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Abstract

In combating the spread of COVID-19, some governments have been reluctant to adopt
lockdown policies due to their perceived economic costs. Such costs can, however, arise
even in the absence of restrictive policies, if individuals’ independent reaction to the virus
slows down the economy. This paper finds that imposing lockdowns leads to lower overall
costs to the economy than staying open. We combine detailed location trace data from
40 million mobile devices with difference-in-differences estimations and a modification
of the epidemiological SIR model that allows for societal and political response to the
virus. In that way, we show that voluntary reaction incurs substantial economic costs,
while the additional economic costs arising from lockdown policies are small compared to
their large benefits in terms of reduced medical costs. Our results hold for practically all
realistic estimates of lockdown efficiency and voluntary response strength. We quantify the
counterfactual costs of voluntary social distancing for various US states that implemented
lockdowns. For the US as a whole, we estimate that lockdowns reduce the costs of the
pandemic by 1.7% of annual GDP per capita, compared to purely voluntary responses.
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1 Introduction

There is an emerging consensus that social distancing is effective at diminishing the spread
of COVID-19 by reducing interpersonal transmission (Anderson et al., 2020; Bai et al., 2020;
Fowler et al., 2020; Viner et al., 2020). Yet, the way in which political leaders aim to flatten
the infection curve differs vastly across countries. Many governments successfully decreased
contagion by mandating lockdown policies (Hsiang et al., 2020), while others relied on the
voluntary response of their population, under the argument that lockdown policies may be
associated with significant economic costs. It is therefore a major policy concern to understand
how high levels of social distancing can be reached (Briscese et al., 2020) at minimal economic
cost.

In this paper, we leverage high-resolution location trace data across US counties and combine
them with microeconometric methods to disentangle the voluntary and mandatory social
distancing response during the pandemic. We find that the percentage of people who stay
at home voluntarily increases on average by 5.1% in response to the occurrence of the first
local cases of COVID. The effect following the implementation of a state-wide shelter-in-place
mandate is of a similar size. We combine these estimates with a controlled SIR model (Gros
et al., 2020) to quantify the costs associated with voluntary and mandatory social distancing.1

Overall, we estimate the pandemic to cost the US around 13.9% of annual GDP per capita
under a non-lockdown scenario compared to 12.2% if a lockdown is imposed. When taking into
account the statistical value of life, these values increase to 14.9% and 12.7%, respectively.

The main implications of our paper are threefold. First, independent of government policies,
movement decreases markedly in response to a local outbreak of the virus. Thus, economic
costs are inevitable even in the absence of lockdown policies. Second, voluntary and lockdown
responses are of similar magnitude. Governments that rely on their citizens to respond voluntarily
need to take into account that the associated change in social distancing behavior will be
significantly smaller without a lockdown policy in place. Third, our augmented version of the
SIR model indicates that not imposing a lockdown barely improves economic performance, while
it drastically increases medical costs—both in terms of lives lost and in terms of hospitalization
costs.

Our paper contributes to several strands of literature. First, we support the finding that
the additional economic costs of lockdown measures compared to non-lockdown scenarios are
relatively small, while their medical benefits are large. Low economic costs have also been
estimated by Baek et al. (2020), who find that only one fourth of the unemployment claims in
the early phases of the crisis can be attributed to shelter-in-place policies. Hence, our results
stand in opposition to the view that voluntary responses are a better strategy than lockdown
policies as proposed in Krueger et al. (2020), among others. An often cited example for the

