and other auxiliary information of all embedded keyparts must match that of the
encapsulating command block. (By implication, this provides some authentication on the full compound, even if it is not
signed, as it must match targeting within its constituent, signed command blocks.)

An imported key is available, reassembled, but it is not yet active. The next logical command, Commit WK, serves this purpose
(Fig. 8). Administrators must verify that the reported key VP—and its keyparts, if any—are consistent, before authorizing
further use of WKs. Such explicit confirmation delineating commit stages between mutually suspicious parties based on public
data can remove trusted intermediaries from multi-administrator management [BMC+15, VIII.A.].

Upon success, the previously active importer private key is destroyed.
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Commit WK transfers a reassembled, imported key from inactive to active state. It gets flagged as capable of reencrypting
blobs from the current WK, but does yet not become the current WK. This action must precede “finalize.”

Commit returns CKR_OK if called repeatedly, even after the first call has committed the pending WK. If attempting to commit a
domain without a pending WK, CKR_KEY_HANDLE_INVALID is returned. Returns CKR_KEY_CHANGED if the WK verification pat-
tern in the payload does not match the one being finalized—this includes malformed verification pattern.

Finalize WK activates a committed WK, erasing its previous one. The domain loses the capability to migrate keys to the
current one. After completion, the previous WK has been completely eliminated, content encrypted by it becomes inaccessible.

Note that finalizing a WK is an exceptional, unsigned administrative command. It is under the complete administrative control
of the host, and we require the same host administrative code to enforce update policy. Since the command only completes
an already processed transaction, without exposing card-visible data, it does not endanger card secrets or confidentiality, even
without authentication. The transaction counter included in the incoming command block is ignored; success increments the
counter.

Returns CKR_KEY_CHANGED if the WK verification pattern in the command does not match the one being finalized—this
includes malformed verification pattern. If attempting to finalize a domain without a current, and a committed pending WK,
CKR_KEY_HANDLE_INVALID is returned.

Export domain WK takes a list of certificates of the intended KPHs (“recipients”), and returns a list of encrypted keyparts
(i.e., PKCS#7 RecipientInfo’s), and the verification pattern of the entire key. Encrypted keyparts include verification pattern
inside the encrypted portion, allowing the KPH to verify integrity.

Clear WK erases the current WK in the targeted domain. Its purpose is to support immediate WK revocation, which “Create
random WK” does not provide. Since this functionality is a subset of zeroization—which is also single-signed—this command
is available even if attributes prevent creation of random WKs.

Reencrypt (WK transfer) transfers ownership of a blob controlled by a domain’s current WK to the pending one, once the
latter has been committed. It may be invoked with any blob—key or operation state—controlled by the current WK, if the
blob’s controlling session is also active. Under these conditions, the blob is reencrypted by the pending WK, and the WKID field
is changed to reflect this. An updated blob is returned, with any attribute other than the WK—including blob size—remaining
unchanged.

Similar to functional requests, this call may return CKR_IBM_WKID_MISMATCH if the current WK does not match that of the
blob, or CKR_IBM_BLOB_ERROR if the blob is otherwise invalid.

Since reencryption requests are not signed—they do not change administrative state, only host-resident data—and they are
assumed to be performed on large amounts of data, reencrypt responses are not signed and therefore feature an empty
signature field. Since this command will need to be executed frequently when large keystores are migrated, and it is essentially
a functional—non-administrative—one, not signing responses saves significant processing power (for signatures which would
otherwise be ignored). Note that audit records are generated for reencrypted objects.

Export state creates a partially encrypted copy of all extractable module-internal state, storing it within the module. The
symmetric encryption key encrypting sensitive portions is public-key-encrypted for a number of KPHs, whose certificates must
be provided within request parameters (see the wire form for details).

The prerequisite for a successful export is a TLV-encoded structure specifying export parameters. Since this request is populated
within the filesystem, the export command itself requires no direct input.

After a successful export state response, the module retains the exported state until it is restarted, or Remove cloning state is
called. Exporting the state response is done through a sequence of Query cloning state requests, each returning a part of the
module-resident state structure. (There is a transport-imposed limit on the size of file parts.)

In addition to the signature on responses, the exported structure is signed by the originating module. It also contains some
information in its clear header about the export request which originally created it (see wire formats for details).

Note that retained keys and their attributes are not exported. No indication about the presence or absence of retained keys is
included in cloning state structures.

The response payload contains packed 4-byte raw integers, total bytecount of the exported-generated files, in increasing file-
identifier order. (The same information is available through size queries, obviously.)

EP11 Principles of Operation 37 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Import �le (part) deposits—parts of—persistent file into the targeted module. The first import-state request is used to
report total bytecount; subsequent requests are only allowed to update parts of the allocated structure. Other than verifying
the request signature, no integrity checks are performed on deposited parts.

Note that importing state parts is a purely administrative function, and does not require the cooperation of KPHs.

Internally, the module only maintains a single cloning state structure, and one file for storing KPs (see also: Fig. 13). Starting a
new export or import state command discards any previously existing state before initializing a new one. (Mixing intermediate
states of import and export operations is not practical, therefore this limitation should not impact regular export/import
procedures.)

A single, global instance is selected for simplicity of implementation. Internal attributes unambiguously distinguish between
import and export state, and invalid use of of state (such as activating an export structure) are rejected.

Files are unambiguously selected by file identifiers; see the wire section for a list of supported values. Note that file identifiers
for Export and Import state are identical, since they both use serialized state and keyparts, even if keyparts are recoded during
import (Fig. 13).

Commit imported state must be called when the full state structure has been called and reassembled, and an importer key
has been generated (through Generate module importer). The commit request must include keyparts encrypted for the active
module importer, identical to how Import domain WK transports a WK. The reassembled symmetric key is used to decrypt
the cloning state, which is deposited within the module.

The imported state fully replaces the currently active setup. All administrative parameter, including administrators—even those
authenticating the commit—are replaced by the set included in the cloned state.

After successful state commit, the module-internal state structure and the module importer key are removed.

Cloning state is retained only within transient module-internal storage. If the cloning procedure is interrupted by a module
restart, the import or export procedure must be repeated. The time window where such restart may disrupt procedures may
be minimized procedurally:

1. Exported state may be extracted immediately after cloning through queries—i.e., without active administrator interven-
tion.

2. Importing (parts of the) cloned state is possible without KPH intervention, therefore may be repeated by administrators
before prompting KPHs to encrypt their keyparts.
The recommended import procedure separates state import—without relying on KPHs—and commit of the imported
state. The KPHs need to be consulted only when the full state has been reassembled.

Remove cloning state erases one or all transient structures from the module.

Query cloning state reports the size or specified parts of the module-resident state. The payload must specify a size query,
or a file-part structure to query. If the request specifies a file section, its contents are returned.

The query may be used both on export and import state structures (which are internally not distinguished). Querying during
import may be used to test for already present parts. See the wire format for details on specifying file parts and file-size queries.

Requesting an unsupported state structure (i.e., an internal file identifier out of range) returns CKR_SLOT_ID_INVALID. If a
nonexistent file is queried—valid identifier, but no current content—CKR_DATA_INVALID is returned.

If the file-part designation is malformed, missing or otherwise inconsistent in the packed form, CKR_IBM_TRANSPORT_ERROR is
returned. If the requested range is outside file contents, but the file exists, CKR_DATA_LEN_RANGE is returned.

Commands changing control points (CPs) take control point content as a full set of CP bits, and perform one of the
possible actions on the targeted set of CPs:

1. overwrite the target CP set with the provided CP payload (“set CP”)

2. enable CPs present in the payload in the target CP set (“add CP”)

3. disable CPs present in the payload in the target CP set (“remove CP”)
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Updates fail with CKR_KEY_HANDLE_INVALID if the CP content is invalid (i.e., contains undefined CP bits). Since future
updates only add, but not retroactively change the meaning of CPs, using full CP sets from the past will continue to work in
future releases. More recent host code—which can always query the number of CPs a given card supports—will be able to set
CPs in a binary compatible way, as long as it does not modify CPs added since the cards’ release.

Modification of CPs may fail due to CP setup, and may is rejected only if the “modification” would actually change the setup.
This allows the host to submit the current CP setup without additional checking.

Modification of control points uses N or a single signature, depending on the attribute setup. The default state requires N
signatures.

Set domain/card attributes update the host-provided attributes. Only the modified attributes need to be specified. The
command returns CKR_TEMPLATE_INCONSISTENT if the provided attribute set is not allowed due to policy—such as specifying
a nonexistent attribute, or attempting a change to a value prohibited from modification by another attribute. Note that
“inconsistent” refers to the compatibility of newly supplied attributes and the current setup together.

CKR_ATTRIBUTE_READ_ONLY is returned if the specified set of attribute attempts to modify a read-only value. We ignore writes
to read-only attributes if they supply the current value (i.e., “writing” the attribute would not change it). This special case is
supported to allow setting attributes to the then-current value, i.e., allow passing output of an attribute query to a “set” call
as-is.

Set clock updates the single, module-global clock as an authenticated administrative action. To monitor time change, two
audit events are generated on backends which support auditing, storing the time before and after a clock change.

The command returns CKR_DATA_LEN_RANGE if the time payload is missing or has an invalid size, CKR_DATA_INVALID if the
time string describes an invalid time.

Set FCV is accepted only once; it loads the “function control vector”, an infrastructure component which restricts functionality
(for export control and related restrictions). It is assumed to be issued by infrastructure during the first startup, and therefore
does not require authentication. Once committed, there is no command to change the registered FCV; card zeroization removes
it.

Without a loaded FCV, the module rejects functional services which require WKs. Services usable without keys, such as
random-number generation or hashing, remain accessible. (Since the RNG algorithm is fixed, there is no implied dependency
on FCV-controlled cryptographic strength, therefore random-number generation is unconditionally enabled.)

See 10.2.5 for the layout of FCV fields, since we inherit the layout from another specification. The relevant pages are reproduced
here for completeness.

CKR_OPERATION_ACTIVE is returned if a different FCV is already present. Passing the same FCV again returns CKR_OK, even
if the command itself is ignored during repeated submissions. If the included FCV is rejected due to size or invalid format,
CKR_DATA_INVALID is returned.

Zeroize domain uses the domain index out of the command block, therefore requires no targeting (i.e., no payload). It
returns a response with empty payload. The affected domain returns to “factory state”, losing all key material and administrator
certificates. During zeroization, the domain also generates a new instance identifier, and starts again in imprint mode.

The command works on a domain which is not currently active, therefore it only fails if a nonexistent domain is targeted.

Multi-domain zeroize accepts a domain mask, and zeroizes all indicated domains. Non-existent domains are ignored when
targeted. The response contains an updated domain mask, containing only domains which were actually zeroized.

Zeroize card resets the card, and all domains, to the “factory state”, responding with an empty payload. All key material,
administrator certificates, and setup is removed, and a new instance identifier is generated. The currently populated domains
are zeroized, and new instance identifiers are generated for them. The card returns to imprint mode.

Note that card-level zeroization does not erase objects below the EP11 level, such as OA keys, state of the audit subsystem, or
other infrastructure secrets. (In a real HSM, library/application code lacks the authorization to modify or access some of those
secrets.)
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Zeroize card (system) is equivalent to card zeroization, except preserving the administrator certificate in the first slot of the
card administrator list. On systems where an administrator corresponding to infrastructure is registered first—mainframes do
this—this administrator may be special, therefore the special-cased query.

Removal of (semi-) retained keys, if (S)RKs are supported, allows an administrator to wipe such a key, without having the
full key identifier. SRKs are generally identified by a large handle, which refers to an object fully contained within the backend.
Functional use of SRKs, or removal by the controlling user requires the full identifier as proof of ownership. Note that obtaining
a list of truncated SRK identifiers is always possible as a functional (non-administrative) query.

This administrative service requires only a truncated SRK identifier, and allows removal of any key referenced by it. It returns
CKR_KEY_HANDLE_INVALID if the identifier is unknown, and CKR_KEY_SIZE_RANGE if the provided “identifier” is clearly invalid.

Even if we allow administrators to remove SRKs, the keys themselves may not be exported.

List card administrator, List domain administrator takes an SKI if querying a specific certificate, or none if requesting a
list. It returns the individual certificate corresponding to the input SKI, or a list of SKIs.

Returns CKR_USER_NOT_LOGGED_IN if an SKI is requested, but it is not present.

Query device (OA) certi�cate takes an index into the device (CA) certificate chain, or an empty payload if the number of
certificates is requested. The index, if present, is zero-based, with 0 denoting the currently active device key, 1 its parent etc.
(On an HSM-backed implementation, this query returns “Outbound Authentication” (OA) certificates from the HSM. Other
backends return their own certificates, potentially in a backend-specific format. Test builds may also return OA certificates
with a known test root.) Host code must be able to recognize and react to device certificates or chains, the details of which
are outside the scope of this document.

The response contains a single certificate if indexed, or a certificate count if no index is provided.

Returns CKR_KEY_HANDLE_INVALID if the certificate index is invalid (beyond certificate-chain length). The certificate count
query itself does not fail, assuming the rest of request was correct.

Query importer (public) key returns the SPKI of the currently active importer private key. Since this importer key is
unambiguous, the query requires no further targeting, other than the target domain.

Query module importer (public) key returns an SPKI, with a concatenated signature, to maintain compatibility with
existing migrator applications. Since this signature is redundant, we do not document what it signs—which, for most keytypes,
is the full SPKI—and recommend interested parties to verify the response on the signature.

Both queries returns CKR_KEY_HANDLE_INVALID if no importer is present.

Query card control points, Query domain control points return the full set of CPs of the requested unit (card/domain).
Note that control point sets are different for the two levels of administration.

Control points are packed as a fixed-size raw integer, with interpretation as the bits specified in XCP_CPbit_t. The response
is otherwise unstructured, not embedded into a structure.

In addition to the enumerated response payload, administrative responses contain the non-payload fields of the originating
administrative block, including targeting.

Query card attributes, Query domain attributes return the packed array of integer attributes supported in the targeted
unit. All supported integers attributes are returned.

When querying card attributes, an optional parameter may be provided, which describes domains on which compliance attributes
are to be aggregated as a card-level compliance setting (see format in the wire section). If no parameter is provided, the reported
compliance attribute is the intersection of domain-compliance attributes on all domains with loaded WKs. (Since our security
policy specifies card-level compliance this way, this behavior is the default.) If the domain mask is invalid, or the field is
malformed, CKR_DATA_INVALID is returned, with a corresponding reason code.

Query current WK, Query pending WK return the WK verification pattern of the active and imported (next) keys in the
targeted domain, respectively. Both fail with CKR_KEY_HANDLE_INVALID if the properly targeted domain lacks the queried key.
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Query WK origins returns the WK verification pattern of an imported WK, and its key parts, if they were used. The
returned payload contains key VPs of the full key, followed by those of key parts, the latter in arbitrary order. If the key
has been created/imported without key parts—such as a pending key filled by “create random WK” or imported through
development extensions—only the full key VP is returned.

The query fails with CKR_KEY_HANDLE_INVALID if the domain lacks a pending (next) key.

Query FCV returns public portions of the controlling FCV, if active (format TBD). If the backend has no active FCV, the
return code is CKR_OPERATION_NOT_INITIALIZED.

Query audit state returns the number of audit event records, or one specific record, depending on its input parameters.
When no payload is provided, or the index 0 is requested, the response only contains the number of currently held records (see
section 9.4.5).

When an index or a targeted audit-event state is passed with the query, the response is a single audit event, or an error return
code indicating the failed lookup.

Administrative return codes In addition to command-specific return codes, administrator commands may return the follow-
ing values, in decreasing priority:

1. CKR_PIN_EXPIRED if the active transaction counter is already higher than the one included in the command.
Queries ignore the transaction counter, and may not return this return code.

2. CKR_SLOT_ID_INVALID if a domain-specific query/command targets a nonexistent domain.

3. CKR_FUNCTION_CANCELED if settings—control points or attributes—prohibit execution of the service.

4. CKR_FUNCTION_NOT_SUPPORTED if the requested administrative service is invalid, or not available.

5. CKR_SESSION_CLOSED if the target has already left imprint mode, and the request targets an imprint-only variant—such
as logging in without signatures

6. CKR_SESSION_HANDLE_INVALID if the target is in imprint mode, and the request may only be serviced outside imprint
mode

7. CKR_USER_NOT_LOGGED_IN if not all signer/s signing the command are allowed to administer the target—card or domain.

8. CKR_TEMPLATE_INCOMPLETE if the command has less signers than required. Note that too many signers are tolerated,
and not reported as an error.

9. CKR_KEY_CHANGED if signatures are present, when not needed, or the signature field is empty, when it should be present.
Some of the services tolerate extraneous signatures under specific conditions, even if otherwise not needed, for historical
reasons. Obviously, these additional signatures—or lack thereof—are not security-relevant (as the base service in its
current form is allowed without signatures).

10. CKR_DATA_LEN_RANGE if required payload is missing, or payload is provided for a command without one.

11. CKR_DATA_INVALID if payload (formatting) is inconsistent with the requested command, if payload is present.

12. CKR_SIGNATURE_LEN_INVALID if at least one of the signatures is malformed, including other signature-packaging errors
(not just raw signature size).

13. CKR_SIGNATURE_INVALID if any of the signatures is invalid. All signatures are verified, and verification fails even if there
would be sufficient valid signatures to complete the command (i.e., only supply valid signatures).

14. CKR_IBM_INTERNAL_ERROR if crypto primitives fail. The host should not encounter this error, and logs should be checked
for further diagnostics.

15. CKR_DEVICE_MEMORY if transient memory is not available (which should not happen).

16. CKR_IBM_READONLY if the backend is not allowed to update persistent databases, and state-changing commands are not
allowed.
Currently, only concurrent driver update (CDU)—backend firmware updates without service interruption—may cause a
module to enter readonly mode. Alternatively, a test function exists to force the same in diagnostics builds.
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17. CKR_SLOT_ID_INVALID if targeting is inconsistent: if domain-targeting requests feature inconsistent domains in their—
redundant—domain fields, or if a card-level command features a non-zero domain in its request.
While the same PKCS#11 error code is used to indicate domain mismatches, reason codes differentiate between the
exact logical conditions.

Command-specific failures are lower priority than the above generic ones. Note that some of the return codes “override” ones
EP11 does not return otherwise. Others may be returned under other conditions for functional calls, but they are unambiguous
when returned by administrative traffic.

List of returned WK veri�cation patterns is returned by certain WK-related administrative services (import, commit,
query WK origin). These lists contain the verification pattern of the full WK, and that of its constituent keyparts. Keypart
verification patterns are in arbitrary order. The list is returned to allow each KPH to verify that their expected verification pattern
is present in the key, allowing procedural control over key activation.

If the WK has not been assembled from multiple parts—was generated internally, set directly through a test function, or
imported as a single “keypart”—only the verification pattern of the full key is returned. We do not currently distinguish
results based on import source; differentiating an internally generated single-part key from an imported one would be a trivial
extension—such as an additional flag bit—if required.
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8 Key cloning

8.1 Cloning mechanics

Keystores are cloned through copying a single transport wrapping key between domains. Cloning is publickey-based, using struc-
tures that accommodate single or multi-part messages (PKCS#7 envelopes). When two domains’ transport wrapping keys are
synchronized, they are identical for the purposes of EP11 commands, since EP11 objects are tied to the transport wrapping key
that generated them. EP11 commands therefore may be dispatched to any of the synchronized domains or cards.

Cloning relies on atomic messages, since PKCS#7 structures retain all necessary intermediate state, and therefore may be
constructed or parsed in one pass, or assembled incrementally, but used as a single atomic messages. Administrator signatures
are applied to unambiguous command blocks. We derive our message formats from PKCS#7 structures, with implicitly known
signer certificates and no CRLs [PKC93, Hou04]. More specifically, we use derivatives of the following PKCS#7 formats:

1. SignedData, containing clear payload, with an arbitrary number of signers. We apply signatures as plain SignedData
structures, without any other PKCS#7 encapsulation.
We can implement our scheme without CRLs, as certificates would be readily available. Therefore, raw SignerInfo
structures—identifying a signer (key), signature algorithm and signature—are unambiguously verifiable.

2. EnvelopedData, containing RSA or EC-encrypted data, for an arbitrary number of recipients.
Each recipient contributes a certificate, and the resulting EnvelopedData contains both per-recipient (encrypted) and
common (clear) content. Each recipient can decrypt a specific part of the encrypted payload (i.e., one RecipientInfo).

3. EnvelopedData with ECDH RecipientInfo if EC transport is supported. This format is effectively the EC equivalent of
encrypted data, although its symmetric encryption is indirect, includes key derivation and symmetric encryption—unlike
RSA [SEC00, 5.1].
Note that in our use, we perform one-pass ECDH “key agreement”, which may procedurally replace RSA encryption, as
their use pattern is comparable. In this mode, the recipient uses a static public key, and therefore the transfer—other
than transporting the recipient public key—is single-directional, similar to RSA-based key transport [BJS07, 6.2.1].
Note that the explicit authentication inherited from our administrative traffic provides security assurance about commu-
nicating with the proper recipient. See [BJS07, 6.2.1.5] for security considerations.

We may combine the two formats. EnvelopedData derivatives are used when moving keyparts, targeting either importer or
KPH private keys with sensitive data. We append administrator signatures as a collection of raw signerInfo structures (but
not use proper PKCS#7 encapsulation) into the “signatures” field of the signed packet. Encrypted data, packaged as individual
RecipientInfo’s, are collected into the administrative “payload” field.

Note that the required PKCS#7 subtypes all allow multi-valued instances, i.e., multiple signers or recipients.

The cloning process has minimal requirements on host (or administrator) infrastructure: administrators need to support RSA/EC
signing and verification; KPH need to be able to en/decrypt data (keys). Encryption and signing flows are identical for RSA
and EC keys, as we rely on 1-pass ECDH, which uses static public keys for one of the parties (and therefore, resembles RSA
instead of symmetric ECDH).

Cloning may involve multiple administrators or multiple secret shares, in any combination. Multiple administrators are needed
when operational security requires dual control over administrative action, such as adding new cards to the system, but not
necessarily key archival. Secret sharing is needed when keys themselves are under dual control, and no single individual has
access to a key outside, either in clear or encrypted form.

Note that logically we may combine multi-signer and multi-recipient messages, but implement them with parallel signatures or
multiple, single-recipient messages. We allow such parallelization, and accommodate both single-message and multi-message
commands, as long as they may be unambiguously combined. In the following examples, we assume that single-message, multi-
component structures are used. If administrators are distributed, for example, one may embed multiple SignedData’s containing
the same payload, and combine them during command processing (which does not change security, and it is unambiguous).

The only long-term persistent, card-resident cloning-related data is a list of administrator identities, i.e., X.509 certificates.
Since the modules have no way of establishing trust to external CAs, certificates are used only as a portable way of representing
public keys, and are not otherwise checked for validity. In order to be able to audit modules, administrator public keys must
be available for host queries. Having an public set of administrator keys allows one to audit modules and their administrators
directly.

Cloning happens beneath the level of PKCS#11, and it is not represented at the PKCS#11 level. Transport wrapping keys are
not PKCS#11 objects, and are not represented in PKCS#11 calls.
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The cloning process uses a disposable importer key for a single transfer, and therefore must be performed pairwise in groups
of multiple cards. We include a verification pattern with the transported key, which serves as an integrity against trivial errors.
The integrity check is not authenticated, and must be a one-way derivative of the transported key (i.e., it is sufficient to use a
cryptographic hash function). When transporting multiple keyparts, each keypart will have an additional verification pattern .
(See expanded section on verification below.)

In the following descriptions, by “all administrators” we refer to the necessary number of administrators (so that the module
accepts administrator signatures). The actual number may be different from the number of registered administrators (it will
be if redundant administrators are stored for resiliency).

We rely on administrator transactions providing their own transaction counter for replay-protection, and do not include that in
our description. In a few cases, we actually introduce our own replay protection as a side effect of our cloning scheme.

8.2 Cloning without secret sharing

In the simple cloning scenario, without secret sharing, a module may export its transport wrapping key for any single RSA
public key, as long as the administrator (all administrators) sign the receiving public key. The public key will be the public part
of an importer key, generated by the cloning target module as a single-use importer.

Administrators will need to build a PKCS#7 SignedData with the public key as payload, and import it to the source module.
Since PKCS#7 SignedData signatures apply to the same payload, and are verified in parallel, relative order of signatures is
not relevant. Since PKCS#7 SignedData contains a clear payload, each administrator can inspect the SignedData structure
passed to him, therefore administrators may (and should) cross-check each other.

Actual cloning steps of single-part key cloning are the following:

1. Target module generates importer keypair. It exports its public key to administrators.

2. Each administrator signs the public key, authenticating it for the exporting module. Each administrator appends a new
signature—i.e., SignerInfo structure—to the same payload.
Similar to what’s shown in Fig. 9, admins must build the SignedData sequentially. There are no ordering requirements,
since PKCS#7 signatures are verified in parallel. The only requirements are that administrators can pass around binary
blobs reliably (in the end, the modules cross-check everything).

3. Import the signed importer public key to the exporting module. Administrator public keys must have been deposited to
the exporting module, and therefore the entire PKCS#7 SignedData may be verified atomically.
If there are problems with the PKCS#7 structure (mismatched administrator identities, invalid signatures etc.), the export
request is rejected.

4. If the export request has all necessary signatures, the source module encrypts its transport wrapping key under the
public key embedded in the request, and returns it to the host.
The transport wrapping key, when exported, may be inspected by all administrators. It may be decrypted only by the
target module, since the only instance of the importer private key resides there.

5. Administrators repeat the signing procedure (Fig. 9), this time signing the exported encrypted transport wrapping key.
Once all signatures have been appended, the SignedData may be passed to the target module.
The order of administrator signatures is unimportant, as mentioned before.

6. The target module verifies the SignedData as an atomic operation. It must have administrator identities (certificates)
at this point.
The wrapped transport wrapping key is recovered by a custom mechanism of UnwrapKey, using regular interfaces.
Obviously, this special UnwrapKey does not return data.
If all required administrator signatures verify, and the payload decrypts with the active importer key, one can replace the
target’s transport wrapping key with the decrypted key. At this point, the two modules’ transport wrapping keys have
been synchronized. (Session synchronization must happen in addition to transport wrapping key cloning.)
After an attempt to import a key, the importer private key is destroyed. This prevents replay attacks of any kind, rendering
externally remaining cloning tokens useless.

The cloning process is essentially identical if a single administrator is allowed to make changes. In this case, the SignedData
contains only a single signature, all other details above are identical.
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Figure 9: Cloning: signing during export data �ow, multiple administrators

8.3 Cloning through key parts

When keys must not be revealed to any single outside—i.e., non-HSM—party in clear or encrypted form, the payload in the
cloning process changes, while the administrator signing procedure is unchanged. In this setup, we require key part holders
(KPHs) to encrypt key parts with their own RSA keys. (Without encryption, hostile host administrators could reassemble the
keys, capturing keyparts directly from the device bus.)

Relying on one-pass (“asymmetric”) ECDH key agreement, one can implement the same “encryption” scheme with EC primitives
if the receiver uses a static keypair, and the recipient an ephemeral one. This “static-ephemeral” ECDH is procedurally
interchangeable with RSA, and offers assurance comparable to RSA key transport [BJS07, 6.2.2.3].

When exporting keys parts, the source module needs to receive a list of KPH certificates, which must be signed by administrators.
This list can be encapsulated inside a PKCS#7 SignedData structure. (Perhaps counter-intuitively, KPH certificates would
need to be transported as the signed data, not inside the PKCS#7 certificate field.) As described previously, the SignedData
structure may be built externally, and may be processed by the exporting module in an atomic fashion.

Note that the source module does not need to retain KPH certificates, as the entire certificate list is submitted for each cloning
request.

Once the source module has verified administrator signatures, it can extract KPH certificates from the PKCS#7 payload. The
transport wrapping key is then split into the necessary number of key parts, and each part is encrypted by the corresponding
KPH’s public key. The resulting encrypted key parts are encapsulated in another PKCS#7 structure, an EnvelopedData
compound. This structure may be exported from the module as each part is useless for anyone except at most one of the
KPHs.

When the EnvelopedData is revealed to the host, each KPH may decrypt his part without learning anything about other parts.
KPHs then may retain their key part in the clear or inside trusted storage (such as TKE). These key parts are unused until the
next key part import.

Importing key parts is a two-step process. The target module must generate an importer keypair, and present it to the outside
administrators (and keypart holders). First, KPHs encrypt their key parts for this importer key, and reassemble those into
another EnvelopedData, this time encrypted for the importer key. Administrators then sign the resulting EnvelopedData,
encapsulating it within a SignedData, which then may be passed to the target module.

Once the SignedData structure containing key parts is returned to the target module, it first verifies that admins’ signatures
are correct, and that the payload is PKCS#7 EnvelopedData (targeted to the importer key). If all these conditions are met,
the key parts decrypted from the embedded EnvelopedData may be combined to form the new transport wrapping key.

Similar to exporting key parts, the target module need not retain KPH certificates. All necessary certificates must be part of
the cloning request structure (inside PKCS#7 structures), and only administrator certificates are not disposed after processing
the request.

During regular key migration, when one backend provides keys to others, one may embed auxiliary information within individual
KPs. Such auxiliary information makes the scheme immune to hostile KPHs, as they would be included when honest KPHs
feed back their KPs to the target module. (A hostile KPH obviously could not compromise KPs from honest ones.) If keys
are individually generated by untrusting, independent parties, such as in the current TKE scheme, we may not rely on these
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additions, and we need to tolerate these weaknesses during the legacy-transition period.

During the cloning procedure, sensitive information is never revealed outside modules. Exporting and importing modules
authenticate requests, exporting and accepting only trustworthy public keys. The exported, encrypted secret is not usable
outside the importer, specifically without the importer’s single-purpose, single-use importing key.

One should note that the both source and target modules may unambiguously differentiate between combinations of sin-
gle/multiple administrators/keypart-holders. The current implementation is therefore a a pair of non-PKCS#11 cloning calls,
one for export and one for import. Cloning calls are polymorphic, selecting mode based on data presented to them.

8.3.1 Cloning directly between domains

If procedural restrictions allow it, WKs may be transported between two domains without intervening decryption by combining
a direct Export WK and one Import WK for each targeted domain (Fig. 12). This mode may only use a single asymmetric-
encrypted key, no keyparts, and therefore requires both source and target domains to allow single-part key transport. Since
each invocation encrypts for a non-extractable private key resident in the target HSM, which may not be replicated, splitting
a key would not increase security as the single message may be decrypted in only one location.

8.3.2 Data transported during cloning

Serialized state is exported from the source module in two related data files, and imported into the target in two files, one of
them used verbatim. All files are encoded in a straightforward, self-describing tagged multisection format (see the wire section
for tag listing and file composition).

The following files are used during export and subsequent import:
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1. Request to export, a similarly tagged multisection file describing the intended export mode, potentially including the
intended KPH recipients.

2. Serialized module state, excluding transportkey-parts. This state contains non-sensitive data structures in cleartext, and
sensitive data—any present WKs—as a single, encrypted region. This fileset must be passed to the receiving module
without modification.
The serialized state is signed by the originating module. Note that its import itself is signed by administrators, therefore
verification of the signature on the state—during import—is actually redundant.
Since decryption of the encrypted portions requires collaboration of the necessary minimum of KPHs, the serialized state
file is not sensitive.

3. A full set of parts of the transport key is exported in an auxiliary data file. This set of keyparts contains encrypted
sections, all decryptable only by the targeted KPH. The entire file, as well as—for historical reasons—all keyparts are
signed by the exporting module.
Metadata included in the keyparts’ file allows unambiguous identification of the corresponding serialized state: identifying
fields such as creation time and an export-unique salt are included in both files.
Exported keypart files may be discarded upon loading into the recipient KPHs. They are no longer used by EP11 backends.

4. A subset of keyparts, all encrypted for the current importer key within the target module, each keypart encrypted by an
authorized KPH.
If the set of KPs is sufficient, the receiving module may decrypt and reassemble the transport key, and then decrypt
sensitive data within serialized state, then synchronize all internal state of the target module to that of the source one.

As show in Fig. 13, export generates two files. Portions of the keypart set are archived by KPHs, and that set need not be
retained after archival. During import, the subset of KPs used for recovery is similarly constructed, and must accompany the
original serialized state.

Exporting and importing files is supported in a simple file-transport method, which allows incremental reads and writes, allowing
cloning even if transport limits per-request data sizes.

Both exported state and generated keyparts are signed by the originating module, including the full certificate chain of the
originator (see wire section for details).

8.3.3 Simultaneous import into multiple domains

Exported data from a single domain may be imported back to a different domain or multiple domains, if the import request
designates it as such. The corresponding state to import must contain data from a single domain—this may be unambiguously
determined from section headers. The section designating multi-domain import must contain the domain mask of the intended
target domain/s. All previous data of the targeted domain/s will be replaced upon successful import, even fields missing from
the newly imported state. See wire rules about the MULTIIMPORT_MASK section type for encoding.

When module-level sections are present in state submitted for multi-import, they are ignored. Note that restrictions on the
data exported allow the original source module to skip module-level sections from exported state; see the STATE_SCOPE section
for restricting export-file contents.
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Since importing into multiple domains is technically a domain-level operation, this import type could be extended to allow
importing into domains with an identical set of domain administrators. This possibility, however, is not currently supported:
multi-domain import must be authorized by module-level administrators (even if importing into a single domain).

When attempting import into non-existent domains, requests to import are rejected. While in some other administrative cases
we tolerate—and ignore—requests for future constructs not or not yet supported by the backend, we require very specific
requests for intrusive operations which overwrite domains.

8.4 Key veri�cation patterns

When exporting keys, we include two integrity fields within each encrypted KP, which KPHs can recover and use to verify
integrity. Verification patterns are hashes of key material (with some predefined formatting), and are assumed not to reveal
information about the key. We include the verification pattern of the entire—reassembled—key, and one for the individual KP.

When a KPH recovers a KP, they will need to store recovered verification patterns along with the KP. Typically, this could
happen within the KPH’s own secure signing/encryption device, such as a smartcard or an HSM.

When importing key material, KPHs may use their KP’s verification pattern to protect against procedural errors. The encrypted
KP still needs to include the entire-key verification pattern, which the target module verifies.

When a target module reassembles KPs, it recovers and verifies overall integrity, which all KPHs will include (even if they can’t
use it themselves). If the verification pattern of the reassembled key does not match all of the KPHs’ attached signatures, the
backend rejects the imported keyparts.

Note that existing legacy MK-parts setup scheme, which combines independently generated, unstructured random values, is
not suitable for aggregate integrity checking, as keyparts are not available simultaneously before key import is completed. If
such a key is recovered from KPs, all KPs would contain only raw key material, but no aggregate verification patterns. If
all KPs decrypt to such VP-less material, the backend assume that the KPs are all externally generated, and accepts this
compound without an aggregate verification pattern. We assume that at least one honest KPH would have included an overall
verification pattern if it has been supplied during export, even if rogue KPHs would not. Similar schemes are used in distributed
storage security schemes, where any honest party alone may expose malicious—but authenticated—actions of hostile entities
[WOW08, 5].

As an integrity check after importing KPs, the backend returns the verification pattern of the imported key, and those of its
constituent KPs. Administrators must verify that KPHs’ approval is granted before the reassembled key is activated, when they
check the list of verification patterns for their own. If a KPH does not notice the verification pattern in the latter list, it MUST
terminate the import procedure witholding the signature required for activation.

Note that our use of key verification patterns differs from that of PKCS#11 key-checksums. We make the distinction un-
ambiguous, wherever applicable. Since WK and keypart management is outside PKCS#11 scope, the two types are never
ambiguous.

8.5 Cloning fundamental assumptions

When describing cloning, we make the following assumptions about control and data flow:

1. Our scheme is designed to protect against an arbitrary number of dishonest administrators, as long as the system threshold
disqualifies them from submitting commands signed only by dishonest administrators.
In practical setups, one would most likely administer with a majority vote of three (3) administrators, and one could
therefore tolerate a single rogue administrator.

2. We need to reject cloned keyparts as long as a single honest KPH is active in the system. We assume that “mainly
honest” administrator signatures will be applied only to KPs from the the (see above)

3. Within system limits, the performance of administration is stable, does not depend on the number of registered adminis-
trators. Therefore, registering mainly-inactive administrators for disaster recovery purposes is possible.
In other words, one may register administrator certificates reserved for infrequently accessed, archived administrator-
signing keys. Not used during regular operations, such keys could allow recovery if the frequently active keys are lost.

4. We provide source-to-KPH and KPH-to-target integrity and confidentiality, through a combination of signatures and
public-key encryption. Our scheme does not provide end-to-end guarantees between source and target modules.
Note that in certain practical setups, administrators would only partially overlap for source and target modules. In such
an environment, one would not be able to provide generic end-to-end authentication between the two modules.
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5. Without N-of-M key reassembly, our scheme fails if KPHs’ key storage is not highly available, as loss of any single KP
will render the exported key useless. We require KPHs’ environments to provide reliability while they possess their KPs.

8.5.1 Restricting cloning

Depending on requirements of the host environment, certain capabilities must be switchable. Many of these settings are
further meta-controlled by a switchability flag, removing even the controlling administrators capability to change the state.
Once removed, the capability may not be enabled without restarting/reinitializing the module (selection depending on the
meta-control-bit restricting it).

Enable key export is a capability one may wish to remove from “leaf” modules (such as those deployed to remote offices).
In such a setup, only a central group of modules would be allowed to push a transport wrapping key to leafs, but those
could not export them any more.

Enable key import allows cloning to accept a new key. If this item is disabled, the module will reject further attempts to
change its transport wrapping key. (Obviously, one could always reinitialize the module.)

Allow single-part keys could be left enabled from CA-type applications where key dual control is not feasible or not desired.
Lower-level CAs or server keys that are easily replaced could be cloned in single-part messages, since the procedure itself
is more straightforward.
Systems where module cloning must remain under dual control would disable this capability, allowing key transport only
for at least N = 2 key part holders.
Note that this capability combines individually with import and export. Once activated, it applies to both.

Module initialization is a convenient point to set up cloning restrictions. One would expect that the host driver would set an
administrator-controlled profile to each module before activating it.

As one example of a financial (PIN-processing) application, one would set up a profile similar to the following:

1. Require key import, i.e., don’t activate the module with a random transport wrapping key

2. Disallow single-part keys, forcing dual control on cloning

3. For central Master-Key backup nodes, allow key export and possibly disallow key import.
Conversely, for non-central nodes, inhibit key export and allow key import.

As another example, a timestamp server or a lower-level CA that can replace its keys easily, could operate in the following
setup:

1. Don’t require key import, activating the module immediately with a random transport wrapping key

2. Allow single-part keys, if the CA operates without dual control.

Key import and export may or may not be relevant in this setting.

A semi-centralized high-assurance setup issuing digital signatures may be split into two parties, one “key server” generating
and auditing private keys, and multiple “leaf signer modules” using them. In such a setup, one could reliably audit flow key
lifecycles, and deploy leaf signers without them acting as key sources.

1. An initial, possibly offline activity shares WKs between all servers.

2. Key servers generate and export private keys, generating key objects and exporting the local audit history to document
origins and lifecycle of the generated keys.

3. Leaf signers may import, but not export private keys, relying on domain attributes, not only on key usage restrictions.

4. All participants could prohibit explicit use of secret keys, relying only on WKs, and preventing use of the signing infras-
tructure for unrelated activities.

5. Setup of key servers and leaf signers is switched to non-modifiable, preventing further changes.

To establish trust in modules, an unrestricted host service should enable admins and key part holders to query current card
configuration. Since most critical attributes are controlled by attributes preventing their change, applications may verify that
the current setup may not be changed without complete zeroization.
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9 Security assumptions and rationale

9.1 Sensitive state storage

9.1.1 Authenticated encryption format

Sensitive state is encrypted and authenticated using a combination of AES/256 and HMAC-based signatures, using a MAC key
derived from the controlling WK. Blobs are wrapped in an Encrypt-then-MAC structure [BN08, 1.2, 4.3] [Kra01, 4.1]. Note
that unlike protocols with flexible orders of encryption and authentication, we only support encrypt-then-MAC, and do not
support falling back to other ordering [Gut14, 4, Security Considerations].

Since blob verification/decryption is performed in a single pass, it is by construction immune to attacks based on fragment
reassembly [DP10, 3.1.3] or compromising the reuse of cryptographic state [RRDO10, 1]. Since we do not react to data with
an invalid MAC, blob decryption does not provide decryption oracles [SF13, 2.1]. As in an encrypt-then-MAC structure, where
the MAC is applied to encrypted contents and not embedded within ciphertext, MAC verification—using entirely host-visible
(amounts of) data—does not provide timings usable for side-channel attacks (unlike TLS, cf. [AP15, 2.3]).

If the backend resides in a different address space, and host code may not modify the request during parsing, blob processing
is immune to time-of-check time-of-use attacks—i.e., “double fetch”—by construction. In these cases, since all reads of the
request access backend-local memory, the backend will work with a consistent request structure even if the host is hostile, as
the latter may not modify requests between backend accesses [JC13, 3.2].

Depending on configuration, our backend may execute in the address space of the host component, but this is not the case in
high-assurance environments—such as HSMs—or “soft-HSMs” where the backend resides within a dedicated partition. Since
production EP11 environments execute in different address spaces from their callers, we acknowledge and ignore the problem
in caller-accessible backends without attempting to fix it. If protection is to be added later, we note that only memory accesses
need to be identified in our stateless model, which is considerably easier than detecting double checks at a filesystem interface
[PG12, 4].

Since sensitive state is signed last, after encryption, our verification-then-decryption process is assumed to be immune to practical
attacks on decryption/padding/decryption oracles [FP13]. As a side note, since encrypted content starts with length-describing
fields, unpadding of the last encrypted block is superfluous, and not required for proper operation.

9.1.2 Authenticated, non-sensitive state

Non-sensitive state is currently restricted to authenticated public keys—SPKIs—which are published, but are bound to attributes.
These objects share MAC keys with their private counterparts, derived from their controlling WKs.

9.2 Security rationale

9.2.1 Attack scenarios

Physical protection Depending on its deployment, the backend may inherit physical-security features, primarily active tam-
per protection, from the environment it is deployed in. We assume automated tamper responses, independent of software
intervention, therefore we implicitly assume tamper responses would be processed without active action of our backend. With
this disclaimer, we assume to inherit physical protection when possible, but it is orthogonal to our own protection features
(such as defenses against faulty hardware).

Note that all IBM HSMs feature hardware-based tamper-protection, circuitry which is entirely independent of the firmware it
is loaded with. Our assumption is based on such firmware-independent tamper protection, and may be changed if our backend
is deployed in less capable security modules.

The only tamper-related action performed by our backend, when deployed on IBM HSMs, is reaction to card removal. While
removing a module from the machine hosting it is not considered a tamper event, it is logged persistently—“external warning”
indicator—and may be reacted to when tamper-aware firmware is subsequently booted. We maintain an administrative setting
to control such reactions, and manage it when running within a suitable HSM—we wipe persistent state after card removal if
so set (see the XCP_ADMM_EXTWNG for details).

Replay attacks Due to the mainly stateless nature of Enterprise PKCS#11, replay attacks are generally ignored as a threat:
a stateless CSP is in a state of permanent replay, and replay-related problems MUST be separately managed if necessary [FG17,
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1.2]. Note that the citation also shows why dispatching requests across multiple, related backends would prohibit some naïve
replay-countermeasures, and replay protection is better made more explicit at the protocol level.

There is a limited number of scenarios where requests—generally, state-changing commands—are specifically prohibited from
replay:

1. State-changing administrative commands must include an increasing, administrator-specified transaction counter.

2. Importing state or WKs uses a single-use, module-internal private key as an importer. These private keys are discarded
upon first use, or when a replacement key is generated, which prevents replay attacks against import-related functionality.

As a special case of replay protection, instance identifiers are created randomly, used as “salts” for cases where the module-
internal setup might repeat after zeroization. Including instance identifiers prevents past requests from being accepted after
zeroization, if the environment is restored to an otherwise identical state. As an example, if a domain is zeroized, then
repopulated with identical administrators as before zeroization, past administrative traffic could be replayed—since module
identification, domain number, or administrator keys are unchanged. However, since the domain number is “salted” through
adding an instance, valid administrative traffic for the same setup is still prevented from replay, as commands must include
domain instances.

Note that size of instance identifiers is limited—several bytes—therefore there is a non-negligible chance for collision, if the
operation is performed sufficiently frequently. Since zeroization is disruptive, and would be procedurally monitored—or even
persistently logged—in a practical setting, we ignore the possibility of collisions of instance identifiers. Note that even in such
cases, the administrators capable of triggering a sufficient number of zeroizations would be then become capable of launching
a replay attack against themselves. We acknowledge this vulnerability without attempting to fix it.

Signing oracles To prevent signing arbitrary data, Enterprise PKCS#11 backends insert nondeterministic data to signed
responses, to prevent signing data controlled entirely by the host, or more generally, to prevent signing data considered to be
known the host.

At the modest cost of random-number generation overhead, salting responses also increases the complexity of any attacks
related to hash collisions, such as when audit logs are authenticated as as hash chain, or when hashing is implicit in digital
signatures [Fil13, 3.1.2].

• Sensitive objects include an internally generated, random IV, both during key generation or key import. The IV is included
in the MAC calculated over the entire object, and therefore doubles as salt of the authenticated object.

• Authenticated, non-sensitive state—MACed public keys—add salt to prevent signing entirely user-controlled data. Note
that internally generated public keys are basically not user-influenced—except for the optionally specified public exponent—
but public keys imported to be MACed are.

• Audit records include a minimum amount of salt, preventing any host entity from advancing the audit state only based on
known or host-controlled data. The amount of salt varies by usage—see the wire section for details—with only a specific
minimum bitcount enforced.
Note that salt is explicitly included, in addition to any host-visible, predictable content which is ignored when considering
randomness—such as timestamps or sequence numbers.
Note that audit records are based on hash chains, and are not themselves signed. Salting prevents user-controlled advances
of the audit chain itself; it is listed here as it resembles defenses against signing arbitrary host-controlled content.

• Audit records, when signed within an administrative response, include additional salt within the response block. This
prevents issuing an OA signature on fully known input: the then-current audit state must be considered to be known.

In addition to the above salting/randomization steps, attribute-bound key wrapping includes a module-generated, random IV,
and possibly a transient transport key, both generated by the originating module. Obviously, direct access to the signature key
may be procedurally possible, therefore randomization of AB-wrapped enclosures is only relevant if the host otherwise restricts
access to the AB key. Against attackers who have indirect access to AB-wrapping functionality, randomization described above
prevents signing fully user-controlled data.

The minimal amount of salt outside host control—beyond 64 bits—is expected to realistically prevent attacks on event ran-
domization, matching real world experience of runtime randomization [CCF+16, 5, “Randomization entropy”].
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Timing side channels The backend intentionally avoids data-dependent dataflows, providing constant-time comparison for
cases where timing may leak signature or plaintext information [Por16]. As the most obvious example, MAC verification of
host-resident, authenticated state is always through data-independent operations. (Note that our constant-time comparison
also maintains a uniform memory-access pattern to minimize any secondary leakage, such as through cache behaviour.)

Note that the underlying crypto provider also provides constant-time implementations for many algorithms, such as PKCS#1.5
unpadding [BFK+12]. These timing countermeasures are not further discussed here.

Maliciously malformed requests Our attack model, mirroring HSM trust assumptions, expects arbitrary combinations of
accidentally or maliciously misbehaving host code. The backend distrusts anything appearing in requests—i.e., on our wire
interface. Note that our distrust extends to host library code, even OS/infrastructure libraries, and therefore our security
assumptions conservatively account for attackers with essentially unrestricted level of access to—the wire interface of—the
hosting HSM. Obviously, most server environments include serious host-based protection, which we completely ignore. This
prudent level of distrust contrasts with commercial products assuming mainly cooperating environments [KCR+10, 3.3], and is
prudent in embedded systems interacting with untrusted request sources [BGJ+12, 6].

We do not specifically distinguish between malicious or simply buggy host code, and only mention malevolent modification in
the following paragraphs. In practice, our test processes combine both completely random requests [ADG+92] and maliciously
malformed ones [MCM06, 4.2], with the latter incorporating specialized knowledge of some of our data structures. Our
regression-test tools also apply targeted mutation to increase coverage by incrementally modifying known-good starting requests
[BGM13, 2.2].

At the first level of protection, we assume attacks by host code who may not forge signatures on backend-generated data—i.e.,
blobs or signed SPKIs. Typical server-centric applications, lacking access to WK management, would be capable of only this level
of malice. Backend code assumes malice at all levels, therefore any formatting errors of the first level are reported and rejected as
“expected” errors—i.e., produce no additional logging, other than reporting errors. The backend allows “first-level” malicious
attackers to reach well-defined errors, generates no unexpected internal errors, and completely recovers after encountering
malformed data. First-level attacks include anything accessible in request cleartext—including request formatting—but not
modification of backend-signed data (i.e., anything following MAC verification).

The second level of checking assumes malicious host code is capable of signing malformed backend data. This level of access,
requiring access to the MAC key derived from the controlling WK—i.e., effectively access to the WK itself—is unreasonable in
production environments. Since it is logically still an attack on the wire level, we account for this, but acknowledge that we
do not expect to encounter it. Second-level attacks are detected by sanity checks, partially assisted by deserialization code of
the underlying CSP. Since the backend expects to find properly formatted cleartext after signature verification—generated by
another backend, or even itself—malformed data is reported, and the request is rejected. However, such backend error paths
are annotated with “SNH” (should-not-happen) marks, to indicate that they are unexpected errors. While these annotations
may not be observable in production, our interface test tools verify them in diagnostics builds.

Since production environments are expected to lack direct access to blob-signing keys, the backend allows “second-level”
malicious attackers to reach well-defined errors, and completely recovers after encountering malformed data. However, unlike
first-level attacks, we may mark error return paths reachable through second-level attacks as unexpected (such as reporting
them in system logs).

Note that EP11 code includes sanity checks against resource exhaustion and other environmental failures [MKP+95, 5]. Errors
encountered during such environmental failures are annotated similar to second-level attacks, with the implicit assumption they
“should-not-happen” but are reacted to.

Since object sanity checks may utilize the context of object deserialization, they complement lower-level checks at the infras-
tructure level, such as referencing untracked memory or NULL pointer checks [PTS+14, 2.1]. Some of the checks inherited
from the backend deserialization steps add more context, such as structure size limits, which are then cross-checked against
deserialized objects’ fields (Fig. 14).

Since the deserialization process provides exact size bounds for all subsequent steps, we may verify exact boundaries for
each memory operation—minimizing an important window of vulnerability which is amenable to real-world attack exploitation
[AAD+09, 2.1]. Starting from top-level TLV encapsulation, internal consistency checking of each memory region is aware
of the allowed number of bytes. This allows us to check memory references within the context of each request, preventing
request-originated structures from referencing unrelated memory [Hea14].

While not currently done everywhere, the deserialization step of request parsing with well-defined memory-region bounds could
be easily extended to provide “bounded pointers” if additional memory- and type-safety is ever desired. In fact, de/serialization
code already manages bounds as out-of-band metadata in a form which may be directly applied to derive bounds for pointers
related to request-internal data [Con07, 3.1]. As an example, while the underlying CSP may require use of local pointers within
its data structures, those are supplied during import, observing limits of the CSP object size (Fig. 14), de facto preventing the
use of arbitrary pointers in most contexts.
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Figure 14: Establishing and tracking bounds on wire-derived memory regions of a VerifySingle request

Malformed persistent data While not strictly an attack interface, our backend must react safely to inconsistencies in
persistent data, when reading files within the backend. Our file formats are versioned, and constructed to be future-proof: past
fileformat-versions are expected to be recognized. This security assumption is about files where contents’ structure does not
match the expected formats.

Persistently stored data is integrity-checked: files include a hash, which is verified during each read, but is not visible to code
consuming returned bytes (see section 2.5).

We expect to encounter no formatting errors within restored file contents, and detect accidental file corruption of any part of
a file—implicitly including failures of any lower-level drivers [PBA+05, 3.1]. If unexpected data is read back after successful
file-hash verification, the event is flagged as should-not-happen; the backend recovers from such failures. (While not expected
to happen in production builds, these conditions are routinely verified by instrumented test versions, which are capable of
injecting errors at these levels. Additional code coverage of such “impossible” paths is a quality metric of our error-injection
tools.)