1The SIR model is a workhorse epidemiological model. The acronym stands for Susceptible, Infectious,
Recovered.
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efficacy of relying on voluntary social distancing is Sweden. Forecasts for 2020 suggest, however,
that the Swedish economy may contract in a similar magnitude as in other European countries
or in the US (EC, 2020).2 Our results also contrast with those of Chudik et al. (2020), who
find that voluntary responses have a small impact on the spread of the pandemic compared to
lockdowns, but lead to large costs in terms of employment losses. Second, this paper speaks
to a growing literature that jointly models the dynamics of the economic and health threats
arising from COVID (Acemoglu et al., 2020; Allcott et al., 2020a; Atkeson, 2020; Barro et al.,
2020; Coibion et al., 2020; Eichenbaum et al., 2020; Jones et al., 2020; Kaplan et al., 2020).
Third, a number of papers has used cellphone data to study movement patterns during the
COVID pandemic. They show that patterns in social distancing depend on partisanship (Allcott
et al., 2020b; Gadarian et al., 2020; Grossman et al., 2020; Painter and Qiu, 2020), political
polarization (Cornelson and Miloucheva, 2020), poverty and economic dislocation (Wright et al.,
2020), belief in science (Brzezinski et al., 2020b), risk perception (Allcott et al., 2020b; Barrios
and Hochberg, 2020; Engle et al., 2020) and civic capital (Barrios et al., 2020; Durante et al.,
2020). Our central contribution is to combine data from mobile devices with a controlled SIR
model to estimate the medical and economic costs under different policy scenarios.

The remainder of the paper is structured as follows: Section 2 introduces the data used,
section 3 describes the econometric analysis, section 4 presents the cost estimates whose
robustness we assess in section 5, and section 6 concludes.

2 Data

We construct a dataset at the county-day level spanning the period between January 1, 2020
and April 23, 2020. The data contains measures of social distancing and the lockdown policies
enacted by counties.We only consider data up to April 23 because Georgia was the first state to
partially ease its lockdown on April 24, but we are interested in the effect of imposing lockdowns,
not easing them.

Social distancing. Our outcome variables are based on location trace data from SafeGraph,
obtained by tracking GPS pings from up to 40 million devices across the United States. The
data was made available to academic researchers3 and has previously been exploited in Allcott
et al. (2020b), Brzezinski et al. (2020b) and Painter and Qiu (2020) to study movement patterns
during the COVID pandemic. Our analysis is based on a new data product SafeGraph developed
to allow the tracking of social distancing in response to the virus, Social Distancing Metrics.4

2Sweden only saw an estimated 4 p.p. smaller decrease in aggregate consumer spending than neighboring
Denmark, which did impose a lockdown and experienced a drop in spending of around 29 percent (Andersen,
2020). Even though general equilibrium effects may have contributed to the contraction of the Swedish economy
due to its high openness to trade, they are unlikely to fully explain this pattern.

3For a more detailed exposition of SafeGraph’s data products, see https://safegraph.com.
4There are now 1000+ organizations using SafeGraph data to track social distancing movements, including

the Center for Disease Control and the Federal Reserve.
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The data comes from an underlying panel of up to 40 million mobile devices with home addresses
in all 200,000+ census block groups (CBG) across the United States. It has been aggregated
in an exhaustive 6-step process designed to guarantee reliability, granularity, anonymity and
accuracy.5 As our main outcome variable we calculate the percentage of devices that stayed home
all day by summing, at the county level, the number of the devices that exclusively emitted GPS
pings from their home location over the course of a day, and dividing it by the total number of
devices observed in each county on that same day. Variations of this variable have previously
been exploited in Brzezinski et al. (2020b), Cotti et al. (2020), Holtz et al. (2020), Lasry et al.
(2020), and Simonov et al. (2020). A device’s home is determined as its common nighttime
location over the course of 6 weeks, down to a Geohash-7 (153m x 153m) granularity. Note
that, due to the limited frequency of GPS pings, our outcome variable is likely to be downward
biased for more densely populated areas, where short trips outside of the home might not be
registered. We take this into account by controlling for county-specific factors in our main
regression specifications.