Recovery may include removal of the offending file, and possibly implied removal of others; host code is expected to manage
such losses. Fig. 6 shows the interaction of persistent files.

Our regression test suite includes targeted tools to verify recovery from malformed persistent data, essentially observing the
backend state machine during reconstruction. These tools are obviously only usable in development enviroments, as produc-
tion instances lack the necessary access to persistent files.

Data remanence in request-local memory In the stateless execution model of EP11, most request-local memory is used
only transiently, and it is released upon responding. (We ignore secondary effects on global data structures, such as cached
sensitive state, in this section.) Most transient allocations are stack-based, and are managed automatically, without involving
heap-allocation calls. Our backend minimizes the time where sensitive blob-internal is in the clear by aggressively wiping any
stack structures which could have stored sensitive data.

Our backend code assumes no cooperation from stack management, and we zero-initialize memory unless immediately populated
by assignments. Data structures on the stack, unless demonstrated to contain only wire-visible data, are wiped before their
stack frame is released. Performance considerations prevent us from explicitly clearing all stack-resident structures [LSKL16,
3.2], but wire-visible structures may be cleanly delineated—and are clearly highlighed as such in source. (Diagnostics builds
include annotations around sensitive stack structures to verify wiping when such structures go out of scope, but we acknowledge
that these annotations only demonstrate lack of exposure on annotated paths [LSKL16, 7, Protections using zero-initialization].
However, the effects of these annotations are checked during diagnostics-regression builds.)

Heap used during request processing is initialized in a zero-filled state, i.e., obtained through calloc(3). Heap regions,
when released back to the operating system, are wiped just as stack structures are—assisted by the same set of centralized
management code. Since dynamic allocations are centralized, only stack objects need to be tracked for initial data, simplifying
initialization-related diagnostics tooling [LSKL16, 4.1.1].

While we could special-case code to accommodate operating system modifications adding stack-clearance explicitly [KZ14, 2.4],
we chose to implement our own zeroization primitives, and expect no OS cooperation.

EP11 Principles of Operation 54 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Note that our backend supports a minimalistic diagnostics mode, tracking only memory management and the contents of
released regions. This lightweight instrumentation allows us to monitor released memory and verify that only zeroized regions
are returned for subsequent reuse, even without incurring the overhead of full diagnostics.

9.2.2 Attack scenarios ignored

While acknowledging possible security implications, certain vulnerabilities are tolerated for compatibility reasons, or because
they may not compromise our backends.

Our backend does not interact with physical tamper-protection features, assuming selfcontained tamper protection,
which requires no reactions from software. We therefore depend on environment-based tamper protection, on a best-effort basis,
and acknowledge that we inherit the limitations of environmental tamper protection. See “Physical protection” for assumptions
and rationale.

Our backends ignore all certi�cate parameters except actual public keys. We specifically ignore signatures, expiration
or any verification of the signer, relying on certificates only as portable containers for public keys.

Since our administrator identities are effectively public keys, and our backends have only an indirect notion of time—system
clock is managed, but is ignored by our administrative interfaces—we may not meaningfully support certificate expiration.
Similarly, since we manage whitelists of administrators but never establish trust relationships, or otherwise organize them into
hierarchies, certificate verification has no meaning for our backends. Since we rely on a managed certificate whitelist, the entire
verification effort is delegated to administrators, including the verification of certificate lifecycles [PKC04, 10.6.2]. Security and
trust management through public, append-only whitelists of certificates are practical even for large sets of certificates [AVHS12,
3] [LLK13].

As most of certificates are ignored, and we effectively use only public keys as administrator or KPH identities, checksums
indicating ownership and identity are not based on certificate hashes, using key-specific SKIs instead. As a side effect, attempts
to register the same public key through multiple certificates will fail, reporting the corresponding SKI to be already used (the
practice of issuing multiple certificates is frequent in certain co-hosted/centralized environments [HDWH12, 4.1]).

Hash collisions are acknowledged, but in most cases ignored by our backend, and we do not attempt remediation—other than
using SHA-256 as a hash function, or HMAC/SHA-256 as a keyed transformation. Our use of hashes is generally identification,
followed by further operations by keys indexed by hashes. The backend rejects incorrectly identified keys: hash collisions may
cause false identification, but functional use of mismatched keys is assumed to be detected.

Note that in most cases, comparing by hash is just a prerequisite to use. As an example, even if the truncated form of two
WK identifiers collides, the different keys would fail to decrypt blobs encrypted by others. Similarly, if administrator SKIs—i.e.,
public key hashes—collide, the SKI field within signedData structures of such SKIs would match, but the signatures themselves
would be rejected.

In practice, with a sufficiently long bitstream from a cryptographic hash function is “assumed-unique” without centralized
assignment; also, hashing allows identification without relying on distributed secrets [FKD+13, section 10].

To protect the module against host-induced hash collisions, salt is added to structures where hash-based state is advanced if
incorporating host-controlled or known data. As an example, audit events are inserted into a hash chain, and a predefined
number of unpredictable bytes will be present within each audit record (9.4.3). This mandatory salting increases the complexity
of attacks attempting to control hash-chain state (evolution).

CBC unpadding using PKCS padding—possibly other padding modes, if they are added in the future—may serve as an
unpadding oracle, revealing plaintext contents by returning plaintext-dependent error codes during decryption [CHVV03, FP13].

While side channels caused by decryption are in fact practical, we implement the PKCS#11 standard properly, and are therefore
obliged to return such selective error values. Also, since we do not separately access-control unpadded CBC mode—which is a
prerequisite of its padded relatives—the entire plaintext may be obtained at the cost of an extra call. Therefore, we delegate
the problem of masking—actually, obfuscating—plaintext-related errors to host code.

Similar decryption/validation oracles, when they are implicit in protocols, MUST be accommodated in protocol-aware code
[ASS+16, 3.1]. The lack of granularity of PKCS#11 calls prevents us from recognizing how, as an example, decrypted blocks
are processed.
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Attribute-bound keys are imported without verifying key checksums in the header even if all participating key checksums are
present—i.e., those of the key, the KEK encrypting it, and the MAC/signature key. These checksums are constructed properly
at export, and are ignored during import.

Note that the MAC/signature key authenticating the AB-wrapped key may easily replace any checksum within the header,
then construct a valid signature over the updated compound. Against any other attacker, including accidental corruption, the
MAC/digital signature already protects the full key. Therefore, not verifying the checksum fields introduces no new vulnerability.

Audit sequence numbers may wrap, which is acknowledged but not separately accounted for. In a practical setup, unless
administrators maliciously update clocks, the sequence number rollover would be noticeable. (Even after a malicious time
update, the aggregate hash chain would obviously link audit history.) Due to these restrictions, we do not protect against a
sequence number wrap, other than issuing a special-purpose event to mark it.

In practice, we use a sufficiently wide counter—considerably over 32 bits, see the wire section—to be able to consider audit-
counter wrapping impractical.

Audit records are delivered asynchronously to the host, therefore creating a time window between delivering results and
the arrival of the corresponding audit records (see the functional-call flows in Fig. 16). If a module is restarted, or otherwise
becomes unreachable during this period, the system will lack the audit entry for the referenced event. This asynchronous
window is inherent in the operation of our audit chain, and we acknowledge it without attempting to fix. Systems with high-
assurance requirements may mandate some kind of redundant audit-chain storage within disjoint security domains on the host
to prevent malicious denial of the most recent entries [CW09, 2.2] [BMC+15, VIII.A.]. Alternatively, one may procedurally
require confirmations through multi-stage commits, a common technique used in asynchronous hashchain-based transaction
systems [Nak09, 8] [cd14b].

Since we made the conscious decision of not adding audit data to responses directly—i.e., keep our interfaces similar to
PKCS#11—there is an inherent asynchronicity between multiple events. Note that similar problems are prevalent in any
remote, inherently asynchronous interface; they are highlighted since audit events are worth of special mention.

To simplify the synchronization of functional and audit-record state, the backend includes both unsigned and administrative-
signed queries to retrieve the last audit events from a circular buffer of reasonable capacity (Fig. 16, see section 9.4.5). Therefore,
high-assurance applications requiring strict audited proofs are encouraged to wrap audit-relevant operations, couple them with
immediately following audit queries, and only return confirmed objects when their audit event has been received. Substantially
similar algorithms are used in distributed payment systems to create confirmed transactions [KAC12, 3.1], and we expect host
libraries to wrap similar functionality if needed.

Note that updates of the audit state within the module are atomic: when audit-event construction is reported complete, the
persistent copy of the audit state has already been committed to disk. The loss of audit record only refers to the newly
generated audit event; the event chain is expected to advance in an atomic fashion regardless of when the backend is reset.

Note that partial protection may be provided against event chain truncation, if state-delimiting “metronome entries” are inserted
into the event chain, for example by issuing audit-relevant requests. Using such extensions, the premature termination of the
event chain becomes immediately visible, and the frequency of metronome entries also provides secondary information about
missing time windows (duration) as well [Hol06, 8].

Audit records may not be reliably generated during very initial stages of system startup, therefore these early events
may be logged only approximately. As an example, audit state may be restored from persistent storage only after a successful
KAT of hashing, since it depends on verifying the hash of the state file first. Therefore, audit-relevant events related to known-
answer testing—of at least hashing—or initial filesystem access may be generated before audit startup. Our workaround for
such initial events is an offline audit-event queue, which preserves only the chronological order of events, but does not provide
details beyond a single—possibly quite specific—reason for each event. As most early events are actually quite concise, such
simple early-logging queuing is satisfactory.

Due to its intentionally simplistic design, early-event logging has two serious limitations: only the chronological order of events
is preserved, and the backend only offers a finite capacity queue for preceding events. The latter limitation is not externally
visible, since finite capacity is oversized relative to the worst-case capacity required by EP11 itself, but it is mentioned here for
completeness. (Internal headers and specifications unambiguously describe any limitations relevant to EP11 developers, but
this information is not relevant or made visible to the host in practice.)

When the audit subsystem has started up successfully, it immediately processes any pending early events. In practice, successful
startup is quite close to powerup: delays are expected to be comparable to typical device-access latency in high-end servers;
in any case, in the range of event-timestamp resolution. We consider the effect of inaccuracy in such early-event records
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negligible. Therefore we acknowledge that early event timestamps may be slightly inaccurate—but their relative order will be
preserved—and do not consider this inaccuracy to be security-relevant.

Note that EP11 in fact preserves event identifiers to mark the start of early vs. regularly submitted audit events, but currently
we do not—yet—issue such separator events in production.

Incremental decryption of streams may reveal information about plaintext, even if the full stream would have been rejected
due to some integrity mechanism failing. As an example, earlier parts of an improperly padded CBC-encrypted stream may still
be incrementally decrypted, and the last call would fail due to the detected plaintext being invalid.

This vulnerability is inherent in incremental calls; it may only be prevented by mandating single-pass processing. As PKCS#11
provides no standard method of restricting symmetric processing to single-call operations, we acknowledge the vulnerability,
but do not protect against it.

Note that the inherent problems of incremental decryption returning plaintext before final verification are widely recognized
[Lan14]. For standards where this may become a problem, the recommended solution is to delegate final reassembly to outside
the cryptographic primitive, if the environment may not tolerate partial decryption [IEE07, 4.4.2].

The certi�cate chain of imported state is not veri�ed in its entirety, even if it is included in system state (8.3.2, Fig 13).
The signature covering the file is still verified, but the certificate chain leading to the signing key is not. Note that the import
procedure reassembling the import file requires administrative commands (Table 2), so administrative approval on the state is
implicit. The signature on the file itself is basically an integrity check on contents, but contributes no additional security.

Note that our HSMs are issued certificate chains originating at the factory CAs, but certificates of the latter are not present in the
modules themselves. Therefore, the certificate chain in an imported state terminates is effectively self-signed: administrators
authenticated the whole chain, but we may not verify the root certificate through an independent channel. Under such
circumstances, verifying the file signature may detect corruption, but provides no security. If malicious administrators collude
to import an invalid state file, they could also conjure a similarly “self-signed” certificate chain to authenticate it.

Note that the lack of verification is not a security problem: we generally protect export of secrets, but importing essentially
arbitrary data—as long as administrators approve it—may not compromise other backends.

Obviously, regardless of the signature, data formatting and consistency are verified during import. Since the presence of a
file signature does not bypass such sanity checks, backend integrity may not be compromised even by maliciously constructed,
properly signed imported state.

Properly signed blobs containing invalid keys may produce invalid results, which the backend may not detect. Note
that under reasonable conditions this should not happen, as we assume WKs would be procedurally protected during normal
operations. Note that anyone controlling a WK may inject arbitrary content into a blob. Therefore, our goal is limited to
proper backend operation even in the presence of such malformed—but properly MACed—blobs.

Note that after the signature on MACed contents is verified, the backend performs all applicable format checks, and will reject
structurally corrupt blobs. Assuming MACed contents were valid, subsequent structural errors encountered are marked as
unexpected—should not happen, “SNH”. In fact, maliciously MACed blobs are actively used by our test tools to check for these
conditions during development. However, due to lack of redundancy most objects types may not be detected as “corrupted” if
they are properly MACed. As an example, secret keys of state-of-the-art symmetric algorithms lack any structure, and raw key
material is expected to be statistically random [RS06, 1]. Therefore, modification of only the raw key bits may not be easily
detected, a known key-storage artifact [ST16, 5.1]. (Even if we added separate integrity fields to raw keys, a malicious WK
owner could also recreate those, matching any corrupted raw key bytes.)

Due to the limitations on integrity-checking raw key material, and the inherent difficulty of validating some keys, we justifiably
limit our checks to object formatting which may influence backend control flow. We therefore acknowledge that a malicious
WK owner may change raw key material, and such replacements may not be detected, and not even attempted to do so, by
the backend.

Note that certain unexpected internal errors may expose the timing of internal checks, if encountering errors later than successful
verification of properly signed data. These conditions are assumed to be reachable with a non-negligible probability only if
the attacker already possesses the proper signing/MAC key, and then additional timing information has no further value to
attackers. Therefore, timing behaviour of such unexpected errors is approximately constant, but only on a best-effort basis.

Di�e-Hellman keys may leak information about their secret-key bitcount with a low, non-zero probability when un-
wrapped. Since we need to reconstruct the standard PKCS#11 parameter describing the bitcount of the X DSA parameter
(CKA_PRIME_BITS), X is retrieved from the wrapped private key, then rounded up to 32 bits. When the generated X value has
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more than 32 leading zeroes, we reveal this condition as a side-channel by reporting the short X (this happens with a probability
of 2−32). Practically, while the intended bitcount is an upper limit, we reveal if the actual X value is considerably shorter.

Since the presence of PKCS#11 parameter is mandated by the standard, and regular PKCS#11 wrapping modes lack sufficient
metadata, we may not protect against this weakness without breaking standards-compliance. We may add a control point to
control rounding—sacrificing strict compliance for security—as a future extension. (Reporting inexact, conservative PKCS#11
parameters should remain within the standard [PKC04, 11.2]).

Note that our proprietary attribute-bound format does not have this problem, as the originating bitcount may be included in
our wrapped form along with other attributes. The vulnerability is unique to standard PKCS#11 transport modes.

The backend performs per-request usage-restriction checking at well-de�ned points, and does not react to subsequent
changes to restrictions, even if they happen during execution of that request. As an example, if the CP setup allows an
operation, it is allowed to complete even if a simulatenously submitted administrative command disables a relevant CP before
request completion.

We acknowledge that (almost-)simultaneous functional calls and administrative ones changing restrictions interact, but observing
the overall asynchronous nature of a multithreaded backend, we accept this condition. In general, we only state that restrictions
are evaluated in a manner consistent at the time of checking. Since usage-restrictions are checked at multiple levels, our
statement is valid for each of the potentially multiple cross-checks; see section 2.6.

Note that real-world scenarios tend to procedurally restrict administration to otherwise quiesced modules, even if these are
not taken completely offline, just temporarily bypassed by functional-request routing. The primary reason for temporary
quiescemence clear is separation of before-after states around administrative changes; this, coincidentally, closes the window
where our approach may be criticized.

Reliable auditing requires host storage and procedural cooperation to store audit logs.

Note that all HSM-resident systems must provide positive proofs, since the modules may intentionally self-destruct as a regular,
expected operation—such as during a perceived tamper attempt. Therefore, mandating positive proofs and the necessary host
procedural controls is not unique to our backends, and should be expected in any high-assurance environment, or any application
aware of HSM operational details.

Administrators are authorized to remove logged-in sessions even if they may not reconstruct the originating PIN/nonce
combination. This capability is needed since sessions may remain logged in to any module, impossible to remove, if the
session identifier and the originating PIN/nonce are no longer available. Since administrators authorized to issue the session-
removal command would also be capable of zeroization, allowing removal of a single session is only a subset of already available
functionality.

Note that while forced session removal is available, administrators may not log in a session without the original PIN/nonce.
Therefore, administrators may invalidate a session, but are not capable of impersonating the originating user.

We derive session identi�ers with a �xed key calculating HMAC/SHA-256 over host-provided data (see 2.3), and do
not—currently—support diversification through selecting alternate keys. We effectively treat our session-deriving key as a
non-sensitive shared value.

We acknowledge that adversaries capable of constructing HMAC collisions may impersonate other entities by recreating their
session identifiers, and do not intend to fix this vulnerability.

Since host administrators are already assumed to be able to observe host-provided login traffic, they do not even need to
construct HMAC collisions to impersonate other host entities. Against non-privileged host-based attackers, we assume that
enumerating login information is simpler than attacking the HMAC algorithm itself.

Note that our stateless model, and the fact that all modules may recreate sessions, prevent us from meaningfully restricting
login events through rate limitation.

We acknowledge that the derivation of identifiers does not offer security comparable to that of MAC calculations. Since
sessions must remain logically separate from WKs, session-identifier derivation must behave identically on all backends, even in
the absence of synchronized WKs. Therefore, relying on a single, fixed key to diversify an otherwise standard HMAC calculation
is the only feasible solution, and it is considered an acceptable tradeoff. Note that practical “secure” protocols are de facto
deployed with similarly shared keys [GHC14, V.D]—but unlike our modules, those “private” keys should in fact be sensitive.
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Single-binary instances of EP11 are not protected against malformed requests or compromise through persistent data.
Configurations where host and backend code execute in the same address space are assumed to be under complete control of
those capable of issuing requests. Our security assumptions about protecting against malformed requests or persistent data
may not be enforced in such environments. We acknowledge this restriction, and ignore it, since no production deployment
operates with identical host and backend address spaces.

Note that single-binary test instances of EP11, or backends accessible through a debugger, are the most relevant instances
which are vulnerable through address-space sharing. These instances should not manage sensitive production key material, and
the capability of directly modifying backend state is not expected to add new vulnerabilities.

We depend on compilers not bypassing defensive code, such as bypassing memory-wiping calls, or otherwise disrupting
features added to increase resiliency. This dependency includes certain countermeasures, such as compiler optimizations
discarding certain checks as “impossible” conditions [WZKSL13, 2.2]. We assume proper compiler operations under these
conditions, and may need to audit generated code for proper operations.

Note that many of the defensive features—such as memory comparison with guaranteed data-independent behaviour—use only
standard code structures, and are therefore not subject to potentially erroneous compilation. Unfortunately, these structures
tend to be inefficient, but we tolerate the performance penalty to preserve portability.

Certain �attacks� on the entropy source are acknowledged but may not be defended against, if the entropy source
is malicious. As an example, even a trivial amount of state and code may generate “normal numbers” which would be, within
reasonable bounds, indistinguishable from a perfect source—at least, given the limitations of our module-internal checking
[Bai04, 4]. Since our capability to detect a malicious source is limited, we only attempt to defend against realistic failure modes
of a non-malicous raw-entropy source within the entropy conditioner (TRNG, “true-random” generator).

Obviously, within the tamper-protected boundary of an HSM, physical replacement/bypass of the source is infeasible. Similarly,
we assume connections between the source and the TRNG conditioner are physically protected. Therefore, we may legitimately
assume that only the source itself may be compromised/hostile, but attackers—other than those who have compromised the
source before its integration—SHOULD be unable to manipulate the raw-entropy stream.

See section 9.3.1 for the limitations, the full rationale of entropy estimation, and the threats considered by entropy conditioning.

9.3 Random-number generation

The backend includes a “hybrid” random-number generator, seeded by conditioned entropy which conditions the output of
a dedicated physical source to compensate for relevant statistical deficiencies if possible [KS11, par310]. The conditioned
entropy in turn is passed through deterministic post-processing to generate application-visible output [KS11, 4.5.1] [BK12a,
A.4] (Fig. 15).

The dataflow between the raw-entropy source and application-accessible random bytes may be equally interpreted as a mono-
lithic, hybrid DRNG incorporating hardware-originating entropy, or as a high-quality conditioned entropy source feeding logically
separate DRNGs, depending on whether the logical separation is considered relevant ([KS11, 4.9] or [KS11, 4.5, 4.8], respec-
tively). See [KS11, par310] for an example why such structural decomposition may be subject to interpretation.

Applications do not directly observe the raw entropy source, and—since DRNG structures are separated from conditioned
entropy—multiple instances of the deterministic generator may independently coexist.

The conditioned entropy source periodically reseeds one or more instances of deterministric generators (DRNG), using full
entropy extracted from a potentially non-ideal “raw” entropy source [KS11, par302] through a cryptographic one-way function
[KS11, par304, par309, 4.8] [BK12c, 6.4.2.2].

The following description references standards relevant to random-number generation for high-assurance applications [KS11,
BK12c, BK12b, BK12a], referencing more than one if applicable. Many specific references to [KS11] include paragraph numbers.

9.3.1 Entropy source

Our system includes a single, centralized entropy-extraction component, potentially shared between multiple, independently
seeded DRNGs. This true-random generator (TRNG) entropy source is “conditioned,” designed to generate full entropy output
from a dedicated hardware source [KS11, par302] [BK12c, 6.4.2], even if the source may not be statistically ideal. The TRNG
aggregates past history of the raw-entropy stream through “folding” it into a pool of fixed size, XOR-ing newly arrived bits
forming a circular buffer (see a similar description in [KS11, par316]). The pool is intentionally oversized to allow full-entropy
accumulation even if the raw entropy feeding it has a low, but non-zero, real entropy rate. When entropy is requested, and
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Figure 15: Random-number generation, overview

conditions allow, pool contents are passed through a cryptographic hash function, producing the next conditioned-entropy
block.

In terms of [KS11] PTG.3 functionality, pooled raw entropy forms an “inner” PTRNG [KS11, par309, PTG.2], and extracted
entropy corresponds to the “internal” state of the TRNG-internal DRNG postprocessing according to [KS11, par310]. Note that
the DRNG here specifically refers to post-processing—conditioning—within the PTG.3 source itself (Fig. 4 in [KS11, par263]),
and this mention of DRNG is logically separate from subsequent deterministic post-processing.

Entropy extraction is gated by a rate-limiter and an entropy estimator step before extraction is allowed (Fig. 15). The rate limiter
simply prevents extraction before at least M = 512 non-zero raw-entropy bytes have been mixed into the pool (in practice,
considerably more than 512 bits will have been mixed as part of such an 512-byte raw-entropy stream). The rate limiter
therefore ensures that M ≥ 2N new bits have entered the state before N = 256 bits of conditioned entropy are produced
[KS11, par316] [BK12c, 6.4.1]. Blocking until a “sufficiently high” number of new entropy bits has been mixed in prevents
iterative guessing of pool state through small, consecutive, incremental reads [FS03, 10.2] [KSF99, 3.2] [Str16, 3.1]

Entropy estimation of pool state uses a min-entropy estimator, providing a conservative estimate of pooled-entropy quality
[KS11, par332] [BK12c, 4.2]. Note that the the pool size is several times the size of required apparent entropy, allowing
proper operation even when backed by a significantly biased—or otherwise non-ideal—raw-entropy source. Long-term, offline
statistical evaluation of a sizeable group of discrete raw-entropy sources used by IBM HSMs show them to be independent and
identically distributed (IID) in their steady state [BK12c, 9.1.1]—a statement reinforced by component documentation.

Once permitted by entropy estimation and the rate limiter, entropy is extracted by computing a cryptographic hash of the
entire pool contents. This turns a “fresh” pool state containing at least 512 bits of apparent min-entropy to a N = 256-bit
conditioned-entropy block through SHA-256 [Nat12, 4.1.2]. Since this step combines a hash function with a conservative
entropy estimate reporting more than 2N bits of apparent entropy for N bits of output, entropy extraction may be assumed
to produce blocks of full entropy [BK12c, 6.4.2.2]. Entropy extraction reduces the rate of conditioned entropy compared to
raw entropy input considerably [KS11, PTG.3.6]. Since we use a cryptographic hash function as an extractor, conditioned
TRNG output is assumed to pass all reasonable statistical tests [KS11, PTG.3.7]—a design goal of all hash functions.

TRNG failure scenarios are handled by a combination of rate-limiter and min-entropy estimator:

• Loss of the raw-entropy source—such as a “stuck-at” fault preventing generation of new bits—prevents subsequent
compression as the rate limiter rejects subsequent requests to compress [KS11, PTG.3.1].

• Since stuck sources are already detected by the rate limiter, no subsequent statistical testing is required to check for this
failure mode [BK12c, 6.5.1.2.1].

• The min-entropy estimator is particularly sensitive to repeated values, if their relative frequency within the pool crosses a
threshold. Therefore, as a side effect, our conditioning will after some delay recognize repeating values [BK12c, 6.5.1.1]
without targeted checking. While generally not expected from a dedicated entropy source, raw samples from a quantized,
smaller-than-ideal set would be similarly detected if the raw source is deficient [Dic15, 4.2].

• Long-term statistical deficiencies of the raw-entropy source would be partially compensated by XOR-ing non-overlapping
streams of raw entropy into a single pool, then estimating min-entropy before extraction [KS11, par290]. This continuous
entropy estimation effectively forms an automatic, online test procedure [KS11, PTG.3.5] [BK12c, 6.5.1.2].
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When accumulated long-term deficiencies lower min-entropy below the acceptable threshold, extraction is stopped in-
stantaneously [KS11, PTG.3.4] [BK12c, 6.5.1.1].

• Structural failures repeating the same 256-bit conditioned entropy block in adjacent blocks are reported as a catastrophic
TRNG failure, and this stops execution.
Note that even an ideal TRNG would also, with a negligible probability, generate identical adjacent 256-bit blocks. This
possibility of false positives is acknowledged, but due to the extremely low probability, we do not intend to remedy this.
Note that our false-positive rate is orders of magnitude below what is considered tolerable for real TRNGs [KS01, Class
K2, (e)].

9.3.2 Deterministic random-number generation

The pseudo-random generator is based on a non-invertible, cryptographic hash function (SHA-256), instantiating the DRBG
structure from [ISO11, C.2.1.1], which itself conforms to DRG.3 requirements [KS11, 4.9.1] as described in Example 39 of [KS11,
5.6.2]. The DRNG is seeded by maximum-length entropy—256-bit blocks—from internal, conditioned seed, and maintains state
with up to 256 bits of entropy. As mentioned before, whether the DRNG is considered separately from the entropy conditioner,
or the entire dataflow is treated as a DRNG incorporating entropy, is functionally immaterial.

Instantiated as a single hybrid RNG [KS11, 4.2], different callers within the TOE obtain their own slices of the generated
DRNG stream. TRNG-based reseeding is automatic, and it is not influenced by external entities in the TOE configuration. The
rate of reseeding is controlled directly at the DRNG level, forcing entropy extraction and reseeding after a predefined number
of bytes have been extracted from the DRNG.

9.4 Auditing

The backend provides a high-assurance audit log based on hash chains, preserving past history through a non-malleable,
unambiguous sequence of audit records. Records are generated internally by the backend, are output through an asynchronous
mechanism—such as syslog—and the last entries are simultaneously made available through synchronous queries (Fig. 16).

The audit infrastructure provides a transparent, high-assurance mechanism to monitor the evolution of system state. Aggregated
through a cryptographic hash function, the audit chain is expected to be published without restrictions, and must be available
for processing without cooperation of the originating module [LLK13, 1] [MA14, 3]. As an additional administrative query,
audit records may be exported in a module-signed structure, if high-assurance integrity proofs are required. With the addition of
timestamp-specific keys, the current infrastructure may be trivially extended to sign collections of events, grouped hierarchically,
using RFC-standardized formats [GBP07, 4.2].

The audit system state is described through a single hash per backend, aggregating past history into a single, non-malleable
sequence of hashes. Since records are inserted into a hash chain, the entire audit log may be stored on untrusted hosts, and
the module-internal persistent state has a modest, fixed size. Audit records may be unambiguously ordered if issued between
module zeroize calls, potentially allowing reconstruction of the entire audit chain even from an unordered, potentially redundant,
but complete set of audit records.

While audit records are serialized and chained in a single stream—per module—any particular entry may be obtained as a
module-signed response, and therefore may be verified on its own. Since this capability is available, we assume hosts would be
able to store chains in their entirety, or obtain signed versions of specific states and use them to “skip” sections of the entire
history [CW09, 3.1]. Note that our modules lack global context of audit chains, and therefore may not construct hierarchical
“history trees” as described in [CW09, 3]. However, our capability to authenticate any required state still allows us to partition
the module-global history into smaller, individually verifiable sub-sequences.

We expect enterprise systems to integrate audit chains from multiple backends, and maintain them in a global hash chain,
allowing global synchronization and audit event verification. As deployments of the Bitcoin global hash chain indicate, practical
hash chains of considerable complexity may be easily parsed in their entirety on state-of-the-art hardware [SMZ14, 3.3] [RS12,
3].

Among other things, the following security-relevant entries are always included in the event chain:

1. Key generation

2. Key import (i.e., PKCS#11 UnwrapKey)

3. Key export (PKCS#11 WrapKey)

4. Key destruction (note that this is only possible for SRKs)
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5. Administrative commands changing state, including module or domain state import or export

6. Changing module time, as a specific state-changing administrative command

7. Startup and selftests of the backend and relevant subsystems.

Audit entries unambiguously identify the originating module, the then-current clock, a monotonously increasing sequence
number, and initial/final audit states. This level of detail allows unambiguous reconstruction—and integrity verification—of
the event chain from a collection of audit records.

9.4.1 Audit record construction

9.4.2 Audit record, �xed content

Audit records combine fixed header fields to provide general context, including at least these fields:

1. Sequence number, a monotonously increasing counter (restarted at zero after module zeroization)

2. Event time, with millisecond resolution

3. Initial audit state (hash)

4. Final audit state (hash)

5. Module identification: serial number and instance

6. Event type and invoking function

7. Originating domain, if applicable

As with administration, auditing includes a randomly generated instance identifier, separating multiple audit chains of the same
module. This additional identifier separates multiple audit chains of the same module, even if zeroization resets the sequence
number, and time is modified to recreate identical times.

Audit instance, together with the sequence number and current state (hash), is maintained in a persistent file, outside admin-
istrative control (Fig. 6). This file is preserved across any card-zeroize event, to ensure auditing is consistent across the entire
lifecycle of the card. If the contents of audit structures are ever corrupted, a new audit-event root is generated, containing the
corruption and recovery as the first recorded event.

9.4.3 Audit record, variable content

In addition to fixed content, a set of optional fields is defined for records, each relevant only to a subset of auditable events.
One of the header fields describes the presence or absence of optional fields, therefore record decoding is unambiguous.

Optional fields are the following:

1. WK identifier

2. final WK identifier, if the event includes a WK change

3. compliance status of the hosting card/domain

4. key record or records, of all participating keys
There are up to three keys used by all operations: base key, key-encrypting key (KEK), or integrity (MAC) key. Exact
assignment is documented under each functionality group; keys present are assigned in this order.

5. compliance of newly generated, imported, or modified keys, if different from current one

6. salt, with a minimum number of module-generated random bytes.
Salt is inserted to prevent the host from issuing audit records with mainly host-influenced content, therefore preventing
the host from controlling audit state (i.e., hash).
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7. deterministic, salt-like pseudo-random function (PRF) output, providing a simple in-band “checksum” linking record-
identifying fields to a PRF. This short field of high “apparent entropy” is fully determined by event context, and may be
verified within the record.
The PRF-derived field is not expected to contribute to cryptographic strength; it is, however, included in the event-record
payload (therefore, it is covered by the hash chain). The operational value of a context-dependent, PRF field is potential
disruption of hash-collision attacks, by restricting the solutions of hash-collision constructions to those where PRF output
and its base fields are consistent [SBK+17, 5.5]
Note that the goal of deterministic salting differs from that of salt fields. The latter prevent malicious host entities from
advancing the hash state in a fully deterministic fashion, but may not prevent against later forgeries—since the attacker
MAY modify the value of salt fields when attacking an already issued event record. Deterministic, salt-like PRF fields
MUST be consistent even in forged event records, therefore their contribution is against later, offline forgeries.

The number of salt bytes varies, depending on the nature of audited event. For events which include newly generated keys,
object MACs, or other newly generated uniform-random bytes, the number of salt bytes may be reduced.

Audit record, key records Details logged about each participating key during audited events include the following:

• Key type

• Key size, encoded in a type-specific way, logging relevant sizes (such as both P and Q bytecount for DSA keys)

• Key identifier, such as PKCS#11 checksum or other control value

• Controlling session, corresponding to the identity of key owner

• parts of the MAC of newly generated objects

Object MACs are stored in a truncated form, allowing matching of specific objects to events, even if the same key appears
in multiple tokens. Since MACed objects are all randomized, identical keys in multiple blobs will be logged with identical
key identifiers and different object MACs.

Other details, such as domain or controlling WK are included in the record header and are not replicated within key records.

9.4.4 Audit security

Audit entry disambiguation Audit entries include only hashed/truncated forms of identifying fields such as keys or identifiers.
These mappings are, by construction, not bijective, and keys/objects/sessions may not be unambiguously reconstructed from

EP11 Principles of Operation 63 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



audit events. The intended use of audit entries, unambiguous association of a specific key/object/session with a specific audit
event, is obviously possible. In a typical case, a high-assurance application could also store audit entries corresponding to
security-relevant events, falling back to inspection of the audit chain if later required.

We acknowledge that there is potential ambiguity in associating identifiers with truncated audited forms, with collisions of 32-bit
or larger hashes as false positives. Conversely, it is never ambiguous if an audited identifier differs from a full one; our audit
infrastructure is designed to assist with such object identification. Note that being able to demonstrate only a negative—i.e.,
different truncated identifier/hashes must belong to different objects—is not different from hash functions.

Note that several of the audited identifiers, such as session identifiers, are used in proof-of-possession schemes, and therefore
must not be logged in their entirety. This restriction—in addition to size constraints on audit events—forces us to use a
potentially ambiguous, truncated audit representation.

9.4.5 Audit history

In addition to logging audit records through regular log facilities of the host, the audit subsystem retains several of the last
audit entries in a transient, in-memory table. A non-administrative query is provided to output table entries; note that past
entries already discarded from the table are no longer accessible within the module.

Since audit history queries are returned as regular—synchronous—responses, they may be used if the unpredictable asynchronous
latency of system logging is problematic. In high-assurance cases, synchronous queries should be used to obtain audit entries
with a more controlled latency.

As an alternative for high-assurance environments, an administrative query is also available, if the audit state needs to be
authenticated—i.e., OA-signed—by the backend. Since the hash chain already provides non-malleability, the administrative
query is only recommended when the audit state requires more persistent authentication, such as attesting specific states for
long-term persistent records.

Long-term archival of audit history is expected to include known-good hash chain states with auditors approving history up to
each checkpoint. In such cases, publishing a list of known-good states allows users to check chain integrity incrementally, using
only recently generated audit records [cd14a] [LLK13, 8]. Assuming advancing chain states to specific values, history may need
to be retained only since the last checkpoint, a common recommendation for hash-based systems which deal with potentially
large hashchain-based history [Nak09, 7].

Audit persistence Since the audit chain may be securely stored outside modules, the internal audit-chain state is stored in
a minimalistic, integrity-checked structure, containing only the following fields:

1. Audit state (i.e., hash)

2. Sequence number/counter

3. Audit instance

This set of fields is sufficient to reliably concatenate audit chains internally. All other fields are constructed at audit-event
creation, and need not be retained in persistent storage.

As with other module-internal files, the audit state is integrity-checked through an embedded, transparently generated and
verified cryptographic hash (see 2.5). Since recovery from files requires verification of the hash infrastructure first, the first
stages of system startup can not be reliably audited. The security rationale of the recovery process is described on page 9.2.2.
Note that the embedded hash—not observable outside the module—of the audit-state file is disjoint from any audit state hash.

9.5 Miscellaneous security-related notes

9.5.1 List of algorithm selftests

Module startup, or the query-triggered algorithm selftest verifies known-answer tests of the following algorithms, depending on
the underlying crypto provider/engine supporting them:

1. hashing: SHA-1, SHA-2 [-224, -256, -384, -512, -512/224, -512/256] [Nat12]

2. HMAC: SHA-1, SHA-2 [-224, -256, -384, -512, -512/224, -512/256] SHA-3 [-224, -256, -384, -512] [FIP02]

3. AES encrypt/decrypt, 128, 192, 256-bit keys, ECB/CBC modes [Nat01, BB12]
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4. TDES encrypt/decrypt, 128, 192, 256-bit keys, ECB/CBC modes [BB12]

5. CMAC: AES, 128, 192 or 256-bit keys, CMAC generate and verify [Dwo05]

6. RSA: sign/verify, with PKCS#1/SHA-256 or PSS/SHA-256 padding

7. RSA: encrypt/decrypt with PKCS#1 or OAEP padding

8. ECDSA: verify KATs; sign/verify cycles (all NIST P curves; BP-192R)

9. DSA: verify KAT; sign/verify cycle (2048/256-bit P, Q)

10. DH: KAT between known keypairs

Algorithms prohibited by policy restrictions, i.e., not accessible through functional API calls, MAY still be tested—such as when
considered relevant to verify engine connectivity. (As an example, 112-bit TDES may still be tested, even if policy settings
prohibit use of this mode.)

9.5.2 Prohibiting instance identi�er export

As documented under the details of state export, the “full” state export does not include module, domain, or audit instance iden-
tifiers. Any module importing full states would generate new identifiers internally.

Prohibiting export of identifiers is intentional, not an oversight. Exporting these identifiers could enable replay attacks if the
exported state is subsequently imported back to the same module (which would have, obviously, the same serial number,
number of domains etc.).

Note that a test extension exists which saves or restores all identifiers prohibited from export, as one of the diagnostics-only
additions. As with other extensions, this feature is not available in production builds.

9.5.3 Use of external seeds

When backends allow external seeding, which may be disallowed completely, or during runtime by CP setup, any externally
provided seed is mixed to the module-internal one, never replacing it. Therefore, the entropy of seed should not fall beneath
that of the higher of external and module-internal source.

Note that test features capable of exporting or importing RNG state are obviously exempt from restrictions on seeding. Since
production builds do not contain these test features, allowing full export if test features are enabled is obviously not a security
problem.

9.5.4 Test types

Diagnostics build add test functions, dedicated to test-related functionality, which (the “SYS_TEST” collection). None of these,
potentially insecure test functions are available in production builds, but they may be enabled with a single setting, not changing
other, production-included functionality.

Set WKs, both current and next ones, including optional commit operations, and combinations related to imprinting (such
as: set a WK and imprint its domain, to enable functional testing with a single call)

Set CPs in any domain

Zeroize the module or any of the domains

Encrypt and decrypt data with different algorithms in loops, with host-supplied iteration counts, for symmetric and RSA
en/decryption modes.
These looped en/decryption functions are made available to simplify side-channel analysis. They are functionally identical
to submitting the same requests from host loops, but they maximize

Scalar multiply constants on specified EC curves, in a loop. This extension may be used to test EC implementations for
side channels. It provides closer access to the actual scalar multiplication than practical deployments do, so testing
through this function is a conservative overestimation of realistic attack scenarios.

Generate RSA keys from externally supplied prime seeds
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Generate DSA parameters from specific seeds and iteration counts. This functionality is a direct mapping from NIST tests
of DSA PQG generation.

Read or write arbitrary temporary �les within the module. While a regular administrative query and command are available,
the test-only function allows us to process files without signatures (file transport involves many signatures, due to file
fragmentation caused by large files and small per-request data chunks).

List administrators or SKIs are similarly mirroring regular administrative queries, but may accelerate testing since they do
not require signatures.

Admin-sign arbitrary data may be used to test error-recovery of the backend, when malformed but properly signed data is
submitted to it.

Query backend CSP con�guration including any details intentionally not reported through regular queries. This functionality
is mainly useful for testing where details of CSP headers are useful, such as to maximize the coverage of our fuzz-tester,
or other tools which benefit from undocumented insider access to the backend.

Query or set �lesystem read-only mode as described in section 2.4.

Save or restore the module-internal RNG, including its TRNG seed. This operation allows us to reconstruct most non-
deterministic operations purely based on host commands.

Query or modify performance-measurement settings, including activating different modes and precision

See the wire section of the full list of functions and any rules on parameters.

10 The EP11 host library

The EP11 Host Library is the C reference implementation of the wire protocol (see p. 130 onwards) and is part of the IBM
Z EP11 Support Program. The information here is included for reference purpose only, and is not needed by host libraries
interfacing directly with the wire protocol.

The system EP11 interface consists of both host only APIs and APIs that interact directly with EP11 modules. Most functions
interacting directly with the module have a PKCS#11 equivalent.

The host only API consist of queries (called host queries), management, configuration and helper functions.

The host library can interact with different platforms. The only platform supported officially is Linux for IBM z and only the
interfaces for this platform are described here and in the wire format.

Please see the C file ep11-app.c in the documentation directory of the host library for an example for using the EP11 system
interface.

10.1 The EP11 system interface

Most of the functions in the EP11 System interface have a PKCS#11 equivalent. See page 77 onwards for an overview of all
PKCS#11 functions that are implemented by EP11. Page 79 and onwards lists and describes the functions defined in ep11.h.
In general a C_*() PKCS#11 function directly maps to a corresponding m_*() EP11 function. Additional m_*() functions are
provided in the system EP11 interface: Single calls, queries, the administrative interface and management and configuration
functions.

The following sections describe the primitives regarding the EP11 system interface. Understanding them is crucial for using the
interface.

10.1.1 Target tokens

Registering a module/domain combination, called a target, creates a target token which identifies this single target.

A target token may correspond to a specific single target or to a group of targets, then also referred to as target group.

Every EP11 system function that needs to interact with a module obtains destination information from the opaque target
parameter. The host library maintains registered targets and target groups and allows it to add, update and remove them.
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10.1.2 Routing requests

Different target tokens can be used to route requests to different modules and domains. Creating a target token does not imply
that the route to the target is open and usable. However the host library can optionally probe a target before creating it.

Routing the request to one specific target of the target group is done by the underlying OS and therefore the rules how the
requests are routed are not described here. Use cases are load balancing and having failsafe routes to modules if one route is
not available.

How to registering modules, query already registered modules and create target groups is described in chapter 10.2.4 and 10.2.5.

10.1.3 EP11 blob speci�cations

Most EP11 functions have a prototype similar to their PKCS#11 equivilants, with some parameters replaced by blob specifica-
tions. Generally, parameters with PKCS#11 definitions (i.e., those with CK_... types) are passed verbatim from the PKCS#11
call. “Native” types, i.e., unsigned char * and size_t denote parameters that must be mapped from PKCS#11 entities to
blobs.

Blobs are always represented as opaque start/length pairs, i.e., opaque unsigned char arrays, with a single byte count
parameter (size_t). Each blob is initialized by a generate, initialize, or similar PKCS#11 “object creator” function.
Functions returning blobs support a simplified version of PKCS#11 type queries: when passed a NULL blob pointer, the
corresponding length parameter is set to the size of the returned blob. Blob creator functions never read, only write their byte
count parameter (this is different from PKCS#11 buffer size handling).

Reported blob sizes may be slightly larger than necessary, and they are guaranteed to be sufficient with the supplied parameters.
Blob sizes are in bytes.

Sequences of PKCS#11 calls generally track objects across sessions at the PKCS#11 level. Object blobs generally correspond
to sessions, and the EP11-aware PKCS#11 layer must bind blobs to each session. Function descriptions provide descriptions
on which PKCS#11 parameter maps to which blob, if ambiguous.

Blobs must be reused without modification, as they are opaque to the host. Blobs are internally typed (invisible to host code);
module functions verify that they have been passed a blob of appropriate type, and reject incorrect ones. As discussed elsewhere
in this document, blobs are integrity-protected through a module-specific MAC key, which is derived from the module transport
wrapping key, so module groups’ members accept each others MACed structures.

10.1.4 Template parsing

For functions which pass parameters through templates, template parsing is not comprehensive. If a template contains multiple
instances of the same attribute, the first one is accepted and used without checking for repetitions. As the EP11-aware host
library would need to manipulate template arrays, we assume that template inconsistencies are detected before calling EP11.

If attributes are missing from templates, defaults are substituted if defined by PKCS#11. Note that EP11 generally relies on
very few template parameters, since usage restrictions and most other parameters are used by the host library, and ignored by
EP11 itself.

10.1.5 Size queries

Most functions treat PKCS#11 size queries as a special case. PKCS#11 permits a conservative estimate of generated output
(“number of bytes. . . may somewhat exceed the precise number of bytes needed”), therefore size queries may give estimates
without performing actual cryptographic operations. (As an example, the size of PKCS-padded, encrypted data may be
estimated to within one block’s worth of bytes, even without decrypting it.)

For functions which support size queries, the following changes are made to transport:

• The host sets a boolean variable, indicating a size query.

• The host may send the length of input data, encoded as an integer, instead of actual data, if applicable. This depends on
actual function, and obviously only applies if host data is used (i.e., does not apply to DigestInit calls, for example).
Note that the number of fields is not changed, just the content of one or more data inputs. Whether this is actually done
is function-dependent, but it is either always or never performed for any particular function (no ambiguity). This choice
is transparent at the library interface, and may be implementation-dependent.
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• Module code generally short-circuits processing when responding to a size query, skipping actual cryptographic operations.
A few functions are exceptions, where returned data is limited and its overhead is not significant. These functions do not
special-case size queries inside the module; the distinction is opaque to the host.

• The module returns the size of output, encoded as an integer, in the “returned data” field. As with encoding the length
of incoming data, the number of fields does not change, only the interpretation of one of them.
As described above, certain functions do not special-case size queries in the module. These return actual data even if
responding to a size query, as the module is unaware of the nature of the host call.

• Host code parses the wire-encoded integer size, returns it to the caller, as described in the PKCS#11 specification
[PKC04, 11.2].

Unlike blob size queries, PKCS#11 parameters (i.e., those with CK_... types) check the size of the output buffer (blobs
never read, only write their bytecount). PKCS#11 parameters therefore may result in CKR_BUFFER_TOO_SMALL, while blob
size queries can not.

Note that since size estimates do not perform cryptographic operations, they may report a size when the operation should fail.
As an example, PKCS-padded encrypted data may be detected to be incorrect during decryption. In such a case, the actual
operation returns a CKR... error, but the size query returns CKR_OK and a valid size.

10.1.6 Return values

We generally use return values according to PKCS#11 (regular CKR_... values), during functional calls. The following standard
return values are used in similar, but not necessarily identical, cases to their PKCS#11 equivalents during functional calls:

• CKR_FUNCTION_CANCELED if an action is prohibited by the current control point setup. (No further details are provided.)

• CKR_ATTRIBUTE_READ_ONLY is returned if attributes within a modifiable, but only restrictable key blob may not be added
(the same call could succeed if it tried to remove the same bits).

• CKR_PIN_INCORRECT if an invalid PIN blob is supplied to a call including one.

• CKR_PIN_EXPIRED if the—otherwise valid—PIN blob is not active within the module.

• CKR_CANT_LOCK if internal infrastructure, specifically locking, fails. These failures are not expected to be encountered in
a properly working environment.

Note that these return values are defined for conditions which are not directly applicable to EP11. We use them under conditions
related to their PKCS#11 originals.

Administration reserves its own return values, as most of those are outside PKCS#11 scope (see page 33).

In addition to standard return values, we define the following list as vendor extensions:

• CKR_IBM_BLOB_ERROR if a blob is malformed, such as it has an invalid MAC. This failure is higher priority than failures
related to blob internals, such as if blob attributes conflict with a request (which follow their PKCS#11 rules).
Note that we intentionally do not provide details about why the blob is considered invalid, to prevent attacks which
differentiate between failures based on specific errors [Ble98].

• CKR_IBM_WKID_MISMATCH if the blob is rejected as it is controlled by a WK different from the active one. This error has
a higher priority than CKR_IBM_BLOB_ERROR.
Note that since the WKID is visible in blobs, and may be queried from the domain, separately reporting it does add a side
channel (i.e., it only reports information already available to host-based attacker). A separate return code is available to
help host code, since this condition has a well-defined recovery procedure: WK migration.

• CKR_IBM_TRANSPORT_ERROR if additional transport fields EP11 adds over PKCS#11—such as domains or function
variants—are invalid, such as out of range.
These failures roughly correspond to the PKCS#11 meaning of CKR_ARGUMENTS_BAD. They are separated to allow host
code filter PKCS#11 errors—which may be user-relevant, and should be passed up to callers—and XCP-specific host
ones.

• CKR_IBM_INTERNAL_ERROR indicates that the EP11 application has encountered an unexpected condition, and stopped
processing. This includes unexpected failures of the underlying infrastructure, such as the CSP.
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• CKR_IBM_BLOBKEY_CONFLICT is returned if a request returning wrapped state coincides with a WK change, and the WK
at the time of rewrapping differs from that of blob arrival.
In practical setups, hosts would procedurally preempt interleaving WK updates and functional requests. Under these
conditions, hosts should not encounter this return value.

• CKR_IBM_MODE_CONFLICT is returned if a blob’s own mode restrictions conflict with that of the system. It may also
be reached if the operational mode changes while the request is being processed (in addition to checking during blob
decryption).

• CKR_IBM_TARGET_INVALID indicated a invalid target token. This is not returned if a route to a target is not available.

For functions that do not return a CK_RV value, a XCP_OK or XCP_*E* value is returned as a regular integer. These are mostly
the init/shutdown functions as well as the host module functions.

• XCP_OK function completed successfully.

• XCP_EINTERNAL internal state of the host library is invalid. This should never happen. The host library has encountered
some unexpected conditions and stopped processing.

• XCP_EARG a function parameter is invalid

• XCP_ETARGET invalid target parameter

• XCP_EMEMORY memory allocation failed

• XCP_EMUTEX locking functions failed

• XCP_EINIT host library is not correctly initializes.

• XCP_EDEVICE an OS specific device driver error happend

• XCP_EGROUP target group is invalid. E.g. was updated or removed while a request was processed.

• XCP_ESIZE internal limits are exhausted.

For module management related errors, further error values are introduced:

• XCP_MOD_EOBSOLETE a specific feature or member field is no longer supported.

• XCP_MOD_EVERSION the used version for the module is too high or too low.

• XCP_MOD_EFLAGS some flags are not supported in general or in this specific environment.

• XCP_MOD_EMODULE the module number is invalid.

• XCP_MOD_EDOMAIN the domain index is invalid or out of range.

• XCP_MOD_EINIT the module is not initialized. E.g. the version field is not set.

• XCP_MOD_EPROBE the probe send to the module was not successful and the module could therefore not be added.

The host library logs system errors to syslog. Studying the syslog messages can help to understand the error correctly.

10.2 Beyond standard interfaces of the host library

Functions of the Host Library that have a direct PKCS#11 equivalent are only described in the API reference (chapter 10.2.5).
Please see the PKCS#11 standard document for a full description.

Interfaces which are describes in this chapter are

• The administrative interface

• Single pass functions

• Module management

• Target group configuration
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10.2.1 The administrative interface

The administrative interface consists of the single function function (m_admin()) in the ep11.h header file. All administrative
services described in this document are used through this interface.

To facilitate usage of the0 interface, helper functions and wrapper functions are provides:

• administrative request and query builder functions

• helper functions for creating/parsing signer info and callback function for signing requests

• administrative response parsing (return value, reason code and payload)

• wrapper functions for querying the WK and setting a random WK

• helper functions for WK key part import

• helper functions for parsing and setting administrative attributes

• general m_admin() wrapper

See the ep11adm.h header file for more information.

10.2.2 Single functions

Single function process data in one pass and consolidate m_Init and m_Encrypt/m_Decrypt/m_Sign/m_Verify in one call.
In the case the request size exceeds transport layer restrictions the host library does slice the payload in multiple requests.

10.2.3 Module and host queries

EP11 provides several types of queries that are not part of the PKCS#11standard to get (non-administrative) information
about a module and domains. The host library provides the m_get_xcp_info() function to query a module or domain for
information.

Types of queries that are supported are:

• API and build information (module and host)

• general information about the module (see chapeter 5.1.1 in the wire format)

• general information about domains

• information about extended capabilities

• which EC curves are supported

• audit log download

10.2.4 Module management

The host library maintains information about EP11 modules and domains. User can register a module with m_add_module().
Registering a module creates a target token which allows to send requests to the registered module. To register a target the
module number and the domain index must be supplied by the user. Setting the same target will always return the same target
token. m_add_module() can also be used to query information about already added modules and domains.

Modules can be deregistered with m_rm_module(). A valid target token can be used in a m_*() function to implicitly reregister
a module, because module number and domain index are encoded into the target token.

More information about the two function can be found in the function reference. See also the information about the module
and the target data structure/type in the wire format chapter 5.6.
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10.2.5 Target group management

A target group is a set of targets that are maintained by the host library. Target groups are registered and configured through
the same interface as modules. The underlying OS uses target groups to load balance EP11 requests and for failsafe scenarios
if one target becomes unavailable.

On registration modules can be flagged virtual. Virtual modules and the targets described in the module are registered like
before, but the target tokens identifying the targets will not be returned, but will be maintained as an entity, a target group,
in the host library. Only a reference to this target group will be returned as a target token. For virtual modules more than
one target can be parsed by m_add_module(). The host library limits the creation of target groups to a reasonable number.
Target groups are a limited resource and they should be deregistered with m_rm_module() when they are no longer used.

Targets can be added or removed from the target group by calling m_add_module() or m_rm_module() with the target token
of the target group.

The target token which references a target group can be used like a single token which identifies a single module/domain
combination. Only administrative commands and queries are an exceptions. All functions working with administrative function
will not work together with target groups, because in administrative functions it is important to route the request to an exact
destination.

A special case is a target group with zero members. Using a target token which references a group with zero members is valid
and can be useful, because the underlying OS will then use all available routes for its load balancing algorithm. However it has
also drawbacks if different versions of EP11 modules are configured for the system. Some mechanism could only work on newer
modules and fail on older modules. It must also be noted that all targets of a target group should be identically2 configured.

2Should for example allow the same key sizes, algorithms and mechanisms and have the same Wrapping Key con�gured.
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Mechanisms, overview

The folowing listing contains all mechanisms currently supported by EP11

Mechanism Encrypt Decrypt Digest Sign Verify Generate Wrap Unwrap Derive
CKM_AES_CBC X X X X
CKM_AES_CBC_PAD X X X X
CKM_AES_CMAC X X
CKM_AES_ECB X X
CKM_AES_KEY_GEN X
CKM_DES2_KEY_GEN X
CKM_DES3_CBC X X X X
CKM_DES3_CBC_PAD X X X X
CKM_DES3_CMAC X X
CKM_DES3_ECB X X
CKM_DES3_KEY_GEN X
CKM_DH_PKCS_DERIVE X
CKM_DH_PKCS_KEY_PAIR_GEN X
CKM_DH_PKCS_PARAMETER_GEN X
CKM_DSA X X
CKM_DSA_KEY_PAIR_GEN X
CKM_DSA_PARAMETER_GEN X
CKM_DSA_SHA1 X X
CKM_ECDH1_DERIVE X
CKM_ECDSA X X
CKM_ECDSA_SHA1 X X
CKM_ECDSA_SHA224 X X
CKM_ECDSA_SHA256 X X
CKM_ECDSA_SHA384 X X
CKM_ECDSA_SHA512 X X
CKM_EC_KEY_PAIR_GEN X
CKM_GENERIC_SECRET_KEY_GEN X X
CKM_IBM_ATTRIBUTEBOUND_WRAP X X
CKM_IBM_CMAC X X
CKM_IBM_CPACF_WRAP X
CKM_IBM_DH_PKCS_DERIVE_RAW X
CKM_IBM_DILITHIUM X X X
CKM_IBM_EAC X
CKM_IBM_ECDH1_DERIVE_RAW X
CKM_IBM_ECDSA_SHA224 X X
CKM_IBM_ECDSA_SHA256 X X
CKM_IBM_ECDSA_SHA384 X X
CKM_IBM_ECDSA_SHA512 X X
CKM_IBM_EC_MULTIPLY X
CKM_IBM_EC_X25519 X
CKM_IBM_EC_X448 X
CKM_IBM_ED25519_SHA512 X X
CKM_IBM_ED448_SHA3 X X
CKM_IBM_RETAINKEY X
CKM_IBM_SHA3_224 X
CKM_IBM_SHA3_224_HMAC X X
CKM_IBM_SHA3_256 X
CKM_IBM_SHA3_256_HMAC X X
CKM_IBM_SHA3_384 X
CKM_IBM_SHA3_384_HMAC X X
CKM_IBM_SHA3_512 X
CKM_IBM_SHA3_512_HMAC X X
CKM_IBM_SHA512_224 X
CKM_IBM_SHA512_224_HMAC X X
CKM_IBM_SHA512_256 X
CKM_IBM_SHA512_256_HMAC X X
CKM_PBE_SHA1_DES3_EDE_CBC X
CKM_RSA_PKCS X X X X X X
CKM_RSA_PKCS_KEY_PAIR_GEN X
CKM_RSA_PKCS_OAEP X X X X
CKM_RSA_PKCS_PSS X X
CKM_RSA_X9_31 X X
CKM_RSA_X9_31_KEY_PAIR_GEN X
CKM_SHA1_KEY_DERIVATION X
CKM_SHA1_RSA_PKCS X X
CKM_SHA1_RSA_PKCS_PSS X X
CKM_SHA1_RSA_X9_31 X X
CKM_SHA224 X
CKM_SHA224_HMAC X X
CKM_SHA224_KEY_DERIVATION X
CKM_SHA224_RSA_PKCS X X
CKM_SHA224_RSA_PKCS_PSS X X
CKM_SHA256 X
CKM_SHA256_HMAC X X
CKM_SHA256_KEY_DERIVATION X
CKM_SHA256_RSA_PKCS X X
CKM_SHA256_RSA_PKCS_PSS X X
CKM_SHA384 X
CKM_SHA384_HMAC X X
CKM_SHA384_KEY_DERIVATION X
CKM_SHA384_RSA_PKCS X X
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CKM_SHA384_RSA_PKCS_PSS X X
CKM_SHA512 X
CKM_SHA512_224 X
CKM_SHA512_224_HMAC X X
CKM_SHA512_256 X
CKM_SHA512_256_HMAC X X
CKM_SHA512_HMAC X X
CKM_SHA512_KEY_DERIVATION X
CKM_SHA512_RSA_PKCS X X
CKM_SHA512_RSA_PKCS_PSS X X
CKM_SHA_1 X
CKM_SHA_1_HMAC X X

Table 5: Mechanisms and function groups

List of mechanisms categorized by function group:

Encrypt: CKM_AES_CBC CKM_AES_CBC_PAD CKM_AES_ECB CKM_DES3_CBC CKM_DES3_CBC_PAD CKM_DES3_ECB
CKM_IBM_EC_MULTIPLY CKM_RSA_PKCS CKM_RSA_PKCS_OAEP

Decrypt: CKM_AES_CBC CKM_AES_CBC_PAD CKM_AES_ECB CKM_DES3_CBC CKM_DES3_CBC_PAD CKM_DES3_ECB
CKM_RSA_PKCS CKM_RSA_PKCS_OAEP

Digest: CKM_IBM_SHA3_224 CKM_IBM_SHA3_256 CKM_IBM_SHA3_384 CKM_IBM_SHA3_512 CKM_IBM_SHA512_224
CKM_IBM_SHA512_256 CKM_SHA224 CKM_SHA256 CKM_SHA384 CKM_SHA512 CKM_SHA512_224
CKM_SHA512_256 CKM_SHA_1

Sign: CKM_AES_CMAC CKM_DES3_CMAC CKM_DSA CKM_DSA_SHA1 CKM_ECDSA CKM_ECDSA_SHA1 CKM_ECDSA_SHA224
CKM_ECDSA_SHA256 CKM_ECDSA_SHA384 CKM_ECDSA_SHA512 CKM_IBM_CMAC CKM_IBM_DILITHIUM
CKM_IBM_ECDSA_SHA224 CKM_IBM_ECDSA_SHA256 CKM_IBM_ECDSA_SHA384 CKM_IBM_ECDSA_SHA512
CKM_IBM_ED25519_SHA512 CKM_IBM_ED448_SHA3 CKM_IBM_SHA3_224_HMAC CKM_IBM_SHA3_256_HMAC
CKM_IBM_SHA3_384_HMAC CKM_IBM_SHA3_512_HMAC CKM_IBM_SHA512_224_HMAC CKM_IBM_SHA512_256_HMAC
CKM_RSA_PKCS CKM_RSA_PKCS_PSS CKM_RSA_X9_31 CKM_SHA1_RSA_PKCS CKM_SHA1_RSA_PKCS_PSS
CKM_SHA1_RSA_X9_31 CKM_SHA224_HMAC CKM_SHA224_RSA_PKCS CKM_SHA224_RSA_PKCS_PSS
CKM_SHA256_HMAC CKM_SHA256_RSA_PKCS CKM_SHA256_RSA_PKCS_PSS CKM_SHA384_HMAC
CKM_SHA384_RSA_PKCS CKM_SHA384_RSA_PKCS_PSS CKM_SHA512_224_HMAC CKM_SHA512_256_HMAC
CKM_SHA512_HMAC CKM_SHA512_RSA_PKCS CKM_SHA512_RSA_PKCS_PSS CKM_SHA_1_HMAC

Verify: CKM_AES_CMAC CKM_DES3_CMAC CKM_DSA CKM_DSA_SHA1 CKM_ECDSA CKM_ECDSA_SHA1 CKM_ECDSA_SHA224
CKM_ECDSA_SHA256 CKM_ECDSA_SHA384 CKM_ECDSA_SHA512 CKM_IBM_CMAC CKM_IBM_DILITHIUM
CKM_IBM_ECDSA_SHA224 CKM_IBM_ECDSA_SHA256 CKM_IBM_ECDSA_SHA384 CKM_IBM_ECDSA_SHA512
CKM_IBM_ED25519_SHA512 CKM_IBM_ED448_SHA3 CKM_IBM_SHA3_224_HMAC CKM_IBM_SHA3_256_HMAC
CKM_IBM_SHA3_384_HMAC CKM_IBM_SHA3_512_HMAC CKM_IBM_SHA512_224_HMAC CKM_IBM_SHA512_256_HMAC
CKM_RSA_PKCS CKM_RSA_PKCS_PSS CKM_RSA_X9_31 CKM_SHA1_RSA_PKCS CKM_SHA1_RSA_PKCS_PSS
CKM_SHA1_RSA_X9_31 CKM_SHA224_HMAC CKM_SHA224_RSA_PKCS CKM_SHA224_RSA_PKCS_PSS
CKM_SHA256_HMAC CKM_SHA256_RSA_PKCS CKM_SHA256_RSA_PKCS_PSS CKM_SHA384_HMAC
CKM_SHA384_RSA_PKCS CKM_SHA384_RSA_PKCS_PSS CKM_SHA512_224_HMAC CKM_SHA512_256_HMAC
CKM_SHA512_HMAC CKM_SHA512_RSA_PKCS CKM_SHA512_RSA_PKCS_PSS CKM_SHA_1_HMAC

Generate: CKM_AES_KEY_GEN CKM_DES2_KEY_GEN CKM_DES3_KEY_GEN CKM_DH_PKCS_KEY_PAIR_GEN
CKM_DH_PKCS_PARAMETER_GEN CKM_DSA_KEY_PAIR_GEN CKM_DSA_PARAMETER_GEN CKM_EC_KEY_PAIR_GEN
CKM_GENERIC_SECRET_KEY_GEN CKM_IBM_DILITHIUM CKM_PBE_SHA1_DES3_EDE_CBC
CKM_RSA_PKCS_KEY_PAIR_GEN CKM_RSA_X9_31_KEY_PAIR_GEN

Wrap: CKM_AES_CBC CKM_AES_CBC_PAD CKM_DES3_CBC CKM_DES3_CBC_PAD CKM_IBM_ATTRIBUTEBOUND_WRAP
CKM_IBM_CPACF_WRAP CKM_IBM_RETAINKEY CKM_RSA_PKCS CKM_RSA_PKCS_OAEP

Unwrap: CKM_AES_CBC CKM_AES_CBC_PAD CKM_DES3_CBC CKM_DES3_CBC_PAD CKM_IBM_ATTRIBUTEBOUND_WRAP
CKM_RSA_PKCS CKM_RSA_PKCS_OAEP

Derive: CKM_DH_PKCS_DERIVE CKM_ECDH1_DERIVE CKM_GENERIC_SECRET_KEY_GEN CKM_IBM_DH_PKCS_DERIVE_RAW
CKM_IBM_EAC CKM_IBM_ECDH1_DERIVE_RAW CKM_IBM_EC_X25519 CKM_IBM_EC_X448
CKM_SHA1_KEY_DERIVATION CKM_SHA224_KEY_DERIVATION CKM_SHA256_KEY_DERIVATION
CKM_SHA384_KEY_DERIVATION CKM_SHA512_KEY_DERIVATION
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PKCS#11 wire functions

This section lists all PKCS#11 wire functions for reference. For more information please see the wire format

Function (index) Inputs Outputs Int. outputs Parameters
Login 1 2 1 0b0 PIN, (nonce)

PIN blob
Logout 2 1 0 - PIN blob

only return value
SeedRandom 3 1 0 - new seed

only return value
GenerateRandom 4 1 1 0b0 bytecount

rnbytes
DigestInit 5 2 1 0b0 fnvariant, mech (digest)

state (hash)
DigestUpdate 6 2 1 0b0 state (hash), data

state (hash)
DigestKey 7 2 1 0b0 state (hash), keyblob

state (hash)
DigestFinal 8 2 1 0b0 size query? (boolean), state (hash)

digest
Digest 9 3 1 0b0 size query? (boolean), state (hash), data

digest
EncryptInit 11 3 1 0b0 var, mech (crypt), keyblob

state (crypt)
DecryptInit 12 3 1 0b0 var, mech (crypt), keyblob

state (crypt)
EncryptUpdate 13 3 2 0b10 size query? (boolean), state (crypt), data

state, (output)
DecryptUpdate 14 3 2 0b10 size query? (boolean), state (crypt), data

state, (output)
EncryptFinal 15 2 1 0b0 size query? (boolean), state (crypt)

ciphertext
DecryptFinal 16 2 1 0b0 size query? (boolean), state (crypt)

plaintext
Encrypt 17 3 1 0b0 size query? (boolean), state (crypt), plaintext

ciphertext
Decrypt 18 3 1 0b0 size query? (boolean), state (crypt), ciphertext

plaintext
GenerateKey 21 5 2 0b00 fn variant, key bytes, mech (symm gen), attributes, (pinblob)

keyblob, checksum
GenerateKeyPair 22 4 2 0b00 mech (PK gen), public attributes, private attributes, (pinblob)

keyblob, SPKI
SignInit 23 3 1 0b0 variant, mech (sign), keyblob

state (sign)
SignUpdate 24 2 1 0b0 data, state (sign)

state (sign)
SignFinal 25 2 1 0b0 size query? (boolean), state (sign)

signature
Sign 26 3 1 0b0 size query? (boolean), state (sign), data

signature
VerifyInit 27 3 1 0b0 variant, mech (sign), keyblob

state (verify)
VerifyUpdate 28 2 1 0b0 state (verify), data
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state (verify)
VerifyFinal 29 2 0 - state (verify), signature

only return value
Verify 30 3 0 - state (verify), signature, data

only return value
WrapKey 33 5 1 0b0 fn variant, mech (wrap), key, wrapkey, (MAC key)

wrapped key
UnwrapKey 34 6 2 0b00 new key attributes, mechanism (wrap), KEK blob, (MAC key),

(pinblob), wrapped key
keyblob, (checksum)

DeriveKey 35 5 2 0b00 derivation alg, new key attrs, base key, (pinblob), data(blob)
keyblob, (checksum)

GetMechanismList 36 0 1 0b0
mechanisms

GetMechanismInfo 37 1 1 0b0 mechanism
mech info

GetAttributeValue 39 2 1 0b0 keyblob, attrlist
attribute values

SetAttributeValue 40 2 1 0b0 keyblob, attribute values
updated keyblob

Table 6: PKCS#11 function equivalents

Auxiliary wire functions

This section lists all auxiliary wire functions for reference. For more information please see the wire format

Function (index) Inputs Outputs Int. outputs Parameters
DigestSingle 10 3 1 0b0 size query? (boolean), mech (hash), data

digest
EncryptSingle 19 4 1 0b0 variant, mech (crypt), keyblob, plaintext

ciphertext
DecryptSingle 20 4 1 0b0 variant, mech (crypt), keyblob, ciphertext

plaintext
SignSingle 31 4 1 0b0 size query? (boolean), mech (sign), keyblob, data

signature
VerifySingle 32 4 0 - mech (sign), keyblob/SPKI, data, signature

only return value
get_xcp_info 38 2 1 0b0 query, subquery

module/domain info
admin 41 2 2 0b00 payload, signature/s

response1, response2
Table 7: Auxiliary functions
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Function overview

The function listing is grouped by functionality. It does not contain non-standard extensions, such as _...Single calls, but
references them where appropriate.

Functions without notes are implemented in a PKCS#11 compliant manner, without further discussion. Functions with names
in bold are implemented and callable; the remaining functions are not applicable to EP11 and they do not exist in the library.

Function Notes
C_EncryptInit
C_Encrypt see also _EncryptSingle
C_EncryptUpdate
C_EncryptFinal
C_DecryptInit
C_Decrypt see also _DecryptSingle
C_DecryptUpdate
C_DecryptFinal
C_DigestInit creates wrapped state objects
C_Digest see also _DigestSingle
C_DigestUpdate
C_DigestKey not implemented
C_DigestFinal
C_SignInit
C_Sign see also _SignSingle
C_SignUpdate
C_SignFinal
C_VerifyInit
C_Verify see also _VerifySingle
C_VerifyUpdate
C_VerifyFinal
C_GenerateKey
C_GenerateKeyPair
C_WrapKey enforces relative key size restrictions
C_UnwrapKey
C_DeriveKey
C_GenerateRandom no external seeding unless specified explicitly
C_SeedRandom not supported unless specified by build setting
C_GetMechanismList
C_GetMechanismInfo
C_WaitForSlotEvent N/A; “slot” is not removable
C_SignRecoverInit not implemented
C_SignRecover not implemented
C_VerifyRecoverInit not implemented
C_VerifyRecover not implemented
C_DigestEncryptUpdate not implemented
C_DecryptDigestUpdate not implemented
C_SignEncryptUpdate not implemented
C_DecryptVerifyUpdate not implemented
C_GetInfo not supported; features not relevant in traditional PKCS#11 terms
C_GetFunctionList not supported; functions interfaces are not standard PKCS#11
C_GetSlotList not implemented
C_GetSlotInfo not implemented
C_GetTokenInfo not implemented, see get_xcp_info for partial support
C_Initialize
C_Finalize
C_GetOperationState N/A, operation state resides on host
C_SetOperationState N/A, operation state resides on host
C_GetFunctionStatus N/A, function state resides on host
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C_CancelFunction N/A, function state resides on host
C_GetAttributeValue restricted to backend-visible attributes
C_SetAttributeValue restricted to backend-visible attributes
C_FindObjectsInit N/A, tokens/sessions reside on host
C_FindObjects N/A, tokens/sessions reside on host
C_FindObjectsFinal N/A, tokens/sessions reside on host
C_InitToken not implemented
C_InitPIN not implemented
C_SetPIN not implemented
C_OpenSession N/A, sessions are managed by host
C_CloseSession N/A, sessions are managed by host
C_CloseAllSessions N/A, sessions are managed by host
C_GetSessionInfo N/A, sessions are managed by host
C_Login
C_Logout
C_CreateObject not implemented; can be approximated by import
C_CopyObject N/A, objects are handled on host
C_DestroyObject N/A, objects are handled on host
C_GetObjectSize N/A, objects are handled on host

Table 8: Function groups
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Function reference

Highlighted functions have no PKCS#11 equivalent.

Equivalents of standard PKCS#11 functions are not described in detail if their interface or implementation is obvious, or
corresponds to PKCS#11 in a straightforward manner. EP11 follows the PKCS#11 version 2.20 at the moment.

[*] m_add_module
[*] m_admin

m_Decrypt
m_DecryptFinal
m_DecryptInit

[*] m_DecryptSingle
m_DecryptUpdate
m_DeriveKey
m_Digest
m_DigestFinal

m_DigestInit
m_DigestKey

[*] m_DigestSingle
m_DigestUpdate
m_Encrypt

m_EncryptFinal
m_EncryptInit

[*] m_EncryptSingle
m_EncryptUpdate
m_GenerateKey

m_GenerateKeyPair
m_GenerateRandom

[*] m_get_ep11_info
[*] m_get_xcp_info

m_GetAttributeValue

m_GetMechanismInfo
m_GetMechanismList

[*] m_init
m_Login
m_Logout

[*] m_rm_module
m_SeedRandom
m_SetAttributeValue

[*] m_shutdown
m_Sign

m_SignFinal
m_SignInit

[*] m_SignSingle
m_SignUpdate
m_UnwrapKey

m_Verify
m_VerifyFinal
m_VerifyInit

[*] m_VerifySingle
m_VerifyUpdate

[*] m_wire
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m_WrapKey
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m_add_module
Allows to modify and query a module. The module data structure needs to contain the target, the module number/domain
index combination. Returns a target token identifying the newly registered target.

Setting the same target twice does yield the same target token.

Setting another target in the module data structure after the module was registered returns a target token identifying the new
target. Already added targets are ignored.

If the module is flagged with XCP_MFL_VIRTUAL a target group is created or updated together with registering or updating the
module. A virtual module can have more than one target enabled and as a special case can have zero targets enabled.

Modules are checked for consistency and small errors are corrected. Please see chapter 5.6.3 in the Wire Format for a summary
of errors that are correctable. Use XCP_MFL_STRICT to make m_add_module return errors instead of correcting them.

The module parameter must always be valid. To query the registered modules set target to NULL and set the module_nr of
the module to the number you want to query. The version needs also to be set and the backend flag for the corresponding
platform needs to be set (see chapter 5.6.3.1 of the wire format) XCP_EINIT is returned if the module is not registered.
Otherwise the module is filled with additional information.

Please check the availability of this function by querying CK_IBM_XCPHQ_TGT_MODE.

int m_add_module(XCP_Module_t module, target_t *target) ;
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m_admin
Non-PKCS11 function. Combine administrative request block with [optional] signatures, submit to backend. Common interface
to all administrative services, which are internally dispatched to queries/commands based on request block contents.

The ASN.1-encoded request block must be supplied within (cmd, clen); see the wire spec for request-block construction
rules.

Signature[s], if present, MUST all correspond to the same request block; ASN.1-encoded signature signerInfos MUST be
simply concatenated within (sigs, slen), without further formatting or padding. NULL as sigs implies no signatures on
request, such as queries, or un-signed commands. Since signature structures specify their signers, algorithms etc. within each
signerInfo, and administrative services infer their authorized signers based on the request block, no further signature-related
information is needed.

Returns full response block in (response1, r1len). Module signature, if present, is returned as an ASN.1-encoded signerInfo
struct in (response2, r2len). The signature covers the preceding response block. In-band administrative signatures, such
as those within exported module state, are within the response block, outside response2.

In case of administrative failures, this function MAY return CKR_OK and the proper [administrative] error [non-OK] is returned
within the response block. This special case has been added to preserve the top-level goal of returning only an error value
without data, in case of failures.

Administrative errors are considerably more specific than PKCS11 ones, which is why they MAY be returned through indirection.
Generally, wire-level failures are reported regularly, but errors under specific administrative conditions are reported through
indirection. See response-block rules in the wire spec for details.

Note that the host function does not validate any signatures, number of signature structures etc., it simply serializes inputs to
pass to the module.

CK_RV m_admin (unsigned char *response1, size_t *r1len,
unsigned char *response2, size_t *r2len,

const unsigned char *cmd, size_t clen,
const unsigned char *sigs, size_t slen,

target_t target) ;
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m_Decrypt
Implementation of PKCS#11 C_Decrypt.

Does not update (state, slen).

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: DecryptInit.

CK_RV m_Decrypt (const unsigned char *state, size_t slen,
CK_BYTE_PTR cipher, CK_ULONG clen,
CK_BYTE_PTR plain, CK_ULONG_PTR plen,

target_t target) ;
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m_DecryptFinal
Implementation of PKCS#11 C_DecryptFinal.

Does not update (state, slen).

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: DecryptInit, DecryptUpdate.

CK_RV m_DecryptFinal (const unsigned char *state, size_t slen,
CK_BYTE_PTR output, CK_ULONG_PTR len,

target_t target) ;
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m_DecryptInit
Implementation of PKCS#11 C_DecryptInit.

CK_RV m_DecryptInit (unsigned char *state, size_t *slen,
CK_MECHANISM_PTR pmech,

const unsigned char *key, size_t klen,
target_t target) ;
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m_DecryptSingle
Non-standard variant of Decrypt. Processes data in one pass, with one call. Does not return any state to host, only decrypted
data.

This is the preferred method of encrypting data in one pass for XCP-aware applications. Functionally it is equivalent to
DecryptInit followed immediately by Decrypt, but it saves roundtrips and wrapping/unwrapping.

If the backend supports resident keys, the key may be also a resident-key handle.

See also: Decrypt, DecryptInit, EncryptSingle.

The key blob was output from: GenerateKey, UnwrapKey.

CK_RV m_DecryptSingle (const unsigned char *key, size_t klen,
CK_MECHANISM_PTR pmech,

CK_BYTE_PTR cipher, CK_ULONG clen,
CK_BYTE_PTR plain, CK_ULONG_PTR plen,

target_t target) ;
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m_DecryptUpdate
Implementation of PKCS#11 C_DecryptUpdate.

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: DecryptInit.

CK_RV m_DecryptUpdate (unsigned char *state, size_t slen,
CK_BYTE_PTR cipher, CK_ULONG clen,
CK_BYTE_PTR plain, CK_ULONG_PTR plen,

target_t target) ;
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m_DeriveKey
Implementation of PKCS#11 C_DeriveKey.

The basekey,bklen blob must be mapped from the PKCS11 hBaseKey parameter.

PKCS#11 hSession is not mapped to any EP11 parameter. (The call is not directly associated with any session.)

PKCS#11 phKey is not mapped to any EP11 parameter. (Host library must bind returned key to handle.)

CK_RV m_DeriveKey ( CK_MECHANISM_PTR pderivemech,
CK_ATTRIBUTE_PTR ptempl, CK_ULONG templcount,

const unsigned char *basekey, size_t bklen,
const unsigned char *data, size_t dlen,
const unsigned char *pin, size_t pinlen,

unsigned char *newkey, size_t *nklen,
unsigned char *csum, size_t *cslen,
target_t target) ;
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m_Digest
Implementation of PKCS#11 C_Digest.

Note that if a digest object has had exactly 0 (zero) bytes appended to it after creation, in any combination of zero byte
transfers, it may still perform a one-pass Digest, even if it should be rejected by a strict implementation. This is a feature.

Does not update (state, slen).

Implementations may perform DigestUpdate, DigestFinal, or Digest calls on cleartext digest objects in host code, bypassing
HSM backends altogether. This choice may or may not be visible to host code, and it does not impact the security of the
operation (as clear objects can not digest sensitive data).

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: DigestInit.

CK_RV m_Digest (const unsigned char *state, size_t slen,
CK_BYTE_PTR data, CK_ULONG len,
CK_BYTE_PTR digest, CK_ULONG_PTR dglen,

target_t target) ;
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m_DigestFinal
Implementation of PKCS#11 C_DigestFinal.

DigestFinal is polymorphic, accepting both wrapped or clear digest objects.

Does not update (state, slen).

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: DigestInit, DigestUpdate, DigestKey.

note: does not have data, size query changes no fields’ meaning

CK_RV m_DigestFinal(const unsigned char *state, size_t slen,
CK_BYTE_PTR digest, CK_ULONG_PTR dlen,

target_t target) ;
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m_DigestInit
Implementation of PKCS#11 C_DigestInit.

Create wrapped digest state.

Note: size queries are supported, but the wrapped state is always returned by the backend, unlike most size queries (which
return an output size, instead of actual output). Digest states are sufficiently small that they do not introduce noticeable
transport overhead, except obviously object wrapping.

During size queries, the host just discards the returned state, and reports blob size (in len). When returning blob, *len is
checked against returned size.

The state,len blob must be mapped from the PKCS11 hSession parameter. (Host library must tie blob to session.)

CK_RV m_DigestInit(unsigned char *state, size_t *len,
const CK_MECHANISM_PTR pmech,

target_t target) ;
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m_DigestKey
Implementation of PKCS#11 C_DigestKey.

Note that, by construction, none of the DigestKey inputs are native PKCS#11 variables. Both are blobs, one containing
wrapped state, the other a key object. No final result is returned, only state is updated during the call.

DigestKey is the only non-polymorphic DigestNNN call. It rejects clear digest objects, since those could reveal key bytes when
passed back to the host in the clear.

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: DigestInit, DigestUpdate, DigestKey.

CK_RV m_DigestKey (unsigned char *state, size_t slen,
const unsigned char *key, size_t klen,

target_t target) ;
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m_DigestSingle
Nonstandard extension, combination of DigestInit and Digest. Digests data in one pass, with one call, without constructing
an intermediate digest state, and unnecessary roundtrips.

This is the preferred method of digesting cleartext for XCP-aware applications. Functionally, DigestSingle is equivalent to
DigestInit followed immediately by Digest.

If a key needs to be digested, one must use DigestInit and DigestKey, since this function does not handle key blobs.

Does not return any state to host, only digest result. There are no non-PKCS#11 parameters, since everything is used directly
from the PKCS#11 call.

CK_RV m_DigestSingle(CK_MECHANISM_PTR pmech,
CK_BYTE_PTR data, CK_ULONG len,
CK_BYTE_PTR digest, CK_ULONG_PTR dlen,

target_t target) ;
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m_DigestUpdate
Implementation of PKCS#11 C_DigestUpdate.

DigestUpdate is polymorphic, accepting both wrapped or clear digest objects, updating state in the same format.

The state,slen blob must be mapped from the PKCS11 hSession parameter. (Host library must map session to stored
state.)

The state blob was output from: DigestInit, DigestUpdate, DigestKey.

See also: DigestInit

CK_RV m_DigestUpdate(unsigned char *state, size_t slen,
CK_BYTE_PTR data, CK_ULONG dlen,

target_t target) ;
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m_Encrypt
Implementation of PKCS#11 C_Encrypt.

Does not update (state, slen).

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: EncryptInit.

CK_RV m_Encrypt (const unsigned char *state, size_t slen,
CK_BYTE_PTR plain, CK_ULONG plen,
CK_BYTE_PTR cipher, CK_ULONG_PTR clen,

target_t target) ;
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m_EncryptFinal
Implementation of PKCS#11 C_EncryptFinal.

Does not update (state, slen).

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: EncryptInit, EncryptUpdate.

CK_RV m_EncryptFinal (const unsigned char *state, size_t slen,
CK_BYTE_PTR output, CK_ULONG_PTR len,

target_t target) ;
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m_EncryptInit
Implementation of PKCS#11 C_EncryptInit.

The (key, klen) blob may be a public-key object, or a secret-key blob. Key type must be consistent with pmech.

For public-key mechanisms, (key, klen) must contain an SPKI. This SPKI must be MACed, as returned by GenerateKeyPair
or alternatively UnwrapKey. The Encrypt state is created without session restrictions.

For secret-key mechanisms, the Encrypt state inherits object session restrictions from <prm>key,klen<prm>.

The state,slen blob must be mapped from the PKCS11 hSession parameter.

(key, klen) must be a key blob.

CK_RV m_EncryptInit (unsigned char *state, size_t *slen,
CK_MECHANISM_PTR pmech,

const unsigned char *key, size_t klen,
target_t target) ;
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m_EncryptSingle
Non-standard variant of Encrypt. Processes data in one pass, with one call. Does not return any state to host, only encrypted
data.

This is the preferred method of encrypting data in one pass for XCP-aware applications. Functionally it is equivalent to
EncryptInit followed immediately by Encrypt, but it saves roundtrips and wrapping/unwrapping.

If the backend supports resident keys, the key may be also a resident-key handle.

See also: Encrypt, EncryptInit, DecryptSingle.

The key blob was output from: GenerateKey, UnwrapKey.

CK_RV m_EncryptSingle (const unsigned char *key, size_t klen,
CK_MECHANISM_PTR pmech,

CK_BYTE_PTR plain, CK_ULONG plen,
CK_BYTE_PTR cipher, CK_ULONG_PTR clen,

target_t target) ;
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m_EncryptUpdate
Implementation of PKCS#11 C_EncryptUpdate.

The state,slen blob must be mapped from the PKCS11 hSession parameter.

The state blob was output from: EncryptInit.

CK_RV m_EncryptUpdate (unsigned char *state, size_t slen,
CK_BYTE_PTR plain, CK_ULONG plen,
CK_BYTE_PTR cipher, CK_ULONG_PTR clen,

target_t target) ;
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m_GenerateKey
Implementation of PKCS#11 C_GenerateKey.

TDES keys are generated with proper parity. This is not observable by the host, but it is needed for proper interoperability:
other PKCS#11 implementations should reject DES keys with parity problems.

If tying an object to a session, (pin, plen) must have been returned by Login to that session. Leaving pin NULL creates a
public object, one not bound to a login session.

(key, klen) will return the key blob. (csum, clen) will contain the key’s checksum, i.e., the most significant bytes of an all-
zero block encrypted by the key. NULL clen is possible, for example for symmetric-key mechanisms without CKA_CHECK_VALUE
parameters (such as RC4).

ptempl is used only if the key length (i.e., the CKA_VALUE_LEN attribute) is needed by the mechanism. If the mechanism
implicitly specifies key size, ptempl is not checked for size.

DSA and DH parameter generation ignores (csum, clen), generating only parameter structures.

DSA,DH parameters (CKM_DSA_PARAMETER_GEN etc.): pass modulus bitcount in CKA_PRIME_BITS of attributes. Writes P,Q,G
structure as cleartext output (i.e., not a blob).

The pin blob was output from: Login.

PKCS#11 phKey is not mapped to any EP11 parameter. (Host library must bind wrapped key to handle.)

CK_RV m_GenerateKey (CK_MECHANISM_PTR pmech,
CK_ATTRIBUTE_PTR ptempl, CK_ULONG templcount,

const unsigned char *pin, size_t pinlen,
unsigned char *key, size_t *klen,
unsigned char *csum, size_t *clen,

target_t target) ;
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m_GenerateKeyPair
Implementation of PKCS#11 C_GenerateKeyPair.

Keypair parameters are retrieved from pmech, ppublic, and pprivate parameters. For RSA keys, ppublic specifies the
modulus size.

In FIPS mode, only RSA moduluses of 1024+256n bits are supported (integer n). Non-FIPS mode can generate keys of any
even number of bits between the limits in the mechanism parameter list.

Public key is formatted as a standard SPKI (subject publickey info), readable by most libraries. It is integrity-protected by a
transport-key specific MAC, which is not part of the SPKI itself. DSA parameter generation returns a non-SPKI structure in
the public key field.

If tying an object to a session, (pin, plen) must have been returned by Login to that session. Leaving pin NULL creates a
public object, one which will survive its login session.

Returns wrapped private key to (key, klen), public key as a MACed ASN.1/DER structure in (pubkey, pklen).

Supported parameter combinations with special notes (beyond those documented by PKCS11) are the following:

RSA keys reject public exponents below 17 (0x11). Control points may further restrict the accepted minimum. The Fermat4
exponent, 0x10001, is controlled by a specific control point, matching public-exponent restrictions of FIPS 186-3 (section
B.3.1).

EC keys (CKM_EC_KEY_PAIR_GEN): curve parameters may be specified as OIDs or symbolic names (our namedCurve variant).
Supported symbolic names are "P-nnn" for FP NIST curves (nnn is a supported prime bitcount, 192 to 521), "BP-nnnR" for
regular BP curves, and "BP-nnnT" for twisted BP curves of bitcount nnn (160 to 512). (Names must be supplied as ASCII
strings, without zero-termination.)

DSA keys (CKM_DSA_KEY_PAIR_GEN): pass P,Q,G structure as the CKA_IBM_STRUCT_PARAMS attribute of public attributes.
Note that individual P,Q,G parameters may not be passed through regular PKCS#11 parameters, they must be combined to a
single structure.

DH keys (CKM_DH_PKCS_KEY_PAIR_GEN): pass P,G structure as the CKA_IBM_STRUCT_PARAMS attribute of public attributes.
Note that individual P,G parameters may not be passed through regular PKCS#11 parameters, they must be combined to a
single structure. When selecting a private-key (X) bitcount, use the XCP_U32_VALUE_BITS attribute. If not present, or an
explicit 0 is supplied, bitcount is selected based on P bitcount.

Use of session (Login) state replaces standard use of sessions, the mapping is outside library scope.

The pin blob was output from: Login.

PKCS#11 hSession is not mapped to any EP11 parameter. (The call is not directly associated with any session.)

PKCS#11 phPublicKey is not mapped to any EP11 parameter. (Host library must associate pubkey (SPKI) with handle.)

PKCS#11 phPrivateKey is not mapped to any EP11 parameter. (Host library must associate private key with handle.)

CK_RV m_GenerateKeyPair (CK_MECHANISM_PTR pmech,
CK_ATTRIBUTE_PTR ppublic, CK_ULONG pubattrs,
CK_ATTRIBUTE_PTR pprivate, CK_ULONG prvattrs,

const unsigned char *pin, size_t pinlen,
unsigned char *key, size_t *klen,
unsigned char *pubkey, size_t *pklen,

target_t target) ;
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m_GenerateRandom
Implementation of PKCS#11 C_GenerateRandom.

GenerateRandom is equivalent to the original PKCS#11 function. Internally, hardware-seeded entropy is passed through a
FIPS-compliant DRNG (ANSI X9.31/ISO 18031, depending on Clic version).

The host library could generate random numbers without dispatching to the backend, if suitable functionality would be available
on the host. This is not done in the current implementation.

This function does not support a size query.

CK_RV m_GenerateRandom (CK_BYTE_PTR rnd, CK_ULONG len, target_t target) ;
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m_get_ep11_info
see m_get_xcp_info

CK_RV m_get_ep11_info(CK_VOID_PTR pinfo, CK_ULONG_PTR infbytes,
unsigned int query,
unsigned int subquery,
target_t target) ;
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m_get_xcp_info
Non-PKCS11: polymorphic query function, selecting response based on query, and optionally, the further sub-parameter
subquery. See CK_IBM_XCPQUERY_t for the list of available queries.

Wire-decoded outputs are deposited into pinfo if non-NULL, casting into a struct of the appropriate type where applicable.
In such cases, mirroring PKCS11 parameter/size usage, provide at least sizeof(struct ...) in infbytes. After successful
calls, infbytes is set to response-written bytecount.

Currently, the following structure types MAY be returned, and write a struct into *pinfo if non-NULL: CK_IBM_XCPAPI_INFO
CK_IBM_XCP_INFO CK_IBM_DOMAIN_INFO XCP_EPX_INFO The returned structure is selected based on the query type, filling
the entire structure.

In addition to queries returning types, the following [sub-]queries return lists of wire-encoded integers: CK_IBM_XCPQ_SELFTEST
CK_IBM_XCPQ_EXT_CAPS CK_IBM_XCPQ_EXT_CAPLIST CK_IBM_XCPQ_EPX These variants return [potentially lists of] 32-bit
unsigned integers; see the wire spec for integer-encoding rules.

Structure outputs are fixed size, except CK_IBM_XCPQ_DOMAINS, which returns a list. We check response size infbytes, which
MAY be larger than needed by structs. Regular PKCS11 report-size rules apply.

CK_RV m_get_xcp_info(CK_VOID_PTR pinfo, CK_ULONG_PTR infbytes,
unsigned int query,
unsigned int subquery,

target_t target) ;
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m_GetAttributeValue
Implementation of PKCS#11 C_GetAttributeValue.

Does not represent/need sessions (part of blob), therefore does not use the hSession parameter.

Since currently, we can do shortcuts (such as enumerate actual values instead of being more generic), decoding is straightforward.

CK_RV m_GetAttributeValue (const unsigned char *obj, size_t olen,
CK_ATTRIBUTE_PTR pTemplate, CK_ULONG ulCount,

target_t target) ;
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m_GetMechanismInfo
Implementation of PKCS#11 C_GetMechanismInfo.

CK_RV m_GetMechanismInfo (CK_SLOT_ID slot,
CK_MECHANISM_TYPE mech,

CK_MECHANISM_INFO_PTR pmechinfo,
target_t target) ;
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m_GetMechanismList
Implementation of PKCS#11 C_GetMechanismList.

CK_RV m_GetMechanismList (CK_SLOT_ID slot,
CK_MECHANISM_TYPE_PTR mechs,

CK_ULONG_PTR count,
target_t target) ;
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m_init
Called before any functional calls, m_init performs startup sanity checks and initializes the transport channel.

The EP11 host library uses the AP device driver to send and receive messages from EP11 Crypto Express Cards (CEX). Please
ensure that the driver is loaded when calling this function.

This function is not thread safe.

XCP_DEV_ERROR is returned if there is a problem with the the AP device driver. XCP_INIT_ERROR is returned if the library is
already initialized.

int m_init(void) ;
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m_Login
Implementation of PKCS#11 C_Login.

Turn caller-supplied PIN, and optionally a nonce, into a session identifier, a cryptographic signed representation of this com-
bination of inputs. The returned session identifier may be used to bind generated, derived, or imported keys to that session,
preventing use of these keys when the session is subsequently removed.

When session-bound keys are created, only a part of the session is inserted into the host-visible form. This subset is sufficient
to identify sessions, but insufficient to log that session out.

Depending on represented host entities, a PIN may have a meaning of applications, partitions, jobs, or other similar constructs.
Since the backend lacks understanding of these entities, it only treats PIN+nonce pairs as entities without further differentiation.

The nonce or some representative derivative appears in the generated session identifier, when such binding needs to be repre-
sented to the original caller.

In case the provided PIN blob buffer is too small the session will be directly logged out again in order to prevent exhaustion of
session related card resources.

See also: Logout

CK_RV m_Login ( CK_UTF8CHAR_PTR pin, CK_ULONG pinlen,
const unsigned char *nonce, size_t nlen,

unsigned char *pinblob, size_t *pinbloblen,
target_t target) ;
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m_Logout
Implementation of PKCS#11 C_Logout.

Remove the session derived by Login, if present within the targeted module.

This call requires access to the full session identifier. As an alternative, see the administrative command which may remove
any session. The administrative command is not available to regular users or PKCS11 officers.

The pin blob was output from: Login.

CK_RV m_Logout(const unsigned char *pin, size_t len, target_t target) ;
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m_rm_module
The m_rm_module function deregisters modules, removes targets from target groups or removes them completely.

If the target token is not initialized (is equal XCP_TGT_INIT) the targets defined in module are deregistered. No resource
deallocation is done. Deregistration is only a simple bookkeeping function. Use m_shutdown to remove all modules associated
channel resources.

To remove a target group the target parameter needs to refer to a target group. If the module parameter is NULL the
complete group is removed. Otherwise only the targets from the module are removed from the group.

Please note that single targets can simply be discarded without host library interaction. Please also note that a valid target
token can still be used after deregistration when XCP_MFL_ALW_TGT_ADD is set for the module.

Deregistration does not influence target groups and vice versa.

Please check the availability of this function by querying CK_IBM_XCPHQ_TGT_MODE.

int m_rm_module(const XCP_Module_t module, target_t target) ;
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m_SeedRandom
Implementation of PKCS#11 C_SeedRandom.

SeedRandom is implemented, but it MAY reject external seeds, returning CKR_RANDOM_SEED_NOT_SUPPORTED depending on
backend setup. Due to internal, hardware-assisted seeding, which is always used if available., one can not synchronize multiple
modules RNG states. Due to this limitation, external seeding is mainly not useful in the context of EP11. It is only provided
to allow hosts to influence, and therefore perturb, the state of modules without relying only on the module-internal entropy
source.

Module-internal entropy sources are conditioned, and internally provided entropy is assumed to be full entropy of high quality.
If external seeding is supported, the resulting mixed stream is assumed to preserve the higher entropy rate of the two streams.

This function always attempts seeding the backend, never filtering a valid-looking request. There are three mode-related
expected results: accepted (CKR_OK), rejected due to general prohibition (CKR_RANDOM_SEED_NOT_SUPPORTED),
rejected due to policy (general CP/policy rejection). Other failures are as applicable.

CK_RV m_SeedRandom (CK_BYTE_PTR pSeed, CK_ULONG ulSeedLen, target_t target) ;
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m_SetAttributeValue
Implementation of PKCS#11 C_SetAttributeValue.

attribute packing: see _GetAttrValue

Currently, we only send Boolean attributes, all other attributes are handled by host (and we don’t let modify arrays, such as
WRAP_TEMPLATE).

Does not represent/need sessions (part of blob), therefore does not use the PKCS11 hSession parameter.

CK_RV m_SetAttributeValue (unsigned char *obj, size_t olen,
CK_ATTRIBUTE_PTR pTemplate, CK_ULONG ulCount,

target_t target) ;
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m_shutdown
m_shutdown closes the AP device and resets the internal state of the host library and closes any [platform-specific] transport
structures.

On non-production, single-binary builds, this function MAY also call backend-termination functions. No backend calls are made
in setups where host and backend are disjunct, including HSM or socket-attached backends [i.e., calling m_shutdown has no
effect on the backend in any production builds]

This function is not thread safe.

XCP_DEVICE_ERROR is returned if there was an problem closing the AP device.

int m_shutdown(void) ;
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m_Sign
Implementation of PKCS#11 C_Sign.

Does not update (state, slen).

The state,slen blob must be mapped from the PKCS11 hSession parameter. (Host library must map session to stored
state.)

The state blob was output from: SignInit.

CK_RV m_Sign (const unsigned char *state, size_t stlen,
CK_BYTE_PTR data, CK_ULONG dlen,
CK_BYTE_PTR sig, CK_ULONG_PTR slen,

target_t target) ;
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m_SignFinal
Implementation of PKCS#11 C_SignFinal.

Does not update (state, slen).

The state,slen blob must be mapped from the PKCS11 hSession parameter. (Host library must map session to stored
state.)

The state blob was output from: SignInit, SignUpdate.

CK_RV m_SignFinal (const unsigned char *state, size_t stlen,
CK_BYTE_PTR sig, CK_ULONG_PTR slen,

target_t target) ;
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m_SignInit
Implementation of PKCS#11 C_SignInit.

CK_RV m_SignInit (unsigned char *state, size_t *slen,
CK_MECHANISM_PTR pmech,

const unsigned char *key, size_t klen,
target_t target) ;

EP11 Principles of Operation 117 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



m_SignSingle
Nonstandard extension, combination of SignInit and Sign. Signs or MACs data in one pass, with one call, without constructing
intermediate digest state. Does not return any state to host, only result.

This is the preferred way of signing, without an additional roundtrip and en/decryption. Functionally, SignSingle is equivalent
to SignInit followed immediately by Sign.

The (key, klen) blob and the pmech mechanism together must be passable to SignInit.

Multi-data requests for HMAC and CMAC signatures are supported (sub-variants 2 and 3).

See also: SignInit, Sign, VerifySingle.

CK_RV m_SignSingle(const unsigned char *key, size_t klen,
CK_MECHANISM_PTR pmech,

CK_BYTE_PTR data, CK_ULONG dlen,
CK_BYTE_PTR sig, CK_ULONG_PTR slen,

target_t target) ;
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m_SignUpdate
Implementation of PKCS#11 C_SignUpdate.

The state,slen blob must be mapped from the PKCS11 hSession parameter. (Host library must map session to stored
state.)

The state blob was output from: SignInit.

CK_RV m_SignUpdate(unsigned char *state, size_t slen,
CK_BYTE_PTR data, CK_ULONG dlen,

target_t target) ;
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m_UnwrapKey
Implementation of PKCS#11 C_UnwrapKey.

uwmech specifies the encryption mechanism used to decrypt wrapped data. ptempl is a key(pair) parameter list, specify-
ing how to transform the unwrapped data to a new key (must include CKA_KEY_TYPE; for others see GenerateKey and
GenerateKeyPair).

The generated object is returned under (unwrapped, uwlen) as a blob. Symmetric keys return their key checksum (3 bytes)
under (csum, cslen); public-key objects return their public key as an SPKI in (csum, cslen). Both forms are followed by
a 4-byte big-endian value, encoding bitcount of the unwrapped key.

When transforming an SPKI to a MACed SPKI, one must use CKM_IBM_TRANSPORTKEY as the unwrapping mechanism.
This mode supplies the raw SPKI as wrapped data, and ignores the KEK.

Note that UnwrapKey produces parity-adjusted DES keys (within the blobs), but tolerates input with improper parity.

CK_RV m_UnwrapKey (const CK_BYTE_PTR wrapped, CK_ULONG wlen,
const unsigned char *kek, size_t keklen,
const unsigned char *mackey, size_t mklen,
const unsigned char *pin, size_t pinlen,

const CK_MECHANISM_PTR uwmech,
const CK_ATTRIBUTE_PTR ptempl, CK_ULONG pcount,

unsigned char *unwrapped, size_t *uwlen,
CK_BYTE_PTR csum, CK_ULONG *cslen,

target_t target) ;
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m_Verify
Implementation of PKCS#11 C_Verify.

Does not update (state, slen).

Note that the relative order of data and signature are reversed relative to VerifySingle.

The state,slen blob must be mapped from the PKCS11 hSession parameter. (Host library must map session to stored
state.)

The state blob was output from: VerifyInit.

CK_RV m_Verify (const unsigned char *state, size_t stlen,
CK_BYTE_PTR data, CK_ULONG dlen,
CK_BYTE_PTR sig, CK_ULONG slen,

target_t target) ;
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m_VerifyFinal
Implementation of PKCS#11 C_VerifyFinal.

Does not update (state, slen).

The state,slen blob must be mapped from the PKCS11 hSession parameter. (Host library must map session to stored
state.)

The state blob was output from: VerifyInit, VerifyUpdate.

CK_RV m_VerifyFinal(const unsigned char *state, size_t stlen,
CK_BYTE_PTR sig, CK_ULONG siglen,

target_t target) ;
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m_VerifyInit
Implementation of PKCS#11 C_VerifyInit.

Given a key blob (key, klen), initialize a verify session state in (state, slen). The key blob may be a public key object,
or HMAC key bytes. Key blob type must be consistent with pmech.

For public-key mechanisms, (key, klen) must contain an SPKI. This SPKI may be MACed (such as returned earlier by
GenerateKeyPair) or just the SPKI itself (if obtained from an external source, such as a certificate).

If initializing an HMAC operation, session restrictions of the Verify object are inherited from the HMAC key. Since SPKIs are
not tied to sessions, public-key Verify states are session-free.

The key,klen blob must be mapped from the PKCS11 hKey parameter.

Note: SignInit and VerifyInit are internally the same for HMAC and other symmetric/MAC mechanisms, other than
enforcing different restrictions different restrictions (sign and verify, respectively).

CK_RV m_VerifyInit (unsigned char *state, size_t *slen,
CK_MECHANISM_PTR pmech,

const unsigned char *key, size_t klen,
target_t target) ;
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m_VerifySingle
Nonstandard extension, combination of VerifyInit and Verify. Signs or MACs data in one pass, with one call, without
constructing intermediate digest state. Does not return any state to host, only verification result. There is no size query, since
this function returns a Boolean.

This is the preferred way of verifying a signature, without an additional roundtrip and en/decryption. Functionally, VerifySingle
is equivalent to VerifyInit followed immediately by a Verify.

The (key, klen) blob and the pmech mechanism together must be passable to VerifyInit.

For public-key mechanisms, (key, klen) must contain an SPKI. This SPKI may be MACed (such as returned as a public key
from GenerateKeyPair) or just the SPKI itself (if obtained from an external source, such as a certificate).

See also: VerifyInit, Verify, SignSingle.

CK_RV m_VerifySingle (const unsigned char *key, size_t klen,
CK_MECHANISM_PTR pmech,

CK_BYTE_PTR data, CK_ULONG dlen,
CK_BYTE_PTR sig, CK_ULONG slen,

target_t target) ;
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m_VerifyUpdate
Implementation of PKCS#11 C_VerifyUpdate.