The panel exhibits limited bias along several dimensions. When it comes to geographic bias,
the absolute difference between the panel’s density and the true population density as measured
by the US census never exceeds 1% at the county level. The correlation between both variables
is 0.97.6 In addition, the panel also has a low degree of demographic sampling bias. Although
device-level demographics are not collected for privacy reasons, average demographic patterns
can be studied using panel-weighted, CBG-level Census data. Here again, the frequency of
salient demographic and income groups in the panel closely tracks the same frequency in the
Census. Note that this supports the representativity of the sample with respect to the whole
population, because cellphone use in the US is common across a wide range of demographic
groups.7

Lockdown Policies. Data on the lockdown measures implemented to combat the spread
of COVID have been retrieved from several sources: the National Association of Counties
(NACO)8; the National Governors’ Association (NGA)9; Education Week10, an independent
news organization that compiles school closure data from government websites, staff reporting

5CBGs with less than 5 devices are excluded from the sample. To further enhance privacy preservation,
SafeGraph collects data not directly from cellphones, but only from secondary sources. Thus, the data products
and maps derived from the mobility patterns are aggregate results that do not allow the re-identification of
individuals.

6CBGs, expectedly, are marked by larger sampling bias, mostly due to technical errors in determining devices’
home locations and so-called sinks. Since we restrict our analysis to the county level, this does not pose a serious
threat. For a detailed exposition of SafeGraph’s panel bias, see here.

7See, for example, https://www.pewresearch.org/internet/fact-sheet/mobile/.
8For details, see https://ce.naco.org/?dset=COVID-19&ind=State%20Declaration%20Types. We thank

NACO for sharing the underlying data with us.
9https://www.nga.org/coronavirus/#states

10https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html?
override=web
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and the National Center for Education Statistics; and The New York Times.11 The data
incorporates information on the onset of shelter-in-place policies as well as school and business
closures. Business closure orders require all non-essential businesses to shut down, while shelter-
in-place policies call for all citizens to stay at home. Essential needs, such as grocery shopping,
exercise and medical emergencies, are the only exceptions to shelter-in-place orders. Nonetheless,
such orders were generally not strictly enforced in the US, allowing for varying degrees of
compliance. People working in essential businesses were still allowed to go to work. Additionally,
all states, including the District of Columbia, implemented school closures. We codify the date
of a policy’s implementation as the official date it went into effect if it did so before 12pm, or
one day later if it did so after 12pm.

COVID Statistics. County-level statistics on COVID cases and deaths in the United States
are retrieved from the COVID-19 data portal provided by the New York Times.12 At the
national level, this data has been shown to be highly consistent with other data sources on
COVID cases and deaths, such as the data compiled by the Johns Hopkins Coronavirus Research
Center at the Center for Systems Science and Engineering (CSSE) (Wissel et al., 2020). We also
collected data on the state-day effective reproduction number Rt, which is calculated according
to a modified version of the model described in Bettencourt and Ribeiro (2008).13

Unemployment. Data on weekly unemployment claims and rates by state was retrieved from
the United States Department of Labor, Employment and Training Administration.14

3 Quantifying Voluntary and Lockdown Responses

In order to quantify and compare voluntary and lockdown-induced social distancing responses,
we pursue a set of difference-in-differences (DiD) strategies. First, we estimate the state-specific
voluntary social distancing response by analyzing how movement patterns vary around the
appearance date of the first local COVID cases controlling for whether a lockdown policy is
in place. This approach follows closely the identification strategy employed in Coibion et al.
(2020). Second, we isolate the social distancing response to state-wide shelter-in-place policies,
where we control for the trajectory of voluntary behavior caused by the spread of the virus. We
also explicitly control for spillovers caused by policies of connected states and counties using the
approach of Holtz et al. (2020). Following Goodman-Bacon and Marcus (2020), we complement
our baseline DiD estimates with an event-study approach to check the robustness of our results.

Figure 1 shows the evolution of our dependent variable, the growth rate in the percentage of
people who stay at home, alongside the share of states that have experienced their first COVID