The state,slen blob must be mapped from the PKCS11 hSession parameter. (Host library must map session to stored
state.)

The state blob was output from: VerifyInit.

CK_RV m_VerifyUpdate(unsigned char *state, size_t slen,
CK_BYTE_PTR data, CK_ULONG dlen,

target_t target) ;
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m_wire
Nonstandard extension: take constructed payload, send to target, return raw response.

Returns CKR_OK if response has been received. If the response contains a properly formed response, its internal response
code is written to *irv.

This command has no function ID of its own. It inherits parameter count and syntax from the request we are passing to the
backend.

CK_RV m_wire (unsigned char *wrsp, size_t *rsplen, CK_RV *irv,
const unsigned char *req, size_t reqlen,

unsigned int flags,
target_t target) ;
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m_WrapKey
Implementation of PKCS#11 C_WrapKey.

CK_RV m_WrapKey (const unsigned char *key, size_t keylen,
const unsigned char *kek, size_t keklen,
const unsigned char *mackey, size_t mklen,

const CK_MECHANISM_PTR pmech,
CK_BYTE_PTR wrapped, CK_ULONG_PTR wlen,

target_t target) ;
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Bit Name Notes

1 XCP_BLOB_EXTRACTABLE May be encrypted by other keys. May not be reset.
2 XCP_BLOB_NEVER_EXTRACTABLE set if key was created non-extractable. Set only initially, may not be modi�ed.
4 XCP_BLOB_MODIFIABLE attributes may be changed
8 XCP_BLOB_NEVER_MODIFIABLE object was created read-only. Set only initially, may not be modi�ed.

0x10 XCP_BLOB_RESTRICTABLE attributes may be removed, but may not be made more permissive.
0x20 XCP_BLOB_LOCAL was created inside this CSP, was not imported. Set upon object creation, may not be modi�ed.
0x40 XCP_BLOB_ATTRBOUND may be transported only in attribute-bound formats, but not pure PKCS11 ones. May not be

modi�ed.
0x80 XCP_BLOB_USE_AS_DATA raw key bytes may be input to other processing as data, such as hashed, or deriving keys from

them.

0x0100 XCP_BLOB_SIGN may generate signatures
0x0200 XCP_BLOB_SIGN_RECOVER may generate (asymmetric) signatures with message recovery
0x0400 XCP_BLOB_DECRYPT may decrypt data
0x0800 XCP_BLOB_ENCRYPT may encrypt data

0x1000 XCP_BLOB_DERIVE may derive other keys
0x2000 XCP_BLOB_UNWRAP may decrypt (transport) other keys
0x4000 XCP_BLOB_WRAP may encrypt (transport) other keys
0x8000 XCP_BLOB_VERIFY may verify signatures

0x010000 XCP_BLOB_VERIFY_RECOVER may verify signatures and recover signed messages
0x020000 XCP_BLOB_TRUSTED PKCS11 CKA_TRUSTED key
0x040000 XCP_BLOB_WRAP_W_TRUSTED needs CKA_TRUSTED KEK note: _TRUSTED enforcement does not provide security guar-

antees. We only track it inside the HSM to assist hosts.
0x080000 XCP_BLOB_RETAINED blob resides within backend, not (no longer) on host

0x100000 XCP_BLOB_ALWAYS_RETAINED blob has been generated inside
0x200000 XCP_BLOB_PROTKEY_EXTRACTABLE May be imported as protected key. May not be reset.
0x400000 XCP_BLOB_PROTKEY_NEVER_EXTRACTABLE set if key was created non-extractable as a protected key. Set only initially, may not be modi�ed.

... XCP_BLOB_BIT_MAX

Table 9: Blob attributes (usage restriction bits)
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Bit Name Notes

0 XCP_CPB_ADD_CPBS allow addition (activation) of CP bits
1 XCP_CPB_DELETE_CPBS disable activating further control points (remove both ADD_CPBs and DELETE_CPBs to

make unit read-only)
2 XCP_CPB_SIGN_ASYMM sign with private keys
3 XCP_CPB_SIGN_SYMM sign with HMAC or CMAC

4 XCP_CPB_SIGVERIFY_SYMM verify with HMAC or CMAC. No asymmetric counterpart: one may not restrict use of public
keys.

5 XCP_CPB_ENCRYPT_SYMM encrypt with symmetric keys. No asymmetric counterpart: one may not restrict use of public
keys.

6 XCP_CPB_DECRYPT_ASYMM decrypt with private keys
7 XCP_CPB_DECRYPT_SYMM decrypt with symmetric keys

8 XCP_CPB_WRAP_ASYMM key export with public keys
9 XCP_CPB_WRAP_SYMM key export with symmetric keys

10 XCP_CPB_UNWRAP_ASYMM key import with private keys
11 XCP_CPB_UNWRAP_SYMM key import with symmetric keys

12 XCP_CPB_KEYGEN_ASYMM generate asymmetric keypairs (fn:GenerateKeyPair)
13 XCP_CPB_KEYGEN_SYMM generate or derive symmetric keys including DSA or DH parameters
14 XCP_CPB_RETAINKEYS allow backend to save semi-retained keys
15 XCP_CPB_SKIP_KEYTESTS disable selftests on new asymmetric keys

16 XCP_CPB_NON_ATTRBOUND allow keywrap without attribute-binding
17 XCP_CPB_MODIFY_OBJECTS allow changes to objects (Booleans only)
18 XCP_CPB_RNG_SEED allow mixing external seed to RNG backend may restrict further
19 XCP_CPB_ALG_RAW_RSA allow RSA private-key use without padding (highly discouraged)

20 XCP_CPB_ALG_NFIPS2009 allow non-FIPS-approved algs (as of 2009) including non-FIPS keysizes
21 XCP_CPB_ALG_NBSI2009 allow non-BSI algorithms (as of 2009) including non-BSI keysizes
22 XCP_CPB_KEYSZ_HMAC_ANY don't enforce minimum keysize on HMAC (allows keys shorter than half of digest)
23 XCP_CPB_KEYSZ_BELOW80BIT allow algorithms below 80-bit strength

24 XCP_CPB_KEYSZ_80BIT allow 80 to 111-bit algorithms
25 XCP_CPB_KEYSZ_112BIT allow 112 to 127-bit algorithms
26 XCP_CPB_KEYSZ_128BIT allow 128 to 191-bit algorithms
27 XCP_CPB_KEYSZ_192BIT allow 192 to 255-bit algorithms

28 XCP_CPB_KEYSZ_256BIT allow 256-bit algorithms
29 XCP_CPB_KEYSZ_RSA65536 allow RSA public exponents below 0x10001
30 XCP_CPB_ALG_RSA RSA private-key or key-encrypt use
31 XCP_CPB_ALG_DSA DSA private-key use

32 XCP_CPB_ALG_EC EC private-key use (see CP on curves)
33 XCP_CPB_ALG_EC_BPOOLCRV Brainpool (E.U.) EC curves
34 XCP_CPB_ALG_EC_NISTCRV NIST/SECG EC curves
35 XCP_CPB_ALG_NFIPS2011 allow non-FIPS-approved algs (as of 2011) including non-FIPS keysizes

36 XCP_CPB_ALG_NBSI2011 allow non-BSI algorithms (as of 2011) including non-BSI keysizes
37 XCP_CPB_USER_SET_TRUSTED allow non-admin set TRUSTED on blob/SPKI
38 XCP_CPB_ALG_SKIP_CROSSCHK do not double-check sign/decrypt ops
39 XCP_CPB_WRAP_CRYPT_KEYS allow keys which can en/decrypt data and also un/wrap other keys (applies to both generation

and use)

40 XCP_CPB_SIGN_CRYPT_KEYS allow keys which can en/decrypt data and also sign/verify (applies to both generation and use)
41 XCP_CPB_WRAP_SIGN_KEYS allow keys which can un/wrap data and also sign/verify (applies to both generation and use)
42 XCP_CPB_USER_SET_ATTRBOUND allow non-administrators to mark public key objects ATTRBOUND
43 XCP_CPB_ALLOW_PASSPHRASE allow host to pass passprases, such as PKCS12 data, in the clear

44 XCP_CPB_WRAP_STRONGER_KEY allow wrapping of stronger keys by weaker keys
45 XCP_CPB_WRAP_WITH_RAW_SPKI allow wrapping with SPKIs without MAC and attributes
46 XCP_CPB_ALG_DH Di�e-Hellman use (private keys)
47 XCP_CPB_DERIVE allow key derivation (symmetric+EC/DH)

55 XCP_CPB_ALG_EC_25519 enable support of curve25519, c448 and related algorithms incl. EdDSA (ed25519 and ed448)
61 XCP_CPB_ALG_NBSI2017 allow non-BSI algorithms (as of 2017) including non-BSI keysizes (fn:Sign/RSA)
64 XCP_CPB_CPACF_PK support data key generation and import for protected key
65 XCP_CPB_ALG_PQC support for PQ algorithms (top CPB)

... XCP_CPBITS_MAX

Table 11: Control points
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wire format

1. Requests
1.1. Function identifier
1.1.1. API ordinal number
1.1.2. API query
1.2. Size query
1.3. Request headers
1.3.1. CPRB [Coprocessor request block] wire headers
1.4. ASN.1 encoding
1.4.1. Multi-data requests
1.4.2. Restrictions of multi-data processing
1.4.3. Multi-data responses
1.4.4. Multi-data size queries
1.4.5. Multi-data error handling

2. Responses
2.1. Size query
2.2. Response headers
2.3. ASN.1 encoding

3. Key objects (blobs)
3.1. Raw keys
3.1.1. Blob revision
3.2. Blob attributes
3.2.1. Attribute header
3.2.2. Boolean attributes
3.2.3. Integer attributes
3.2.4. Variable-length attributes
3.3. Attribute-bound (AB) objects
3.3.1. AB transport header
3.3.2. AB encryption
3.3.3. AB signatures
3.4. PIN blobs

4. Administrative services
4.1. Administrative requests
4.2. Administrative responses
4.3. Administrative command block
4.3.1. Certificate replacement
4.4 Administrative response block
4.5. Administrative structures
4.5.1. Integer administrative attributes
4.5.2. Control points (CPs)

5. Compound structures
5.1. Query types
5.1.1. Module query
5.1.1.1. Text/description fields
5.1.2. Domains query
5.1.3. Domain query
5.1.4. Selftest
5.1.5. Audit records history
5.1.6. Host queries
5.1.7. Performance classification statistics
5.2. Development test structures & calls
5.2.1. Set current WK
5.2.2. Set pending WK
5.2.3. Set control points (CPs)
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5.2.4. Iterated encryption/decryption
5.2.5. Manage read-only mode
5.2.6. Blob and CSP configuration query
5.2.6.1. Blob configuration flags
5.2.6.2. Blob object header configuration
5.2.7. Algorithm tests
5.2.7.1. RSA key generation (ANSI x9.31)
5.2.7.2. DSA parameter (PQG) generation
5.2.7.3. DSA PQG parameters, response
5.2.7.4. EC scalar multiply, looped
5.2.8. Performance-test events
5.2.8.1. Performance-test measurements
5.2.8.2. Host-influenced delay (NOP)
5.2.9. Performance of raw primitives
5.2.10. Blob-cache configuration
5.2.11. Set/query FCV
5.3. Serialized module state
5.3.1. Tags within module state sub-types
5.3.1.1. Request to export
5.3.1.2. Request to export non-sensitive state
5.3.1.3. Request to import into multi-domain setup
5.3.1.4. Serialized state
5.3.1.5. Exported keyparts
5.3.1.6. Keyparts for import
5.3.2. File-content encryption
5.3.2.1. File-content encryption algorithms
5.3.3. Lack of instance identifiers
5.3.4. Keypart holder certificates
5.3.5. State import/export scope restrictions
5.3.5.1. Domain-restricted sections
5.3.5.2. Non-sensitive restricted sections
5.3.6. Verification during state import
5.4. Audit records
5.4.1. Audit record identification
5.4.2. Undefined audit record timestamps
5.4.3. Audit event types
5.4.4. Audit key-records
5.4.4.1. Audit entries for key sizes
5.4.5. Audit event flags
5.4.6. Audit record salting
5.4.6.1. Deterministic audit-record salt
5.4.7. Signed audit records
5.4.8. Audit record queries
5.4.8.1. Audit history size
5.4.8.2. Audit history entry
5.5. Structures used by extensions
5.5.1. Multi-level security (MLS) memory-typing extensions
5.5.2. TRNG entropy-pool log access

5.6. Host target and module management
5.6.1 Target token data type
5.6.2 The XCP_Module structure
5.6.2.1 Structure version
5.6.2.2 Module flags
5.6.2.3 Domains and domainmask
5.6.2.4 The module number
5.6.2.5 The socket field
5.6.2.6 The module handle
5.6.2.7 The perf field
5.6.3. Flag dependent host library behavior
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Wire format 3/105
5.6.3.1 Fail on correctable errors
5.6.3.2 Virtual modules
5.6.3.3 Backend types
5.6.3.4 On the fly target adding
5.6.3.5 Probing targets
5.6.3.6 Performance measurements
5.6.4 Correctable and uncorrectable errors
5.6.4.1 Backend handling errors
5.6.4.2 Probing unreachable targets
5.6.4.3 Domain index correction
5.6.5 Host specific return codes

6. Primitive structures
6.1. Source partition/VM
6.2. Target domain
6.2.1. Administrative domain
6.2.2. Session identifier
6.3. Module identifier
6.4. Administrative transaction counter
6.4.1. Transaction counter queries
6.5. Imported keyparts
6.5.1. Imported raw keyparts, without reassembly threshold
6.5.2. Import of N-of-M keyparts
6.6. Exported keyparts
6.6.1. Exported raw keyparts
6.7. Key verification patterns (VPs)
6.7.1. Wrapping key identifier (WKID)
6.8. PKCS#11 structures
6.8.1. Mechanisms
6.8.1.1. Mechanisms with IV
6.8.1.2. RSA-PSS and OAEP
6.8.1.3. Custom ID-card (EAC) related functions
6.8.1.3.1. EAC sub-variants
6.8.1.4. ECDH1_DERIVE
6.8.1.5. CKM_IBM_CMAC
6.8.1.6. DSA parameters
6.8.1.7. PBE parameters (CKM_PBE_... mechanisms)
6.8.1.8. SPKI MAC conversion (CKM_IBM_TRANSPORTKEY)
6.8.1.9. DH parameters
6.8.1.10. DH key derivation
6.8.1.11. Mechanisms with variable-sized results (..._GENERIC)
6.8.1.12. Protected key import
6.8.1.19. Post-quantum algorithms: CKM_IBM_DILITHIUM variants
6.8.1.20. Montgomery and Edwards based elliptic curves
6.8.2. Mechanism list
6.8.3. Attributes
6.8.3.1. Compliance attributes
6.9. Raw integers
6.10. Empty fields
6.11. Date/time fields
6.11.1. Incremental date/time
6.11.2. Audit record date/time
6.11.3. Performance-test date/time
6.12. Certificate index
6.13. Query structures
6.13.1. Extended flags
6.13.2. Domain flags
6.13.3. Function Control vector (FCV)
6.14. Firmware identifier (FWID)
6.15. Domain mask
6.15.1. Zero-based domain mask
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6.15.2. Domain mask window
6.16. Retained key identifier (RKID)
6.16.1. Truncated Retained key identifier
6.17. File-parts and their identification
6.17.1. File-size query
6.17.2. Setting file size
6.18. Bitmasks

7. Other standard formats
7.1. SignerInfo
7.2. RecipientInfo
7.2.1. EC RecipientInfo
7.3. SubjectKeyIdentifier (SKI)
7.3.1. Lists of SKIs
7.4. SubjectPublicKeyInfo (SPKI)
7.4.1. SPKI with MAC
7.4.2. SPKIs for curve25519, ed25519, and c448 variants
7.4.3. PKCS8 private keys for curve25519, ed25519, and c448 variants
7.4.3.1. Sample structures for curve25519, ed25519, and c448 variants
7.5. Certificates
7.6. PKCS#11 key checksums
7.6.1. Key checksums of PBE mechanisms
7.6.2. Public-key types’ checksums
7.7. ASN.1/BER TLV (tag, length, value) encoding
7.7.1. Requests
7.7.2. Responses
7.8. DSA/DH parameters
7.8.1. Raw DSA/DH P,Q,G parameters
7.8.2. Raw DH P,G parameters
7.9. Private-key objects

8. Constants
8.1. Administrative identifiers
8.1.1. Administrative variables (attributes)
8.1.1.1. Permissions
8.1.1.1.1. Non-modifiable permissions
8.1.1.2. Infrastructure mode
8.1.1.3. Operational mode (compliance settings)
8.1.1.3.1. FIPS2009 mode
8.1.1.3.2. FIPS2011 mode
8.1.1.3.3. BSI/2009 mode
8.1.1.3.4. BSI/2011 mode
8.1.1.3.5. Common Criteria Certification mode
8.1.1.4. Importer keytypes
8.1.1.5. EC curve identifiers
8.1.1.5.1. Non-Weierstrass EC curve identifiers
8.1.2. Serialized state types (tags)
8.1.3. File identifiers
8.2. Function identifiers
8.2.1. Function (performance) category identifiers
8.3. Card control points
8.4. Domain control points (CPs)
8.5. Blob Boolean attributes
8.5.1. Vendor-defined attributes (CKA_IBM_...)
8.6. Test mechanism constants
8.6.1. RNG test constants
8.6.2. Blob-cache control
8.7. Other fixed values
8.7.1. Query types
8.7.1.1. Query types: extended capabilities
8.7.1.2. Query types: reserved host types
8.7.1.3. Target support bitmask: Supported target modes of host library

EP11 Principles of Operation 133 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Wire format 5/105
8.7.1.4. Query type: elliptic curve support
8.7.1.5. Query type: elliptic curve group support
8.7.2. Return values (CKR)
8.7.3. Custom mechanisms (CKM) and related constants
8.7.4. Attribute types reported by keytype/mechanism-attribute query
8.8. Referenced PKCS#11 constants
8.9. Audit-related constants
8.9.1. Audit event types
8.9.2. Specific audit events
8.9.3. Audit event flags
8.10. Function sub-variants

9. Command parameter lists
9.1. Key generation
9.2. Digesting
9.3. Signing and verification
9.4. Encryption and decryption
9.5. Random numbers
9.6. Key transport
9.7. Queries
9.8. Administration
9.8.1. Session management
9.9. Other calls

10. Version dependent changes
10.1. GetMechanismInfo - HMAC min/maxKeySize
10.2. API ordinal
10.2.1. API ordinal 3 - DeriveKey
10.2.2. API ordinal 4 - Protected key import

The following sections contain fixed values such as sizes. Where
relevant, we also list the corresponding constant name from the backend
source, possibly also exposed through the official host header (ep11.h).
Host code directly producing/parsing wire packets would not be aware of
our symbolic names, but those utilizing the host C library, or those
working on backend could still correlate them.

1. Requests

Requests are serialized in the following ASN.1 form:

xcpReq ::= SEQUENCE {
functionId OCTET STRING, -- (1.1)
domain OCTET STRING, -- raw domain (6.2)

-- ignored for card-level
-- administrative actions

parameter/s OCTET STRING...
}

The function identifier (1.1) selects the PKCS#11 or xcp top-level
function which must parse the request. This field must remain the first
one, to allow the receiver to recognize the function, and find the
required number of parameters which follow.

The domain field (6.2) must match the domain field of the
encapsulating request header, if that also contains domain targeting
information (such as with CPRBs, in (1.3.1)). For card-level
administrative requests the domain field of the encapsulating request
header (if any) is ignored.
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The number of parameters is command-specific. Non-administrative
commands without input parameters---queries---contain only functionId
and domain. Administrative commands always contain input parameters
at the outer xcpReq, as their requests are packaged in separately
constructed administrative command blocks, within regular parameter/s,
see (4.1)

1.1. Function identifier

Functions combine an API ordinal number (2 bytes, big-endian) (see
also 1.1.1) and a function ordinal number (2 bytes, big-endian) into a
fixed-size, 32-bit value. The function ordinal selects the PKCS#11
function, or xcp-specific additions. Function ordinals are expected to
persist across future API updates; backends may provide compatibility
modes, if the caller asks for previous API revisions (through the API
ordinal).

The list of valid function identifiers is in (8.2).

Sub-variants of functions are encoded as a separate parameter (the first
one), where appropriate. Sub-variant selection, where supported, is
listed under function-specific parameters (9). Size queries, as the most
frequently used sub-variant, are described separately (1.2)

1.1.1. API ordinal number

The API ordinal number, a 16-bit integer, tracks host-visible revisions
of backend services. It gets incremented at each API-changing release.
Host code may adapt to changing API ordinals, depending on what is being
changed. Ordinal 0 is reserved, and will not be used except in noted
exceptional cases.

The API ordinal, included in function identifier fields, allows the
backend to implement past versions in API compatibility mode. Requests
from the future---an ordinal number beyond that of the backend---are
rejected.

See section 5.6.2.8 for more details on how the API ordinal can be used and
determined.

The current API ordinal is 0x0004.

If the API ordinal reaches 0xffff, an escape mechanism will be used to
represent a longer API ordinal. Note that we envision further changes
before we expect to reach the API ordinal limit of 0xffff.

1.1.2. API query

The API version query returns the following summary structure:

xcpRsp ::= SEQUENCE {
API version OCTET STRING,

-- 4 bytes: API major version, minor version, 2x 00
reserved OCTET STRING,
build configuration OCTET STRING -- truncated to 4 bytes

}

The reserved fields are included for a future addition, reporting the
range of functions available, and the range of available function
sub-variants.
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1.2. Size query

PKCS#11 supports size queries, where a reasonable, potentially
conservative estimate of the output size must be returned, without
performing the actual operation. XCP supports size queries as a subset
of function variants: the first non-default function variant (1) is
reserved for size query.

When querying output sizes, in most cases the meaning of input and
output _data_ changes: size queries pass input _bytecount_ as ‘‘input
data’’ in a fixed-size raw integer field (8 bytes), instead of actual
input data. Parameter count, and by implication, wire encoding, is
unchanged. Function descriptions (9) specify the special cases where a
size query does not change the meaning of data fields to bytecount.

Similarly, size queries return the output _bytecount_, encoded as a
raw integer of 8 bytes as ‘‘output data’’ (2.1).

The meaning of input _data_ fields only changes for actual user data.
Size queries where no user data is used, such as key generation or
state--session--initialization based on input blobs, any blobs must
still be passed to the backend.

Not all functions support size queries. Exceptions include functions
with fixed-size output--either user-specified sizes, or known structures
of fixed size--and are unambiguously documented. Host libraries
must handle PKCS#11-compliant reporting of size queries for such
cases.

Note that encoding bytecounts instead of data actually increases request
size in pathological cases, such as when digesting small numbers of
bytes.

1.3. Request headers

Transport-specific headers precede request/response payloads (SEQUENCEs),
and are system-dependent.

1.3.1. CPRB [Coprocessor request block] wire headers

On HSM-resident mainframe backends, we use a fixed CPRB header layout to
target requests. The format is identical for requests and responses:

offset bytes note
-------------------------------------------------------------------------

1. 0 CPRB (header) bytecount 2 fixed 32 (X’0020)
2. 2 CPRB version 1 0x04
3. 3 reserved 1 0
4. 4 reserved 1 0 incoming, performance when returned
5. 5 flags 1 reserved bits:

x80 OS(0) or TKE/administration(1)
x40 EP11(0) or Miniboot(1)
[hw-Miniboot uses the same head]
x20 protected key import cmd
[to be intercepted by firmware]
other bits are reserved 0

6. 6 CPRB subtype 2 X’5434 (ASCII ‘‘T4’’)
7. 8 source identifier 4 partition/VM identifier (6.1)
8. 12 target domain 4 raw domain (6.2)
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9. 16 return code 4 reserved 0 for requests
10. 20 reserved 8 reserved 0
11. 28 payload bytecount 4 net bytecount of following SEQUENCE

-------------------------------------------------------------------------
32 (payload) (var) (see bytecount above)

Multi-byte fields are big-endian.

The source identifier refers to the originating partition/VM (see 6.1).
It is currently ignored by the backend. Host code is responsible for
matching targeting, i.e., verifying that the given source is allowed
to send a request to the target domain. THE BACKEND DOES NOT VERIFY
THE SOURCE IDENTIFIER.

The domain field (see 6.2) must match that within the request/response
structure (within payload).

The SEQUENCE following a CPRB must be appended without intermediate
padding. Payload bytecount is net size, ignoring any channel-mandated
padding---if any---which should not be XCP-visible.

1.4. ASN.1 encoding

The backend accepts BER-encoded requests with definite encoding. It does
not mandate DER encoding at the top-level SEQUENCE. Embedded content,
such as the administrative command block (4.3), is DER-encoded.

See also (2.3) and (7.7) for restrictions on encoded data.

1.4.1. Multi-data requests

Certain functions support a sub-variant, which supplies data for
multiple, unrelated operations to be processed in a single request. A
typical application is signature generation on multiple, small inputs
using the same key, amortizing I/O overhead over a batch of individually
fast operations. Only data is interpreted differently for multi-data
requests: all other conditions, such as key or mechanism (parameters)
must be identical for these calls.

Input data to the multi-data request sub-variant, and its size-query
equivalent, must be encoded within the data field which would otherwise
supply the single input. Data sub-fields must be embedded within an
ASN.1-encoded SEQUENCE of OCTET STRINGS, all within the OCTET STRING
request-data field. The top-level encoding, or any of the other fields
are unaffected; the only difference is the enforced internal structure
of the data field.

As with other fields, presence of an empty OCTET STRING is allowed:
it indicates 0-byte data in that position.

Note that multi-data request input sub-fields are processed in
isolation: no capabilities for referencing other sub-fields etc. exist.
Therefore, multi-data requests are functionally identical to multiple,
single-data calls to the same service, and only provide the equivalent
of small, local loops without additional capabilities.

1.4.2. Restrictions of multi-data processing

Multi-data requests are only supported by calls which do not need
to update object or key state during processing. This restricts
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multi-data to single-pass forms of functional calls; generally, to
PKCS11 single-pass nnn() [after nnnInit()] and our proprietary chained
form, nnnSingle(). (In other words, only calls which do not return
updated state to the host may be eligible for multi-data requests.)
Since the transport itself may restrict request sizes, and therefore
prevent passing oversized requests in single calls, further size limits
may be imposed on multi-data request/response flows, which are not
described here.

Backends MAY restrict the number of sub-data fields accepted for
each multi-data request; this upper limit is reported under extended
capabilities (8.7.1.1.) Backends restricting the number of fields
MUST support at least 16 of them. Since the extended-capability query
allows reporting ‘‘no predefined limit’’ as a non-zero value, this
extended-capability field is the recommended query mechanism to detect
the presence of multi-data support.

In their current form, multi-data requests may not support non-streaming
operations which still require different states, such as symmetric MAC
calculation with per-data IVs (as IVs in PKCS11 become part of the
session state, not supplied with data). A future, compatible addition
is planned for relevant modes, but it is not currently available in
production.

1.4.3. Multi-data responses

Responses to multi-data requests are serialized as regular SEQUENCEs
of OCTET STRINGS, all encapsulated by the OCTET STRING field of the
response where output data is returned. The number of embedded OCTET
STRING sub-fields and their relative order matches that supplied in the
request SEQUENCE.

Responses contain no other data-identifying information, therefore
callers must match response fields to the original inputs which were
aggregated into a single multi-data request.

1.4.4. Multi-data size queries

Functions supporting multi-data requests, unless otherwise noted,
provide size queries. Multi-data size queries must be supplied replacing
the corresponding data field as described in (1.2), as a packed array of
fix-sized bytecounts; no additional formatting or padding is required.
Responses contain a similarly packed array of response bytecounts.

1.4.5. Multi-data error handling

If data encoding or the packed sizes for multi-data (size-query)
requests is invalid, the backend reports CKR_IBM_TRANSPORT_ERROR.

Multi-data requests do not return partial data, and supply only a
single return value. If any of the constituent requests fails, the
proper return value is supplied; responses of any preceding, successful
sub-operations are discarded.

We do not currently support diagnostics to report which particular
request slice caused the error.

Note that the backend MAY impose restrictions on the total runtime of
multi-data requests, and is encouraged to return CKR_IBM_REQ_TIMEOUT if
the requests would terminate beyond what may be appropriate. Details
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and limits of such resource limits are implementation-defined.

2. Responses

Responses are serialized in the following ASN.1 form, encoded as BER:

xcpRsp ::= SEQUENCE {
functionId OCTET STRING,
domain OCTET STRING, -- raw domain (6.2)
returnValue OCTET STRING,
response/s OCTET STRING... -- if present

}

The functionId and domain fields are copied from the originating request
without modification.

The returnValue field contains a 32-bit fixed-size raw integer, encoding
a CKR_... PKCS#11 or extended (vendor-defined) return value (see also:
8.7.2). If the value is not CKR_OK (i.e., 0), this is the last field,
no response follows.

Response/s contain output(s) of the command. They are missing if the
request failed (i.e., returnValue is not CKR_OK). The number of returned
fields is command-specific. For commands which only return status--such
as C_Verify()--response fields are missing.

2.1. Size query

As described in (1.2), most size queries return output bytecount as
fixed-size, 64-bit raw integers in the field where output---data---would
appear. Since we only change the interpretation of the "output" field,
parameter count and encapsulation are unchanged.

2.2. Response headers

On HSM-resident mainframe backends, the CPRB header layout is
identical to that of requests (1.3.1).
The CPRB return code is zero in almost all cases. The current two
exceptions are fundamental ASN.1 parse errors within the payload or
a mismatch between the CPRB specified domain and the domain field(s)
within the payload (see 6.2).

The CPRB return codes currently defined are:

XCP_M2H_DEFAULT_ERR 0x000c0001
XCP_M2H_DOMAIN_MISMATCH 0x000c0002
XCP_M2H_FW_BUSY 0x000c0003 -- firmware is busy, try again later

-- (only relevant for protected
-- key import)

XCP_M2H_FN_NOT_ALLW 0x000c0004 -- function is not allowed
-- (only relevant for protected
-- key import)

2.3. ASN.1 encoding

Responses are encoded under BER rules for the top-level SEQUENCE, with
one specific special case: variable-length fields are encoded with at
least a two-byte Length entry (i.e., the shortest encoded length is 82
|| BE16(L) for a value of L bytes). Variable-length values over 0xffff
bytes use a minimal encoding for their Length entries.
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Integers which by construction fit within 32 bits--also described
individually below--are returned as fixed-size OCTET STRINGS, therefore
follow a fixed 2-byte Tag+Len field (hex 0404).

Individual content, such as administrative response blocks (4.2) are
DER-encoded.

See also (7.7).

3. Key objects (blobs)

3.1. Raw keys

Individual keys are stored as encrypted, authenticated binary blobs
on the host.

WK fields are concatenated without padding in the following order:

bytecount note
----- MACed: -----------------------------------------------------------

1. WK virtualization mask 32 session identifier (6.2.2)
(XCP_WK_BYTES)

2. WK identifier 16 XCP_WKID_BYTES, see (6.7.1)
3. Boolean attributes 8 mirrored from attributes

in encrypted region
4. mode identification 8 see (6.8.3.1) and (8.1.1.3)

----- IV ---------------------------------------------------------------
5. structure version 2 see (3.1.1)
6. IV 16 -2

total 16 bytes
(MOD_WRAP_BLOCKSIZE)

----- encrypted: -------------------------------------------------------
7. attributes’ bytecount 2 first encrypted field

see MOD_VARLENS_BYTES
8. payload bytecount 2 see MOD_VARLENS_BYTES
9. auxiliary bytecount 2 see MOD_VARLENS_BYTES
10. reserved 2 mandatory zero-filled

----- blob fields -----------------------------------------------------
11. attributes (dynamic) see bytecount above
12. serialized CSP object (dynamic) see bytecount above
13. auxiliary CSP data (dynamic) see bytecount above
14. padding, if needed pad encrypted region skipped if not needed

to multiple of 16 (unambiguous, based on
starting bytecounts)

----- end of encrypted region ------------------------------------------
----- end of MACed region ----------------------------------------------

15. MAC 32 covers all preceding bytes
(incl. clear header)

WK virtualization mask is all-zero for objects not bound to sessions.
Otherwise, the field contains the session identifier of the session
the object is bound to. Contents of this field are combined with the
controlling WK to derive a session-specific encryption key for objects
bound to that session.

Blob Booleans and clear attributes must match their counterparts inside
the encrypted region. They are replicated only to assist the host,
namely to reduce the number of GetAttributeValue calls, and to allow
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sorting of blobs based on operational mode.

The IV is formed from the blob version field (3.1.1) and a remaining,
module-originated random field. These fields are concatenated to form
a single initialization vector (16, MOD_WRAP_BLOCKSIZE bytes).

Encrypted regions are assumed to be host-opaque. For test purposes, we
may construct/modify objects with known WKs.

Attribute and payload sizes are fixed-size raw integers. Blob attribute
encoding is in (3.2).

Details of serialized CSP objects are implementation-specific. (They
follow a proprietary, internal, de facto frozen interface, which is not
targeted or necessary for interoperability. Counterparties MUST use
PKCS11-standard Un/WrapKey to transport keys, and have no reason to
interface directly with non-key blobs.)

Padding, if present, zero-pads the encrypted region to an integer
multiple of MOD_OBJ_PADTO. Since bytecounts are unambigous--see
the first two fields of the encrypted region--we do not require an
unambiguously decodeable padding mode (such as PKCS padding). The
verifies that padding, if present, consists of all zeroes.

The MAC is calculated from a WK-derived MAC key, generating an
HMAC/SHA-256 signature on the preceding bytes. Objects are encrypted,
then MACed, including their clear header.

3.1.1. Blob revision

Blob version is encoded as a single 16-bit identifier, stored as a
raw integer (at the fixed offset 64). Current version is 0x1234.

3.2. Blob attributes

Attributes share the same format within key blobs and queries. In the latter
case, they are passed around in the clear.

3.2.1. Attribute header

A full set of attributes concatenates a header, Booleans, integers,
and variable-length/array attributes without padding, in this order.
The header is a single 32-bit raw integer, concatenating the following
fields:

bitcount note
1. version 4 1 (fixed for current version)
2. reserved 4 0

----- byte 1: ---------------------------------------------------------
3. number of integer attrs 8

----- bytes 2/3: ------------------------------------------------------
4. number of var-len attrs 4 variable-length/array

attribute count
5. wordcount of var-len attrs 12 measured in 32-bit words

The header is written as a big-endian buffer in MS to LS order, i.e.,
the first byte in the current version is fixed 0x10.

Variable-length/array attributes are always encoded to full words,
therefore their total size is measured in 32-bit units. The current
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format limits aggregate size to 131040 bytes ((2^12-1) * 4).

As described below, for an attribute field with N integer attributes
and M variable-length ones, total field size is 12+8*N+L(M) bytes (4
/header/+ 2*4 /Booleans,two copies/ + 2*4*N /integers/ +L(M) /total of
var-len fields’ gross sizes/). Traversing variable-length attributes
individually requires parsing; overall size of the field is available
in encapsulations we use (therefore, the aggregate size of var-length
fields should be available even without such parsing).

3.2.2. Boolean attributes

Boolean attributes are represented as a single big-endian, fixed-size
integer, currently fixed at 32 bits, and are always present in an
attribute structure. Individual bits are defined as XCP_BLOB_<nnn>
constants (see 8.5). The field must not have any other bits set, other
than the enumerated constants.

The wire form always includes two copies of Booleans. Except for
’’attribute set’’ requests, the two copies must be identical. We prefer
to mandate a single--potentially redundant--form, with an additional
check, less intrusive than having flexibility in the wire structure.

When attributes are being set (i.e., a C_SetAttributeValue request),
the two Booleans may differ. The first value is the set mask (ORing all
bits which must be modified), the second one is the actual value to set
(containing 0 for those mask bits which will be reset to false).

3.2.3. Integer attributes

Integer attributes are limited to 32-bit values, with attribute-specific
interpretation (generally, unsigned values). They are stored as a packed
array of 32+32-bit big-endian integers, with the PKCS#11 attribute type
(a CKA_... constant) followed by the 32-bit value.

The attribute header (3.2.4) contains the number of integer attributes,
therefore the number of type+value pairs need not be encoded in the
structure.

3.2.4. Variable-length attributes

Variable-length and array attributes are encoded as type-length-contents
tuples, with type-dependent interpretation. The order is the following:

bytecount note
1. type 4
2. length 4 net bytecount excluding content padding
3. contents (length, round up to 4n) zero-pad to multiple of 4, if applicable

Interpretation is attribute-dependent. Recursive attributes, such as
CKA_WRAP_TEMPLATE or CKA_UNWRAP_TEMPLATE, contain full attribute
structures as their content.

3.3. Attribute-bound (AB) key transport form

Note that the AB transport form is, unfortunately, incompatible
with standard PKCS#11 formats. However, since none of the standard
transport-encryption methods allow simultaneous transport of key
material and its attributes, the standard formats clearly conflict
with the requirements of high-assurance environments.
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The AB transport form may be parsed in a single pass, containing
identifying metadata, information about the encryption key,
attributes, raw key bytes, and a signature, in this order.

field bytes notes
--- start of MACed/signed region -------------------------------------------
1. AB header 16 XCP_AB_HDR_BYTES
2. PK-encrypted transport key <var> present only if KEK is

asymmetric key(pair); bytecount
depends on KEK type and size

3. IV <block> block size of content-encryption
cipher (8 or 16); see structure
description below

--- start of symmetric-encrypted region ------------------------------------
4. attribute bytecount 2 bytecount of field (6) below
5. raw key structure bytecount 2 bytecount of field (7) below
6. packed attributes <variable> full attribute structure, see

notes below and (3.2)
7. raw key bytes <variable> layout differs for symmetric

and private keys (3.3.2)
8. padding, if necessary <variable> pads plaintext to multiple of

32 (XCP_AB_PADTO), if necessary
--- end of symmetric-encrypted and MACed/signed region --------------------
9. MAC/digital signature of <variable> bytecount depends on KEK type

preceding bytes and possibly size (3.3.3)

Attributes are packed as described in (3.2). The packed structure always
includes at least three integer attributes (3.2.2), with the first
three storing CKA_KEY_TYPE, CKA_VALUE_LEN, and the vendor attribute
CKA_IBM_STD_COMPLIANCE1 (0x8001000a), in this
order. If the original key had other integer attributes, they follow
these three in arbitrary, unspecified order.

If the size of encrypted fields is a multiple of AB padding size
(32 bytes), the (8) padding is missing. In other cases,
PKCS padding is applied, filling the padding field single bytes,
each containing the padding bytecount.

3.3.1. AB transport header

Keys formatted for AB transport use a header of fixed-size
(16, XCP_AB_HDR_BYTES):

offset
field

bitcount note
-------------------------------------------------------------------------------
1. 0 format identifier 8 (see XCP_AB_HDR_ID)
2. 1 version/blocksize 8 currently, 0x11 or 0x12, see below
3. 2 packed length 16 gross bytecount, in 8-byte units

4. 4 KEK checksum..................24 PKCS#11 checksum or MS bits of SKI
5. 7 key checksum 24 PKCS#11 checksum or MS bits of SKI
6. 10 MAC/sign key checksum 24 PKCS#11 checksum or MS bits of SKI

7. 13 packed key bytecounts 24 MS 12 bits: encrypted transportkey
LS 12 bits: MAC/dig.sig. bytecount

-------------------------------------------------------------------------------
16 total header bytecount
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Symmetric key checksums use standard 24-bit PKCS#11 checksums (the
CKA_CHECK_VALUE attribute, as specified by PKCS#11 for the each key
type). We do not currently support symmetric key types without a
defined PKCS#11 check value---such as RC4---and therefore we only
use standard checksums.

Asymmetric keys feature the most significant 24 bits of their SKI as
checksum. By construction, the SKI is identical for public and private
keys of the same keypair.

Note that the backend generates headers with proper checksums, when
exporting. During import, key checksums are ignored. (Note that this
won’t impact security, as a rogue MAC-key owner can compromise the
whole compound, including checksums; others can’t benefit from
changing only the checksums.)

3.3.2. AB encryption

The encryption used in AB transport formats depends on both KEK and key
type. Since the format is self-describing---it describes the type and
size of the embedded key before the encrypted field---and an improper
KEK may be detected, AB encryption may be unambigously decoded.

If the KEK is symmetric, it encrypts the key directly, without an
intermediate transport key. If the KEK is an asymmetric key(pair),
encrypted regions are encrypted by a randomly generated 256-bit AES
transport key, and the transport key is included in the AB-formatted
header, encrypted by the KEK.

If the KEK is an RSA key(pair), the transport key is encrypted using RSA
OAEP. AB transport does not currently support other asymmetric KEK types
or transportkey-encryption algorithms.

Symmetric/secret keys are written into the leading bytes of a single,
256-byte buffer, with trailing bytes zero-filled. (Currently, we do not
transport larger than 256-byte secret keys.) Since bytecount and key
type are unambiguous---present in preceding attributes---the raw bytes
require no further annotation or formatting.

Asymmetric keys are stored as PKCS#8 files, zero-padded to an integer
multiple of 32 bits (4 bytes). The preceding length field (raw key
structure bytecount) contains the unpadded bytecount.

The following keytypes are currently supported in AB transport:

type type(be32) encoding interpretation of
CKA_VALUE_LEN

-----------------------------------------------------------------
1 CKK_AES 0x0000001f raw bytes key size, bytes
2 CKK_DES 0x00000013 raw bytes key size, bytes
3 CKK_GENERIC_SECRET 0x00000010 raw bytes key size, bytes
4 CKK_RSA 0x00000000 PKCS#8 PKCS#8 bytecount
5 CKK_EC 0x00000003 PKCS#8 PKCS#8 bytecount
6 CKK_DSA 0x00000001 PKCS#8 PKCS#8 bytecount
7 CKK_DH 0x00000002 PKCS#8 PKCS#8 bytecount

3.3.3. AB signatures

Attribute-bound keys may be signed by both symmetric and asymmetric
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keys, producing a MAC or digital signature, respectively. Currently, the
key type and size unambiguously determine the signing algorithm, and the
AB form of keys does not specify algorithms. If algorithm choices are
added in the future, they will be in the form of predefined selections
from a fixed set.

If the signing/MAC key is symmetric, it is used as a MAC key, signing
with HMAC/SHA-256 as a signature function.

If the signature key is an RSA key, the signature algorithm is RSA-PSS,
with SHA-256 as a hash function.

If the signature key is an EC or DSA key, the signature algorithm is
ECDSA or DSA, with SHA-256 as a hash function.

3.4. PIN blobs

PIN blobs store session IDs, MACed with potentially user-influenced salt.
Fields of the PIN blob are concatenated without further formatting or
padding:

field bytecount note
-------------------------------------------------------------------------------
1. session identifier 32 (XCP_WK_BYTES)
2. salt 16 (XCP_PIN_SALT_BYTES)
3. MAC 32 (XCP_HMAC_BYTES)

covers all preceding bytes (HMAC/SHA256)
-------------------------------------------------------------------------------

PIN blobs are signed by a fixed, predefined, single-purpose HMAC key,
independent of any WK-derived MAC keys, which is not considered to
be sensitive. Host libraries are assumed to contribute sufficient
separation into passphrases and nonces of their callers to prevent
callers impersonating each other.

Salt construction forces a fixed prefix byte onto the salt field, and
allows callers to influence, but not to fully specify, the salt, and
therefore the PIN blob (see m_Login() parameters). Generated salt bytes
may contain one of the following leading bytes, showing different types
of caller-contributed nonces:

01 -- module-generated, all-random nonce, no caller-contributed data
rest of salt is unstructured

02 -- caller-contributed nonce, >3 bytes, has been truncated to 3 bytes
03 -- caller-contributed nonce, <= 3 bytes, has been inserted verbatim

-- both 02 and 03 subtypes store the following information in offsets 1..5:
1 [ bytecount ] -- mod 256
2 [ n0 ] -- up to first 3 bytes of nonce
3 [ n1 ] -- unused bytes (for shorter nonces) are zero-filled
4 [ n2 ]
5 [ XOR(nonce) ] -- XOR of all nonce bytes

There is potential ambiguity (collisions) when nonces over 3 bytes are
supplied by callers. We do not consider these collisions problematic,
and do not intend to change the scheme to prevent them, or to
increase the effective size: we expect nonces to _contribute_ _some_
caller-supplied data, but do not expect this data to be unique.

Other leading salt bytes are reserved, and are not generated by current
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firmware. In future versions, further values may be defined as part of
PIN-blob versioning.

Since PIN blobs are signed by the same key, they are portable across
modules: each receiving module can verify the HMAC on the concatenated
fields.

PIN blobs inherit construction and any restriction of session identifiers
they include (6.2.2).

4. Administrative services

4.1 Administrative requests

Requests to administrative services, including queries and commands,
are encapsulated as regular command structures targeting the m_admin()
function. These requests contain an administrative command, and any
applicable services as parameters, therefore encoded as:

xcpAdminReq ::= SEQUENCE {
functionId OCTET STRING, -- m_admin()
domain OCTET STRING, -- raw domain (6.2)

-- must match field within command block
administrative OCTET STRING encapsulates {

command xcpAdminBlk
}
signatures OCTET STRING {

-- signerInfo’s, without encapsulating SET OF, if present
}

}

See (4.3) for details of the administrative field, or (2) for an
overview of request/response encapsulation.

Signatures, if present, are encoded within ‘‘signatures’’, concatenating
raw SignerInfo structures (see 7.1). Each SignerInfo contains a
signature on the preceding ‘‘administrative’’ field. For requests
without signatures, the field must be present but empty. As a special
case, administrator logins---inserting new certificates---during
imprinting are also unsigned.

Signatures are calculated over the entire SEQUENCE of the
‘‘administrative’’ field including tag+length, but excluding its
encapsulating OCTET STRING.

4.2 Administrative responses

Administrative responses inherit their function identifier and domain
fields from the originating request.

xcpAdminRsp ::= SEQUENCE {
functionId OCTET STRING, -- m_admin()
domain OCTET STRING, -- raw domain (6.2)

-- matches field of originating request
returnValue OCTET STRING,
administrative OCTET STRING encapsulates {

response xcpAdminRspBlk
}
signature OCTET STRING {
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admSig SignerInfo

}
}

ReturnValue is defined to be compatible with regular responses;
administrative commands return CKR_OK here except for
infrastructure-level failures (and then administrative/signature
fields are missing).

If returnValue contains CKR_OK, the actual return value within the
administrative response block is applicable, which may be different from
CKR_OK. (The reason for this distinction: logical failures should still
return a meaningful, signed administrative response, this special case
allows that. Otherwise, the non-CKR_OK return value would imply lack of
further fields.)

The signature is calculated over the entire SEQUENCE of the
‘‘administrative’’ field including tag+length, but excluding its
encapsulating OCTET STRING. The ‘‘response’’ structure is copied from
the originating ‘‘command’’ structure, with only the payload field being
replaced by the response payload.

4.3 Administrative command block

Command or query payloads contain fields to identify the command,
targeted module and domain, transaction counter, and the payload--the
latter interpreted in a service-specific way.

xcpAdminBlk ::= SEQUENCE {
admFunctionId OCTET STRING, -- command/query identifier
domain OCTET STRING, -- administrative domain (6.2.1)

-- mandatory 0 for card-level actions
moduleIdentifier OCTET STRING,
transactionCtr OCTET STRING, -- may be empty for queries

-- or unsigned commands
payload OCTET STRING -- command-specific interpretation

}

See (8.1) for command/query identifiers. The identifier is encoded
as a fixed-size, 32-bit raw integer.

The domain must match that of the encapsulating request for domain-level
actions. Note that within the command block, we use administrative
domains (i.e., including domain instance identifier). For domain-level
actions, the backend verifies that the--redundant--domain fields are
consistent.

For card-level actions the domain field must be set to all-zeroes.

The module identifier, if present, restricts the command block to a
particular backend (see 6.3). It may be omitted for queries, or commands
without signatures; any host-supplied value is ignored in such a case.
If the field is present, it must have the proper size.

The transaction counter (see 6.4) must supply the next transaction
counter state for state-changing commands. The field may be empty for
queries, or commands without signatures. If present in such a command
block--with the proper size--the host-provided value is ignored.

4.3.1. Certificate replacement
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When replacing a certificate, the payload must combine the SKI of the
certificate being replaced, and the replacement certificate:

xcpCertReplacement ::= SEQUENCE {
ski OCTET STRING, -- SubjectKeyIdentifier
rpl OCTET STRING -- Certificate

}

This compound structure (see 7.3, 7.5) is encapsulated within the payload.

4.4 Administrative response block

Fields are replicated from the originating command block (4.3). Function
identification, domain, module identifier, transaction counter are all
reported by the module current state, even if they were missing from the
request. The response is augmented with the PKCS#11 return code; payload
is the field returned by the query or command.

xcpAdminRspBlk ::= SEQUENCE {
admFunctionId OCTET STRING, -- command/query identifier
domain OCTET STRING, -- administrative domain (6.2.1)
moduleIdentifier OCTET STRING,
transactionCtr OCTET STRING, -- current/updated value
response OCTET STRING, -- return value (CKR_...)
payload OCTET STRING -- command-specific interpretation

}

Domain-level responses fill in the entire domain field, including
instance identifier.

As with requests, the interpretation of ‘‘payload’’ is
query/command-specific.

4.5. Administrative structures

4.5.1. Integer administrative attributes

Individual attributes are encoded as a fixed-size 32-bit raw integer
(index), followed by the 32-bit raw integer value, without further
encapsulation. Multiple attributes are encoded as a packed array,
concatenating individual attributes without padding or other formatting.

When changing attributes, only the updated ones need to be present.
Setting attributes must not repeat an attribute, even with identical
value (i.e., each attribute must appear at most once in the payload).
Queries return all available attributes.

A listing of supported attributes is under (8.1.1). As with other
similar fields, this list may grow in the future, but assigned values
will retain their meaning.

4.5.2. Control points (CPs)

When a full set of control points is serialized, they are encoded as
a fixed-size bit array, an integer multiple of 128
(XCP_CPBLOCK_BITS) bits. The actual number of supported CP bits is
supplied through a module-level configuration query (5.1.1); the backend
requires a full set to have the proper padded size.

EP11 Principles of Operation 148 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Wire format 20/105
The field is filled from the left, bit-wise, i.e., a field with only CP
number 1 active contains "40 00 00..." hex (CP numbering is zero-based).

The set must contain zeroes for CP bits which are currently not set.
The backend always returns such CP sets. Active CP bits which the
backend does not recognize are ignored: they may be set, but read
back as all-zeroes. This way, backends will tolerate CP sets from the
future. (Note that the number of supported CPs may be queried.)

If CPs which must not be set are provided in a set request, they are
ignored without an error. Host code will be find these bits to be
missing in a subsequent CP query. (Rationale: supported, never-settable
CP bits are handled the same way as CPs from the future are: ignored,
not set.) Such automatically removed CPs may be driven by card policy,
including minimum compliance levels, capability-controlling ‘‘Function
Control Vectors’’ (6.13.3), or other module-internal policy enforcement.

See XCP_CPB_... definitions for individual CPs (8.4)

5. Compound structures

5.1. Query types

The following structures are reported by the available queries, which
are selected as parameters to get_xcp_info() (6.13). Note that some of
the categories are optional, their presence reported through extended
token flags (6.13.1).

5.1.1. Module query

The module information query returns the following fields, concatenated
in this order without any padding or further formatting:

offset bytes
field notes

--- backend revision/configuration -----------------------------------------
1 0 API ordinal number 4 only LS 16 bits are nonzero
2 4 firmware identifier 4 truncated FWID (6.14)
3 8 API version, major 1
4 9 API version, minor 1
5 10 CSP version, major 1 CSP-specific meaning
6 11 CSP version, minor 1
7 12 firmware configuration 32 FWID, combines xcp and CSP (6.14)
8 44 xcp configuration 32 hash, xcp code without CSP
9 76 CSP configuration 32 hash, included CSP library
--- device identification --------------------------------------------------
10 108 serial number 16 device || instance (6.3)
11 124 module date/time 16 UTC (6.11)
12 140 operational mode 8 standards’ compliance (8.1.1.3)

aggregate of domains’ settings
--- infrastructure properties ----------------------------------------------
13 148 PKCS#11 flags 4
14 152 extended flags 4 non-standard capabilities (6.13.1)
15 156 domain count 4 number of supported domains
16 160 incremental symmetric state 4 symmetric incremental en/decrypt

bytecount 4 and sign/verify (such as CMAC)
17 164 digest/HMAC state bytecount 4
18 168 pin blob bytecount 4
19 172 SPKI bytecount 4 incl. salt, attributes, and MAC
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20 176 private key blob bytecount 4
21 180 symmetric blob 4 raw symmetric keys (any type)
22 184 payload size limit 4 maximum gross payload bytecount

which may be passed to channel
(payload only, without channel
headers); 0 if no backend limit

23 188 CP profile bytecount 4 XCP_CPID_BYTES of the backend
0 if profiles are not supported

24 192 maximum CP index 4
--- end --------------------------------------------------------------------

196 (total bytecount)

XCP and CSP configuration is reported separately, in addition to the
compound FWID, to allow tracking of different configurations of the same
code, such as HSM-backed and soft-HSM instances built from the same XCP
revision. The compound FWID uniquely identifies the entire backend.

CP fields (4.5.2) are padded to units of 128 (XCP_CPBLOCK_BITS).
The structure returns the net CP count, the number of control points
actually available (note: not the index of the last one).

Bytecounts are reported as possible maximum values for the given type.

The corresponding PKCS#11-similar structure in ep11.h is CK_IBM_XCP_INFO.
It is loosely based on the CK_INFO structure returned by the PKCS#11
C_GetInfo call (which XCP does not support).

5.1.1.1. Text/description fields

Inherited from PKCS#11, a number of fields targeted for human/log
consumption may be queried as a sub-query (9 (CK_IBM_XCPQ_DESCRTEXT)).

The backend does not interpret any of these fields. The are not intended
for machine interpretation, other than depositing them into host logs.
We do not specify any particular subdivision of the fields.

offset bytes
field notes

------------------------------------------------------------------------------
1 0 manufacturer ID 32 see PKCS#11 token/slot manufacturer
2 32 model identifier 16 see the ‘‘model’’ field of PKCS#11
3 48 token/slot label 32
------------------------------------------------------------------------------

80 (total bytecount)

Fields SHOULD contain only valid UTF-8 encoded data; this expectation matches
that of PKCS#11, but it not enforced by the backend.

5.1.2. Domains query

This structure, reported by the CK_IBM_XCPQ_DOMAINS query type, returns
a packed array of information fields about domains. Its purpose is to
provide an overview of domains. The response contains zero or more of
the following records, concatenated without further formatting or padding:

offset bytes note
-------------------------------------------------------------------------

1. 0 domain index 4 raw domain (6.2)
2. 4 domain WK ID 4 32 MSB of WK ID (6.7.1)

-------------------------------------------------------------------------
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Domains without administrators or any of the WKs are skipped. The
returned list is in increasing index order.

5.1.3. Domain query

Domain queries return the following properties of the targeted domain,
concatenated in the following order, without further formatting
or padding:

offset bytes note
-------------------------------------------------------------------------

1. 0 domain index 4 raw domain
2. 4 current WK VP 32 WK hash, active WK (6.7)
3. 36 pending WK VP 32 WK hash, pending WK (6.7)
4. 68 domain flags 4 admin/WK presence (6.13.2)
5. 72 operational mode 8 standards’ compliance (8.1.1.3)

-------------------------------------------------------------------------
80 total bytecount

Multi-byte fields are big-endian.

The domain is redundant in the reply. It is replicated to make the
response selfcontained, meaningful without the entire encapsulated
response.

Key verification patterns are zero-filled if the corresponding WK is not
present (see the domain flags field).

Note that this query result is not signed. If a trustworthy, signed
copy is needed for audit purposes, one should issue the corresponding
administrative query.

5.1.4. Selftest

Selftests do not return any results, only CKR_OK if tests pass, or
CKR_FUNCTION_FAILED if any selftest or known-answer test fails. The
latter return value is used for other purposes by other commands, but
those conditions may not be reached by a query.

In production builds, we do not provide further details about which
component failed in the response code, but we may do in other logging
channel such as system log.

5.1.5. Audit records history

The backend retains the last audit records, and makes them available
through a query type, returning one record per query. The sub-query
(type) selects the record, with a 1-based index starting at the most
recent record. Sub-query type 0 returns the number of currently
stored records as a 4-byte raw integer.

If the the requested index is out of range, CKR_KEY_HANDLE_INVALID
is returned (note that the indexed object is, obviously, not a key).

This query type is conditional, it is rejected by backends which do not
store audit chains.

5.1.6. Host queries
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A range of query indexes are reserved for host extensions, which
should not be passed down to the backend, and are not available
there. Query indexes of 0xff000000 or higher (CK_IBM_XCP_HOSTQ_IDX)
are reserved for this range, and they are expected to be intercepted by
host. Backends will never react to queries within this range.

Host queries are beyond the scope of this document, but we maintain
some recommendations for host queries, and would prefer to include
host-originated information in our future releases.

As a minimum, host libraries SHOULD include a query to enumerate the
number of supported host queries supported. When further constants
are supported, they SHOULD match the reserved constants enumerated
under (8.7.1.2). Our host code returns any host-query response as a raw
buffer, without any interpretation.

5.1.7. Performance classification statistics

The backend aggregates performance statistics, keeping a count of
requests which belonged to each defined performance category (8.2.1.). the
query returns a packed array of 5 (XCP_OPCAT_ASYMM_MAX)
32-bit entries, without further formatting or padding, in increasing
category order.

Note that individual 32-bit counters wrap without any notification. In
practice, we expect short-term measurements to be unaffected, if
they identify counter wraps (and MAY assume each counter-wrap event
means an increment of 2^32 events).

When high-throughput backends will approach realistic limits of 32-bit
counters, counters will be extended to 64 bits. A new query will be
added then, returning 64-bit counters, and this base query will return
the least significant 32 bits of each counter.

Since queries are interleaved with functional requests, the host MUST
assume values are approximate (in other words, expect exact results only
from an otherwise quiesced module).

5.2. Development test structures & calls

Development backends support a test function which allows potentially
dangerous test operations. All such test operations take an input field,
at least 4 bytes, with the first 4 bytes containing a 32-bit raw integer
selecting the operation. Supported operations are enumerated within
XCP_DEVcmd_t values (8.6).

Development functions are passed through the non-standard
EncryptSingle() or DecryptSingle() calls, using CKM_IBM_TESTCODE
(0x8001000e) as a custom mechanism (see also 8.7.3). When
using this test mechanism, packed test structure must be passed as
plaintext; the blob parameter is ignored by most calls---see
iterated en/decryption (5.2.4) for the single counterexample.

Note that the actual configuration of supported development extensions
may be setup-dependent. Please check with your system administrator if
an expected service is not supported. We do not currently support a
capabilities query for development extensions, but it may be added in
the future.

Except for test functions described below, test calls do not take input
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parameters or return data.

5.2.1. Set current WK (both forms)

This format includes both raw and imprinting set-WK variants. (They both
set a domain WK, but one also moves the domain out of imprint mode.)

Raw bytes of the current WK follow the development operation ID. The
following bytes are raw bytes (32 ), without further formatting.

The returned result concatenates the newly loaded WK, and the internal
MAC key derived from it.

5.2.2. Set pending WK

Raw bytes of the pending WK follow the development operation ID. Note
that this payload is only accepted if there is a current WK in the
targeted domain.

As with current WKs, raw keybytes follow the operation ID, without
further formatting.

The returned result concatenates the pending-WK which has been accepted,
and the internal MAC key derived from it.

5.2.3. Set control points (CPs)

The full set of newly active CPs follows the development operation ID
(4.5.2.). The supplied CPs replace the ones within the targeted domain.

The full CP set must be present; it is verified as documented under the
corresponding administrative command.

The returned result is the CP set which has been loaded.

5.2.4. Iterated encryption/decryption

These cryptographic calls perform repeated operations on the same
data; their primary use is for performance measurements and compliance
testing, such as power analysis. This is the only test call which uses
the blob parameter, containing the key being tested; its type must be
consistent with the test function identifier (AES or T/DES).

Input data following the function identifier is interpreted as
a 32-bit raw integer (first 4 bytes) specifying iteration count,
followed by the single block of input (plaintext or ciphertext).
Block size is determined by the cipher/key type.

5.2.5. Manage read-only mode

This test call manages internal filesystem access, selectively
restricting access to filesystems. It may be used to simulate certain
stages of a concurrent-update process, where internal filesystems may
not be writable, or may be completely unreachable.

The call uses a single, 4-byte raw integer as parameter, both as input,
and output. The following values force restrictions as follows:

XCP_DEVFS_READONLY (1) -- writes prohibited
Calls restoring data from filesystems are allowed.
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XCP_DEVFS_NOACCESS (2) -- no filesystem access
All persistent-filesystem reads and writes are prohibited.

In both restricted modes, memory structure updates are allowed.

The XCP_DEVFS_QUERY constant (0) only reports
current state, without updating it.

All forms return the current setting, as a single, 4-byte raw integer.

5.2.6. Blob and CSP configuration query

This query returns information about the internal configuration of blob
data, including CSP objects. While these details are kept opaque for
production builds, the test query reports them for tool use---such as
our system fuzz-tester.

offset bytes note
-------------------------------------------------------------------------

1. 0 structure version 4 currently, fixed v1
2. 4 flags 4 see (5.2.6.1)
3. 8 object marker bytecount 4 header-internal marker
4. 12 integer bytecount 4
5. 16 size_t bytecount 4
6. 20 void pointer bytecount 4
7. 24 function pointer bytecount 4
8. 28 mutex pointer bytecount 4 0 if backend does not support locks
9. 32 object tail bytecount 4 marker follows object, if non-0
10. 36 header total bytecount 4 including any padding

-------------------------------------------------------------------------
40 total bytecount XCP_CSP_CONFIG_BYTES, see (8.7.)

Multi-byte fields are big-endian.

5.2.6.1. Blob configuration flags

The following additional flags are defined for the blob configuration query:

1 if backend is little-endian

5.2.6.2. Blob object header configuration

CSP object headers concatenate a marker (if bytecount is >0), two
integers, a size_t net object bytecount, a pointer (context), a function
pointer, and a mutex pointer (if bytecount is >0), in this order.
Padding rules of the backend apply.

Note that some fields within the blob-internal header are ignored,
since they are filled during blob decryption.

5.2.7. Algorithm tests

The test interface provides direct access to some algorithmic
primitives, such as needed for algorithm testing.

5.2.7.1. RSA key generation (ANSI x9.31)

ANSI x9.31 key generation enumerates prime candidates based on prime
factors p,q and a random X0, which has the bitcount of the targeted
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prime.

offset bytes note
------ header ---------------------------------------------------------

1. 0 structure version 4 currently, fixed v1
2. 4 prime-factor bitcount 4 of Xp1, Xp2, Xq1, Xq2
3. 8 prime bitcount 4 of Xp, Xq
4. 12 public exponent bitcount 4 possibly 0 (if using Fermat4)

up to 256, inclusive
------ prime-search parameters ----------------------------------------

5. 16 prime factor base Xp1 <var> search base for prime factor p1
6. <var> prime factor base Xp2 <var> ...p2...
7. <var> prime base Xp <var> search base for prime P
8. <var> prime factor base Xq1 <var> ...q1...
9. <var> prime factor base Xq2 <var> ...q2...
10. <var> prime base Xq <var> search base for prime Q
11. <var> public exponent E <var> possibly missing: default Fermat4

(0x10001) is used if not specified
-------------------------------------------------------------------------

Parameters are concatenated without further padding or formatting. Prime
factors and prime bases must be zero-extended to uniform length of their
respective category. In practice, these parameters are generated with
fixed bitcounts, and zero-padding bytes would be seldom needed.

Multi-byte integers are big-endian.

The returned private key is encoded in PKCS8 format, in the clear.
Remember that this is a test-only operation, not shipped with production
builds.

Note that the generated primes P and Q may be reordered, to force P>Q,
if the CSP requires this (it is standard practice). In such cases,
swapping the sections for P and Q will result in identical PKCS8 output.

5.2.7.2. DSA parameter (PQG) generation

DSA PQG generation may be called with a seed, iteration count, and
P+Q bitcounts. It returns the generated PQG tuple, with the trailing
iteration count, or an error if the search for PQG from the given seed
and iteration count does not terminate.

offset bytes note
------ header ---------------------------------------------------------

1. 0 structure version 4 currently, fixed v1
2. 4 prime bitcount 4 P
3. 8 sub-prime bitcount 4 Q
4. 12 iteration count 4 number of Q candidates to test

------ seed -----------------------------------------------------------
5. 16 initial seed <var> all remaining bytes

-------------------------------------------------------------------------

Multi-byte fields are big-endian.

The seed field may be missing/empty. All bytes following the header are
passed to PQG generation as seed (note: this field is hashed, so there
are no practical limits on its length).

If the prime, sub-prime bitcount is unsupported, the request is rejected
with CKR_ATTRIBUTE_VALUE_INVALID.
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5.2.7.3. DSA PQG parameters, response

Upon successful termination, PQG parameters are returned with the
counter value, and the final seed:

xcpReq ::= SEQUENCE {
pqgParams OCTET STRING, -- contains DSA PQG, 1.2.840.10040.4.1 ASN/BER SEQ
seed OCTET STRING,
counter OCTET STRING

}

Note that these response parameters correspond to NIST PQG-generation
test-response file fields.

5.2.7.4. EC scalar multiply, looped

This is a test function, added for side channel analysis. It must
be paired with an initialized EC private key, and calculates k*Q
(user-provided curve point) or k*P repeatedly.

offset bytes note
------ scalar ----------------------------------------------------------

1. 0 structure version 4 version: 1 if calculating k*P,
2 if k*Q (user-provided point)

2. 4 scalar <var> byte count as appropriate: size of
base prime, zero-extended if needed

------ point, if present -----------------------------------------------
3. <var> X coordinate <var> present only in v2; byte count is of

base prime; zero-extend to full length
4. <var> Y coordinate <var> see X

--------------------------------------------------------------------------

The return value is a concatenated X || Y coordinate pair, both components
zero-extended to prime length.

5.2.8. Performance-test events

Performance-test events form a circular buffer, allowing query access to
the last events. As input, performance-test queries require two 32-bit
raw integers, requesting start offset (0 meaning the most recent entry)
and the number of events requested.

Similar to file-part queries (6.17), responses use a fixed header,
optionally followed with data.

offset field bytes note
------ header ---------------------------------------------------------

1. 0 performance-test ID 1 ASCII ’P’ (0x50) or ’p’ (0x70)
2. 1 performance-test status 1 ASCII ’0’, ’a’, or ’b’, see below
3. 2 measurement event type 1 ASCII ’0’, ’t’, or ’T’, see below
4. 3 reserved 1 ASCII ’0’ (0x30)

------ event count ----------------------------------------------------
5. 4 number of events 4 raw integer
6. 8 offset of first event 4 raw integer

-------------------------------------------------------------------------

When passed an empty request, or two 32-bit zeroes, the response
consists of an empty header. Otherwise, if the requested range is valid,
measurements follow the header (5.2.8.1).
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Response header concatenates a fixed identifier, a single byte
indicating test status, a byte indicating type of events, and a reserved
byte, in this order, in the first four bytes.

Performance-test responses use the ASCII identifier ’p’ (0x70) when
reporting only capabilities, and ASCII ’P’ (0x50) when returning actual
measurement events. No data follows the header in the first case. An
integer number of measurements (5.2.8.1) follow as a packed array in
chronological order.

Test status is ASCII ’0’ (0x30) if the backend does not support
performance measurements, ASCII ’a’ (0x41) if measurements are available
and measurements are currently being collected. Status changes to ASCII
’b’ (0x42) when measurements are available, but collection is currently
switched off. This is recommended when measuring performance on an
active system, to remove interference from unrelated requests.

Measurement event type is ASCII ’0’ (0x30) if the backend does not
support performance measurements, ASCII ’t’ (0x74) if timestamps are
returned without high-resolution cycle counters, and ASCII ’T’ (0x54)
if measurements include the cycle counter.

Note that performance tests are currently a development-only feature,
and are used only in controlled environments, therefore we currently
do not provide details of the backend (such as cycle counter frequency
etc.). Additional information may be later provided if this feature
becomes available in production builds.

5.2.8.1. Performance-test measurements

Each measurement is encoded as 16 bytes, concatenating a 32-bit event
identifier, a 64-bit value encoding a high-resolution UTC clock
reading (6.11.2), and the least significant 32 bits of high-resolution
timestamp. Fields are concatenated without further formatting or padding:

offset field bytes note
-------------------------------------------------------------------------

1. 0 event identifier 4 no further specification;
recommended to be hierarchically
assigned by development

2. 4 time_t, seconds 4 parsing must handle rollover
field is not Y2038-safe

3. 8 time_t, sub-seconds 4
4. 12 high-resolution timestamp 4 least significant 4 bytes only

-------------------------------------------------------------------------

When performance measurement is in fast mode, time_t fields are left
all-zeroes. There is no additional indication of this happening; in fast
mode, host code most reconstruct the entire wall-clock concext, relying
on cycle counters only.

High-resolution fields are zero-filled if the backend lacks a
high-resolution counter. Backend platforms with cycle counters wider
than 32 bits store only the least significant 32 bits.

5.2.8.2. Host-influenced delay (NOP)

The test operation ‘‘XCP_DEV_DELAY’’ introduces a host-influenced amount
of sleep-wait to the backend; this feature is used in stress-testing and
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threading diagnostics. The host may select the probability of delaying
execution, and supply lower+upper bounds :

offset field bytes note
-------------------------------------------------------------------------

1. 0 delay probability 4 PPM, probability ’N in a million’
2. 4 minimum delay, microseconds 4
3. 8 maximum delay, microseconds 4

-------------------------------------------------------------------------

When encountering invalid fields, the backend returns without delaying.

Actual delay is subject to backend-timer resolution.

5.2.9. Performance of raw primitives

Development-only tests for locking/thread-wakeup etc., and related
primitives are available. These performance-measurement tests all take a
single parameter, iteration count, as a 4-byte raw integer.

The current list of supported primitives is:
XCP_DEVQ_PERF_LOCK
XCP_DEVQ_PERF_WAKE
XCP_DEVQ_PERF_SCALE (accepts but ignores iteration count)

Please check source and header files of test code for implementation
details (these functions are not available in production, and lack
public documentation).

5.2.10. Blob-cache configuration

The development-only services interacting with module-internal blob
(cleartext) caching use a bitmask to set/indicate the state of caching.

A single service, XCP_DEV_CACHE_MODE (0x00000021)
doubles as get/set call, depending on the 4-byte parameter supplied to
it. When supplied an all-zero value, it is only a query; otherwise, it
interprets the supplied 32-bit raw integer as a bitmask (8.6.2). In both
forms, the response contains a 32-bit bitmask, containing exactly one of
’active’ and ’suspended’ bits. If the supplied bitmask contains unknown
bits, or contradictory ones, results are undefined.

The related statistics query, read through XCP_DEVQ_CACHE_STATS (0x00000022),
prompts the backend to log its then-current cache statistics over any
logging facility available to it. In a typical HSM instance, this would
mean use of syslog entries through the host system.

Note that in production builds, blob caching is kept transparent to the
host, therefore there are no production equivalents of these services.

5.2.11. Set/erase/query FCV

When calling the test function XCP_DEV_FCV (0x0000002b), the
caller MAY include an FCV in the call parameter, or supply no additional
data to restrict the service to a query.

When supplying a new FCV, we expect the full, signed structure
(6.13.3.), BUT DO NOT VERIFY ITS SIGNATURE. This method still validates
fields of the newly loaded FCV, so it may be used to test FCV-checking
code, even if it bypasses signature verification. This mode performs all
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size and sanity checks on the supplied input, so there are no predefined
wire-visible restrictions on payload size or structure (all checking
follows the FCV specification).

When no data is supplied, other than the function ID, the set-FCV
service reduces to a query. This is the non-administrative equivalent
of an FCV query; other than the missing administrative signature, it is
functionally identical to the administrative query (see XCP_ADMQ_FCV).

The erase-FCV service takes no input data; it removes any currently
loaded FCV.

All FCV-related test functions respond with the currently loaded FCV
(6.13.3.), or no data if the FCV has not yet been initialized. In
addition to infrastructure errors, set-FCV may return values caused by
FCV (structure) validation.

Note that during regular operations, only the first FCV is accepted,
further changes are rejected (submitting the same FCV multiple times is
tolerated). The capability to change FCVs at runtime is unique to test
builds: it has been added to exercise the FCV-processing state machine
without major infrastructure changes.

5.3. Serialized module state

Module state, when serialized, consists of a sequence of TLV (ASN.1/BER)
encoded sections, each an ASN.1 OCTET STRING, encapsulated within a
single SEQUENCE. The Value field contains type-prefixed sections,
starting with a two-byte type prefix, a 32-bit raw integer identifier,
which are optionally followed by data. Size and presence/lack of the
data field is inferred from the TLV structure (i.e., the length of the
OCTET STRING).

Type identifiers imply versioning; if fields/data formats are later
extended, they will be introduced under different types, and migration
rules will be defined for them. Certain types will only appear once
in an exported state; others, such as domain-specialized instances of
the same type, may appear multiple times---with the integer identifier
designating the specific instance.

The combination of types and identifiers (i.e., leading 2+4 bytes) is
unique, by construction. As a consequence, sections may be processed in
arbitrary order.

Note that (parts of) certain sections are redundant. Since state
is transported in pieces, and there are no restricting storage
limits---practical sizes are moderate---we provide redundant
fields to allow easier parsing, and tolerate the additional bytes
As an example, creation date is assigned with its own section x0005,
allowing readers to skip parsing another section with a structure
including module time (x0007).

Supported sections are (see (8.1.2.) for a list of symbolic names):

type may repeat?
(hex) integer ID data/notes
----- --- ----------------------- ---------------------------------------------
x0001 n total number of most significant 32 bits of SHA256 hash

sections (including of all following bytes, but excluding
this one) any file signatures
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always the first section (if present)

x0002 n largest domain index total number of included domains
(32-bit raw integer)

x0003..n..smallest domain index...bitmask of domains present in serialized
state; bit 0 corresponds to smallest
domain index (cf. offset and bitmask
fields of a domain mask window, see 6.15.2)

x0004 n reserved 0 serial number of originating module
excluding instance identifier (see 6.3)

x0005 n reserved 0 state creation date/time (6.11)
x0006 n reserved 0 FCV structure of originating module,

public parts only (same as query FCV
structure, see 6.13.3)

x0018..n..4-byte salt.............(no additional data)
random value generated by exporting
module, potentially used as export-unique
identifier

x0007 n reserved 0 card query structure (5.1.1)
x0008 n reserved 0 card administrator SKIs, packed
x0009..n..reserved 0..............card administrator certificates, packed

same order as SKIs under type x0008

x000a Y domain domain administrator SKIs, concatenated
x000b Y domain domain administrator certificates,

concatenated. Entries are in the same
order as SKIs under type x000a

x000c Y domain domain query structure (5.1.3), excluding
leading domain index. Together with domain
within integer ID, structure is the exact
domain query structure.

x0017..Y..domain..................control points

x000d n threshold SKIs of targeted KPHs, concatenated
(in order of index);
threshold is number of KPHs needed
to reassemble full key

x000e n reserved 0 card attributes, full listing (4.5.1)
x000f..Y..domain..................domain attributes, full listing (4.5.1)

x0010 n reserved 0 card transaction counter
x0011..Y..domain..................domain transaction counter

x0012 n WK encryption alg ID file IV: initialization vector (or other,
algorithm-dependent initialization data)
size of data is algorithm-dependent

x0013 n reserved 0 encrypted WKs and next-WKs. See type
x0012 for algorithm and parameters (i.e., IV).

x0014 n cert chain elements (no data); integer ID is the number of
certificates in signing certificate
chain (i.e., OA, or other backend
attestation mechanism)

x0015..Y..cert chain index (N)....backend certificate number N (see type
x0014 for maximum index). Certificates are
indexed from current key to
the root (see 6.12)

x0019 Y index encrypted keypart (RecipientInfo);
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indexes are unique

x001a Y index signature on encrypted keypart
index corresponds to that of related keypart

x001d Y index certificate of the targeted KPH (keypart
holder), with host-issued index. See
(5.3.4) for details of KPH certificates.

x001b..N..count...................(no additional data)
total number of keyparts

x001c N count (no additional data)
number of keyparts needed to reconstruct
encryption key

x001e N reserved 0 raw certificate of CA (certificate authority)
issuing some of the certificates used by
key transport. This host-supplied data
is included verbatim; it is not used
by state-migrating code itself.

x001f n 32-bit bitmask restrictions on the scope of sections
included in serialized state, if applicable,
see (5.3.5) for interpretation.
Included only if the originating export
request included restrictions.

x0021 n number of bits set bitmask of all CPs supported
in bitmask (be32) by the originating module (8.4,

see (6.18) for encoding)
see the XCP_STSTYPE_CARD_QUERY section type
(x0007) for
the structure reporting CPB count

----- --- ----------------------- --- (signature) -----------------------------
x0016 n reserved 0 signature of all preceding bytes, signed

by originating certificate (see type x0015)
always the last section (if present)

Except for the signature section (type x0016), and the first section
containing the truncated file hash (type x0001), relative ordering of
sections is undefined.

The file checksum, if present, covers between the first byte of the
TLV-encoded section immediately following the checksum (i.e., the first
tag byte of the second section) and the last byte of the TLV-encoded
section preceding the signature. It serves as a quick integrity check,
and an immediately visible, data-dependent identifier, but serves no
cryptographic purpose. The value may safely be ignored; file integrity
is obviously properly covered by the digital signature.

If the FCV setup of the targeted module is more restrictive than that
of the originating module, import is rejected.

5.3.1. Tags within module state sub-types

While sharing encoding, different subsets of possible tags are used
in different stages of state transport. This section enumerates types
possibly included in each kind of data. Other types may also be present,
and are ignored.

Some of the types are partially redundant (such as KPH certificates and
SKIs, at different states of the migration process). Unless specified
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otherwise, redundant structures are not checked for consistency (in
such cases, we mention the type which will be interpreted, all others
are ignored). Note that such redundancy is restricted to the exported
state itself, which intentionally contains redundant fields to ease
processing, and much of the included metadata is ignored by the
importing module.

5.3.1.1. Request to export

When requesting a state export, the following types must or may be
present in the export-request collection:

--- mandatory --------------------------------------------
1 XCP_STSTYPE_KEYPART_CERT x001d certificates of KPHs who will receive

one encrypted KP each
2 XCP_STSTYPE_KEYPART_LIMIT x001c number of KPHs required to reassemble

full transport key
--- optional ---------------------------------------------
3 XCP_STSTYPE_DOMAINS_MASK x0003 domain bitmask (6.15)
4 XCP_STSTYPE_CERT_AUTH x001e certificate authority cert, if included;

note that the certificate is not used by
EP11 itself

5 XCP_STSTYPE_KEYPART_COUNT x001b field is redundant, but tolerated
and verified if present, see below

6 XCP_STSTYPE_STATE_SCOPE x001f scope restrictions of the originating
export-request, if applicable (5.3.5)

------------------------------------------------------------

The KPH certificates included in the request must be supplied with
different indexes between 0 and N-1, inclusive. The response structure
will preserve the same indexes for keypart-related types. (Note that
this index may differ from the index---the x coordinate---used by the
secret-sharing process.)

The number of KPs needed to reconstruct the full transport key must
be in the range 1 to N, inclusive.

If no domain mask is present, the source module exports data from all
domains which contain administrator certificates, or have non-default
domain-attribute setups. (Any of these two indicate the domain has
been used or populated.)

If a domain mask has been specified, the exported set of domains is
used as-is, without further filtering.

The CA certificate, if included, will be included in serialized state.
Contents are reused verbatim, without any modification. This field is
used where procedural migration controls are tied to verification of
certificate chains from specific roots (‘‘MCA certificate’’, in the
original terminology used by state migration). Our backend code does
not use or verify any signatures from this certificate.

The total count of KPH certificates may be included in the request, and
if present, it must the number of certicate sections. This redundancy
is allowed for documentation purposes, if the requestors wish to
‘‘document’’ the number of certificates in some obvious way.

Other sections, if encountered within the request file, are ignored.

Note that non-sensitive state export MUST NOT include keyparts or
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encryption, and therefore mandates a much smaller set of sections
(5.3.1.2).

5.3.1.2. Request to export non-sensitive state

Since non-sensitive state export does not involve encryption and
therefore keypart-holder identification, only the following fields
are required:

--- optional ---------------------------------------------
1 XCP_STSTYPE_DOMAINS_MASK x0003 domain bitmask (6.15)
--- de facto mandatory -----------------------------------
2 XCP_STSTYPE_STATE_SCOPE x001f scope restrictions of the originating

export-request, if applicable (5.3.5)
------------------------------------------------------------

While the section restricting scope is nominally an optional one (5.3),
the default scope is without restrictions. Therefore, in order to
trigger a non-sensitive state, the export request must have included a
scope-restricting section.

5.3.1.3. Request to import into multi-domain setup

When requesting import of a single-domain exported state into specific
domain/s, the following section must be included in the administrative
structure requesting import:

------------------------------------------------------------
1 XCP_STSTYPE_MULTIIMPORT_MASK x0020

Supported only in state-import requests

Data field must contain a full,
valid domain mask (6.15).

Presence of this section designates state
import request as a single-domain source,
replicating all domain input fields from the
imported state to all enumerated domains.
Module-level sections are ignored during
import. All domain-level sections present
must be from the same source domain (i.e.,
we replicate data from a single exported
domain to one or more domains,
specified through mask)

------------------------------------------------------------

This section is singular, not domain-specific. The integer ID field is
ignored during import; administrators may safely use it to store any
related 32-bit data, such as the number of domains targeted.

5.3.1.4. Serialized state

State data is signed by the originating module, and must be passed to
import without modification. Therefore, type composition during export
is obviously identical to the import version.

Certain fields of the exported state---such as creation time and
salt---are ignored by the importing module.

5.3.1.5. Exported keyparts

EP11 Principles of Operation 163 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Wire format 35/105

As with other typed formats, the order of sections within exported
sections is mainly arbitrary, with the exceptions listed in (5.3).

--- always present ------------------
1 XCP_STSTYPE_SECTIONCOUNT x0001 file header, incl. number of tags
2 XCP_STSTYPE_KEYPART x0019 repeated for each KPH recipient
3 XCP_STSTYPE_KEYPART_SIG x001a card (OA) signature on corresponding

KEYPART section (full encrypted field)
4 XCP_STSTYPE_KEYPART_CERT x001d certificates of KPHs who will receive

one encrypted KP each
--- for audit purposes --------------
5 XCP_STSTYPE_KEYPART_LIMIT x001c number of KPHs required to reassemble

full transport key
6 XCP_STSTYPE_KEYPART_COUNT x001b number of KPHs (redundant)
7 XCP_STSTYPE_CREATE_TIME x0005 file timestamp
8 XCP_STSTYPE_STATE_SALT x0018 package salt
9 XCP_STSTYPE_SIG_CERT_COUNT x0014 source module cert chain size
10 XCP_STSTYPE_SIG_CERTS x0015 source module certificates
11 XCP_STSTYPE_KPH_SKIS x000d (redundant, see below)
--- optional ------------------------
12 XCP_STSTYPE_CERT_AUTH x001e certificate authority cert, if was

included within export request
13 XCP_STSTYPE_STATE_SCOPE x001f scope restrictions of the originating

export-request, if applicable.
--- file signature ------------------
14 XCP_STSTYPE_FILE_SIG x0016 note: parts are also individually signed
---------------------------------------

Keyparts---and their signatures, in separate sections---inherit their
index from the export request, where each KPH certificate includes a
host-selected index (5.3.1.1), to simplify matching encrypted keyparts
to their recipients.

Note that the file contains redundant signatures: both individual
keyparts and the full compound are signed. Signatures are redundant
for procedural reasons: the file-level signature may be used for
auditing. For compatibility reasons, signatures on individual parts
are used by client---i.e., KPH---smartcards. With KPHs verifying
individual signatures, the file-level signature may be safely ignored
unless required for audit. Conversely, once the file signature has been
verified, one should assume individual KP signatures are valid (note
that KPHs do not rely on this, due to procedural limitations).

The certificate chain of the originating card is included for
auditability, and it matches the corresponding data in serialized state.
The field is replicated here to make the signature on the keypart-export
file publicly verifiable, and may be ignored by the host---especially if
certificate chains are cached (since then, these identical certificates
would already appear in the approved list).

Recipient KPH SKIs are actually redundant, included to simplify auditing
and fast public-key identification. Since this list will match the
list of KPHs encountered, in the same order---this is enforced by the
exporting module---it is safe to ignore this section, unless required
for audit purposes.

Creation time and file salt are included for completeness. They simplify
tracking and auditing exported state and full keypart sets, and may be
safely ignored by host code (as mismatched keyparts and exported state
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would be functionally detected).

Audit-only fields and signatures on the keyparts may be omitted entirely
in the import process.

5.3.1.6. Keyparts for import

The following types must be present in the file containing keyparts
for import:

--- mandatory -----------------------
1 XCP_STSTYPE_KEYPART_CERT x001d certificates of originating KPHs,

with host-issued indexes
2 XCP_STSTYPE_KEYPART x0019 keyparts, with indexes corresponding

to that of KPH certificates
---------------------------------------

The keypart collection for import must contain sufficient keyparts to
reassemble the transport key (see XCP_STSTYPE_KEYPART_LIMIT, type x001c).
The actual limit is present within the corresponding serialized state,
and therefore need not be included with keyparts.

Since keypart holders re-sign keyparts, most of the other metadata
present in exported keyparts is unnecessary for import (5.3.1.5).

5.3.2. File-content encryption

Currently, only one encrypted section type is defined, with a companion
section identifying algorithm, mode, and other metadata (currently,
the initialization vector used). If future formats add other encrypted
sections, we assume corresponding encryption-metadata sections will be
similarly added.

Formats append a MAC to ciphertext bytes without further formatting or
padding in an Encrypt-then-MAC construct. The MAC key is derived from
the encryption key.

Note that the MAC on encrypted state is orthogonal to the file
signature itself: it is tied to the transported unit, not the
originating card itself.

5.3.2.1. File-content encryption algorithms

The only currently defined algorithm is AES-256, CBC mode,
with unambiguous-random padding and HMAC/SHA-256 MAC, denoted by 0x00000001.

This algorithm implies a 16-byte IV, see state section x0012.

5.3.3. Lack of instance identifiers

Serialized system state excludes module and domain instance identifiers
of the source module. Since instance identifiers need to be queried
before authorized commands are submitted to the target module, full
state migration is possible while excluding them.

5.3.4. Keypart holder certificates

KPH certificates are used as public key stores, and no additional
information is verified about them. The certificates may be x509 SPKIs
of supported types (8.1.1.4) (7.4), or in the proprietary format used
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by the TKE migration wizard (‘‘migration certificates’’). Existing
migration certificates are all from a subset of available importer
types.

Note that migration certificates include fields to specify number of
KPHs allowed and the possible threshold value. We do not directly use
this information, relying on state sections prescribing the limit (and
simply the number of KPH certificates setting the maximum number).

5.3.5. State import/export scope restrictions

State export and import may be restricted in scope, if the section
indicating restrictions (x001f) is present.

If an export request contains non-empty, valid restrictions, the section
containing restrictions is replicated to exported state.

The following restrictions are defined:

XCP_STDATA_DOMAIN 0x00000001 -- Serialized state is restricted to
-- domain data only, excluding module-
-- specific sections. The resulting
-- state structure may be safely
-- imported without affecting module-
-- global data, or unaffected domains

XCP_STDATA_NONSENSITIVE 0x00000002 -- Serialized state is restricted to
-- non-sensitive sections only. Export
-- structures so restricted may be used
-- to quickly clone all administrative
-- state to other modules/domains, without
-- necessitating KPH involvement.

XCP_STWK_KP_NO_CERT 0x00000004 -- keypart export section is restricted
-- to not return KPH certificates.
-- (KPH certificates are already part
-- of the request and are not necessarily
-- needed within the response)

Bits are stored as the 32-bit subtype of the restriction section.
Multiple bits may be specified, enforcing the union of all applicable
restrictions. Export requests which include unknown restriction bits are
rejected. If an export request includes sections incompatible with the
requested restrictions, it is rejected.

If an import request encounters sections incompatible with restrictions,
it is rejected.

5.3.5.1. Domain-restricted sections

Domain-restricted serialized state excludes the following sections:

XCP_STSTYPE_CARD_ADM_CERTS x0009
XCP_STSTYPE_CARD_ADM_SKIS x0008
XCP_STSTYPE_CARD_ATTRS x000e
XCP_STSTYPE_CARD_TRANSCTR x0010

Domain-restricted export requests do not prohibit any section.

5.3.5.2. Non-sensitive restricted sections
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Export requests for non-sensitive state MUST NOT include KPH
certificates, see (5.3.1.2.).

Serialized state restricted to non-sensitive data excludes the
following sections:

XCP_STSTYPE_WK_ENCR_ALG x0012
XCP_STSTYPE_WK_ENCR_DATA x0013
XCP_STSTYPE_KEYPART x0019
XCP_STSTYPE_KEYPART_CERT.....x001d
XCP_STSTYPE_KEYPART_COUNT x001b
XCP_STSTYPE_KEYPART_LIMIT x001c
XCP_STSTYPE_KEYPART_SIG x001a
XCP_STSTYPE_KPH_SKIS.........x000d

5.3.6. Verification during state import

State import, since it replaces all administrative structures, may
override some of the restrictions. Specifically:

1. transaction counters within the imported state are not compared to
the current one: a restored state may roll the counters back compared
to their then-current value (i.e., when the commit command is
issued).

Since transaction counters of the importing module, and those within
the saved state are disjoint, this special case is not inconsistent.
As instance identifiers are intentionally not transported within
exported state, rolling back the transaction counters alone does
not open up the newly installed module to replay attacks based on
previously signed commands.

2. the importing module only verifies the full-file signature, but
no signatures on keyparts, or any of the certificates. Since the
import process itself is authenticated, all signatures within the
imported state are effectively self-signed: the trust root of the
originating module certificate chain may or may not be known to
the importing one. (OA trust roots, as an example, change between
families, even if keysizes or algorithms are unchanged.)

Since we are importing effectively self-signed data, we only
verify the full-file signature as an integrity check.

Note that state-import is transactional: if a state-import procedure
would override the transaction counter, the original state is restored
after a failure. (Even if such failures are unexpected, the backend
covers the theoretical possibility.)

5.4. Audit records

Audit records are generated for security-relevant events. The following
fixed-size structure is reported through system-logging facilities,
and may:

offset
field bytes notes

---------------------------- header ----------------------------------------
1 0 record type 1 hex x42 (ASCII ’b’ from ’base log’)
2 1 record version 1 0, currently
3 2 record bytecount, total 2
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4 4 sequence number 6
5 10 extended time_t 6 (6.11.1) (5.4.2)

---------------------- initial hash state ----------------------------------
6 16 initial state (hash) 32 (XCP_LOG_STATE_BYTES)

------------------------- event context ------------------------------------
7 48 module identifier 16 including instance (6.3)
8 64 audit instance 2
9 66 event type 2 category, generic type (5.4.3)

10 68 firmware identifier 4 truncated 32-bit form (6.14)
11 72 event flags 4 (5.4.5) (8.9.3)
12 76 function identifier 4
13 80 hosting domain 4
-------------------- generic, flagged, optional fields ---------------------

For presence or absence of these
fields: check flags (5.4.5)
Order is fixed as shown here:

14 .. WK identifier 16 Means the original WK, if event
describes a WK change
(i.e., Finalize WK call)

15 .. compliance 8 ...of the hosting domain,
if relevant

16 .. final WK identifier 16 final WK, present only if changed
during operation (i.e., Finalize)
(XCP_WKID_BYTES)

17 .. key record 0 24 see (5.4.4)
18 .. key 0 compliance 8 used if may differ from

that of controlling domain
(such as: key generation)

19 .. key record 1 24
20 .. key record 2 24
21 .. final time 6 used with time-changing

administrative commands
22 .. event details 4 used when specific identified

event caused audit entry (8.9.2)
23 .. deterministic salt (PRF) 8 pseudo-random function (PRF) data

derived from sequence number and
timestamp fields (4, 5) is present

--------------------- end of non-salt, optional fields ---------------------
24 .. salt[0] 4 see Audit record salting (5.4.6)
25 .. salt[1] 4
26 .. salt[2] 4
----------------------- final hash state -----------------------------------
27 .. final state (hash) 32 (XCP_LOG_STATE_BYTES)
------------------------------------------------------------------------------

290 maximal bytecount

The sequence number is a monotonously increasing counter, reset to zero
during module zeroization. It is incremented by every issued audit
entry. The counter wraps if it ever reaches its maximum value---which
we believe to be infeasible. We consider the sequence number, internal
time_t, and audit instance ID to be unambiguous, when processed
together.

The audit instance is a salt, regenerated during each zeroization,
or when the audit infrastructure itself is reset (which should not
happen in the absence of file corruption). It works similarly to module
instance identification (6.3), and has been added to separate audit-log
lifecycles in a similar way.
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Salt is inserted to prevent advancing the audit---hash---state with
mainly host-controlled data (5.4.6). The number of actual salt bytes
depends on event type; salt fields are inserted as appropriate.

Future fields will be added in chronological order, following any other
optional fields, before---optional---salt. Applications may therefore
interpret the recognized parts of audit entries if their exact size is
known, by skipping unknown fields between optional ones and salt. The
presence of unknown fields will be visible, when encountering unknown
bits in the flags field.

The final state is a hash calculated over all preceding bytes. Within
the module, it is saved as an updated state, and will be the initial
state of the following audit event.

Multibyte fields are big-endian.

5.4.1. Audit record identification

The module instance identifier is only set after the audit infrastructure was
started. Audit events that are issued before this point in time will have
their module instance identifier set to zero.

Startup of the audit infrastructure can also encounter problems due to
dependencies, such as failing to restoring module instance identifier.
(Since module serial number and instance identifer originate in
different sources, their restore is not atomic.)

5.4.2. Undefined audit record timestamps

If the module-internal clock query fails, audit entries are issued with
all-zero time_t fields, but other fields are updated properly. Parsing
code should accommodate these special audit records, which are logically
invalid (time_t base is 1970-01-01, i.e., second 0 is in the past).

Since all audit entries are inserted into a hash-chain-based audit log,
the lack of proper time does not endanger log integrity. Parsing code is
encouraged to separately report these audit records, which will appear
unusual also due to their non-monotonous clock sequence.

Note that failure of the internal clock is unexpected. However, this
special case is documented for consistency.

5.4.3. Audit event types

The following events may be present in audit record. They describe the
generic reason which prompted generation of the audit event.

XCP_LOGEV_QUERY audit entry has been triggered by audit-specific query
XCP_LOGEV_FUNCTION event for functional (non-administrative) function
XCP_LOGEV_ADMFUNCTION event for administrative command
XCP_LOGEV_STARTUP event related to module or subsystem startup
XCP_LOGEV_SHUTDOWN event related to module or subsystem shutdown
XCP_LOGEV_SELFTEST selftest results
XCP_LOGEV_IMPORT import key, UnwrapKey() or administrative import
XCP_LOGEV_EXPORT export key, WrapKey() or administrative export
XCP_LOGEV_FAILURE error reporting
XCP_LOGEV_GENERATE generate or derive new keys
XCP_LOGEV_REMOVE erase an object
XCP_LOGEV_SPECIFIC specific reason, see ‘‘event details’’
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Constants are listed under (8.9.1)

5.4.4. Audit key-records

Key records identify keys within an audit entry. Key records are fixed-sized
structures with the following structure:

offset bytes
field notes

------------------------------------------------------------------------------
1 0 key type 4 PKCS11 type (CKK_...)
2 4 key size 4 type-specific interpretation (5.4.4.1)
3 8 controlling session 4 truncated, MS bytes of session
4 12 key identifier 3 24 bits
5 15 reserved 1 reserved 0
6 16 key MAC 8 trailing 64 bits of object MAC

24 total bytecount

Key type and size fields are big-endian.

Depending on the function, multiple key records may be present, such
as key, KEK, and MAC key included in key un/wrapping audit entries.

As discussed under session identifiers (6.2.2), the session field
is all-zero if and only if the object is not bound to a session.

Note that key-generation mechanisms are not included within key records.
For audit entries where new keys are generated or derived, separate
fields describe the generation mechanism.

5.4.4.1. Audit entries for key sizes

Audit records describe keysizes in type-specific forms.

Symmetric key sizes, including those of generic secret keys, are written
as gross bitcounts. TDES keys’ sizes include their in-band parity
bits. For currently supported types, this notation corresponds to the
CKA_VALUE_LEN attribute, expressing the size in bits instead of bytes.

RSA keys describe both their private and public exponent sizes: the size
contains the public exponent (E) bitcount in its least significant 16,
and modulus (N) bitcount in its most significant 16 bits.

DSA and DH keys describe both their private and public sizes: the size
contains the modulus/base (P) bitcount in its most significant 16, and
the prime/generator (Q/G) bitcount in its least significant 16 bits.

EC keys are identified through their base curve with a custom set of
constants (8.1.1.5). Currently, custom curves are not supported.

5.4.5. Audit event flags

Flags are contained within a big-endian, 32-bit bitfield, which may
contain combinations of the following bits (8.9.3):

WK is present 0x80000000
-- original/initial WK, if ’final WK present’
-- is also indicated (below)

compliance field 0x40000000
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-- of the targeted domain

final WK is present 0x20000000
-- used only by events related to WK
-- transitions

Final time is present.........0x01000000
-- time at completion is present
-- used by time-changing commands

Key record 0 is present 0x10000000
-- note that use of multiple key records
-- is specific to each key-using command

Key 0 compliance is present 0x08000000
-- key0 compliance bits are present
-- used only when they may differ from that
-- of the domain used (i.e., key generation)

Key record 1 is present 0x04000000
Key record 2 is present.......0x02000000
Salt field 0 is present 0x00800000
Salt field 1 is present 0x00400000
Salt field 2 is present 0x00200000
Event details/reason present..0x00100000
Confounder/deterministic salt is present

0x00080000
-- deterministic salting is present
-- adds a representation of sequence nr+time,
-- with high apparent entropy (5.4.6.1)

Other bits within the field are reserved 0, and are not currently set
by the backend.

5.4.6. Audit record salting

Audit records are constructed to include at least 96 random bits not
determined by the host, to prevent record signatures from advancing the
audit-hash state based on user-controlled data. Instead of arbitrary
numbers of salt bytes, salt is added in 4-byte increments.

The relative order of salt fields is irrelevant. The backend currently
fills them in increasing order; obviously, this distinction is no longer
observable in the wire-encoded form [as these bits are generated by a
cryptographic RNG].

5.4.6.1. Deterministic audit-record salt

An additional, optional field inserts deterministic, pseudorandom
bytes into event records. Presence or absence of this field is
currently determined by the backend, without host influence. The
field insert a deterministic pattern which may possibly interfere
with collision-constructing attacks, where one attempts to construct
colliding event records leading to known [valid] final states.

When present, the field contains the Siphash-2-4 MAC of the
wire-formatted ‘‘sequence number’’ and ‘‘extended time_t’’ fields,
concatenated in this order, without further formatting or padding.
[These bytes form a contiguoous region at fixed start offset and
bytecount within event records.] We use an all-zero Siphash key to
derive PRF bytes; the resulting bytes are encoded as big-endian.

Callers verifying event records SHOULD reconstruct and check the
deterministic-salt field, when it is present.
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The deterministic-salt field is NOT included in the salt bitcount
(5.4.6). Since we treat the field as an extended version of the sequence
number and timestamp, only in a representation with high apparent
entropy, the actual function used to construct it is irrelevant, and it
is excluded from compliance-related algorithmic restrictions.

5.4.7. Signed audit records

With the administrative query of audit history, the response payload
encapsulates the queried audit record, the then-current backend time,
and salt in an ASN.1/BER enclosure:

xcpReq ::= SEQUENCE {
utcTime OCTET STRING, -- PKCS11 UTC format (6.11)
salt OCTET STRING,
auditRecord OCTET STRING...

}

Note that the time field follows regular PKCS11 formatting (6.11), not
the compressed audit-specific form (6.11.1).

The response is salted to prevent signing all-known data. Salt size
is fixed (12 bytes), but may increase in the future.

Audit records are inserted as the Value field of auditRecord, without
further formatting or padding.

5.4.8. Audit record queries

When querying audit history, formatting of the query payload
differentiate between an event-size query, or a request for a specific
entry. Entries may be requested based on their relative index or their
final state (hash).

Since element-count queries and subsequent entry queries are
asynchronous, host code must accommodate audit-state changing between
count and event queries. Hash-based indexing is supported to simplify
locating a specific event, even in the presence of other events.

5.4.8.1. Audit history size

When querying current history size, the query may be submitted without
payload, or must include a single 4-byte raw integer, with 0 as a value.

In both cases, element count is returned as a single 4-byte raw integer.
Note that there is an upper bound on the returned element count, since
the active history is stored in a circular buffer of fixed size.

5.4.8.2. Audit history entry

When requesting a specific audit event from history, the host must
specify a particular entry through relative index or absolute
state(hash). Both cases must supply a payload.

When indexing entries based on their position, a single 4-byte raw
integer must be supplied, which is used as a one-based index.

As detailed in (5.4), there is an upper limit on returned event bytecount
(currently, 290).
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5.5. Structures used by extensions

5.5.1. Multi-level security (MLS) memory-typing extensions

MLS-extended data is augmented with attributes describing its type
(currently) and is signed by the original module producing it. These
structures replace plain, unauthenticated data for use by MLS-aware
keys.

mlsData ::= SEQUENCE {
version OCTET STRING,
data OCTET STRING,
attributes OCTET STRING,
nonce OCTET STRING,
signIdentifier OCTET STRING,
signature OCTET STRING

}

Version is encoded as a 32-bit raw integer. Currently, the only supported
version is 1.

Attributes are encoded as described in (3.2.), containing at least
XCP_BLOB_MLS as a Boolean and CKA_IBM_MLS_TYPE as a type-identifing
integer (3.2.3.).

In the current configuration, the encoding always writes attribute
fields with the last 32 bits containing the CKA_IBM_MLS_TYPE value.
Parsers, when encountering v1 results, may rely on this shortcut, if
they do not intend to parse the entire attribute field.

The nonce has an internally enforced minimum length (not exported as
a constant). It is inserted to prevent generating an MLS signature on
entirely user-controlled data (i.e., provide a signing oracle).

The signIdentifier field contains a truncated key identifier, a mnemonic
of the signing key (such as (6.7.1.)) but not that of the signing
algorithm. We expect the MLS-aware context to unambiguously identify
its signing keys, and the field is only used to simplify later lookups.
It is ignored by the backend when MLS data is read back, since then the
expected MLS-signing key should already be available.

It signIdentifier is inserted by the signing backend as a 32-bit
truncated value, derivation specific to the signing key type. For the
currently used (H)MAC keys, see (6.7.) for derivation algorithm.

The signature field contains a signature calculated across all
preceding bytes, between the encapsulating SEQUENCE and tag+length fields
of the signature OCTET STRING, inclusive.

5.5.2. TRNG entropy-pool log access

History of the TRNG entropy pool, if supported by the backend, is
accessed as a file, and its slices are identified as file-part queries
are (6.17). There is a single entropy pool, and it MUST be designated as
file ID 0 [access to the entropy pool is through a file-like interface,
but currently there is only one accessible pool].

The entropy pool is internally stored as a circular buffer; size query
(6.17.1) returns the currently available number of bytes, but no other
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information. [In other words, test applications are expected to deal
with rollover.]

To advance the TRNG pool explicitly, see the XCP_DEV_DRAIN_ENTROPY
SYS-TEST service.

5.6. Host target and module management

Targets and target groups can be registered and deregistered with functions
operating on the the XCP_Module data structure. Registering a target or target
group will generate a target token.

All data types described in this chapter are specific to the reference
implementation of the host library and not part of the wire format itself.

Other host libraries may use this description as a reference for their own
target and module management.

5.6.1 Target token data type

Host libraries can employ the data type target_t to select which target
should be addressed in a host library function call. The base type of target_t
is implementation specific, however we use an integer base type to allow bit
mask operations.

Domain specific flags are set on target tokens. The flags can be set and masked
with normal bitwise operations after the target token was associated with a
target (with m_add_module).
All domain specific flags are for diagnostic/development purposes only and only
usable with m_DigestSingle:

XCP_TGTFL_WCAP Capture a wire request in the output buffer (digest buffer)
without sending it to a module.

XCP_TGTFL_WCAP_SQ Size query: Return size of a request in the output buffer
length field (dlen).

XCP_TGTFL_NO_LOCK Ignore sequential locking upon functional request.
XCP_TGTFL_API_CHKD Target’s API has been checked.

Target tokens should be initialized to XCP_TGT_INIT before setting them.

5.6.2 The XCP_Module structure

The XCP_Module structure is used to maintain the module configuration of the
systems. A target is represented in the structure through a combination of the
module number and a domain in the domainmask.

5.6.2.1 Structure version

The version of the structure controls which features and fields of the structure
are available. Version values lower than XCP_MOD_VERSION are allowed as long as
the value is higher than zero, but functionality might be degraded. Version
values higher than XCP_MOD_VERSION are not accepted.

The actual version value may be queried at runtime (see m_add_module)

5.6.2.2 Module flags
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Flags control which fields are interpreted and how the host library interprets
the XCP_Module structure. Some flags may enable fields that are only
meaningful on some platforms. The host library accepts the following flags:

XCP_MFL_SOCKET The backend is socket-attached.
XCP_MFL_MODULE The backend is identified as a

a number in an array-of-modules.
XCP_MFL_MHANDLE The’mhandle’ field is used to

connect to a backend.
XCP_MFL_PERF Performance statistics are

collected for a module in the
perf field.

XCP_MFL_VIRTUAL The module is flagged as a virtual
module, which is used to create
a target group.

XCP_MFL_STRICT Fail on correctable errors.
XCP_MFL_PROBE Probe if target is reachable

before registering it.
XCP_MFL_ALW_TGT_ADD Allows to use a target in any

functional and administrative call
without registration.

The flags are further described in chapter 5.6.3

5.6.2.3 Domains and domainmask

The domains field indicates the maximum domain number that can be used on the
system. It can be set to any value lower or equal the system default. If the
domains field is set to zero the system default value is used. If no system
default can be found the EP11 default value is used:

XCP_DOMAINS 256

The domainmask contains all domain indices that should or can be used (if target
probing is enabled - see chapter 5.6.3.5) for this module. Domains can
be set/unset in the domainmask with the SET_DOM() and CLR_DOM macro. The
DOM_IS_SET() macro can be used to check if a specific domain is set in the
domainmask.

The domainmask field itself is an array 32 Bytes in size. One bit in the
domainmask represents one domain from MSB to LSB. So domain zero is bit eight
(left-most bit) of the first byte (value 0x80). Domain 255 is the right-most bit
of Byte 31 (value 0x01) in the domainmask field.

The domainmask field is updated by the host library in the registration and
deregistration process to represent the actual state of the registered domains.

5.6.2.4 The module number

This field is platform dependent and enabled with the XCP_MFL_MODULE flag.
The module_nr field is used for the module number which identifies a module in
a array-of-modules configuration. See chapter 5.6.3.3 for more information.

5.6.2.5 The socket field

This field is platform dependent and enabled with the XCP_MFL_SOCKET flag.
The socket field contains information needed for an HSM reachable through a
socket connection. This field is development only.
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5.6.2.6 The module handle

This field is platform dependent and enabled with the XCP_MFL_MHANDLE flag.
The mhandle field can be associated with a handle that points to
target information which is needed to route a request to a module.
The field is needed for platforms where the target management is configured
outside of the host library and the host library is only used to create
requests and parse responses. The field is restricted to development.

5.6.2.7 The perf fields

The perf field is enabled with the XCP_MLF_PERF flag. For every domain one byte
is reserved, which contains the performance value of the last request.
See chapter 8.2.1. for more information about these performance values.

5.6.2.8 API ordinal

The API ordinal of the module as specified by the api field of the XCP_Module
structure.
This field can either be zero or a positive integer.
By default the following checks will be performed before the first functional
request is sent to a module.
If api equals zero, an API query (section 1.1.2) is sent to the targeted module
to determine the value of api.
For target groups, the largest common API will be used to communicate with all
the modules in the group.
If api is a positive integer, no additional requests are sent to the module.
The value of api, in either case, is stored internally and used for
communicating with the respective module.
With a non-zero value, a particular API can be requested to be used for the
interaction with the module.

If XCP_MFL_PROBE is enabled for a module, then the request described above
will be sent as a result to a call to m_add_module (sec. 5.6.3.5).
For a single targeted module, m_add_module will throw an error if the requested
API ordinal is larger than that of the module or if the probe fails.
For a target group, the particular module will not be added to the group if the
probing fails or if the API of the module is incompatible with the requested
api.
In contrast to individual targets, if also XCP_MFL_STRICT is set, an error will
be thrown and no modules will be added to the target group.

If the API ordinal is set by the user and XCP_MFL_PROBE is not enabled, no
additional checks will be performed.
In case the API ordinal was determined automatically upon module addition,
the API ordinal is written back into the module structure, only if XCP_MFL_PROBE
was active during m_add_module call.

If the XCP_Module structure does not support the api field, an API ordinal of 2
is assumed. For empty target groups with an XCP_Module structure that contain
the api field, the most recent supported API ordinal is assumed.

See also section 1.1.1 for more details on the API ordinal.

5.6.3. Flag dependent host library behavior

The module flags control how the host library should interpret the
XCP_Module structure. Depending on the specified flags some fields may be usable
or not.
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5.6.3.1 Fail on correctable errors

Correctable errors are treated as failures with XCP_MFL_STRICT. Chapter
5.6.4 lists the implications of enabling this flag. The flag does only affect
registration and deregistration.

5.6.3.2 Virtual modules

Virtual modules are created by setting the XCP_MFL_VIRTUAL flag, which is
platform independent. Targets registered for a virtual module create a new
target group or are added to an existing target group. Without the flag only
single targets can be registered. A virtual module can have as many targets as
the module on this platform does allow (limit is XCP_DOMAINS). A virtual module
with zero targets addresses all targets available for the system.

5.6.3.3 Backend types

The host library can handle different backend types.
Which type of backend a XCP_Module structure is supposed to describe is handled
through flags:

XCP_MFL_MODULE A value of the module_nr field identifies
the backend in an array-of-modules.

XCP_MFL_SOCKET The backend is socket-attached and uses
the socket field.

XCP_MFL_MHANDLE A handle is associated with the mhandle
field containing target information
transparent to the host library.

The fields enabled with these flags are described in more details in chapter
5.6.2. Refer to chapter 5.6.4.1 for more information on how the platform
dependent behavior of these flags is implemented.

Host libraries need to be built for one of the known backend types. Please
note that all backend types with the exception of the XCP_MFL_MODULE type are
restricted to development only.

5.6.3.4 On the fly target adding

If XCP_MFL_ALW_TGT_ADD is active for a module, targets for these modules
do not need to be registered with m_add_module, but can be registered implicitly
by simply using target tokens in normal m_* calls. This is by default disabled
and needs to be enabled for a module using the XCP_MFL_ALW_TGT_ADD flag.

5.6.3.5 Probing targets

If XCP_MFL_PROBE is enabled in an XCP_Module structure an API query (see chapter
1.1.2) is sent to every target that should be registered. Only targets that can
be queried are registered, others are ignored. Please note that an unreachable
target is a fatal error if XCP_MFL_STRICT is on.
Please see chapter 5.6.4.2 for more information.
If the api variable of the XCP_Module structure (sec. 5.6.2.8) is set to zero
the determined API ordinal of the module is written back to the structure.

5.6.3.6 Performance measurements

If XCP_MFL_PERF is active for a module the performance category of an
incoming response is extracted and saved to the perf field. See chapter 5.6.2.7.
for more information.
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5.6.4 Correctable and uncorrectable errors

When registering or deregistering a module the host library can
detect errors in the module data structure and in most cases correct them.
If XCP_MFL_STRICT is ON all correctable errors are turned into a return code
instead.

The following error situations are detected and corrected when the flag is not
ON.

5.6.4.1 Backend handling errors

Backend flags that are not supported by a host library are ignored as long as
the minimum number of flags for the given platform are supplied. For example
the IBM Z platform needs the XCP_MFL_MODULE flag. Any other backend flag
is ignored. If the strict flag is ON backend flags not supported by the host
library are treated as an error.

A use case is to provide information about different platforms in one module
structures. All flags and fields that do not conform to the current platform are
ignored by the host library. So it is possible to implement a single program
without relying on platform dependent code.

5.6.4.2 Probing unreachable targets

If probing a target fails the error can be recovered if another domain is
usable in the domainmask. This only works for virtual modules and allows to
create a target group without knowing which targets are actualy available on the
system. This is not possible when in strict mode.

5.6.4.3 Domain index correction

If the domains field is larger than the maximum value obtained from the OS the
domains field is limited to the maximum value from the OS. Changing the domains
field might result in invalidating targets registered already, which is why this
is not possible in strict mode.
Domains not honoring the domains field are removed from the domainmask. If no
domains are left an error is reported. In strict mode not honoring the domains
field is an error.

5.6.5 Host specific return codes

Host libraries implement host specific return codes for management functions
that do not relate to any PKCS#11 functionality. See the EP11 header file for
a complete list of supported return codes. General return code names
start with XCP_* and return code names related to module management have the
prefix XCP_MOD_*.

6. Primitive structures

6.1. Source partition/VM

Originating sources, partitions/VMs are indicated in a dedicated field.
We use 32-bit fixed-size fields, both in CPRBs (section 1.3.1) and
within OCTET STRINGs. The field within OCTET STRINGs is a fixed-size raw
integer, i.e., without an ASN.1 INTEGER tag.

Note that we do not realistically expect to encounter 2^32 sources,
but reserve such a size to be able to accommodate a growing number of
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sources without format changes.

Backends ignore the source identifier and return it without
modification. It is present within CPRBs to facilitate convenient
access-control filtering on the host, without parsing the command or
payload.

6.2. Target domain

Domains are encoded as fixed-size, 32-bit, big-endian integers. Note
that as with targets, we do not expect to use 2^32 domains in the
foreseeable future, but reserve such a size to be able to accommodate a
growing number of domains without format changes.

Domain identifiers within ASN.1/BER structures reside within OCTET
STRINGs of fixed size (4 bytes). CPRBs and other transport structures
contain the same domain value without any encapsulation.

Card-level requests (all are administrative) must use 0 as a domain
number. All requests are unambiguous, and one can always distinguish
card-level requests from domain ones--therefore, whether the entire
card or domain 0 is targeted is always clear.

6.2.1. Administrative domain

When targeting domains with administrative traffic, or responding with
a domain number, we use a domain index (6.2) concatenated with an
_instance identifier_ to form a unique domain number, and refer to this
construct as "administrative domain". The domain instance identifier
does not persist across zeroization, preventing replay of administrative
traffic, even if the domain is reloaded with the same administrators
after zeroization.

The domain instance identifier is a uniformly randomly generated 32-bit
integer. We neglect the chance of collisions, since zeroization is an
administrator-controlled activity, not assumed to occur sufficiently
many times to become a problem.

Instance identifiers are generated upon initialization, for each
domain--even if they are still not populated. They are replaced with
newly generated random values during zeroization.

Administrative queries--if the domain field is present--and commands
without signatures must use 0 as instance identifier. The correct value
is always returned in a response. Card-level commands return 0
for both originating domain and instance identifier.

6.2.2. Session identifier

Session identifiers are used in blob-specific key derivation (in a
host-opaque way, which we document elsewhere but not detail here), if
the host library supports sessions. The identifier is a fixed-size
binary value (32 bytes, XCP_WK_BYTES).

For objects not bound to sessions, the session identifier is all zeroes.
The identifier-derivation process guarantees that nonzero identifiers
are returned for all sessions.

Session identifiers are guaranteed not to have 0x30 as their first byte.
This allows a single-byte check to differentiate between blobs

EP11 Principles of Operation 179 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Wire format 51/105
starting with session identifiers, and MACed SPKIs, which may be
used as blobs under other conditions.

Session identifiers are also included in PIN blobs (3.4).

6.3. Module identifier

The module identifier restricts administrative traffic to particular
(instances of) particular modules. In requests, it must be empty for
queries. It must be present for commands, including those without
signatures; the host-provided counter is ignored for the latter.

Module identifiers are encoded as fixed-size, 16-byte values. The field
concatenates a module-specific serial number (8 byte, XCP_SERIALNR_CHARS)
with an instance-specific value (same size).

We fill the module-specific serial number based on card properties,
as reported by card hardware. This value persists when firmware is
reloaded.

The instance-specific value is randomly generated when firmware is
loaded to the module, or when the card is zeroized.

We require a reasonable RNG generating this value---inside the
backend---and do not consider collisions a potential problem.

The module identifier is always populated in responses.

6.4. Administrative transaction counter

The transaction counter matches the size of the internally maintained
transaction state, as a fixed-size counter (16, XCP_ADMCTR_BYTES).

There is a counter for card-level commands, and a separate one for each
domain. Counters are reset to zero upon zeroization. Wraparound is
not supported: once transaction counters reach their possible maximum
(ff...ff), the card may no longer be actively managed. (The size of the
counter makes this infeasible under normal operations.)

Administrative queries may provide counters, or leave the field
empty. Commands without signatures must provide transaction counter
fields---but the provided counter is ignored. The current value---after
the update, if applicable---is always returned in a response.

6.4.1. Transaction counter queries

We do not provide standalone queries for transaction counters, as
the counter is included in all responses. In order to fetch it, one
could issue a card/domain administrator list query--or some other
administrative query which is always available--and retrieve the counter
from the response.

6.5. Imported keyparts

During WK import, one or more keyparts are enveloped within the payload
of a single xcpAdminReq structure (4.1). Each keypart is a standalone
xcpAdminReq, containing a RecipientInfo as ‘‘payload’’ of its command,
targeting the current importer. Administrator signature(s) must
authenticate each the command block.
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The enveloping xcpAdminReq is unsigned, therefore its signature field
remains empty. Its targeting information must match that of the
enveloped .

Each RecipientInfo encrypts one raw keypart (6.5.1) for the current
importer.

Command blocks in each embedded xcpAdminReq must contain the same
recipient identification as well as auxiliary information (admFunctionId
of ‘‘import WK’’ (XCP_ADM_IMPORT_WK), domain, moduleIdentifier,
transactionCtr). Auxiliary fields with each keypart must match that of
the enveloping final xcpAdminReq. Note that the external xcpAdminReq
itself lacks signatures, but its auxiliary fields must still be
populated, and match that of the constituent keyparts.

6.5.1. Imported raw keyparts, without reassembly threshold

If keyparts are all combined through XOR, each encrypted keypart
concatenates the following fields as plaintext without further
formatting or padding:

1. raw key(part) bytes (32 bytes, XCP_WK_BYTES)
2. VP of reassembled key, optional (32 bytes)

The backend may infer the choice purely based on plaintext size, which
is unambiguous.

The VP of the reassembled key is missing if keyparts were created
independently. It must be supplied if the parts were created by a
keypart export. All parts in a single Import WK command must possess or
lack key VP; this policy must be enforced by host tooling collecting
keyparts (note: it may not be directly observed by administrators,
must be integrated into keypart-encryption procedures).

6.5.2. Import raw keyparts, N-of-M reassembly

If keyparts are combined through a threshold scheme, the plaintext
within each encrypted keypart contains an additional field, the index of
the keypart:

1. index of keypart (4-byte raw integer)
1. raw key(part) bytes (32 bytes, XCP_WK_BYTES)
3. VP of reassembled key, optional (32 bytes, XCP_CERTHASH_BYTES)

Due to the fixed sizes used, the presence or absence of reassembled VP
may be unambiguously determined. Threshold-based keyparts may also
be unambiguously separated from XOR-based ones.

Since a threshold scheme can always supply the VP of the reassembled
key, it is strongly suggested that keyparts combined through a threshold
always include the full VP. As with keyparts reassembled without use of
thresholds (6.5.1), all or none of the individual keyparts must include
the VP of the reassembled key.

6.6. Exported keyparts

exKeyParts := SET OF exKeyPart

exKeyPart := RecipientInfo
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Exported keyparts are concatenated and signed as a compound response
in the payload (xcpAdminRspBlk), and not individually signed. Each
RecipientInfo contains "exported raw keyparts" (6.6.1) as its encrypted
content, with one targeting each receiving KPH.

The RecipientInfos of exported keyparts are in arbitrary order,
unrelated to the order of certificates in the originating "export WK"
command.

6.6.1. Exported raw keyparts

Raw keyparts concatenate the following fields without further
formatting:

1. index of keypart, optional (4-byte raw integer)
(present only if exported through
threshold scheme)

2. raw key(part) bytes (32 bytes, XCP_WK_BYTES)
3. VP of the keypart (32 bytes)
4. VP of the originating key (32 bytes)

VP of the originating key and the keypart are both present, and are
identical, when the key is transported as a single entity.

RSA-encrypted export contains the entire payload encrypted by RSA: the
shortest supported modulus is sufficiently large to contain the entire
payload.

EC-encrypted payloads are encrypted by a session-unique symmetric key,
which itself is transported through regular one-pass ECDH.

6.7. Key verification patterns (VPs)

To calculate the verification pattern of a symmetric key, calculate
the SHA-256 hash of its concatenated, single-byte type and the raw key
bytes. The resulting 256-bit hash identifies the symmetric key (see
XCP_KEYCSUM_BYTES, 32, as the constant for size),
with the trailing (least significant) 32 bits set to all-zeroes.

For AES-256 keys, we use 0x01 as type, therefore the verification pattern
is SHA_256( 01 || <raw_key> ), with the last 4 bytes set to zero.

VPs are intentionally made ambiguous by forcing some of their
bits to a fixed value. This change inhibits fully deterministic
dictionary-building to recover WKs, while not inhibiting regular use (at
least, with negligible probability). Since WK mismatches are resolved
unambiguously through exact matching, discarding bits of even full WK
VPs has no security implications.

We currently only use AES-256 keys, and do not define other key types.

Key parts inherit the type of the key they have been separated from. As
an intentional side effect, the VP of a single-part key and its single
"keypart" are identical.

6.7.1. Wrapping key identifier (WKID)

A shorter version of VPs, WKIDs identify WKs through their
truncated hashes. We use a fixed-size value (16,
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XCP_WKID_BYTES), the most significant bytes of the verification pattern.

6.8. PKCS#11 structures

For the list of PKCS#11 constants, see pkcs11.h (specifically, pkcs11t.h).

6.8.1. Mechanisms

Mechanisms are serialized as at least 4-byte buffers, with the leading
4 bytes containing the 32-bit mechanism value (CKM_...) as a fixed-size
raw integer. Mechanisms without parameters must contain only these
bytes. Parameters follow the mechanism bytes without any intermediate
padding.

6.8.1.1. Mechanisms with IV

Mechanisms with IVs follow the mechanism with the IV bytes, of
fixed size, as specified by the cipher.

The current list of IV mechanisms and their IV bytecount is:
- CKM_AES_CBC [16]
- CKM_AES_CBC_PAD [16]
- CKM_DES3_CBC [8 ]
- CKM_DES3_CBC_PAD [8 ]
- CKM_DES_CBC [8 ]
- CKM_DES_CBC_PAD [8 ]
- CKM_IBM_CPACF_WRAP [16] -- vendor extension

6.8.1.2. RSA-PSS and OAEP

RSA-PSS mechanism parameters follow the mechanism with three
concatenated big-endian, 32-bit raw integers, without further formatting
or padding. Parameters are in the following order:

1. hash mechanism
2. mask generation function (mgf) (CK_RSA_PKCS_MGF_TYPE)
3. salt bytecount

Fields correspond to the PKCS#11 CK_RSA_PKCS_PSS_PARAMS structure. Hash
algorithms are currently limited to SHA variants (CKM_SHA_1, CKM_SHA224,
CKM_SHA256, CKM_SHA384, or CKM_SHA512). For unhashed PSS variants,
a valid mechanism from the list must be present; hashed PSS mechanisms may
supply the special-purpose ‘‘PSS default’’ value (0xffffffff).

In our implementation, the MGF hash function used must match
the data-digesting function (CKG_MGF1_SHA1, CKG_MGF1_SHA224,
CKG_MGF1_SHA256, CKG_MGF1_SHA384, or CKG_MGF1_SHA512), or contain the
‘‘XCP_PSS_DEFAULT_VALUE’’ 32-bit value 0xffffffff.
The default constant has been selected not to be possible under normal
use; it derives the mask-generation function from the mechanism (or the
hash function---first parameter---if the mechanism is an unhashed one).

Salt bytecount is currently limited to digest bytecount, or 0 if no salt
is to be included (see notes under section 9.1., EMSA-PSS, in RFC 3447,
for the restricted set of possible sizes). As a special case, the 32-bit
value XCP_PSS_DEFAULT_VALUE (0xffffffff)---out
of range of all reasonable hash functions---implies using a salt size
identical to that of the hash function.

Salt bytecount is currently ignored during signature verification:
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bytecount is derived from the signature itself.

Since hashed PSS mechanisms already prescribe a hash function,
a wire structure containing three copies of 0xffffffff forces
standard-recommended defaults for PKCS1 v2.1 PSS signatures for
that specific hash function.

Note that keeping MGF and data-digest function in sync is prudent,
prohibiting attacks on PSS by mismatched hash functions, (cf. Section 8,
Security considerations, in RFC 4055, and Section 8.1 in RFC 3447).

The wire encoding of PSS structs is transparently managed by our host
library, which accept regular CK_RSA_PKCS_PSS_PARAMS of PSS-aware
mechanisms at their .h interface, and serialize them to our wire
format. The only nonstandard extension is the default value, marked as
vendor-extended, which has no standard equivalent.

RSA-OAEP mechanism parameters follow the mechanism and consist of three
concatenated big-endian, 32-bit raw integers followed by an ASN.1 octet string
of specified length without further enveloping, formatting or padding.
Parameters are in the following order:

1. hash mechanism
2. mask generation function (mgf) (CK_RSA_PKCS_MGF_TYPE)
3. source (encoding parameter type, zero if no encoding parameter)
4. encoding parameter (octet string)

The hash mechanism, mask generation function and source fields correspond to
the PKCS#11 CK_RSA_PKCS_OAEP_PARAMS structure. Both hash algorithm and mask
generation function must employ the same hash function (CKG_MGF1_SHA1,
CKG_MGF1_SHA224, CKG_MGF1_SHA256, CKG_MGF1_SHA384, or CKG_MGF1_SHA512).
In addition to the PKCS#11 standard, we define a set of equivalent mask
generation functions that employ SHA-3 algorithms (CKG_IBM_MGF1_SHA3_224,
CKG_IBM_MGF1_SHA3_256, CKG_IBM_MGF1_SHA3_384, CKG_IBM_MGF1_SHA3_512).
For the corresponding SHA-3 definitions see section 8.7.3.
The source field specifies the type of the encoding parameter.
Currently only no encoding parameter (source == 0) or octet strings are
supported (source == CKZ_DATA_SPECIFIED).
The same encoding parameter has to be passed to the decrypt operation that has
been used for the encrypt operation or it will fail otherwise.

6.8.1.3. Custom ID-card (EAC) related functions

We define a single custom mechanism to support Extended Access Control
algorithms (CKM_IBM_EAC), and parameterize the mechanism to provide a
single entry point for EAC-related operations. Currently supported EAC
operations are selected by a single integer, which is the mandatory only
parameter. The mechanism takes a single CK_ULONG parameter
in the reference C implementation.

In wire form, the EAC mechanism must be followed by a 32-bit raw
integer, its parameter. Supported values are enumerated under EAC_Var_t
definitions. As with other enumerated constants, the list may grow in
the future, without changing the meaning of previously defined values.

6.8.1.3.1. EAC sub-variants

The current list of supported EAC constants is:

EACV_IBM_KEK_V101 1 -- secret -> secure messaging KEK (EAC v1.01)
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EACV_IBM_MACK_V101 2 -- secret -> secure messaging MACK (EAC v1.01)
EACV_IBM_PWD_V200 3 -- passphrase -> secure messaging KEK (EAC v1.01)
EACV_IBM_HKDF 4 -- HKDF( key, salt ) -> PRF stream [RFC 5869]

-- salt is supplied with mechanism parameter
-- output bytecount specified as attribute
-- of derived key

EACV_IBM_BCHAIN_TCERT0 5 -- blockchain: derive tcert from base EC key
-- and additive cleartext [potentially insecure]
-- additive term must be supplied as aux.data
-- restrictions: base EC key must use 256+ bit
-- prime. Curve/type restrictions are inherited
-- from control points, not separately by mech.

If the EAC key derivation function is called with a nonce or salt,
the nonce/salt must be passed as the parameter to DeriveKey.
Currently, only the HKDF derivation option supports salting.

6.8.1.3.1. HKDF parameters

The HKDF key-derivation function MUST include a hash-function
identifier, and two optional parameters [‘‘info’’ and a salt], which are
a property of the HKDF process itself, not that of the base key. [See
RFC 5869, sections 3.1 and 3.2]

Parameters MUST be serialized as the following BER structure:

SEQUENCE {
OCTET STRING hashfunction,
OCTET STRING salt,
OCTET STRING info

}

The hash function identifier MUST specify a PKCS11 hash function
constant or a non-GENERIC HMAC one.

6.8.1.4. ECDH1_DERIVE

CK_ECDH1_DERIVE_PARAMS structures are serialized in a BER structure,
containing the following fields:

SEQUENCE {
OCTET STRING kdf,
OCTET STRING sharedData, -- possibly empty
OCTET STRING publicKey

}

The key derivation function ‘‘kdf’’ is stored as a 4-byte raw integer.
Currently supported values are hash functions as given in the PKCS11 (v2.40)
standard. Shared data may be empty. CKD_NULL does not use shared data.

This structure is supported starting from API ordinal 3.
Modules using an older version, can still derive keys by using the raw key
material instead of the above sequence.
The resulting key will be the raw secret from the ECDH key derive without any
KDF applied, equivalent to using CKD_NULL.

6.8.1.5. CKM_IBM_CMAC

This vendor mechanism is used for CMAC signing and verification. It may
be used by sign/verify-capable AES and DES symmetric keys, and

EP11 Principles of Operation 185 VCS revision: ba1d9ae2
2020.02.11. 08:00:51



Wire format 57/105
does not take parameters.

6.8.1.6. DSA parameters

When generating DSA keys or parameters, an intermediate structure stores
parameters (P,Q,G). This structure is returned when DSA parameters
are generated through GenerateKey (using CKM_DSA_PARAMETER_GEN as
mechanism).

When calling GenerateKeyPair to create a DSA keypair for specific
parameters, the vendor attribute CKA_IBM_STRUCT_PARAMS must contain the
full P,Q,G structure. The content must be the full ASN.1/BER SEQUENCE
enumerating P,Q,G parameters (7.8), or a raw packed alternative
storing raw P,Q,G values (7.8.1).

Note that the vendor attribute is shared with DH key generation,
decoding unambiguously from the mechanism.

6.8.1.7. PBE parameters (CKM_PBE_... mechanisms)

Password-based key derivation turns a host-contributed password and
salt into a key and an initialization vector (IV).

offset bytes
field notes

------------------------- fixed header -------------------------------------
1 0 PBE type 4 0: clear password

1: encrypted password
2 4 password bytecount 4 verbatim if clear

secret-key blob if encrypted
3 8 salt bytecount 4 up to 256 bytes
4 12 iteration count 4 up to 65536
--------------------- variable size fields ---------------------------------
5 16 password (dynamic) see bytecount above
6 ... salt (dynamic) see bytecount above

Fields are big-endian.

A PBE type of 1 is reserved for passwords within secret-key blobs. The
password field must then contain a secret-key blob, possibly a generic
secret key, with CKF_GENERATE enabled.

Password and salt are concatenated without further formatting
or padding. Bytecounts are limited to fixed values (see
XCP_PBE_PWD_MAX_BYTES and XCP_PBE_SALT_MAX_BYTES). Passwords are
accepted in raw form, the caller is responsible for BMPstring expansion
(if strict compatibility with PKCS12 is required).

The backend may limit iteration counts, returning
CKR_MECHANISM_PARAM_INVALID if the requested value is over
the limit of 65536 (XCP_PBE_ITER_MAX).

PBE mechanism-parameter structures are by construction unambiguously
distinguishable from ASN.1/BER structures. We may therefore add BER
representations in the future without impacting existing applications.

The IV derived from a PBE structure is returned concatenated with the
PKCS11 checksum of the derived key (7.6.1).

6.8.1.8. SPKI MAC conversion (CKM_IBM_TRANSPORTKEY)
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This mechanism is used to turn a raw SPKI into a MACed one (7.4.1).
It uses no parameter, obtaining all necessary information from the SPKI
itself, and attributes provided with the call to UnwrapKey().

The UnwrapKey() output of this mechanism is the MACed SPKI, and the
truncated SKI of the key as a checksum (7.6.3), extended by the
size-reporting tail used by UnwrapKey() (7.6.1)

6.8.1.9. DH parameters

When generating DH parameters, an intermediate structure stores prime
and generator (P,G). This structure is returned when DH parameters
are generated through GenerateKey (using a DH parameter-generating
mechanism).

When calling GenerateKeyPair to create a DH keypair for specific
parameters, the vendor attribute CKA_IBM_STRUCT_PARAMS must contain the
structure describing P and G. The content must be the full ASN.1/BER
SEQUENCE enumerating P,G parameters (7.8), or a raw packed alternative
storing raw P,G values (7.8.2).

Note that the vendor attribute is shared with DSA key generation,
decoding usage unambiguously from the mechanism.

6.8.1.10. DH key derivation

The PKCS3 DH key derivation mechanism, CKM_DH_PKCS_DERIVE, uses a single
parameter, the DER-encoded public key of the other party. The only
bytes appended to the mechanism must be that of the public key ASN.1
SEQUENCE, without further formatting or padding.

Parameters used by CKM_X9_42_DH_DERIVE use a packed structure identical
to that used by CK_ECDH1_DERIVE_PARAMS (6.8.1.4).

6.8.1.11. Mechanisms with variable-sized results (..._GENERAL)

Mechanisms which may select output size, when requesting output, must
append the requested number of bytes as 32-bit raw integer as the single
mechanism parameter. This value corresponds to the CK_MAC_GENERAL_PARAMS
PKCS11 parameter.

When supplying results to such a mechanism, the same value needs to be
provided, even if redundant, as we may observe the result size. (We may
relax this requirement in the future.)

Mechanisms following this convention are the following:
standard mechanisms:

CKM_SHA224_HMAC_GENERAL (0x00000257)
CKM_SHA256_HMAC_GENERAL (0x00000252)
CKM_SHA384_HMAC_GENERAL (0x00000262)
CKM_SHA512_HMAC_GENERAL (0x00000272)

SECURITY NOTICE: we consider allowing truncated signature GENERATION but
not VERIFICATION: allowing verification of truncated signatures with
user-specified lengths allow users to reconstruct longer signatures, if
they have access to a shorter, valid signature (see security rationale).
Note the corresponding control point, which allows verification of
truncated signatures.
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6.8.1.12 Protected key import

The CKM_IBM_CPACF_WRAP WrapKey mechanism is used to import a key (blob) flagged
as XCP_IBM_PROTKEY_EXTRACTABLE as an protected key. The key encryption key is
provided by the system firmware. System firmware can restrict this request, to
only send it in a privileged environment. Currently AB keys are not supported
with this mechanism.

EP11 returns the wrapped key as an octet string which contains a special
wrapped key format:

bytecount note
----- MACed: ------------------------------------------------------

1. structure version 2 0x0001
2. KEK identifier 16 XCP_WKID_BYTES, see (6.7.1)
3. key type 4 wrapped key type
4. Bit length 4 length of the key in bits
5. IV 16 random IV

----- encrypted: --------------------------------------------------
6. wrapped key 96

----- end of encrypted region -------------------------------------
7 NULL padding 54 padding of null bytes

----- end of MACed region -----------------------------------------
8. MAC 32 covers all preceding bytes

(incl. clear header)

System firmware may transform this to the following format:

bytecount note
--------- ----

1. structure version 2 0x0001
2. reserved 16 reserved 0
3. key type 4 wrapped key type
4. Bit length 4 length of the key in bits
5a. Token size 8 size of the token + the

verification pattern
5b. reserved 8 reserved 0

----- pro begin: -------------------------------------------------
6. wrapped key var
7. verification pattern 32

----- Token end: -------------------------------------------------

7 NULL padding var padding of null bytes to
224 bytes. Making the structure
the same size as sent by EP11.

The firmware generates a token which acts as the protected key.
EP11 supports the following key types:

AES with bit length 128, 192 and 256 = 0x1
2DES and 3DES = 0x2
EC-P with bit length 192, 224, 256, 384 and 521 = 0x3
ED25519 and ED448 = 0x4

Supported key types and bit lengths vary between different systems and are also
restricted by the EP11 control point set up. Consult your architecture for key
types and bit lengths which can be used on your system.

EP11 flags domains which can be used for protected key import (wrapping key is
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set and domain has the correct policy set up) with CK_IBM_DOM_PROTKEY_ALLOW.
See the CK_IBM_XCPQ_DOMAIN query description for more information.

The MAC key is derived from the key encryption key and the MAC mechanism is HMAC
based on SHA-256. The derivation mechanism uses the TK concatenated with
information that identifies the MAC key, prefixed with the number one and hashed
with sha256: sha256( be32(1) || <key> || <kdf_info>)}.

The key information is described in a ASN.1 sequence defining the used
algorithms and i390CC and EP11 as the owner of the key material:

kdf_info ::= SEQUENCE {
PartyUInfo (BIT STRING, "I390CC")
PartyVInfo (BIT STRING, "EP11")
AlgorithmID (OID, hmacWithSHA256)

[section excluded from published version]

6.8.1.19. Post-quantum algorithms: CKM_IBM_DILITHIUM variants

As an experimental feature, the module is capable of supporting the
round 2 version of the ‘‘Dilithium’’ digital-signature algorithm
in a restricted setting; support is indicated by the presence of
CKM_IBM_DILITHIUM (0x80010023) in the mechanism list.
This mechanism is used for keypair generation and for sign/verify operations.
Incremental sign/verify operations with SignUpdate/VerifyUpdate are not
supported.

While Dilithium itself is a scalable algorithm, for
application/compatibility reasons, we only support the ‘‘high-security’’
version of round 2 Dilithium, classified as Category IV in the
original NIST PQ RFP [4.A.5. Security Strength Categories]. This
version is called ‘‘Dilithium-1536x1280’’ or ‘‘Dilithium-6-5’’ in the
specification, and this version remains the default for future releases.

When generating new Dilithium keys, the wire-encoded mechanism without
additional parameters implies use of the default version. Future
versions, when they add support for other key sizes, will optionally
allow designating an object identifier (OID) with CKA_IBM_PQC_PARAMS
(0x8001000e) which selects a size other than the default one.

Dilithium-related calls other than key generation, including
UnwrapKey(), infer Dilithium sub-variant size from the key object, and
require no mechanism parameters. (The only other import-like function,
DeriveKey(), can not create new Dilithium keys.) Only the key type needs to be
specified as CKK_IBM_PQC_DILITHIUM (0x80010023) with the
attribute template for UnwrapKey

See pq-crystals.org for algorithm specifications.

6.8.1.20. Montgomery and Edwards based elliptic curves

Contrary to other curves Montgomery and Edwards curves are restricted to
specific mechanisms for sign/verify and derive operations and can therefore not
be used with the generic ECDSA and ECDH mechanism. Every curve has separate
mechanisms that match with the OID of an Edwards/Montgomery curve. See section
8.1.1.5.1. for the list of corresponding OIDs and mechanisms and see section
6.8.1.4. for the mechanism parameter of the ECDH mechanisms. The ECDH
mechanisms return the derived key as an EP11 blob back to the user. An exception
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are the raw mechanisms (CKM_IBM_EC_X25519_RAW and CKM_IBM_EC_X448_RAW), which
return the key encrypted under a KEK.

Certain attributes are rejected when specified in key generation templates
as the associated operations are not supported/possible on these curves.

Prohibited for Edwards curves:

CKA_DERIVE

Prohibited for Montgomery curves:

CKA_SIGN -- CKA_VERIFY is silently ignored in public key templates, as we can
not control public keys

We will revisit all mechanisms regarding these curves as they get standardized
in the PKCS#11 standard.

6.8.2. Mechanism list

The mechanism list reported by GetMechanismList() is static, containing
all mechanisms technically supported by the backend. The list may
further be restricted by dynamic settings---such as control points,
indirectly by compliance setup---but this is not reflected in the list.

6.8.3. Attributes

6.8.3.1. Compliance attributes

Standards’ compliance, when encoded as an attribute for a
key, is---currently---stored in a 32-bit raw integer storing
a 32-bit bitfield, one of the vendor-specific attributes
(CKA_IBM_STD_COMPLIANCE1).

Any number of bits may be supplied when the attribute is encoded for the
wire. The backend removes any unsupported bits, therefore, host code
should compare the generated object, and react to any unsupported bits
(those which are not supported by the backend).

Blobs tied to certain mode(s) are rejected when they are sent to a
domain with more permissive settings. Note that compliance mode
is reflected in the clear blob header.

The list of currently supported compliance bits is under (8.1.1.3).

6.9. Raw integers

Integer-type values, such as indices or sizes, are sometimes written
into OCTET STRINGs or similar structures. We refer to such values as
’raw integers’, meaning a minimal-length big-endian encoding of the
corresponding integer.

In some cases, raw integers are forced into fixed-size fields, or are
padded to some minimum length. Since this is the exception, we mention
it as a special case.

6.10. Empty fields

We allow fields to be completely missing, such as when some parameter
is optional. These fields are encoded as zero-length, without a Value
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field, as valid--but somewhat unusual--structures. The rationale is to
simplify optional fields: instead of designating fields optional, we
allow them to remain empty, and keep the parser simple. Specifically,
without optional fields, we’ll always know how many OCTET STRINGS must
be present in SEQUENCEs, and do not need CONTEXT-SPECIFIC tags to
identify optional fields.

Note that empty fields differ from raw integers storing zero: the length
of encoded zeroes is always positive, either 1 (minimal encoding) or
larger (fixed or minimum-size fields).

6.11. Date/time fields

Date/time is passed as fixed-size UTC time, formatted as ASCII digits
into a 16-byte packed form "YYYYMMDDhhmmss00" (4-digit year, one-based
month, one-based day, hour, minutes, seconds, and two mandatory zeroes).
No trailing zero or other padding is used.

Note that this UTC format is identical to the one present in the PKCS#11
CK_TOKEN_INFO structure.

6.11.1. Incremental date/time

For services which allow incremental time change, such as the
incremental form of administrative set-time (XCP_ADM_SET_CLOCK),
date/time fields MUST be prefixed by an ASCII ’+’ or ’-’ character (0x2b
or 0x2d, respectively). Individual time units of the date/time field are
then interpreted as relative shifts.

Note that an incremental shift without changing time is valid, therefore
a field with leading +/- and all-(ASCII)0 date/time is possible. [These
unusual forms are used, for example, when an unauthenticated time-shift
command is sent to prevent subsequent unauthenticated updates until the
requisite amount of time has passed.]

6.11.2. Audit record date/time

Audit records, optimized for small bytecount, store UTC date/time
in a packed 48-bit field, a derivative of UNIX time_t, extended to
millisecond precision, and safe from the Y2038 problem (i.e., overflow
of 32-bit time_t in 2038).

The 48-bit field concatenates two values, the number of seconds as a
36-bit integer in its most significant bits (time_t base, i.e., number
of seconds since 1970-01-01T00:00:00), and milliseconds as a 12-bit
integer.

Simply shifting the 48-bit integer by 12 bits turns the field into a
time_t second. This format has been selected to allow easier parsing
directly from audit hexdumps, as opposed to a more efficient encoding
which would require explicit decoding of the 48-bit field.

Note that 36-bit time_t seconds wrap (first) in Year 4147, which must
be tolerated by applications, and will not be fixed in the backend.
(Note that 4147 is beyond the planned retirement date of all current
developers.)

6.11.3. Performance-test date/time

Performance test code, an optional feature, uses a derivative of
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audit-record timestamps (6.11.1), storing time with higher resoluton
in a packed 64-bit field, concatenating the least significant 32-bits
of time_t seconds with a 32-bit field storing nanoseconds. Since
performance tests are not assumed to be impacted by rollover of time_t,
we acknowledge the 32-bit time_t limitation (i.e., the Y2038 problem),
and depend on users reconstructing time across rollovers.

As with audit records, ease of parsing justifies the minimal loss
in accuracy, therefore the separate field for sub-seconds. While
the sub-second field is capable of reporting events with nanosecond
resolution, its resolution is limited to that of the backend.

6.12. Certificate index

Querying specific (OA) certificates requires an index. When present, we
encode the value as a zero-based raw integer, counting backwards from
the current (latest) certificate. The parent of the current certificate
is encoded as 1, its parent as 2, etc.

6.13. Query structures

Functional queries are available through the get_xcp_info call.
They are parametrized through a query type, defined as one of the
CK_IBM_XCPQUERY_t constants (see 8.7.1).

Two input parameters must be supplied to the query, both as fixed-size
32-bit raw integers. The first parameter specifies query type, one of
the types enumerated in CK_IBM_XCPQUERY_t. The second parameter may be
used by the query, and its interpretation is query-dependent; currently,
none of the queries uses it (we may add selective selftests as the first
use). For query types which do not require the parameter, the value must
be zero.

See (5.1) for a listing of compound structures returned by queries.

6.13.1. Extended flags

The following card-level extended flags are defined for capabilities
beyond standard PKCS#11:

CKF_IBM_HW_EXTWNG 1 Module monitors removal from its slot.
See also XCP_ADMM_EXTWNG under admin
attributes. Partition-based instances do not
set this bit.

CKF_IBM_HW_ATTEST 2 Module features hardware-assisted
attestation, authenticated by an authority
in secure hardware (such as outbound
authentication on IBM HSMs).

CKF_IBM_HW_BATTERY 4 Module has a battery, and may raise warnings
about low battery (8.1.1.2)

CKF_IBM_HW_SYSTEST............. 8..Module supports---insecure---test functions
CKF_IBM_HW_RETAIN 16 Module may retain hardware-internal keys
reserved 32 Reserved for future use
CKF_IBM_HW_AUDIT 64 Module supports audit-event logging
reserved.......................128..Reserved for future use
reserved 256 Reserved for future use
CKF_IBM_HW_ADM_DOMIMPORT 512 Module supports domain import

See also related extended capability
(CK_IBM_XCPXQ_DOMIMPORT_VER)

CKF_IBM_HW_PROTKEY_TOLERATION 1024 module tolerates blob attributes
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related to the protected-key capability
see also CKA_IBM_PROTKEY_* description

These system-specific additions mainly mirror hardware features specific
to IBM HSMs, and therefore needed to define capability bits outside
PKCS#11 scope. Lack or presence of these extended features generally
does not change PKCS#11-visible functionality, it interacts with
infrastructure we add out of PKCS#11 scope.

6.13.2. Domain flags

The following bits are defined within domain flags:

CK_IBM_DOM_ADMIND 1 -- administrators present
CK_IBM_DOM_CURR_WK 2 -- current WK is present
CK_IBM_DOM_NEXT_WK 4 -- pending/next WK is present
CK_IBM_DOM_COMMITTED_NWK.. 8..-- pending/next WK has been committed
CK_IBM_DOM_IMPRINTED 16 -- left imprint mode
CK_IBM_DOM_PROTKEY_ALLOW 32 -- policies allow protected key

6.13.3. Function Control vector (FCV)

When queried, only parts of the FCV structure are returned to the host.

A backend without a loaded FCV reports a default value, which has no
functionality enabled. During development, we generally load a default
which enables everything; production code manages FCVs properly.

See the non-wire portion of the structure document for FCV layout
details. Inheriting the layout from another specification, we do not
replicate those details here.

6.14. Firmware identifier (FWID)

During building, a hash is calculated over the XCP code and the backing
CSP. The value is stored as a binary field of XCP_FWID_BYTES, and is
constructed in an opaque manner (may be a truncated version of a longer
hash).

We intentionally do not publish details of the hash calculation, and
may change details without notification. The identifier will always be
calculated by an accepted cryptographic hash function, but the exact
input form may depend on build parameters (therefore the opaqueness).
Input to the generated hash always includes the current state & setup of
the XCP source, and a binary form of the underlying CSP, but in an order
or form which we may change.

If a truncated version of the identifier is used, we take the most
significant bits (i.e., leading bytes). As with PKCS#11 key checksums
(7.6), we acknowledge--but do not try to detect--collisions. We only
provide a weaker guarantee: firmware versions with differing truncated
FWIDs are guaranteed to be different.

6.15. Domain mask

When identifying a number of domains simultaneously, such as when
querying the aggregate compliance of a set of domains, the backend takes
a domain mask as a parameter. The same domain-mask format is used when
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the host requests a specific set of domains, such as when exporting
state. We support a simple zero-based enumeration of domains, or an
alternate form selecting a window of domains.

When specifying a domain mask from the host---such as when requesting
a subset of domains---both formats are accepted. Responses containing
domain masks---such as serialized module state---report domain masks
in the same format.

If no domain mask is included in the request---implying
defaults---serialized state (currently) contains a zero-based mask.

Since domain masks are used as standalone fields, their size is
unambiguously determined by the encapsulating wire structure. Therefore,
mask structures themselves include no length. Bitmasks returned by the
module contain the minimal number of bytes in the actual domain-mask
field, skipping trailing zero bytes.

When reported by the module, domain masks are limited to existing
domains---i.e., they never describe domains beyond that supported by the
originating module.

When importing domain masks, such as when a set of domains is selected
for export, any non-existent domains referenced by the mask are ignored.
In such cases, the domain mask reported in the response indicates which
domains have been processed. This allows trivial detection of a request
describing no domains, since the reported domain mask will be ‘‘empty’’,
describing a mask with no active domains even if its encoding is not
empty of bits.

6.15.1. Zero-based domain mask

Zero-based domain masks contain a bitfield, enumerating domains present
as a zero-indexed bitmask.

offset bytes
field notes

--- --- ------------------------------------ - ----------------------------
1 0 domain mask (field) version 4 reserved 0
2 4 domain mask <implicit> bitmask of domains

length derived from context
--- --- ------------------------------------ - ----------------------------

The mask is filled from the left, bit-wise, i.e., a mask describing only
domain #1 contains "40..." hex.

6.15.2 Domain mask window

Domain-mask windows contain a bitfield, enumerating domains present
starting at a specific domain index.

offset bytes
field notes

--- --- ------------------------------------ - ----------------------------
1 0 domain mask (field) version 4 reserved 1
2 4 index of first included domain 4 raw integer (zero-based)
3 8 domain mask <implicit> bitmask of domains

length derived from context
--- --- ------------------------------------ - ----------------------------
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As with zero-based domain masks, bits are filled from the left, bit-wise
(6.15.1). The first bit corresponds to the value in the index field: and
index field of x0000’0020 with a domain mask of "c0" hex shows domains
number 32 and 33 (decimal) being present.

There are no limits on the index of the first domain, such as being a
multiple of a power-of-two greater than one. The module may report mask
windows with some conventions to simplify reporting---such as, round
windows to multiples of 32-bit ‘‘words’’---but incoming indexes are
accepted without such requirements.

6.16. Retained key identifier (RKID)

(Semi-)retained key handles are opaque blobs of 64 bytes,
(XCP_RETAINID_BYTES). They replace blobs for (semi-)retained keys.

RKIDs combine the key object and its controlling session through a
cryptographic hash function. Different instances---blobs---containing
the same object will generate different RKIDs.

6.16.1. Truncated Retained key identifier

Administrative management---listing and removal---of RKIDs uses a
truncated form of the ID, including only the leading 4 bytes
(XCP_RETAINID_SHORT_BYTES).

Note that truncated RKIDs are not guaranteed unique, which only affects
administrative uses of RKIDs. Removal affects all RKs with the given
truncated ID. We intentionally tolerate collisions during administrative
use.

6.17. File-parts and their identification

When transporting files, parts of the file are transported separately.
The following ‘‘file-part header’’ identifies individual parts:

offset bytes note
--- file/part header --------------------------------------------------

1. 0 file identifier 4 first byte is 0 for all currently
supported files, see below

2. 4 start offset 4
3. 8 file-part bytecount 4 net length, excluding header

--- file/parts where data is present: ---------------------------------
4. 12 (data) (var.) if any, see note

-------------------------------------------------------------------------

All integer fields are raw integers; see (8.1.3) for a list of
recognized identifiers. Note that some of the identifiers, as
described there, may be conditionally available, and may be reported
as unsupported when referenced in a module lacking them. (There is a
separate reason code for out-of-range and conditionally un/supported
files, if the distinction is needed for exact error reporting.)

File identifiers are selected with their most significant 8 bits
remaining zero, implying 0 in the first byte of this structure. If an
alternate structure needs to be added in the future, superseding this
one, the first byte will signal further versioning. (Obviously, we do
not consider running out of the available 16 million file identifiers
possible in 24 bits.)
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When querying file contents or length---unambiguous from context---only
the file-part header must be present, and no data. When reporting data
bytes---during export---or supplying them---during import---bytes must
follow the header without any other formatting or padding.

File parts may legitimately contain zero bytes, and no data. (Addressing
beyond file limits is reported as a targeting error, but transferring
zero bytes in an otherwise valid location is tolerated.) A zero-byte
request doubles as size query (see below).

Import and export interfaces dealing with file parts are incremental,
allowing targeting parts in arbitrary order.

6.17.1. File-size query

When requesting 0 bytes from offset 0, only a 12-byte header is
returned. The file-part bytecount in the header is set to the total
file length.

6.17.2. Setting file size

When setting file size---the first call in a file-write sequence---only
the file-part header is sent (6.17). In this form, the start offset
must be 0, and the bytecount field contains the exact size of the full,
reassembled file.

The backend may reject a file-size reservation if the size is over
a backend-specific limit.

6.17.3. Removing files

When removing a specific file, a file-part header selects the file
to remove (6.17). In this form, offset and bytes fields must still be
present, but are currently ignored.

6.18. Bitmasks

Fields encoding bitmasks number their bits as a ‘‘big-endian
bitstream’’. The first bit is 0x80 of the first byte. The second bit is
0x40 of the first byte etc. Bitmasks lack size designation or other
framing, and rely on range provided by the compound structure they are
part of.

Each particular bitmask may specify the index of its first bit; generally,
unless marked otherwise, bit #0 is the base index.

7. Other standard formats

We reference a number of industry-standard formats, with some
restrictions on which of their possible variants we accept.

7.1. SignerInfo

Digital signatures are encoded into standard ASN.1 signerInfo fields,
self-contained: we use SKI-identified signatures, therefore each
SignerInfo contains the following fields:

SignerInfo ::= SEQUENCE {
version CMSVersion,
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sid subjectKeyIdentifier [0] SubjectKeyIdentifier,
digestAlgorithm DigestAlgorithmIdentifier,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature SignatureValue

}

See SignerInfo in CMS, RFC 3852, Section 5.3. We only use SignerInfo’s
identified by signer SKI (version 3). The ECDSA format of SignerInfo
signature fields is in RFC 5753, Section 7.2.

Currently, the SignerInfo’s must not contain authenticated or
unauthenticated attributes (both are optional fields of a SignerInfo
structure).

7.2. RecipientInfo

See RecipientInfo in CMS, RFC 3852, Section 6.2 (RSA) and 1-pass
ECDH version in EC+CMS, RFC 5753, Section 3.1.1 (EC). We identify
recipients only through SKI (version 2).

The specific RSA form is KeyTransRecipientInfo, version 2, with rid
(recipient ID) containing the recipient’s SKI.

Note that we only identify recipients through SKIs, never by certificate
issuer/serial number.

7.2.1. EC RecipientInfo

EC recipientInfos supporting 1-pass ECDH must include user key material
(UKM) in all forms. Key derivation is currently limited to SHA-256 as a
KDF (OID 1.3.132.1.11.1, stdDH-sha256kdf), with AES-256 key wrapping
(OID 2.16.840.1.101.3.4.1.45, id-aes256-wrap).

EC points must be always uncompressed.

7.3. SubjectKeyIdentifier (SKI)

See Section 4.2.1.2. in RFC 3280. We derive the SKI from the public
key by hashing the BIT STRING subjectPublicKey. The hash function is
SHA-256, and full hashes are used, without truncation (32 bytes).

Note that SKIs are tied to a public key, but not to a specific
certificate.

7.3.1. Lists of SKIs

When using multiple SKIs, we use a simple concatenated form, packing
SKIs in the original order, without any padding or ASN.1 encapsulation.
Since the size of SKIs is fixed, this packed form is unambiguous.

Lists of SKIs with an aggregate bytecount not an integer multiple of
SKI bytecount (see 7.3) are invalid, and should not be returned
by a properly functioning backend.

7.4. SubjectPublicKeyInfo (SPKI)

See Section 1.2 in RFC 4055 (RSA), and 2.1 in RFC 5480 (EC); the latter
references section E.5 of ANSI x9.62 for ASN.1 syntax of EC parameters.
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7.4.1. SPKI with MAC

For public keys created in, or imported to XCP, the public key structure
consists of an SPKI, its attributes, an internally generated salt, and a
MAC of the controlling SPKI.

bytes notes
----- MACed: ---------------------------------------------------------

1 SPKI as per ASN1 SEQUENCE
2 WK identifier 16 XCP_WKID_BYTES, see (6.7.1)
3 controlling session 32 corresponds to blob session

identifier identifier (3.1 and 6.2.2)
see also XCP_WK_BYTES

4 salt 8 see XCP_SPKISALT_BYTES
5 mode identification 8 see (3.1)
6 attribute field (variable) see (3.2)

----- end of MACed region --------------------------------------------
7 MAC 32 see XCP_HMAC_BYTES

Other than the first field (SPKI), fields are individual OCTET STRINGS
without further formatting or padding. The MAC is calculated on the all
preceding fields by the controlling WKID.

The session identifier matches that of the corresponding private-key blob.
It is not used to decrypt, obviously (the SPKI is in the clear) but it
may be used to restrict use of the public key for wrapping other keys.
It is ignored for encryption and signature verification, which only use
the SPKI, and ignore other fields.

Mode identification mimics that of encrypted blobs (3.1). Note that
this information is actually redundant: it is also available within the
attributes’ field. It is replicated for simplified host processing.

The leading SPKI is not prefixed by any data, therefore its size may
be derived from its ASN1 length field. If host code parses only the
length of first BER construct, it will identify exactly the SPKI, and
will ignore subsequent fields. (If a MACed SPKI needs to be embedded
in something without explicit control of lengths, we suggest to add a
SEQUENCE tag covering it, which will then be correctly parseable.)

7.4.2. SPKIs Montgomery and Edwards curves

With our implementation predating RFC-standardized SPKI formats for
relevant non-Weierstrass curves (as of 2018-04-25), we use an ASN.1
encoding extrapolated from prime-field EC SPKIs (2.1 in RFC 5480, E.5 in
ANSI x9.62) for Edwards-curve public keys:

SEQUENCE {
SEQUENCE {

OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER ...curve OID...

}
BIT STRING

...public key...
}

Public and private parameter values follow conventions of RFC 7748
and RFC 8032, respectively, are little-endian, with public keys in
compressed form. This serialization differs that used by non-Edwards EC
coordinates, but the difference is expected to remain opaque to most
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applications.

See (8.1.1.5.1.) for the list of supported OIDs. Note that we tolerate
‘‘pre-hashed’’ OIDs for ECDH forms, mapping them to the corresponding
base forms for both curves.

Note that our SPKI formats are extrapolated from RFC 5480 fields, and
differ from some other unofficial definitions (as an example, that
used by OpenSSL v1.1.1pre5, 2018-04-17).

7.4.3. PKCS8 private keys for Montgomery and Edwards curves

Similar to EC/Edwards public keys, our implementation predates
RFC-standardized PKCS8 formats. We use an ASN.1 encoding extrapolated
from prime-field EC private keys [RFC 5915] (SECG SEC1 ECPrivateKey),
as PKCS8-encoded structures [RFC 5958, 5].

SEQUENCE {
INTEGER 0 -- version, 0
SEQUENCE {

OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER ...curve OID...

}
OCTET STRING, encapsulates {

SEQUENCE {
INTEGER 1 -- ecdpVer1 (v1), [RFC 5915, Section 3]
OCTET STRING

...private key...
[1] {

BIT STRING
...public key...

}
}

}
}

Public and private parameter values follow conventions of RFC 7748
and RFC 8032, respectively, are little-endian, with public keys in
compressed form.

Inheriting the restriction from [PKCS#11 v2.40 Current Mechanisms
Specification, section 2.5], these EC PKCS#8 structures MUST NOT
contain the optional ‘‘parameters’’ field.

See (8.1.1.5.1.) for the list of supported OIDs.

7.4.3.1. Sample structures for Montgomery and Edwards curves

Sample keys from RFC 7748 Sections 6.1 and 6.2, and RFC 8032 Sections
7.1 and 7.4 are shown here DER-encoded:

-- RFC 7748, Section 6.1, curve25519/x25519(ECDH), Alice public key/SPKI:
SEQUENCE {

SEQUENCE {
OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER curveX25519 (1 3 101 110)

}
BIT STRING

85 20 F0 09 89 30 A7 54 74 8B 7D DC B4 3E F7 5A
0D BF 3A 0D 26 38 1A F4 EB A4 A9 8E AA 9B 4E 6A
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}

-- binary, 53 bytes:
3033300e06072a8648ce3d020106032b656e0321008520f0098930a754748b7d
dcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a

-- RFC 7748, Section 6.1, curve25519/x25519(ECDH), Alice private key:
SEQUENCE {

INTEGER 0
SEQUENCE {

OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER curveX25519 (1 3 101 110)

}
OCTET STRING, encapsulates {

SEQUENCE {
INTEGER 1
OCTET STRING

77 07 6D 0A 73 18 A5 7D 3C 16 C1 72 51 B2 66 45
DF 4C 2F 87 EB C0 99 2A B1 77 FB A5 1D B9 2C 2A

[1] {
BIT STRING

85 20 F0 09 89 30 A7 54 74 8B 7D DC B4 3E F7 5A
0D BF 3A 0D 26 38 1A F4 EB A4 A9 8E AA 9B 4E 6A

}
}

}
}

-- binary, 99 bytes:
3061020100300e06072a8648ce3d020106032b656e044c304a02010104207707
6d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2aa123
0321008520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa
9b4e6a

-- RFC 7748, Section 6.2, x448(ECDH), Alice public key/SPKI:
SEQUENCE {

SEQUENCE {
OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER curveX448 (1 3 101 111)

}
BIT STRING

9B 08 F7 CC 31 B7 E3 E6 7D 22 D5 AE A1 21 07 4A
27 3B D2 B8 3D E0 9C 63 FA A7 3D 2C 22 C5 D9 BB
C8 36 64 72 41 D9 53 D4 0C 5B 12 DA 88 12 0D 53
17 7F 80 E5 32 C4 1F A0

}

-- binary, 77 bytes:
304b300e06072a8648ce3d020106032b656f0339009b08f7cc31b7e3e67d22d5
aea121074a273bd2b83de09c63faa73d2c22c5d9bbc836647241d953d40c5b12
da88120d53177f80e532c41fa0

-- RFC 7748, Section 6.2, x448(ECDH), Alice private key:
SEQUENCE {

INTEGER 0
SEQUENCE {

OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER curveX448 (1 3 101 111)

}
OCTET STRING, encapsulates {
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SEQUENCE {

INTEGER 1
OCTET STRING

9A 8F 49 25 D1 51 9F 57 75 CF 46 B0 4B 58 00 D4
EE 9E E8 BA E8 BC 55 65 D4 98 C2 8D D9 C9 BA F5
74 A9 41 97 44 89 73 91 00 63 82 A6 F1 27 AB 1D
9A C2 D8 C0 A5 98 72 EB

[1] {
BIT STRING

9B 08 F7 CC 31 B7 E3 E6 7D 22 D5 AE A1 21 07 4A
27 3B D2 B8 3D E0 9C 63 FA A7 3D 2C 22 C5 D9 BB
C8 36 64 72 41 D9 53 D4 0C 5B 12 DA 88 12 0D 53
17 7F 80 E5 32 C4 1F A0

}
}

}
}

-- binary, 148 bytes:
308191020100300e06072a8648ce3d020106032b656f047c307a02010104389a
8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28dd9c9baf574
a9419744897391006382a6f127ab1d9ac2d8c0a59872eba13b0339009b08f7cc
31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c22c5d9bbc8366472
41d953d40c5b12da88120d53177f80e532c41fa0

-- RFC 8032, Section 7.1, ed25519(EDDSA) KAT public key/SPKI:
SEQUENCE {

SEQUENCE {
OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER ed25519 (1 3 101 100 1)

}
BIT STRING

D7 5A 98 01 82 B1 0A B7 D5 4B FE D3 C9 64 07 3A
0E E1 72 F3 DA A6 23 25 AF 02 1A 68 F7 07 51 1A

}

-- binary, 54 bytes:
3034300f06072a8648ce3d020106042b656401032100d75a980182b10ab7d54b
fed3c964073a0ee172f3daa62325af021a68f707511a

-- RFC 8032, Section 7.1, ed25519(EDDSA) KAT private key:
SEQUENCE {

INTEGER 0
SEQUENCE {

OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER ed25519 (1 3 101 100 1)

}
OCTET STRING, encapsulates {

SEQUENCE {
INTEGER 1
OCTET STRING

9D 61 B1 9D EF FD 5A 60 BA 84 4A F4 92 EC 2C C4
44 49 C5 69 7B 32 69 19 70 3B AC 03 1C AE 7F 60

[1] {
BIT STRING

D7 5A 98 01 82 B1 0A B7 D5 4B FE D3 C9 64 07 3A
0E E1 72 F3 DA A6 23 25 AF 02 1A 68 F7 07 51 1A

}
}

}
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}

-- binary, 100 bytes:
3062020100300f06072a8648ce3d020106042b656401044c304a02010104209d
61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60a1
23032100d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68
f707511a

-- RFC 8032, Section 7.4, ed448(EDDSA) KAT public key/SPKI:
SEQUENCE {

SEQUENCE {
OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER ed448 (1 3 101 100 3)

}
BIT STRING

5F D7 44 9B 59 B4 61 FD 2C E7 87 EC 61 6A D4 6A
1D A1 34 24 85 A7 0E 1F 8A 0E A7 5D 80 E9 67 78
ED F1 24 76 9B 46 C7 06 1B D6 78 3D F1 E5 0F 6C
D1 FA 1A BE AF E8 25 61 80

}

-- binary, 79 bytes:
304d300f06072a8648ce3d020106042b656403033a005fd7449b59b461fd2ce7
87ec616ad46a1da1342485a70e1f8a0ea75d80e96778edf124769b46c7061bd6
783df1e50f6cd1fa1abeafe8256180

-- RFC 8032, Section 7.4, ed448(EDDSA) KAT private key:
SEQUENCE {

INTEGER 0
SEQUENCE {

OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER ed448 (1 3 101 100 3)

}
OCTET STRING, encapsulates {

SEQUENCE {
INTEGER 1
OCTET STRING

6C 82 A5 62 CB 80 8D 10 D6 32 BE 89 C8 51 3E BF
6C 92 9F 34 DD FA 8C 9F 63 C9 96 0E F6 E3 48 A3
52 8C 8A 3F CC 2F 04 4E 39 A3 FC 5B 94 49 2F 8F
03 2E 75 49 A2 00 98 F9 5B

[1] {
BIT STRING

5F D7 44 9B 59 B4 61 FD 2C E7 87 EC 61 6A D4 6A
1D A1 34 24 85 A7 0E 1F 8A 0E A7 5D 80 E9 67 78
ED F1 24 76 9B 46 C7 06 1B D6 78 3D F1 E5 0F 6C
D1 FA 1A BE AF E8 25 61 80

}
}

}
}

-- binary, 151 bytes:
308194020100300f06072a8648ce3d020106042b656403047e307c0201010439
6c82a562cb808d10d632be89c8513ebf6c929f34ddfa8c9f63c9960ef6e348a3
528c8a3fcc2f044e39a3fc5b94492f8f032e7549a20098f95ba13c033a005fd7
449b59b461fd2ce787ec616ad46a1da1342485a70e1f8a0ea75d80e96778edf1
24769b46c7061bd6783df1e50f6cd1fa1abeafe8256180
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7.5. Certificates

We accept arbitrary x.509 certificates as administrator identities under
a reasonable upper limit on size, as long as their public key may be
unambiguously decoded. We do not validate attributes of the certificate,
or any other parameter other than the public key.

Note that we never verify signatures on certificates. As an important
consequence, we never reconstruct certificate hierarchies, and do not
need to support revocation.

For certificates of keypart holders---who only encrypt and decrypt,
but do not sign data---see (5.3.4).

The upper limit on bytecount, XCP_CERT_MAX_BYTES (1),
is only applied by administrative traffic. Additional restrictions,
such as those imposed by transport channels, may further restrict
the practically usable sizes. The value is also reported as an
extended-capability constant.

7.6. PKCS#11 key checksums

We use standard PKCS#11 key checksums where compatible key
identification is needed. These checksums are 24-bit ‘‘hashes’’ of
the keys; actual calculation depends on key type, as specified by the
CKA_CHECK_VALUE attribute. As with standard PKCS#11, collisions are
expected and must be tolerated--the only assurance given is that keys
with different checksums are different.

7.6.1. Key checksums returned by UnwrapKey

When UnwrapKey() returns a key checksum, the 3-byte PKCS#11 checksum
is followed by a 32-bit raw integer, containing the size (bitcount)
of the unwrapped key.

7.6.2. Key checksums of PBE mechanisms

Password-based key derivation mechanisms return key checksums
concatenated with the IVs derived from the PBE input structure (see
6.8.1.7). The returned value concatenates the 24-bit checksum and the
derived IV, the size of which is mechanism-specific.

7.6.3. Public-key types’ checksums

We generalize key checksums to public keys, using the most significant
24 bits of the key’s SKI (7.3). This size matches the size of symmetric
CKA_CHECK_VALUE sizes, and conveniently produces the same checksum
for a private key and its SPKI.

As with symmetric key checksums, when an SPKI is returned by UnwrapKey,
it is followed by a 32-bit raw integer, containing the size (in bits)
the unwrapped key.

7.7. ASN.1/BER TLV (tag, length, value) encoding

We use a restricted subset of BER rules to encode payload (see ITU
X.680, "Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation"). We encode requests in the following
TLV form:
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1. all wire packets--request and response packets--are of the form

"SEQUENCE { OCTET STRING ... }", with the enveloping SEQUENCE
containing a context-dependent number of OCTET STRINGs.

2. only single-byte tags are supported (hex 30, 04: SEQUENCE, OCTET STRING,
respectively).

3. length fields are encoded in one of the following forms, depending
on the bytecount of field contents (’V’, the ’Value’ field):

3.1. up to 127 bytes (0x7f), inclusive, bytecount is inserted as a
single byte, without any prefix. Therefore, the 4-byte integer
(hex) 0123’4567 stored into an OCTET STRING appears as
the following six-byte sequence (bytes are in hex):

(tag) (len) (value)
04 04 01 23 45 67

3.2. up to 255 (0xff) bytes, inclusive, encode length as hex 81,
followed by a single byte, containing the bytecount itself.
The integer 0x0123’4567, in this form, would appear as
the following seven-byte sequence:

(tag) (len) (value)
04 81 04 01 23 45 67

3.3. up to 65’535 (0xffff) bytes, inclusive, encode length as hex 82,
followed by two bytes, containing the bytecount of the value
field as a big-endian 16-bite integer. The above integer, in
this form, would appear as the following eight-byte sequence:

(tag) (len) (value)
04 82 00 04 01 23 45 67

3.4. larger bytecounts extend in a similar way (0x80+N, followed
by bytecount stored as an N-byte big-endian integer), although
we do not intend to encounter them in production.

For practical purposes, host code constructing and understanding
TL-encodings in the preceding paragraphs would be able to
communicate with the card without further restrictions.

3.5. length encoding does not need to be minimal (i.e., length bytes
may start with all-zero bytes)

3.6. zero-length fields are supported; they must indicate zero
bytecount, and contain no actual ’V’ (Value) bytes.

A typical example of zero-length fields is optional content,
where we mandate proper framing--fixed number of OCTET
STRINGs--with an empty field indicating missing content.

3.7. indefinite encoding is never generated by the backend. It
must not be present in incoming requests.

Note that zero-byte fields may elicit warnings of ASN.1 parsers,
while it is a valid--arguably, unusual--structure. We acknowledge
this deficiency, and do not intend to fix it: we select simplicity of
the parser vs. eliminating warnings (our use of zero-byte fields is
intentional).
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7.7.1. Requests

Requests may be encoded with arbitrary-length TL fields. The backend
verifies size limits, but otherwise tolerates arbitrary number of Length
bytes, as long as they do not exceed the transport limit.

7.7.2. Responses

Responses encode 4-byte fields with single-byte length fields (see item
3.1 under 7.7).

Responses with higher bytecounts are encoded with the minimal number of
Length bytes, at least two. Therefore, the backend returns at least the
following format:

04’82’<nn>’<mm> for a bytecount of nn’mm (16-bit hex)

In the current form, with current resource limits, all responses over
4 bytes will be encoded in this form, as longer responses are not
supported.

7.8. DSA/DH parameters

Structures describing P,Q,G parameters for DSA use the ASN.1/BER
encoding specified in RFC 3370 (CMS), section 3.1. The structure used is
identified with the OID 1.2.840.10040.4.1 (id-dsa).

Structures describing P and G parameters for DH use the ASN.1/BER
encoding specified in PKCS#3, section 9. The structure used is
identified with the OID 1.2.840.113549.1.3.1 (dhKeyAgreement).

7.8.1. Raw DSA P,Q,G parameters

As an alternative form, we support concatenated P,Q,G values without
ASN.1/BER encapsulation. In this form, all parameters must be stored in
the same size (i.e., determined by the size of P), in big-endian form,
with leading zeroes used to pad to uniform size. The structure contains
P,Q, and G in this order.

7.8.2. Raw DH P,G parameters

As an alternative form, we support concatenated P and G values without
ASN.1/BER encapsulation. In this form, all parameters must be stored in
the same size (i.e., determined by the size of P), in big-endian form,
with leading zeroes used to pad to uniform size. The structure contains
P and G in this order.

7.9. Private-key objects

Our blob-internal storage of private-key objects is only documented
for interoperable forms, when transporting (un/wrapping) PKCS8-encoded
private keys. (The internals of private-key objects are intentionally
not standardized, see 3.1.)

For RSA, DSA, DH or Weierstrass-curve EC keys, PKCS#8 PrivateKeyInfo
ASN.1 types are used (12.6 in PKCS#11 v2.20, 2.5 in Current Mechanisms
Specification v2.40).

See (7.4.3) for notes on Edwards-curve private-key serialization.
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8. Constants

This section is generated, extracted from header files. Lists may
be appended to, but are not changed, once published.

8.1. Administrative identifiers

See also XCP_ADM_QUERY (0x00010000).

--- administrative commands ------------------------------------------------
XCP_ADM_ADMIN_LOGIN 1 -- add admin certificate
XCP_ADM_DOM_ADMIN_LOGIN 2 -- add domain admin certificate
XCP_ADM_ADMIN_LOGOUT 3 -- revoke admin certificate
XCP_ADM_DOM_ADMIN_LOGOUT.... 4 -- revoke domain admin certificate
XCP_ADM_ADMIN_REPLACE 5 -- transition admin certificate
XCP_ADM_DOM_ADMIN_REPLACE 6 -- transition domain admin certificate
XCP_ADM_SET_ATTR 7 -- set card attribute/s
XCP_ADM_DOM_SET_ATTR........ 8 -- set domain attribute/s
XCP_ADM_GEN_DOM_IMPORTER 9 -- generate new domain importer (PK) key
XCP_ADM_GEN_WK 10 -- create random domain WK
XCP_ADM_EXPORT_WK 11 -- wrap+output WK or parts
XCP_ADM_IMPORT_WK...........12 -- set (set of) WK (parts) to pending
XCP_ADM_COMMIT_WK 13 -- activate pending WK
XCP_ADM_FINALIZE_WK 14 -- promote next to current WK
XCP_ADM_ZEROIZE 15 -- release CSPs from entire module
XCP_ADM_DOM_ZEROIZE.........16 -- release CSPs from domain/s
XCP_ADM_DOM_CTRLPOINT_SET 17 -- fix domain control points
XCP_ADM_DOM_CTRLPOINT_ADD 18 -- enable domain control points
XCP_ADM_DOM_CTRLPOINT_DEL 19 -- disable domain control points
XCP_ADM_SET_CLOCK...........20 -- set module-internal UTC time
XCP_ADM_SET_FCV 21 -- set function-control vector
XCP_ADM_CTRLPOINT_SET 22 -- fix card control points
XCP_ADM_CTRLPOINT_ADD 23 -- enable card control points
XCP_ADM_CTRLPOINT_DEL.......24 -- disable card control points
XCP_ADM_REENCRYPT 25 -- transform blobs to next WK
XCP_ADM_RK_REMOVE 26 -- remove (semi-) retained key
XCP_ADM_CLEAR_WK 27 -- erase current WK
XCP_ADM_CLEAR_NEXT_WK.......28 -- erase pending WK
XCP_ADM_SYSTEM_ZEROIZE 29 -- card zeroize, preserving system

-- key, if it is present
XCP_ADM_EXPORT_STATE 30 -- create card state backup
XCP_ADM_IMPORT_STATE 31 -- import card state backup (part)
XCP_ADM_COMMIT_STATE........32 -- activate imported card state
XCP_ADM_REMOVE_STATE 33 -- purge import/export state backup
XCP_ADM_GEN_MODULE_IMPORTER 34 -- generate module importer (PK) key
XCP_ADM_SET_TRUSTED 35 -- activate TRUSTED attribute on

-- blob/SPKI
XCP_ADM_DOMAINS_ZEROIZE 36 -- multi-domain zeroize

--- administrative queries -------------------------------------------------
XCP_ADMQ_ADMIN 0x00010001 -- admin SKI/cert
XCP_ADMQ_DOMADMIN 0x00010002 -- domain admin SKI/cert
XCP_ADMQ_DEVICE_CERT 0x00010003 -- module CA (OA) cert
XCP_ADMQ_DOM_IMPORTER_CERT..0x00010004 -- current WK importer
XCP_ADMQ_CTRLPOINTS 0x00010005 -- card CP set
XCP_ADMQ_DOM_CTRLPOINTS 0x00010006 -- domain CP set
XCP_ADMQ_WK 0x00010007 -- current WK (domain only)
XCP_ADMQ_NEXT_WK............0x00010008 -- pending WK (domain only)
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XCP_ADMQ_ATTRS 0x00010009 -- card attributes
XCP_ADMQ_DOM_ATTRS 0x0001000a -- domain attributes
XCP_ADMQ_FCV 0x0001000b -- public parts of FCV
XCP_ADMQ_WK_ORIGINS.........0x0001000c -- information on original WK

-- components (individual keypart
-- verification patterns)

XCP_ADMQ_RKLIST 0x0001000d -- retained-key id list
XCP_ADMQ_INTERNAL_STATE 0x0001000e -- (parts of) import/export state
XCP_ADMQ_IMPORTER_CERT 0x0001000f -- current migration importer
XCP_ADMQ_AUDIT_STATE 0x00010010 -- (parts of) import/export state

8.1.1. Administrative variables (attributes)

Integer-type variables are referenced through the following indices:

XCP_ADMINT_SIGN_THR 1 -- signature threshold
XCP_ADMINT_REVOKE_THR 2 -- revocation threshold
XCP_ADMINT_PERMS 3 -- permissions
XCP_ADMINT_MODE.......... 4 -- operational mode
XCP_ADMINT_STD 5 -- (security) standards compliance

Note that index 0 is not used.

8.1.1.1. Permissions

XCP_ADMP_WK_IMPORT 0x00000001 -- allow WK import
XCP_ADMP_WK_EXPORT 0x00000002 -- allow WK export
XCP_ADMP_WK_1PART 0x00000004 -- allow transport

-- without multi-part keyparts
XCP_ADMP_WK_RANDOM.......0x00000008 -- allow internally generated WK
XCP_ADMP_1SIGN 0x00000010 -- allow single-signed administration
XCP_ADMP_CP_1SIGN 0x00000020 -- allow single-signed CP modification
XCP_ADMP_ZERO_1SIGN 0x00000040 -- allow single-signed zeroize
XCP_ADMP_NO_DOMAIN_IMPRINT..0x00000080 -- prohibit logging in to domains in

-- imprint mode (card only)
XCP_ADMP_STATE_IMPORT 0x00000100 -- allow state (part) import
XCP_ADMP_STATE_EXPORT 0x00000200 -- allow state (part) export
XCP_ADMP_STATE_1PART 0x00000400 -- allow state transport with 1-part
reserved.................0x00000800 -- reserved for future use
reserved 0x00001000 -- reserved for future use
XCP_ADMP_CHG_WK_IMPORT 0x00010000 -- allow changing WK import flag
XCP_ADMP_CHG_WK_EXPORT 0x00020000 -- allow changing WK export flag
XCP_ADMP_CHG_WK_1PART....0x00040000 -- allow changing WK transport flag
XCP_ADMP_CHG_WK_RANDOM 0x00080000 -- allow changing internal WK flag
XCP_ADMP_CHG_SIGN_THR 0x00100000 -- allow changing sign threshold
XCP_ADMP_CHG_REVOKE_THR 0x00200000 -- allow changing revoke threshold
XCP_ADMP_CHG_1SIGN.......0x00400000 -- allow changing single-sign

-- threshold setting
XCP_ADMP_CHG_CP_1SIGN 0x00800000 -- allow changing single-sign

-- CP-changing setting
XCP_ADMP_CHG_ZERO_1SIGN 0x01000000 -- allow changing single-sign

-- zeroization setting
XCP_ADMP_CHG_ST_IMPORT 0x02000000 -- allow changing state import bit

-- (ignored by domains)
XCP_ADMP_CHG_ST_EXPORT...0x04000000 -- allow changing state export bit

-- (ignored by domains)
XCP_ADMP_CHG_ST_1PART 0x08000000 -- allow changing 1-part encrypt bit

-- (ignored by domains)
reserved 0x20000000 -- reserved for future use
reserved 0x40000000 -- reserved for future use
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WK and CP-related permissions, and those marked as domain-only use are
ignored in card-level attributes. They are rejected if they are supplied
in a card-level set command, and are reported as zeroes when queried.

Permissions controlling state export or import have no domain-level
meaning. These, and attributes marked as non-domain are ignored, but not
modified by the module, when set in domains.

8.1.1.1.1. Non-modifiable permissions

The following permissions, once removed, may not be added back:

XCP_ADMP_CHG_WK_IMPORT (0x00010000)
XCP_ADMP_CHG_WK_EXPORT (0x00020000)
XCP_ADMP_CHG_WK_1PART (0x00040000)
XCP_ADMP_CHG_WK_RANDOM.......(0x00080000)
XCP_ADMP_CHG_SIGN_THR (0x00100000)
XCP_ADMP_CHG_REVOKE_THR (0x00200000)
XCP_ADMP_CHG_1SIGN (0x00400000)
XCP_ADMP_CHG_CP_1SIGN........(0x00800000)
XCP_ADMP_CHG_ZERO_1SIGN (0x01000000)
XCP_ADMP_CHG_ST_IMPORT (0x02000000)
XCP_ADMP_CHG_ST_EXPORT (0x04000000)
XCP_ADMP_CHG_ST_1PART........(0x08000000)
reserved (0x20000000)
reserved (0x40000000)

8.1.1.2. Infrastructure mode

XCP_ADMM_AUTHENTICATED 0x00000001 -- no longer in imprint mode
XCP_ADMM_EXTWNG 0x00000002 -- zeroize if starting with external warning

XCP_ADMM_STR_112BIT 0x00000004 -- require 112+ bits’ admin strength
XCP_ADMM_STR_128BIT......0x00000008 -- require 128+ bits’ admin strength
XCP_ADMM_STR_160BIT 0x00000010 -- require 160+ bits’ admin strength
XCP_ADMM_STR_192BIT 0x00000020 -- require 192+ bits’ admin strength
XCP_ADMM_STR_256BIT 0x00000040 -- require 256 bits’ admin strength

XCP_ADMM_WKCLEAN_EXTWNG..0x00000080 -- zeroize WKs if starting with ext. warning
-- set. Leaves other parameters unaffected

XCP_ADMM_BATT_LOW 0x00000100 -- module reports low battery (read only)
XCP_ADMM_API_ACTIVE 0x00000200 -- XCP commands are available. Remove bit

-- to disable XCP within card, such as
-- during card movement.

Bits related to the external warning infrastructure or global state
(XCP_ADMM_EXTWNG, XCP_ADMM_BATT_LOW, XCP_ADMM_WKCLEAN_EXTWNG,
XCP_ADMM_API_ACTIVE) within domain attributes are read-only; they are
mirrored from the card-level one. These read-only bits are ignored when
attempting a write at the domain level.

8.1.1.3. Operational mode (compliance settings)

Compliance settings correspond to standards-mandated sets of CPs. They
are read-only, and are updated when CPs are updated, or a domain changes
state.

XCP_ADMS_FIPS2009 1 -- NIST, 80+ bits, -2011.01.01.
XCP_ADMS_BSI2009 2 -- BSI, 80+ bits, -2011.01.01.
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XCP_ADMS_FIPS2011 4 -- NIST, 112+ bits, 2011.01.01.-
XCP_ADMS_BSI2011 8 -- BSI, 112+ bits, 2011.01.01.-

The following bits are reserved:
XCP_ADMS_SIGG_IMPORT 16 -- German SigG (digital signature law),

-- mode allows key import but not export
XCP_ADMS_SIGG 32 -- German SigG, no key import

XCP_ADMS_BSICC2017 64 -- BSI, EP11 EAL4 Common Criteria
-- Certification 2017

When supplied to the backend as a requested compliance
restriction, these values are encoded as a 32-bit bitfield of the
CKA_IBM_STD_COMPLIANCE1 integer attribute, see (6.8.3.1) for usage.

8.1.1.3.1. FIPS/2009 mode

This mode, corresponding to FIPS-140 restrictions in 2009, is active
if the following CPs are prohibited:

XCP_CPB_KEYSZ_BELOW80BIT
XCP_CPB_ALG_RAW_RSA
XCP_CPB_SKIP_KEYTESTS
XCP_CPB_ALG_NFIPS2009
XCP_CPB_KEYSZ_HMAC_ANY

Note that the presence of BP (non-NIST) EC curves no longer prohibits
FIPS mode. This is due to a policy change, not a technical one.

8.1.1.3.2. FIPS/2011 mode

This mode, corresponding to FIPS-140 restrictions on 2011.01.01
(transition off 80-bit strength, and transition to FIPS 186-3), is
active if the following CPs are prohibited:

XCP_CPB_KEYSZ_BELOW80BIT
XCP_CPB_KEYSZ_80BIT -- new addition since FIPS/2009
XCP_CPB_ALG_RAW_RSA
XCP_CPB_SKIP_KEYTESTS
XCP_CPB_ALG_NFIPS2011 -- replaces algorithm choice since FIPS/2009
XCP_CPB_KEYSZ_HMAC_ANY
XCP_CPB_KEYSZ_RSA65536 -- new addition since FIPS/2009 (FIPS 186-3)

Note that the presence of BP (non-NIST) EC curves no longer prohibits
FIPS mode. This is due to a policy change, not a technical one.

8.1.1.3.3. BSI/2009 mode

This mode, corresponding to the BSI HSM protection profile, and German
Bundesnetzagentur algorithms in 2009, is active if the following CPs are
prohibited:

XCP_CPB_KEYSZ_BELOW80BIT
XCP_CPB_NON_ATTRBOUND
XCP_CPB_ALG_RAW_RSA
XCP_CPB_SKIP_KEYTESTS
XCP_CPB_ALG_NBSI2009
XCP_CPB_KEYSZ_HMAC_ANY
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8.1.1.3.4. BSI/2011 mode

This mode, corresponding to the BSI HSM protection profile, and German
Bundesnetzagentur algorithms as of 2011.01.01., is active if the
following CPs are prohibited:

XCP_CPB_KEYSZ_BELOW80BIT
XCP_CPB_KEYSZ_80BIT -- new addition since BSI/2009
XCP_CPB_NON_ATTRBOUND
XCP_CPB_ALG_RAW_RSA
XCP_CPB_SKIP_KEYTESTS
XCP_CPB_ALG_NBSI2011 -- replaces algorithm choice since BSI/2009
XCP_CPB_KEYSZ_HMAC_ANY

8.1.1.3.5. Common Criteria Certification mode

This mode, corresponding to the CP settings evaluated for Common Criteria
Certification by German Bundesnetzagentur, is active if the following CP
settings are applied:

XCP_CPB_ADD_CPBS ( 0) n/r
XCP_CPB_DELETE_CPBS ( 1) n/r
XCP_CPB_SIGN_ASYMM ( 2) 1
XCP_CPB_SIGN_SYMM...........( 3)... n/r
XCP_CPB_SIGVERIFY_SYMM ( 4) n/r
XCP_CPB_ENCRYPT_SYMM ( 5) 1
XCP_CPB_DECRYPT_ASYMM ( 6) 1
XCP_CPB_DECRYPT_SYMM........( 7)... 1
XCP_CPB_WRAP_ASYMM ( 8) 1
XCP_CPB_WRAP_SYMM ( 9) 1
XCP_CPB_UNWRAP_ASYMM (10) 1
XCP_CPB_UNWRAP_SYMM.........(11)... 1
XCP_CPB_KEYGEN_ASYMM (12) 1
XCP_CPB_KEYGEN_SYMM (13) 1
XCP_CPB_RETAINKEYS (14) 1
XCP_CPB_SKIP_KEYTESTS.......(15)... 0
XCP_CPB_NON_ATTRBOUND (16) 0
XCP_CPB_MODIFY_OBJECTS (17) 1
XCP_CPB_RNG_SEED (18) 0
XCP_CPB_ALG_RAW_RSA.........(19)... 0
XCP_CPB_ALG_NFIPS2009 (20) 0
XCP_CPB_ALG_NBSI2009 (21) 1
XCP_CPB_KEYSZ_HMAC_ANY (22) 0
XCP_CPB_KEYSZ_BELOW80BIT....(23)... 0
XCP_CPB_KEYSZ_80BIT (24) 1
XCP_CPB_KEYSZ_112BIT (25) 1
XCP_CPB_KEYSZ_128BIT (26) 1
XCP_CPB_KEYSZ_192BIT........(27)... 1
XCP_CPB_KEYSZ_256BIT (28) 1
XCP_CPB_KEYSZ_RSA65536 (29) 0
XCP_CPB_ALG_RSA (30) 1
XCP_CPB_ALG_DSA.............(31)... 1
XCP_CPB_ALG_EC (32) 1
XCP_CPB_ALG_EC_BPOOLCRV (33) 1
XCP_CPB_ALG_EC_NISTCRV (34) 1
XCP_CPB_ALG_NFIPS2011.......(35)... 1
XCP_CPB_ALG_NBSI2011 (36) 1
XCP_CPB_USER_SET_TRUSTED (37) 0
XCP_CPB_ALG_SKIP_CROSSCHK (38) 0
XCP_CPB_WRAP_CRYPT_KEYS.....(39)... 0
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XCP_CPB_SIGN_CRYPT_KEYS (40) 0
XCP_CPB_WRAP_SIGN_KEYS (41) 0
XCP_CPB_USER_SET_ATTRBOUND (42) 0
XCP_CPB_ALLOW_PASSPHRASE....(43)... 0
XCP_CPB_WRAP_STRONGER_KEY (44) 0
XCP_CPB_WRAP_WITH_RAW_SPKI (45) 0
XCP_CPB_ALG_DH (46) 1
XCP_CPB_DERIVE..............(47)... 1
XCP_CPB_ALG_EC_25519 (55) n/r
XCP_CPB_ALG_NBSI2017 (61) n/r
XCP_CPB_CPACF_PK (64) n/r
XCP_CPB_ALG_PQC (65) n/r

Apart from the technical enforcement of the Common Criteria
Certification mode through the control point settings, please note that
the Common Criteria Certification only applies to CryptoExpress cards
that are used within an IBM zSeries mainframe platform that runs a
Common Criteria evaluated version of the z/OS operating system.

8.1.1.4. Importer keytypes

The following importer key types/sizes are currently defined:

XCP_IMPRKEY_RSA_2048 0
XCP_IMPRKEY_RSA_4096 1
XCP_IMPRKEY_EC_P256 2
XCP_IMPRKEY_EC_P521..... 3
XCP_IMPRKEY_EC_BP256r 4
XCP_IMPRKEY_EC_BP320r 5
XCP_IMPRKEY_EC_BP512r 6
XCP_IMPRKEY_RSA_3072 7

RSA keys are restricted to Fermat exponents (0x10001). EC keys are from
NIST or BP/Brainpool (regular) curves.

The available set of importer types is a superset of accepted
administrator key types/sizes.

8.1.1.5. EC curve identifiers

Symbolic (non-OID) identification of EC curves, such as used by the audit
infrastructure, uses these constants:

XCP_EC_C_NIST_P192 1 -- NIST, prime field
XCP_EC_C_NIST_P224 2
XCP_EC_C_NIST_P256 3
XCP_EC_C_NIST_P384....... 4
XCP_EC_C_NIST_P521 5
XCP_EC_C_BP160R 6 -- Brainpool, prime field
XCP_EC_C_BP160T 7
XCP_EC_C_BP192R.......... 8
XCP_EC_C_BP192T 9
XCP_EC_C_BP224R 10
XCP_EC_C_BP224T 11
XCP_EC_C_BP256R..........12
XCP_EC_C_BP256T 13
XCP_EC_C_BP320R 14
XCP_EC_C_BP320T 15
XCP_EC_C_BP384R..........16
XCP_EC_C_BP384T 17
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XCP_EC_C_BP512R 18
XCP_EC_C_BP512T 19
XCP_EC_C_25519...........20..-- curve/x25519, ECDH only
reserved 21 -- reserved for future use
reserved 22 -- reserved for future use
XCP_EC_C_SECP256K1 23 -- secp256k1 (Bitcoin default)
XCP_EC_C_ED448 24 -- ed448 Goldilocks twisted-Edwards

-- FP, 2^448-2^224+1
XCP_EC_C_448 25 -- c448/x448, ECDH only
XCP_EC_C_ED25519 26 -- ed25519, EdDSA

8.1.1.5.1. Non-Weierstrass EC curve identifiers

The following IETF-standarized (RFC 8410) OIDs are supported for c25519/c448
variants:

ECDH usage

1.3.101.110 -- curve25519 with mechanisms CKM_IBM_EC_X25519 and
-- CKM_IBM_EC_X25519_RAW

1.3.101.111 -- curve448 with mechanisms CKM_IBM_EC_X448 and CKM_IBM_EC_X448_RAW

EDDSA usage

1.3.101.112 -- ed25519 with mechanism CKM_IBM_ED25519_SHA512
1.3.101.113 -- ed448 with mechanism CKM_IBM_ED448_SHA3

8.1.1.6. EC curve-group identifiers

XCP_EC_CG_NIST 1 -- NIST, prime field
XCP_EC_CG_BPOOL 2 -- Brainpool, FP curves

-- including R and twisted (T) parameters
XCP_EC_CG_C25519 3 -- curve25519 (RFC 7748)
XCP_EC_CG_SECP256K1.. 4..-- SECP K-curves, incl. Bitcoin default secp256k1
reserved 5 -- reserved for future use
XCP_EC_CG_C448 6 -- ed448 ("Goldilocks") (RFC 7748)

8.1.2. Serialized state types (tags)

Type-specific information is in (5.3). This listing enumerates our
exported names for the type constants in alphabetical order; see
the type listing for use.

XCP_STSTYPE_CARD_ADM_CERTS x0009
XCP_STSTYPE_CARD_ADM_SKIS x0008
XCP_STSTYPE_CARD_ATTRS x000e
XCP_STSTYPE_CARD_QUERY.........x0007
XCP_STSTYPE_CARD_TRANSCTR x0010
XCP_STSTYPE_CERT_AUTH x001e
XCP_STSTYPE_CPS_MASK x0021
XCP_STSTYPE_CREATE_TIME........x0005
XCP_STSTYPE_DOMAINIDX_MAX x0002
XCP_STSTYPE_DOMAINS_MASK x0003
XCP_STSTYPE_DOM_ADM_CERTS x000b
XCP_STSTYPE_DOM_ADM_SKIS.......x000a
XCP_STSTYPE_DOM_ATTRS x000f
XCP_STSTYPE_DOM_CPS x0017
XCP_STSTYPE_DOM_QUERY x000c
XCP_STSTYPE_DOM_TRANSCTR.......x0011
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XCP_STSTYPE_FCV x0006
XCP_STSTYPE_FILE_SIG x0016
XCP_STSTYPE_KEYPART x0019
XCP_STSTYPE_KEYPART_CERT.......x001d
XCP_STSTYPE_KEYPART_COUNT x001b
XCP_STSTYPE_KEYPART_LIMIT x001c
XCP_STSTYPE_KEYPART_SIG x001a
XCP_STSTYPE_KPH_SKIS...........x000d
XCP_STSTYPE_MULTIIMPORT_MASK x0020
XCP_STSTYPE_SECTIONCOUNT x0001
XCP_STSTYPE_SERIALNR x0004
XCP_STSTYPE_SIG_CERTS..........x0015
XCP_STSTYPE_SIG_CERT_COUNT x0014
XCP_STSTYPE_STATE_SALT x0018
XCP_STSTYPE_STATE_SCOPE x001f
XCP_STSTYPE_WK_ENCR_ALG........x0012
XCP_STSTYPE_WK_ENCR_DATA x0013

8.1.3. File identifiers

When a conditionally-present file identifier is referenced in a module
not supporting it, it is reported as recognized but unsupported.

XCP_FILEID_SAVED_STATE 1
XCP_FILEID_KEYPARTS 2
XCP_FILEID_TESTDATA 3 -- not present in production firmware
XCP_FILEID_EXPREQUEST 4 -- test file containing export-request

-- parameters (keyparts, thresholds etc.)

Test-data files, if supported, are used only by development features,
and not further specified here. Please consult any internal
documentation of the test feature itself.

8.2. Function identifiers

FNID_Login 1
FNID_Logout 2
FNID_SeedRandom 3
FNID_GenerateRandom........ 4
FNID_DigestInit 5
FNID_DigestUpdate 6
FNID_DigestFinal........... 8
FNID_Digest 9
FNID_DigestSingle 10
FNID_EncryptInit 11
FNID_DecryptInit........... 12
FNID_EncryptUpdate 13
FNID_DecryptUpdate 14
FNID_EncryptFinal 15
FNID_DecryptFinal.......... 16
FNID_Encrypt 17
FNID_Decrypt 18
FNID_EncryptSingle 19
FNID_DecryptSingle......... 20
FNID_GenerateKey 21
FNID_GenerateKeyPair 22
FNID_SignInit 23
FNID_SignUpdate............ 24
FNID_SignFinal 25
FNID_Sign 26
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FNID_VerifyInit 27
FNID_VerifyUpdate.......... 28
FNID_VerifyFinal 29
FNID_Verify 30
FNID_SignSingle 31
FNID_VerifySingle.......... 32
FNID_WrapKey 33
FNID_UnwrapKey 34
FNID_DeriveKey 35
FNID_GetMechanismList...... 36
FNID_GetMechanismInfo 37
FNID_get_xcp_info 38
FNID_GetAttributeValue 39
FNID_SetAttributeValue..... 40
FNID_admin 41

Functions not supported:
FNID_DigestKey 7
FNID_ReencryptSingle 42

Note that all function identifiers are non-zero.

8.2.1. Function (performance) category identifiers

The returned transport header includes a performance categorization
of functional requests. Requests are categorized into two performance
classes with symmetric requests (incremental vs. single-pass
symmetric operations), fast/slow asymmetric operations. A separate
category reserved for key generation including primality testing, or
similarly slow requests.

The internal classification of fast vs. slow, especially for asymmetric
operations, is implementation-dependent, such as the performance of
hardware acceleration. The classification may be assumed to be stable
when identical firmware versions are loaded into identical hardware.

XCP_OPCAT_ASYMM_SLOW 1
XCP_OPCAT_ASYMM_FAST 2 -- includes EC key generation
XCP_OPCAT_SYMM_PARTIAL 3 -- includes hashing
XCP_OPCAT_SYMM_FULL...... 4 -- includes symmetric key generation
XCP_OPCAT_ASYMM_GEN 5 -- RSA, DSA parameter generation
XCP_OPCAT_ASYMM_MAX 5 -- total number of categories

8.3. Card control points

Card control points are currently not supported. Command codes
are reserved for their manipulation, but there are no card-level
CP definitions.

8.4. Domain control points (CPs)

Control points are positive-active, requiring a nonzero bit to activate
a capability (CPB, CP bit). Their full set of CPBs is represented as a
XCP_CPCOUNT-bit wide fixed field, a bitmask (6.18).

The list of control points may be appended to, but existing CP bits’
meanings are not changed, once released. Possible gaps in the list are
reserved for future use and can not be activated. The reported maximum
control point bit might be greater than the last documented bit, too.
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XCP_CPB_ADD_CPBS 0 -- allow addition (activation) of CP bits
XCP_CPB_DELETE_CPBS 1 -- allow removal (deactivation) of CP bits

-- remove both ADD_CPBs and DELETE_CPBs
-- to make unit read-only

XCP_CPB_SIGN_ASYMM 2 -- sign with private keys
XCP_CPB_SIGN_SYMM........... 3.-- sign with HMAC or CMAC
XCP_CPB_SIGVERIFY_SYMM 4 -- verify with HMAC or CMAC
XCP_CPB_ENCRYPT_SYMM 5 -- encrypt with symmetric keys

-- No asymmetric counterpart: one
-- may not restrict use of public keys

XCP_CPB_DECRYPT_ASYMM 6 -- decrypt with private keys
XCP_CPB_DECRYPT_SYMM........ 7.-- decrypt with symmetric keys
XCP_CPB_WRAP_ASYMM 8 -- key export with public keys
XCP_CPB_WRAP_SYMM 9 -- key export with symmetric keys
XCP_CPB_UNWRAP_ASYMM 10 -- key import with private keys
XCP_CPB_UNWRAP_SYMM.........11.-- key import with symmetric keys
XCP_CPB_KEYGEN_ASYMM 12 -- generate asymmetric keypairs
XCP_CPB_KEYGEN_SYMM 13 -- generate or derive symmetric keys

-- including DSA parameters
XCP_CPB_RETAINKEYS 14 -- allow backend to save semi/retained keys
XCP_CPB_SKIP_KEYTESTS.......15.-- disable selftests on new asymmetric keys
XCP_CPB_NON_ATTRBOUND 16 -- allow keywrap without attribute-binding
XCP_CPB_MODIFY_OBJECTS 17 -- allow changes to objects (Booleans only)
XCP_CPB_RNG_SEED 18 -- allow mixing external seed to RNG
XCP_CPB_ALG_RAW_RSA.........19.-- allow RSA private-key use without padding

-- (highly discouraged)
XCP_CPB_ALG_NFIPS2009 20 -- allow non-FIPS-approved algs (as of 2009)

-- including non-FIPS keysizes
XCP_CPB_ALG_NBSI2009 21 -- allow non-BSI algorithms (as of 2009)

-- including non-FIPS keysizes
XCP_CPB_KEYSZ_HMAC_ANY 22 -- don’t enforce minimum keysize on HMAC
XCP_CPB_KEYSZ_BELOW80BIT....23.-- allow algorithms below 80-bit strength

-- public-key operations are still allowed
XCP_CPB_KEYSZ_80BIT 24 -- allow 80 to 111-bit algorithms
XCP_CPB_KEYSZ_112BIT 25 -- allow 112 to 127-bit algorithms
XCP_CPB_KEYSZ_128BIT 26 -- allow 128 to 191-bit algorithms
XCP_CPB_KEYSZ_192BIT........27.-- allow 192 to 255-bit algorithms
XCP_CPB_KEYSZ_256BIT 28 -- allow 256-bit algorithms
XCP_CPB_KEYSZ_RSA65536 29 -- allow RSA public exponents below 0x10001
XCP_CPB_ALG_RSA 30 -- RSA private-key or key-encrypt use
XCP_CPB_ALG_DSA.............31.-- DSA private-key use
XCP_CPB_ALG_EC 32 -- EC private-key use, see also

-- curve restrictions
XCP_CPB_ALG_EC_BPOOLCRV 33 -- Brainpool (E.U.) EC curves
XCP_CPB_ALG_EC_NISTCRV 34 -- NIST/SECG EC curves
XCP_CPB_ALG_NFIPS2011.......35.-- allow non-FIPS-approved algs (as of 2011)

-- including non-FIPS keysizes
XCP_CPB_ALG_NBSI2011 36 -- allow non-BSI algorithms (as of 2011)

-- including non-BSI keysizes
XCP_CPB_USER_SET_TRUSTED 37 -- allow non-admins to set TRUSTED on a blob/SPKI
XCP_CPB_ALG_SKIP_CROSSCHK 38 -- do not double-check sign/decrypt ops
XCP_CPB_WRAP_CRYPT_KEYS.....39.-- allow keys which can en/decrypt data

-- and also un/wrap other keys
XCP_CPB_SIGN_CRYPT_KEYS 40 -- allow keys which can en/decrypt data

-- and also sign/verify
XCP_CPB_WRAP_SIGN_KEYS 41 -- allow keys which can un/wrap data

-- and also sign/verify
XCP_CPB_USER_SET_ATTRBOUND 42 -- allow non-administrators to

-- mark public key objects ATTRBOUND
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XCP_CPB_ALLOW_PASSPHRASE....43.-- allow host to pass passprases, such as

-- PKCS12 data, in the clear
XCP_CPB_WRAP_STRONGER_KEY 44 -- allow wrapping of stronger keys

-- by weaker keys
XCP_CPB_WRAP_WITH_RAW_SPKI 45 -- allow wrapping with SPKIs without

-- MAC and attributes
XCP_CPB_ALG_DH 46 -- Diffie-Hellman use (private keys)
XCP_CPB_DERIVE..............47 -- allow key derivation (symmetric+EC/DH)
XCP_CPB_ALG_EC_25519 55 -- enable support of curve25519 and its

-- related algorithms incl. EdDSA
XCP_CPB_ALG_NBSI2017 61 -- allow non-BSI algorithms (as of 2017)

-- including non-BSI keysizes

XCP_CPB_CPACF_PK 64 -- support data key generation and import
-- for protected key

XCP_CPB_ALG_PQC 65 -- enable support for PQC algorithms

8.5. Blob Boolean attributes

The following bits are defined, matching PKCS#11 or vendor-defined
attributes (see storage in 3.2.2).

XCP_BLOB_EXTRACTABLE 0x00000001
XCP_BLOB_NEVER_EXTRACTABLE 0x00000002
XCP_BLOB_MODIFIABLE 0x00000004
XCP_BLOB_NEVER_MODIFIABLE..........0x00000008
XCP_BLOB_RESTRICTABLE 0x00000010 -- may remove, but not add, capabilities
XCP_BLOB_LOCAL 0x00000020 -- was locally generated, not imported
XCP_BLOB_ATTRBOUND 0x00000040 -- must be transported with attributes
XCP_BLOB_USE_AS_DATA...............0x00000080 -- raw bytes may be used as input

-- such as for DeriveKey
XCP_BLOB_SIGN 0x00000100
XCP_BLOB_SIGN_RECOVER 0x00000200
XCP_BLOB_DECRYPT...................0x00000400
XCP_BLOB_ENCRYPT 0x00000800
XCP_BLOB_DERIVE 0x00001000
XCP_BLOB_UNWRAP 0x00002000
XCP_BLOB_WRAP......................0x00004000
XCP_BLOB_VERIFY 0x00008000
XCP_BLOB_VERIFY_RECOVER 0x00010000
XCP_BLOB_TRUSTED 0x00020000
XCP_BLOB_WRAP_W_TRUSTED............0x00040000
XCP_BLOB_RETAINED 0x00080000 -- blob resides within backend
XCP_BLOB_ALWAYS_RETAINED 0x00100000 -- blob has been created within backend
XCP_BLOB_MLS 0x00800000 -- blob interacts with MLS functionality
XCP_BLOB_PROTKEY_EXTRACTABLE.......0x00200000 -- blob can be imported as protected key

-- conflicts with XCP_BLOB_EXTRACTABLE and
-- sets XCP_BLOB_NEVER_EXTRACTABLE

XCP_BLOB_PROTKEY_NEVER_EXTRACTABLE 0x00400000

8.5.1. Vendor-defined attributes (CKA_IBM_...)

Vendor-defined Boolean attributes are referenced through the following
constants:

CKA_IBM_RESTRICTABLE 0x80010001
CKA_IBM_NEVER_MODIFIABLE 0x80010002
CKA_IBM_RETAINKEY 0x80010003
CKA_IBM_ATTRBOUND..................0x80010004
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CKA_IBM_USE_AS_DATA 0x80010008
CKA_IBM_STD_COMPLIANCE1 0x8001000a
CKA_IBM_MLS_TYPE 0x8001000b
CKA_IBM_PROTKEY_EXTRACTABLE........0x8001000c
CKA_IBM_PROTKEY_NEVER_EXTRACTABLE 0x8001000d

Note that we use the regular constant to indicate
implementation-dependent attributes (CKA_VENDOR_DEFINED, 0x80000000).

The following vendor-defined attribute is also used:

CKA_IBM_STRUCT_PARAMS 0x80010009 (6.8.1.6) (7.8) (7.8.1)

8.6. Test mechanism constants

The following operation IDs are available for test-only calls:

XCP_DEV_SET_WK 1 -- imprints affected domain,
-- in addition to setting current WK

XCP_DEV_SET_NEXT_WK 2
XCP_DEV_AES_ENCR_CYCLE 3
XCP_DEV_AES_DECR_CYCLE..... 4
XCP_DEV_DES_ENCR_CYCLE 5
XCP_DEV_DES_DECR_CYCLE 6
XCP_DEV_ZEROIZE_CARD 7
XCP_DEV_ZEROIZE_DOMAIN..... 8
XCP_DEV_SET_DOMAIN_CPS 9
XCP_DEV_SET_WK_RAW 10 -- does not imprint affected domain
XCP_DEV_COMMIT_NEXT_WK 11 -- commits next WK
XCP_DEVQ_ADMINLIST......... 12..-- list of card SKIs
XCP_DEVQ_DOM_ADMINLIST 13 -- list of domain SKIs
XCP_DEV_SET_NEXT_WK_RAW 14 -- set next WK, does not imprint
XCP_DEV_FSMODE 15 -- manage access to filesystems

-- used to simulate parts of concurrent-update
XCP_DEV_ADMSIGN............ 16..-- admin-sign file in filesystem

-- used to pass arbitrary bad structs
-- for verification

XCP_DEV_FSWRITE 17 -- write data to temporary file
XCP_DEV_DSA_PQG_GEN 18 -- turn P, Q bitcount +iteration count plus

-- (optional) seed into DSA PQG parameter set
XCP_DEVQ_BLOBCONFIG 19 -- CSP/blob configuration details

-- see (5.2.6.) for format details
XCP_DEV_RSA_X931_KEYGEN.... 20..-- ANSI x9.31 key gen. from prime seeds

-- returns PKCS8-encoded key, in clear
-- may be unsupported, depending on Clic setup

XCP_DEV_RNGSTATE 21 -- query or set backend RNG state
XCP_DEV_RNG_SEED 22 -- forces immediate RNG re/seeding

-- recommended before exporting RNG state,
-- to maximize number of matching bits after
-- state is restored

XCP_DEVQ_ENTROPY 23 -- retrieve raw TRNG output
-- conditioned entropy, no DRNG processing
-- note that this call changes DRNG setup
-- during processing, slowing it down

XCP_DEVQ_PERFMODE.......... 24..-- query performance/timestamp setup
XCP_DEV_PERFMODE 25 -- change performance/timestamp setup
XCP_DEV_RSA_DECR_CYCLE 26 -- RSA, raw modular exponentiation, looped
XCP_DEV_RSACRT_DECR_CYCLE 27 -- RSA, private exponent, CRT, looped
XCP_DEV_ECMUL_CYCLE........ 28..-- EC scalar multiplication, looped
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XCP_DEVQ_PERF_LOCK 30 -- raw performance: un/lock cycles,
-- single thread
-- test on otherwise quiesced backend

XCP_DEVQ_PERF_WAKE 31 -- raw performance: un/lock cycles,
-- forcing context switching
-- test on otherwise quiesced backend

XCP_DEVQ_PERF_SCALE 32 -- raw performance: add calibrating
-- timestamp/syslog/etc. entries
-- to simplify offline scaling of
-- performance management

XCP_DEV_CACHE_MODE......... 33..-- set or query module-internal cache state
XCP_DEVQ_CACHE_STATS 34 -- log cache-statistics summary

-- over syslog etc. (system-dependent)
XCP_DEV_DELAY 35 -- NOP: delay the backend thread by

-- a host-influenced amount of time,
-- without performing other operations

-- transport/stresstest functions
XCP_DEV_COMPRESS........... 36..-- return ’summarized’ version of any

-- supplied data
XCP_DEV_XOR_FF 37 -- returns a copy of data, all bits

-- flipped (XORed with 0xff)
XCP_DEV_PRF 38 -- returns PRF stream from caller-

-- provided seed and bytecount

XCP_DEV_TRANSPORTSTATE1 39 -- transport-statistics dump
-- (system-dependent functionality)

XCP_DEVQ_CACHEINDEX........ 40..-- return module-internal blob index
-- of caller-provided key

XCP_DEVQ_CSP_OBJCOUNT 41 -- CSP-object reference counter,
-- if available

XCP_DEV_CSPTYPE 42 -- preferred CSP-object (engine) type
XCP_DEV_FCV 43 -- query and/or set current FCV

-- without signature verification
XCP_DEV_CLEAR_FCV.......... 44 -- erase any existing FCV
XCP_DEVQ_ASSERTIONS 45 -- verify the consistency of module-

-- internal data structures, as a
-- stronger form of assertion-checking

XCP_DEV_TEST_LATESTART 46 -- perform any initial test which has
-- been skipped during backend startup.
-- Not necessary unless running against
-- the most aggressive SYS_TEST_0START
-- settings [which trim down backend
-- testing to a bare minimum]

XCP_DEV_ENVSEED 47 -- seed backend with device-unique,
-- environment-derived, low quality
-- entropy [augments/replaces real
-- entropy seeding; added to let
-- unrelated backends diverge even
-- when VM-hosted or otherwise lacking
-- proper initial entropy]

XCP_DEVQ_RAWENTROPY........ 48 -- retrieve raw entropy pool, before
-- compression, if backend supports
-- this. Details are CSP-specific.
-- see also: XCP_DEV_ENTROPY

XCP_DEV_EC_SIGVER_CYCLE 49 -- EC sign/verify in loop
-- operation derived from supplied blob
-- (EC private/SPKI)
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-- see also: XCP_DEV_ECMUL_CYCLE

XCP_DEV_DRAIN_ENTROPY 50 -- TRNG: force one entropy->compression call
-- [may be more, depends on DRNG state]

XCP_DEV_CONV_EC_BLOB 51 -- development-internal conversion function
-- details not relevant/published

XCP_DEVQ_COUNTERS.......... 52 -- retrieve coverage counters
-- these are intentionally not published
-- [development-internal use only, contact us]

XCP_DEV_RSACRT_MSG_CYCLE 53 -- RSA, private exponent, CRT, looped
-- this variant increments message
-- and returns per-message statistics

XCP_DEV_AUDIT_CYCLE 54 -- audit-log, generate log entries
-- in a loop

XCP_DEV_PQC_DILITHIUM 55 -- post-quantum algs: generic call
-- for Dilithium (from PQ Crystals)

These functions are restricted to development, since many of them
perform insecure operations. Some of this functionality mimics regular
queries, without generating card signatures, therefore considerably
faster if performed frequently.

8.6.1. RNG test constants

During RNG-stream testing, the type of RNG test must be selected. The
following constants are defined:

XCP_DEV_RNG_TRNG 0 -- no DRNG involvement
XCP_DEV_RNG_DRNG 1 -- DRNG, no reseeding
XCP_DEV_RNG_MIXED 2 -- DRNG, with TRNG reseeding

8.6.2. Blob-cache control

When setting blob state, the following bits may be supplied:

XCP_DEVC_CACHE_ACTIVE 1 -- activate blob-cache
XCP_DEVC_CACHE_INACTIVE 2 -- suspend caching: lookups fail,

-- new entries are not accepted
XCP_DEVC_CACHE_FLUSH 4 -- evict all currently cached objects

-- available even if cache is suspended

The returned value contains exactly one of ACTIVE or INACTIVE, and no
other bit.

8.7. Other fixed values

MOD_VARLENS_BYTES 8
MOD_WRAP_BLOCKSIZE 16
XCP_WK_BYTES 32
XCP_ADMCTR_BYTES........... 16
XCP_ADM_QUERY 0x00010000
XCP_CPCOUNT 128
XCP_CPID_BYTES 0 -- profiles are not currently supported
XCP_SPKISALT_BYTES......... 8
XCP_WKID_BYTES 8
XCP_FWID_BYTES 32
XCP_SERIALNR_CHARS 8
XCP_PIN_SALT_BYTES......... 16
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XCP_CPBLOCK_BITS 128 -- block size of CP sets
XCP_CPBITS_MAX 65 -- largest supported CP bit (zero-based)
XCP_CSP_CONFIG_BYTES 40 -- CSP config structure bytecount (5.2.6.)

-- test-only feature, not supported
-- in regular production builds

XCP_DEV_MAX_DATABYTES 4096 -- upper limit on additional data bytes, for
-- SYS-TEST commands with aux. data
-- (arbitrary limit)

8.7.1. Query types

CK_IBM_XCPQ_API 0 -- API and build identifier (1.1.2)
CK_IBM_XCPQ_MODULE 1 -- module-level information (5.1.1)
CK_IBM_XCPQ_DOMAINS 2 -- list active domains & WKIDs (5.1.2)
CK_IBM_XCPQ_DOMAIN......... 3 -- domain information (5.1.3)
CK_IBM_XCPQ_SELFTEST 4 -- integrity & algorithm tests (5.1.4)
CK_IBM_XCPQ_EXT_CAPS 5 -- extended capabilities’ count (8.7.1.1)
CK_IBM_XCPQ_EXT_CAPLIST 6 -- extended capabilities’ listing (8.7.1.1)
reserved................... 7 -- reserved for future use
CK_IBM_XCPQ_AUDITLOG 8 -- audit record or records (5.4)
CK_IBM_XCPQ_DESCRTEXT 9 -- human-readable text/tokens

-- (5.1.1.1)
CK_IBM_XCPQ_EC_CURVES 10 -- supported elliptic curves,

-- bitmask (8.7.1.4)
CK_IBM_XCPQ_EC_CURVEGRPS 12 -- supported elliptic curves,

-- groups/categories, bitmask
-- (8.7.1.5)

CK_IBM_XCPQ_CP_BLACKLIST...13.-- control point blacklist:
-- control points which may
-- never be enabled due to
-- policy-minimum restrictions.

8.7.1.1. Query types: extended capabilities

Extended capability details are returned as a packed array of 32-bit raw
integers, containing pairs of index-value pairs, similar to reporting
administrative attributes (4.5.1) (the returned response is therefore
always an even multiple of 32 bits).

See CK_IBM_XCPQ_EXT_CAPS and CK_IBM_XCPQ_EXT_CAPLIST queries for count
and listing. The number of supported extended capabilities is also
reported under module info queries (8.7.1)

reserved 0 -- reserved for future use
reserved 1 -- reserved for future use
CK_IBM_XCPXQ_AUDIT_EV_BYTES 2 -- largest audit event, bytecount
CK_IBM_XCPXQ_AUDIT_ENTRIES... 3..-- max. number of elements in event history
CK_IBM_XCPXQ_DEBUGLVL_MAX 4 -- backend diagnostics granularity

-- 0 if backend is non-diagnostics build
CK_IBM_XCPXQ_ERRINJECT_FREQ 5 -- error-inject frequency N: N calls fail

-- in a million with artificial errors
-- 0 for production releases, which do not
-- include error-injection (development only)

CK_IBM_XCPXQ_MULTIDATA_N 6 -- maximum number of supported
-- sub-fields in multi-data
-- requests. 0 if not supported,
-- all-1’s if no predefined limit

CK_IBM_XCPXQ_DOMIMPORT_VER... 7..-- 1-based revision of domain-import
-- capability. 0 if feature
-- is not supported
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CK_IBM_XCPXQ_CERT_MAXBYTES 8..-- bytecount of largest accepted

-- administrative certificate, if
-- there is an upper limit. 0 if
-- the backend does not enforce
-- any specific limit of its own.

CK_IBM_XCPXQ_DOMIMPORT_VER... 7..-- number of module-internal dev
-- counters supported, 0 if none.
-- note that counter definitions are
-- restricted to development use

reserved 10 -- reserved for future use
reserved 11 -- reserved for future use
CK_IBM_XCPXQ_MAX_SESSIONS 12
CK_IBM_XCPXQ_AVAIL_SESSIONS 13 -- maximum, currently available

-- number of backend sessions

8.7.1.2. Query types: reserved host types

Types reserved for host use are at 0xff000000 or higher
(CK_IBM_XCP_HOSTQ_IDX).

CK_IBM_XCPHQ_COUNT 0xff000000 -- number of host-query indexes
-- including this type itself

CK_IBM_XCPHQ_VERSION 0xff000001 -- host-specific package version, such as
-- host library (package) version

CK_IBM_XCPHQ_VERSION_HASH 0xff000002 -- assumed-unique identifier of host code,
-- such as version-identifying
-- cryptographic hash (library signature
-- field, version-control commit ID etc.)

CK_IBM_XCPHQ_DIAGS........0xff000003 -- host code diagnostic level
-- 0 if host code is non-diagnostics build

CK_IBM_XCPHQ_HVERSION 0xff000004 -- human-readable host version ID
-- recommended: encoded as UTF-8 string

CK_IBM_XCPHQ_TGT_MODE 0xff000005 -- host targeting modes
-- returns supported target modes
-- as bitmask
-- if not available only compatibility
-- target mode is in use
-- See CK_IBM_XCPHQ_TGT_MODES_t

CK_IBM_XCPHQ_ECDH_DERPRM 0xff000006 -- support for ECDH1_DERIVE parameter
-- returns non-zero value if available
-- to be used in key derivation call to
-- DeriveKey

8.7.1.3. Target support bitmask: Supported target modes of host library

Target modes are of type (CK_IBM_XCPHQ_TGT_MODES_t) and are returned
by a query of type (CK_IBM_XCPHQ_TGT_MODES_t). Systems not supporting
this query use a platform dependent target system. Please refer to your
system reference for information about the target concept.

CK_IBM_XCPHQ_TGT_MODES_TGTGRP 0x00000001
-- target groups are supported

8.7.1.4. Query type: elliptic curve support

Since there is no standard PKCS11 query to enumerate supported elliptic
curves, we provide a bitmask enumerating curve IDs which the module
may support. Note that runtime-configured, effective set of curves
MAY differ, such as features controlled by control points.
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The reported bitmask stores bits corresponding to EC curve identifiers
(8.1.1.5.) as a ‘‘big-endian bitmask’’ (6.18.) The first bit corresponds
to XCP_EC_C_NIST_P192 1.

8.7.1.5. Query type: elliptic curve group support

Since there is no standard PKCS11 query to enumerate supported elliptic
curves, we provide a bitmask enumerating groups (categories) of EC
curves supported. Note that runtime-configured, effective set of curves
MAY differ, such as features controlled by control points.

The reported bitmask stores bits corresponding to EC curve identifiers
(8.1.1.5.) as a ‘‘big-endian bitmask’’ (6.18.) The first bit corresponds
to XCP_EC_CG_NIST 1.

Some of the indicated bits MAY themselves be polymorphic. As an example,
curves where ECDH and digital signatures are defined over different
representations (such as with Edwards curves) are reported as a single
curve group.

8.7.2. Return values (CKR)

We provide the following vendor-defined PKCS#11 return values:

CKR_IBM_WKID_MISMATCH 0x80010001
CKR_IBM_INTERNAL_ERROR 0x80010002
CKR_IBM_TRANSPORT_ERROR 0x80010003
CKR_IBM_BLOB_ERROR............0x80010004
CKR_IBM_BLOBKEY_CONFLICT 0x80010005 -- WK setup changed during execution

-- of a single request, preventing
-- returnof encrypted data to the
-- host. (i.e., an administrative
-- operation changed WKs before the
-- function could re-wrap data to pass
-- back to the host

CKR_IBM_MODE_CONFLICT 0x80010006
CKR_IBM_NONCRT_KEY_SIZE 0x80010008 -- an RSA key in non-CRT form is

-- encountered which is not supported
-- by this hardware/engine
-- configuration, if the setup has
-- non/CRT-specific size restrictions.
-- in essence, a more specific
-- sub-division of the standard
-- CKR_KEY_SIZE_RANGE, and MAY be
-- safely mapped to that by host
-- libraries.
-- note that standard PKCS11
-- GetMechanismInfo does not offer
-- a way to report these differences.

CKR_IBM_WK_NOT_INITIALIZED....0x80010009
CKR_IBM_OA_API_ERROR 0x8001000a -- unexpected/consistency error of

-- CA (Outbound Auth) operations of
-- the hosting HSM, if not otherwise
-- classified.

CKR_IBM_REQ_TIMEOUT 0x8001000b -- potentially long-running request,
-- such as those involving prime
-- generation, did not complete in a
-- ‘‘reasonable’’ number of
-- iterations. supported to prevent
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-- timeout-triggered module resets,
-- such as mainframe firmware
-- resetting modules ‘‘stuck in
-- infinite loops’’ (as perceived by
-- the host)

CKR_IBM_READONLY 0x8001000c -- rejected due to backend
-- persistent data in read-only state

CKR_IBM_STATIC_POLICY.........0x8001000d -- request violates policy, will
-- be rejected under all conditions
-- by this backend. this is the
-- the permanent form of policy
-- failure (which is mapped to
-- standard CKR_FUNCTION_CANCELED)

reserved 0x8001000e -- reserved for future use
reserved 0x8001000f -- reserved for future use
CKR_IBM_TRANSPORT_LIMIT 0x80010010 -- request is oversized due to

-- transport (architecture)
-- limitations

CKR_IBM_FCV_NOT_SET...........0x80010011 -- FCV of card not set
CKR_IBM_PERF_CATEGORY_INVALID 0x80010012 -- wrong, missing request performance

-- category
CKR_IBM_API_MISMATCH 0x80010013 -- API ORDINAL number is unknown or

-- function id is in illegal range
-- host only return value

CKR_IBM_TARGET_INVALID 0x80010030 -- target token is invalid
-- host only return value

8.7.3. Custom mechanisms (CKM) and related constants

We reserve the following mechanisms for functions PKCS#11 does not
currently support (as of this writing):

CKM_IBM_CMAC 0x80010007
CKM_IBM_ECDSA_SHA224 0x80010008
CKM_IBM_ECDSA_SHA256 0x80010009
CKM_IBM_ECDSA_SHA384......0x8001000a
CKM_IBM_ECDSA_SHA512 0x8001000b
CKM_IBM_EAC 0x8001000d -- extended access control (EAC)

-- key derivation functions (6.8.1.3)
CKM_IBM_TESTCODE 0x8001000e
CKM_IBM_TRANSPORTKEY......0x80020005
CKM_IBM_SHA512_256 0x80010012 -- SHA-512/256, FIPS 180-4
CKM_IBM_SHA512_256_HMAC 0x80010014 -- HMAC with SHA-512/256
CKM_IBM_SHA512_256_KEY_DERIVATION

0x80010019
CKM_IBM_SHA512_224........0x80010013..-- SHA-512/224, FIPS 180-4
CKM_IBM_SHA512_224_HMAC 0x80010015 -- HMAC with SHA-512/224
CKM_IBM_SHA512_224_KEY_DERIVATION

0x8001001a

-- hashed EC/DSA mechanisms:
-- these vendor additions predate, but are
-- functionally equivalent to the
-- PKCS11 v2.40 proposed additions,
-- CKM_ECDSA_SHA224 etc.
--

CKM_IBM_ECDSA_SHA224......0x80010008 -- ECDSA, with SHA-224
CKM_IBM_ECDSA_SHA256 0x80010009 -- ECDSA, with SHA-256
CKM_IBM_ECDSA_SHA384 0x8001000a -- ECDSA, with SHA-384
CKM_IBM_ECDSA_SHA512 0x8001000b -- ECDSA, with SHA-512
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SHA-3 variants (tentatively reserved, awaiting final PKCS v2.40+ formats):
-- fixed-size outputs

CKM_IBM_SHA3_224 0x80010001 -- SHA-3, 224-bit digest
CKM_IBM_SHA3_224_HMAC 0x80010025 -- HMAC with SHA-3/224
CKM_IBM_SHA3_256 0x80010002 -- SHA-3, 256-bit digest
CKM_IBM_SHA3_256_HMAC 0x80010026 -- HMAC with SHA-3/256
CKM_IBM_SHA3_384..........0x80010003 -- SHA-3, 384-bit digest
CKM_IBM_SHA3_384_HMAC 0x80010027 -- HMAC with SHA-3/384
CKM_IBM_SHA3_512 0x80010004 -- SHA-3, 512-bit digest
CKM_IBM_SHA3_512_HMAC 0x80010028 -- HMAC with SHA-3/512

-- extendable-output functions (XOFs)
-- variable-sized, selectable output

SHA-3 variants (tentatively reserved, awaiting final PKCS v2.40+ formats):
-- fixed-size outputs

CKM_IBM_SHA3_224 0x80010001 -- SHA-3, 224-bit digest
CKM_IBM_SHA3_224_HMAC 0x80010025 -- HMAC with SHA-3/224
CKM_IBM_SHA3_256 0x80010002 -- SHA-3, 256-bit digest
CKM_IBM_SHA3_256_HMAC 0x80010026 -- HMAC with SHA-3/256
CKM_IBM_SHA3_384..........0x80010003 -- SHA-3, 384-bit digest
CKM_IBM_SHA3_384_HMAC 0x80010027 -- HMAC with SHA-3/384
CKM_IBM_SHA3_512 0x80010004 -- SHA-3, 512-bit digest
CKM_IBM_SHA3_512_HMAC 0x80010028 -- HMAC with SHA-3/512

-- extendable-output functions (XOFs)
-- variable-sized, selectable output

CKM_IBM_EC_X25519 0x8001001b..-- curve25519 EC/DH
CKM_IBM_EC_X25519_RAW 0x80010029..-- curve25519 EC/DH, with KEK
CKM_IBM_ED25519_SHA512 0x8001001c -- EdDSA/SHA-512, with ed25519,

-- without pre-hashing

CKM_IBM_EC_X448 0x8001001e..-- curve448 (Goldilocks), key agreement
CKM_IBM_EC_X448_RAW 0x80010030..-- curve448 (Goldilocks), key agreement,

-- with KEK
CKM_IBM_ED448_SHA3........0x8001001f -- ed448 signatures, with SHA-3/XOF

-- without prehashing
CKM_IBM_CPACF_WRAP 0x80060001 -- import a blob as an protected key

-- blob needs XCP_BLOB_PROTKEY_EXTRACTABLE

CKM_IBM_DILITHIUM 0x80010023 -- PQ algorithms: Dilithium
The following key type is introduced with the Dilithium mechanism:
CKK_IBM_PQC_DILITHIUM 0x80010023 -- PQ algorithms: Dilithium key type

We will revisit some of the currently vendor-defined mechanisms if
they get standardized in the future. EdDSA and SHA3
mechanisms are possible candidates as of this writing. Future, standard
identifiers will continue to coexist with our vendor additions.

8.7.4. Attribute types reported by keytype/mechanism-attribute query

XCP_CKA_B_NEED 1 -- Boolean, must be present
XCP_CKA_B_OPT 2 -- Boolean, optionally present
XCP_CKA_B_NOT 3 -- Boolean, must NOT BE specified

-- not expected to appear in queries
XCP_CKA_B_OPT_DEFTRUE 4 -- Boolean, optional, default TRUE
XCP_CKA_B_OPT_DEFFALSE.. 5..-- Boolean, optional, default FALSE
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XCP_CKA_B_QUERY 6 -- Boolean, query only

XCP_CKA_U32_NEED........ 7..-- Integer/32, must be present
XCP_CKA_U32_OPT 8 -- Integer/32, optionally present
XCP_CKA_U32_NOT 9 -- Integer/32, MUST NOT be specified

-- not expected to appear in queries
XCP_CKA_U32_QUERY 10 -- Integer/32, query only

XCP_CKA_VARLEN_NEED.....11..-- variable-length, must be present
XCP_CKA_VARLEN_OPT 12 -- variable-length, optional
XCP_CKA_VARLEN_NOT 13 -- variable-length, MUST NOT be specified

-- not expected to appear in queries
XCP_CKA_VARLEN_QUERY 14 -- variable-length, query only

Attributes marked as ‘‘query only’’ or ...NOT are included for
documentation purposes; they are not expected to be specified during key
generation or import. Query-only attributes may become available when a
key is created.

Types marked as ...NOT are sensitive or intentionally not accessible,
and are explicitly reported to mark them as unavailable. Host code MUST
NOT pass them to backend during key generation, and MAY refuse to even
query them. Standard attributes involving secret or private-key fields
are relevant examples for such classifications.

8.8. Referenced PKCS11 constants

We reference certain PKCS#11 v2.20/v2.40 constants in this document,
replicating relevant ones here for consistency:

CKA_KEY_TYPE 0x00000100
CKA_VALUE_LEN 0x00000161
CKA_CHECK_VALUE 0x00000090
CKM_DSA_PARAMETER_GEN..........0x00002000
CKM_AES_CBC 0x00001082
CKM_AES_CBC_PAD 0x00001085
CKM_DES3_CBC 0x00000133
CKM_DES3_CBC_PAD...............0x00000136
CKM_DES_CBC 0x00000122
CKM_DES_CBC_PAD 0x00000125

-- SHA-224-related constants, not in PKCS11
-- v2.20, added in v2.20 amendment 3,
-- finalized in official v2.40

CKM_SHA224 0x00000255
CKG_MGF1_SHA224 0x00000005
CKM_SHA224_HMAC 0x00000256
CKM_SHA224_HMAC_GENERAL 0x00000257
CKM_SHA224_RSA_PKCS 0x00000046
CKM_SHA224_RSA_PKCS_PSS 0x00000047
CKM_SHA224_KEY_DERIVATION 0x00000396

-- SHA-512/nnn variants: FIPS 186-4 truncated
-- SHA-512 hashes, added in PKCS11 v2.40

CKM_SHA512_224 0x00000048
CKM_SHA512_224_HMAC 0x00000049
CKM_SHA512_224_HMAC_GENERAL 0x0000004a
CKM_SHA512_224_KEY_DERIVATION..0x0000004b
CKM_SHA512_256 0x0000004c
CKM_SHA512_256_HMAC 0x0000004d
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CKM_SHA512_256_HMAC_GENERAL 0x0000004e
CKM_SHA512_256_KEY_DERIVATION 0x0000004f

Some of these mechanism constants have vendor-extended custom equivalents,
which predate their v2.40-specified equivalents (see 8.7.3).

8.9. Audit-related constants

8.9.1. Audit event types

XCP_LOGEV_QUERY 0x00000000
XCP_LOGEV_FUNCTION 0x00000001
XCP_LOGEV_ADMFUNCTION 0x00000002
XCP_LOGEV_STARTUP.........0x00000003
XCP_LOGEV_SHUTDOWN 0x00000004
XCP_LOGEV_SELFTEST 0x00000005
XCP_LOGEV_DOM_IMPORT 0x00000006
XCP_LOGEV_DOM_EXPORT......0x00000007
XCP_LOGEV_FAILURE 0x00000008
XCP_LOGEV_GENERATE 0x00000009
XCP_LOGEV_REMOVE 0x0000000a
XCP_LOGEV_SPECIFIC........0x0000000b

-- specific log event
-- see detailed list (8.9.2)

XCP_LOGEV_STATE_IMPORT 0x0000000c
XCP_LOGEV_STATE_EXPORT 0x0000000d

8.9.2. Specific audit events

These values may show up under ‘‘event details’’ of audit records.

XCP_LOGSPEV_TRANSACT_ZEROIZE 0xffff0001 -- pending transaction forced module
-- to zeroize (such as: import failed
-- in inconsistent intermediate state)

XCP_LOGSPEV_KAT_FAILED 0xffff0002 -- algorithm known-answer tests failed
XCP_LOGSPEV_KAT_COMPLETED 0xffff0003 -- algorithm known-answer tests passed
XCP_LOGSPEV_EARLY_Q_START.....0xffff0004 -- start of early-audit events:

-- subsequent events have proper
-- order, show only approximate time

XCP_LOGSPEV_EARLY_Q_END 0xffff0005 -- end of early-audit events:
-- subsequent events show exact time

XCP_LOGSPEV_AUDIT_NEWCHAIN 0xffff0006 -- audit chain was corrupted; removed,
-- generating new instance,
-- starting new chain

XCP_LOGSPEV_TIMECHG_BEFORE 0xffff0007 -- time change: original time
XCP_LOGSPEV_TIMECHG_AFTER.....0xffff0008 -- time change: updated time
XCP_LOGSPEV_MODSTIMPORT_START 0xffff0009 -- accepted full-state import

-- data structure, starting update
XCP_LOGSPEV_MODSTIMPORT_FAIL 0xffff000a -- rejected import structure

-- issued after initial verify
-- indicates some inconsistency
-- of import data structures

XCP_LOGSPEV_MODSTIMPORT_END 0xffff000b -- completed full-state import

8.9.3. Audit event flags

XCP_LOGFL_WK_PRESENT 0x80000000
XCP_LOGFL_FINALWK_PRESENT 0x20000000
XCP_LOGFL_KEYREC0_PRESENT 0x10000000
XCP_LOGFL_KEYREC1_PRESENT...0x04000000
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XCP_LOGFL_KEYREC2_PRESENT 0x02000000
XCP_LOGFL_FINTIME_PRESENT 0x01000000
XCP_LOGFL_SALT0_PRESENT 0x00800000
XCP_LOGFL_SALT1_PRESENT.....0x00400000
XCP_LOGFL_SALT2_PRESENT 0x00200000

8.10. Function sub-variants

Not all variants are supported by all functions.

XCP_FNVAR_SIZEQUERY 1 -- sizequery: data bytecount[BE64] ->
-- response bytecount[64]

XCP_FNVAR_MULTIDATA 2 -- multi-data request (see 14.1)
XCP_FNVAR_MULTISIZEQ 3 -- multi-data request, size query (1.4.4.)

9. Command parameter lists

Parameter layout is defined within Requests (1) and Responses (2).
The following listing enumerates input parameter(s), and response field(s).
System parameters (1) are excluded.

Parameters labeled with ‘‘(INT)’’ are integers with size guarantees
(up to 32 bits).

For bytecounts replacing actual data for size queries, see (1.2).
Parameter annotations show when a field changes meaning with
a size query (‘‘sq:...’’).

9.1. Key generation

GenerateKey
inputs [5]

1. variant (1: size query) (INT)
2. key bytes (unused if not needed)
3. key mech (CKM_... format, packed)
4. attributes (internal READ representation: mask == bits)
5. pin blob (optional)

outputs [2]
1. key blob (sq: blob bytecount)
2. PKCS11 checksum (at least 24 bits)

GenerateKeyPair
inputs [4]

1. key algorithm (CKM... format, integer) (INT)
2. attributes, public (internal representation)
3. attributes, private (internal representation)
4. pin blob (empty if unused)

outputs [2]
1. key blob (private key object)
2. SPKI (publickeyinfo, MACed)

DeriveKey
inputs [5]

1. derivation mechanism (packed)
2. new key attributes
3. base key (blob) (raw non-blob with certain formats)
4. pin blob (optional; for session-bound objects only)
5. auxiliary data (or key blob, depending on mechanism)

outputs [2]
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1. derived key (blob)
2. PKCS11 checksum || derived bitcount[BE32]

9.2. Digesting

DigestInit
inputs [2]

1. variant (1: size query) (INT)
2. digest mechanism

output
1. initialized digest state (sq: state bytecount)

Digest
inputs [3]

1. variant (1: size query) (INT)
2. digest state (contains mechanism inside)
3. data (sq: input bytecount)

output
1. digest (sq: digest bytecount)

DigestKey
inputs [2]

1. digest state (contains mechanism)
2. key blob (object)

output
1. updated state

DigestUpdate
inputs [2]

1. digest state (contains mechanism)
2. data

output
1. updated state

DigestFinal
inputs [2]

1. variant (1: size query) (INT)
2. digest state

output
1. digest (sq: digest bytecount)

DigestSingle
inputs [3]

1. variant (1: size query) (INT)
2. digest mechanism
3. data (sq: input bytecount)

output
1. digest (sq: digest bytecount)

9.3. Signing and verification

SignInit
inputs [3]

1. variant (1: size query) (INT)
2. sign mechanism
3. key blob

output
1. initialized sign state (sq: state bytecount)

Sign
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inputs [3]
1. variant (1: size query) (INT)
2. sign state
3. data

output
1. signature or MAC (sq: signature/MAC bytecount)

SignUpdate
inputs [2]

1. sign state
2. data

output
1. updated state

SignFinal
inputs [2]

1. variant (1: size query) (INT)
2. sign state

output
1. signature (sq: signature bytecount)

SignSingle
inputs [4]

1. variant (1: size query) (INT)
2. sign mechanism
3. key blob (object)
4. data (sq: data bytecount)

output
1. signature (sq: signature bytecount)

VerifyInit
inputs [3]

1. variant (1: size query) (INT)
2. verify mechanism
3. key blob (symmetric) or raw/MACed SPKI (PK verify)

output
1. initialized verify state (sq: state bytecount)

Verify
inputs [3]

1. verify state
2. signature
3. data

(no data output)

VerifyUpdate
inputs [2]

1. verify state
2. data

output
1. updated state

VerifyFinal
inputs [2]

1. verify state
2. signature

(no data output)

VerifySingle
inputs [4]
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1. mechanism
2. public key (SPKI) or blob (symmetric mech)
3. data
4. signature

(no data output)

9.4. Encryption and decryption

DecryptInit
inputs [3]

1. variant (1: size query) (INT)
2. mechanism
3. key blob

output
1. initialized decrypt state (sq: output bytecount)

Decrypt
inputs [3]

1. variant (1: size query) (INT)
2. decrypt state blob
3. ciphertext (sq: ciphertext bytecount)

output
1. plaintext (sq: plaintext bytecount)

DecryptUpdate
inputs [3]

1. variant (1: size query) (INT)
2. decrypt state
3. ciphertext, increment (not a bytecount even for size query)

outputs [2]
1. updated state (empty if unchanged)
2. plaintext, increment (empty if none produced) (sq: written size)

DecryptFinal
inputs [2]

1. variant (1: size query) (INT)
2. state blob

output
1. decrypted output (sq: output bytecount) (empty if none produced)

DecryptSingle
inputs [4]

1. variant (1: size query) (INT)
2. mechanism
3. key blob
4. ciphertext (sq: ciphertext bytecount)

output
1. plaintext (sq: plaintext bytecount)

EncryptInit
inputs [3]

1. variant (1: size query) (INT)
2. mechanism
3. key blob

output
1. initialized encrypt state (sq: output bytecount)

Encrypt
inputs [3]

1. variant (1: size query) (INT)
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2. encrypt state blob
3. plaintext (sq: plaintext bytecount)

output
1. ciphertext (sq: ciphertext bytecount)

EncryptUpdate
inputs [3]

1. variant (1: size query) (INT)
2. encrypt state
3. plaintext, increment (not a bytecount even for size query)

outputs [2]
1. updated state (empty if unchanged)
2. ciphertext, increment (empty if none produced) (sq: written size)

EncryptFinal
inputs [2]

1. variant (1: size query) (INT)
2. state blob

output
1. encrypted output (sq: output bytecount) (empty if none produced)

EncryptSingle
inputs [4]

1. variant (1: size query) (INT)
2. mechanism
3. key blob
4. plaintext (sq: plaintext bytecount)

output
1. ciphertext (sq: ciphertext bytecount)

Note that EncryptSingle also implements development-only functions (5.2),
if they are supported.

9.5. Random numbers

SeedRandom
input

1. seed to mix, must not be empty
(no data output)

GenerateRandom
input

1. number of random bytes requested (32-bit raw integer) (INT)
output

1. random bytes

9.6. Key transport

UnwrapKey
inputs [6]

1. new key’s attributes (ignored for attribute-bound keys)
2. unwrapping mechanism
3. wrapping KEK blob (ignored when adding MAC to SPKIs)
4. MAC key (optional; attribute-bound mech/s only)
5. pinblob (optional)
6. wrapped data (contains SPKI when adding MAC)

outputs [2]
1. unwrapped key (blob)
2. checksum (symm keys) or SPKI (private keys), followed by bitcount
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WrapKey

inputs [5]
1. variant (1: size query) (INT)
2. mechanism
3. blob to wrap
4. wrapping blob (KEK)
5. MAC key (attribute-bound mech only; empty otherwise)

output
1. wrapped key (sq: wrapped object bytecount)

9.7. Queries

GetAttributeValue
inputs [2]

1. key (blob)
2. attribute list

output
1. packed attribute values

GetMechanismInfo
input

1. mechanism
output

1. three big-endian 32-bit integers: minKeySize, maxKeySize, flags

Note that EP11 reports minKeySize and maxKeySize for symmetric and HMAC
mechanisms in bytes and for asymmetric mechanisms in bits.

GetMechanismList
(no input)
output

1. sequence of 32-bit, big-endian mechanisms

get_xcp_info
inputs [2]

1. query type (INT)
2. subquery

output
1. packed info structure

9.8. Administration

SetAttributeValue
inputs [2]

1. blob (key object)
2. attribute field

output
1. updated blob

admin
inputs [2]

1. payload: full administrative command block
2. signature/s, if present

outputs [2]
1. response payload
2. signature, if present

9.8.1. Session management

Login
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inputs [2]
1. PIN/passphrase
2. nonce, perturbs PIN for session ID generation (optional)

output
1. PIN blob (XCP_WK_BYTES at start is session ID)

Logout
input

1. PIN blob
(no data output)

9.9. Other calls

ReencryptSingle
inputs [6]

1. variant (INT)
2. decrypt (1st) mechanism
3. encrypt (2nd) mechanism
4. decrypting (1st) key blob
5. encrypting (2nd) key blob
6. data or data len (if querying size)

output
1. de+encrypted output

10. Version dependent changes

10.1. GetMechanismInfo - HMAC min/maxKeySize

HMAC mechanisms report minKeySize in bytes and maxKeySize in bits for following
module firmware versions, up to and including.
CEX6S: 3.6.8

3.5.11

CEX5S: 2.6.2
2.5.5
2.4.19

More recent module firmware versions report both minKeySize and maxKeySize for
HMAC mechanisms in bytes.

10.2. API ordinal

10.2.1. API ordinal 3 - DeriveKey

With an API ordinal 3, modules (only CEX7S) introduced CK_ECDH1_DERIVE_PARAMS
for CKM_ECDH1_DERIVE as mechanism parameter. The previous variant of passing
the plain public key as parameter remains available under API ordinal 2. This
change is included starting from firmware version:

CEX7S: 4.7.9

10.2.2. API ordinal 4 - Protected key import

Support for protected key import is limited to modules with an API ordinal of 4
or higher. The corresponding change is also indicated by the presence of the
CK_IBM_DOM_PROTKEY_ALLOW domain flag (6.13.2).
This change is included in starting from firmware version:

CEX7S: 4.7.14
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Modules without API ordinal 4 may still tolerate related blob
attributes. Such support is indicated by presence of
CKF_IBM_HW_PROTKEY_TOLERATION in the extended flags (6.13.1). This support is
available starting from firmware versions:

CEX7S: 4.7.14
CEX6S: 3.7.8
CEX5S: 2.7.8
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Other references

Table 199. Cloning information token data structure (continued)

Offset (bytes)
Length
(bytes) Description

036 xxx Cloning information TLV's:
v Master-key share (see Table 200)
v Signature (see Table 201)

Add 1 - 7 bytes of padding to ensure that length 'xxx' is a multiple of 8 bytes.

Note: The information from offset 036 through 036+xxx is triple encrypted with a triple-length DES key using the
EDE3 encryption process, see “Triple-DES ciphering algorithms” on page 987.

Table 200. Master-key-share TLV

Offset (bytes) Length (bytes) Description

000 001 X'01', master-key-share identifier.

001 001 X'00', version.

002 002 X'001D', length of the TLV.

004 001 Index value, i, binary.

005 024 Master-key share.

Table 201. Cloning information signature TLV

Offset (bytes) Length (bytes) Description

000 001 X'45', signature subsection header.

001 001 X'00', version.

002 002 Subsection length, 70+sss.

004 001 Hashing algorithm identifier; X'01' signifies use of SHA-1.

005 001 Signature formatting identifier; X'01' signifies use of the ISO/IEC 9796-1 process.

006 064 Signature-key identifier; the key label of the key used to generate the signature.

070 sss The signature field.

The signature is calculated on data that begins with the cloning-information-token
data structure identifier (X'1D') through the byte immediately preceding this
signature field.

Distributed function control vector
The export (distribution) of cryptographic implementations by USA companies is controlled under USA
Government export regulations. An IBM cryptographic coprocessor becomes a practical cryptographic
engine when it validates and accepts digitally signed software. IBM exports the IBM 4765 and IBM 4767
as non-cryptographic products, and controls and reports the export of the cryptography-enabling
software as required.

The CCA software that can be loaded into the coprocessor limits the functionality of the coprocessor
based on the values in a function control vector (FCV). The following capabilities are controlled:
v The length of keys used with the AES algorithm for general data ciphering
v The length of keys used with the DES algorithm for general data ciphering
v Use of Secure Electronic Transaction (SET) services
v The length of an RSA key used to cipher symmetric keys
v The length of the highest supported curve order or size for ECC key-management operations.

Appendix B. Data structures 945
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IBM distributes the FCV in a digitally signed data structure (certificate). Table 202 shows the format of
the data structure that contains the FCV as distributed by IBM. Table 202 shows that the FCV is located at
offset 1,238 (X'4D6'), and has a length of 588 bytes for an IBM 4765 and a length of 208 for an IBM 4767.
This information is needed for loading an FCV using the Cryptographic_Facility_Control verb.

For information on loading or clearing an FCV, refer to the “Cryptographic_Facility_Control (CSUACFC)”
on page 52. For information on querying an FCV, refer to the “Cryptographic_Facility_Query
(CSUACFQ)” on page 60.

Note:

1. Government policies and the FCV do not limit the key-length of keys used in digital signature
operations.

2. The SET services can employ 56-bit DES for data encryption, and 1024-bit RSA key-lengths when
distributing DES keys.

Table 202. FCV distribution structure, FCV format version X'01'

Offset decimal
(hex)

Length decimal
(in bytes) Description

000 (000) 1,158 Package header and validating-key public key certificate.

1,158 (486) 080 Descriptive text coded in ASCII.

1,238 (4D6) 588 Function Control Vector (FCV)

An FCV structure (defined below) consists of a header followed by a
concatenation of cryptographic enablement information and a digital signature
signed by IBM. The signature along with other data contained in the FCV must
pass validation checking within the coprocessor in order to be accepted and
activated.

To load the FCV, use the CSUACFC verb or, alternatively, use the Cryptographic
Node Management (CNM) utility, described in the IBM 4767 PCIe Cryptographic
Coprocessor CCA Support Program Installation Manual.

To use CSUACFC, call the verb with the LOAD-FCV rule-array keyword and
use the verb_data parameter to identify the FCV structure, and the
verb_data_length parameter to identify the length. The length depends on which
IBM cryptographic coprocessor is being loaded:
Coprocessor

FCV length in bytes, fff
IBM 4765

588 (X'024C')
IBM 4767 

208 (X'00D0')

FCV structure of IBM 4765 and IBM 4767 PCIe Cryptographic Coprocessors (offset 1238 above)

FCV header

000 (000) 001 Record ID (X'06').

001 (001) 001 Header Version (X'00').

002 (002) 002 Reserved X'0000'.
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Table 202. FCV distribution structure, FCV format version X'01' (continued)

Offset decimal
(hex)

Length decimal
(in bytes) Description

004 (004) 004 Total FCV structure length in bytes (little endian format)

The total FCV structure length includes the digital signature.
Coprocessor

Value
IBM 4765

X'4C020000' (588)
IBM 4767

X'D0000000' (208)

008 (008) 004 Signature rules (little endian format)The signature rules identify how the
signature was created:
Coprocessor

Value
IBM 4765

X'FF000000' (0255) / RSA signature
IBM 4767

X'000F0000' (3840) / ECC signature (3840) - IBM 4767 only

FCV cryptographic enablement information

012 (00C) 001 FCV format version (X'01').

013 (00D) 001 CCA services class byte (currently ignored):
Value Meaning
X'00' Basic CCA services not enabled
X'01' Basic CCA services enabled
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Table 202. FCV distribution structure, FCV format version X'01' (continued)

Offset decimal
(hex)

Length decimal
(in bytes) Description

014 (00E) 001 Symmetric algorithm enablement flag byte

Symmetric algorithm enablement:
Value Meaning
B'00xx xxxx'

Reserved

AES encryption and decryption enablement:
Value Meaning
B'xx00 0xxx'

AES encryption and decryption not enabled
B'xx00 1xxx'

128-bit AES encryption and decryption enabled
B'xx01 0xxx'

Undefined
B'xx01 1xxx'

192-bit and 128-bit AES encryption and decryption enabled
B'xx10 0xxx'

Undefined
B'xx10 1xxx'

Undefined
B'xx11 0xxx'

Undefined
B'xx11 1xxx'

256-bit, 192-bit, and 128-bit AES encryption and decryption enabled

Triple-DES encryption and decryption enablement:
Value Meaning
B'xxxx x0xx' 

Triple-DES encryption and decryption not enabled
B'xxxx x1xx' 

Triple-DES encryption and decryption enabled

56-bit DES encryption and decryption enablement:
Value Meaning
B'xxxx xx0x'

56-bit DES encryption and decryption not enabled
B'xxxx xx1x'

56-bit DES encryption and decryption enabled

CDMF encryption and decryption enablement (formerly used on IBM 4758;
currently ignored):
Value Meaning
B'xxxx xxx0'

CDMF encryption and decryption not enabled
B'xxxx xxx1'

CDMF encryption and decryption enabled

015 (00F) 001 Secure Electronic Transaction (SET) services enablement byte:

Value Meaning

X'00' SET services not enabled

X'01' SET services enabled (CSNBSBC and CSNBSBD 56-bit DES and 1024-bit
RSA key lengths permitted)

016 (010) 004 Reserved (X'00000000').
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Table 202. FCV distribution structure, FCV format version X'01' (continued)

Offset decimal
(hex)

Length decimal
(in bytes) Description

020 (014) 002 Maximum supported modulus bit length
for encryption and decryption of symmetric keys (little endian format):
Value
X'0002' (512)
X'0004' (1024)
X'0008' (2048)
X'0010' (4096)

022 (016) 002 Maximum supported curve order or size in bits for elliptic curve cryptography
(ECC) key-management operations (little endian format):
IBM 4765 Value
X'0902' (521)

IBM 4767 Value
X'A000' (160)
X'C000' (192)
X'E000' (224)
X'0001' (256)
X'4001' (320)
X'8001' (384)
X'0002' (512)
X'0902' (521)

024 (018) 052 Reserved (X'00...00').

FCV digital signature

076 (04C) sss FCV digital signature

This value is calculated on the FCV structure, starting with the record ID of the
FCV header up to but not including the digital signature itself. The digital
signature is signed as follows:

v For the IBM 4765, the digital signature is signed by a 4096-bit RSA key
FcvPuK using the ANS X9.31 digital signature hash formatting method for a
length of 512 bytes.

v For the IBM 4767, the digital signature is signed by a 521-bit ECC key FcvPuK
using ECDSA for a length of signature is 132 bytes.

Visa Format-Preserving Encryption supporting information
The Visa Format-Preserving Encryption (VFPE) Option has an algorithm that uses an alphabet parameter.
An alphabet assigns a sequential number set for all potential characters for a given field type that is used
in the conversion of payment card data prior to encryption. VFPE applies to these verbs:
v FPE_Decrypt (CSNBFPED)
v FPE_Encrypt (CSNBFPEE)
v FPE_Translate (CSNBFPET)
v Encrypted_PIN_Translate_Enhanced (CSNBPTRE)

These CCA verbs convert payment card data as required to or from VFPE alphabet numbers as
determined by rule-array keyword. The alphabet tables below are meant to provide a reference for the
valid set of characters for each of the four Visa payment card data formats (namely, PAN, Cardholder
Name, Track 1 Discretionary Data, and Track 2 Discretionary Data).

VFPE payment card data can be in any one of these formats:
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Glossary

AB also Attribute-bound, a proprietary extension to PKCS#11, implemented as a vendor Boolean attribute. Keys marked as
AB may not be separated from their usage restrictions or other attributes, even if transported. AB key transport is always
authenticated; all participating keys—key, key-encrypting key, and authentication key—must be attribute-bound.
Since the AB property is just an extended restriction of key transport, AB objects may be used interchangeably with
non-AB objects by other functional services (those not related to un/wrapping).

BBRAM Battery-backed RAM

CDU Concurrent (Driver) Update, the capability of updating firmware while existing applications continue to run within IBM
HSMs. Possible due to module-internal redundancy: separate processors run OS/applications and administrative code.

CP Control Point, access or usage-restriction settings represented as a single, per-domain bitvector

CSP Cryptographic Service Provider

domain module-internal key virtualization unit: an internal unit with its own set of administrators, policy settings, and keys.
It is identified by a domain index.

DRNG Deterministic-Random Number Generator, deterministic postprocessing expanding entropy (TRNG) output into a pseu-
dorandom stream

EP11 module An EP11 Module is a HSM configured for EP11 and is identified by a module number. It is also simply refered
as module in this document.

FCV Function Control Vector, an IBM-issued infrastructure data structure, restricting available algorithms. FCVs are used, as
an example, to enforce export-control restrictions where applicable.

HSM Hardware Security Module

IID Independent and Identically Distributed, the assumed property of raw-entropy sources feeding the conditioned TRNG used
by backends

KAT Known Answer Test

OA Outbound Authentication, a public-key based authentication mechanism. Allows untampered cards to prove their integrity,
present ownership of the device keypair, and trace it back to the IBM Factory CA. OA keys are not represented as
PKCS#11 objects, and their validity is established offline, outside HSMs.

POST Power-On Self-Test, infrastructure tests resident in ROM and flash, executed during startup, before OS/application
startup. Successful OS/application startup implies that base POST tests succeeded. A significant subset of POST self-
tests, primarily algorithmic KATs, may be invoked with EP11 itself.

RAS Abbreviation of Reliability, Availability, Serviceability, features specifically added for resiliency and data assurance

RNG Random Number Generator, further specialized as true-random entropy source (TRNG) or deterministic-random (DRNG)
post-processing

SKI SubjectKeyIdentifier, an “almost unique” identifier of a public key, generally, a hash of a key-unique parameter. We
follow a standard solution, and calculate a hash of the BIT STRING subjectPublicKey of the SPKI [RHPFS02, 4.2.1.2].
We currently use SHA-256 as a hash function.

SPKI SubjectPublicKeyInfo, a collection of self-describing, industry standard binary formats for public keys. SPKI structures
contain type information, unambiguously identifying key types and parameters. RSA SPKIs are described in [SKH05,
1.2], EC ones in [TBY+09, 2.1].

PKCS#8 private key Industry-standard serialization format for private keys [Tur10]; RSA private keys are described in [JK03,
A.1.2], EC ones in [TB10, 3]. We defined proprietary extensions for to non-Weierstrass curves; these are described in our
wire specification.
Restrictions on the use of PKCS#8 structures specific to PKCS#11 are documented in [PKC15b, 2.5].

PKCS#11 key checksum A 24-bit checksum, corresponding to the PKCS#11 attribute CKA_CHECK_VALUE, allowing easy
disambiguation between different keys (equality may not be uniquely determined, due to collisions in the short checksum).
The checksum-construction algorithm depends on keytype.
We extend the checksum concept to public keys, reporting the most significant bits of the key SKI as checksum. As a
side effect, corresponding public and private keys will be identifiable, with matching SKIs.
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target group A set of zero or more targets maintained by the host library which can be used for load balancing and failsafe
reasons. A zero target group implies all targets available to the system.

target A single module/domain combination that is represented by a module number and a domain index.

target token Target tokens identify a target or a group of targets. Target tokens are for example created when modules are
registered by the host library and used as parameter in all EP11 host functions that interact with EP11 modules.

TRNG True-Random Number Generator, an entropy source

WK Wrapping Key, our terminology for domain-specific keys encrypting an externally stored keystore
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