11https://www.nytimes.com/interactive/2020/us/states-reopen-map-coronavirus.html.
12https://developer.nytimes.com/covid
13https://rt.live/
14https://oui.doleta.gov/unemploy/claims.asp
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cases and deaths as well as the share that implemented state-wide shelter-in-place policies. In
most states, the first case occurred during the first half of March, while first deaths and lockdown
policies were lagging behind. Social distancing gained ground from March 8 onward, the date
of the first death in the US, until the end of the month and remained stable afterwards. This
descriptive evidence does not allow for a clear attribution of the reduction in movement to either
voluntary or mandated social distancing. We therefore exploit the gradual occurrence of first
cases of COVID and the subsequent roll-out of the lockdown policies in a quasi-experimental
design. In particular, we adopt a DiD approach where the counterfactual comprises counties
that have not (yet) been exposed to a first COVID case or a shelter-in-place order, respectively.
Hence, our identification strategy hinges on a parallel trend assumption in the outcome variable
relative to the day of the treatment. In this case, the approach yields estimates that can be
interpreted as causal average treatment effects. Throughout our analysis, we assess the viability
of the parallel trend assumption by checking for pre-trends in the evolution of social distancing
prior to the treatment as recommended in Goodman-Bacon (2018).

Figure 1: Contagion, Lockdown Policies and Social Distancing , Feb-Apr 2020
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Voluntary response. In order to estimate the voluntary response, we pursue the following
DiD approach:
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pcti,j,t = αi+ δt+ ζLockj,t+βFirsti,t+γ (Lockj,t×Firsti,t) +Ωyi,t + εi,t, (1)

where pcti,j,t denotes the percent of devices that stay home all day in county i, state j and on
day t. αi and δt refer to county and day fixed effects. Lockj,t takes value 1 if the shelter-in-place
policy has been implemented at or before time t in state j. Similarly, Firsti,t is a dummy
variable that is equal to 1 if the first case has already occurred, and 0 otherwise. Lastly,
the vector yi,t includes controls for state-wide cases and deaths, state-wide school closures,
county-wide business closures and state- and county-wide emergency declarations, as well as the
interactions between Firsti,t and the policy variables.15

Since we control for the interaction of Firsti,t and the policy variables, the coefficient β
captures the social distancing response when no policy is enacted, in other words, the voluntary
response. We use a sample balanced on county and date that goes until two weeks after the
state-wide lockdown for each state. For the US-wide stacked DiD, we use the full balanced
sample. Moreover, our results are robust to applying an event study approach which quantifies
the effect for each day after the first case separately, thereby accounting for time heterogeneity
in the treatment effect (see section 5). Goodman-Bacon and Marcus (2020) shows that, in the
presence of heterogeneity over time, the stacked DiD estimates can be biased. The fact that the
coefficients from the event study are similar in magnitude to the stacked DiD coefficients and
exhibit only limited time heterogeneity suggests that, in our case, this bias is limited. Moreover,
note that the stacked DiD estimates are robust to unit heterogeneity. Taken together, both
specifications thus suggest that our estimates are not strongly affected by bias due to either
time or unit heterogeneity.

Figure 2 shows the results from regression Equation 1, which was estimated separately for
each state. Blue (red) lines correspond to Democratic (Republican) states as per the 2016
presidential election, dashed lines indicate parameters that are insignificant at p < 0.05, and the
horizontal line plots the point estimate for the US as a whole. The main US-wide regression
results for the estimation are reported in Table 1, Column 1.16. Our state-specific estimates
range from showing no significant effect to an effect of 6.2 percentage points, with a US-wide
estimate of 1.28percentage points.

Lockdown response. We pursue a similar stacked DiD approach to obtain an estimate for
the lockdown response:

pcti,j,t = αi+ δt+dayssincei,t+ θLockj,t+ ζDGEO
i,t +Ψyi,t + +ui,t, (2)

where all variables are defined as above, with the exception that we include the additional
days-since-first-case fixed effects dayssincei,t. Additionally, we include DGEO

it = ∑
kwi,k×Dk,t,

15We do not control for state-wide business closures as these generally coincide with shelter-in-place orders.
16Full results in Appendix Table A.3.
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Figure 2: Voluntary Response, by State
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Note: The figure plots the cumulative change in the percentage of devices that stay completely at home following
the first case in a county (parameter β from Equation 1). Parameter estimates and confidence intervals come
from separate regressions for each state, while the overall effect (horizontal line) comes from a country-wide
regression. Blue (red) lines correspond to Democratic (Republican) states as per the 2016 presidential election;
dashed lines indicate parameters that are insignificant at p < 0.05. The sample is balanced on county and date,
where we cut the sample for each state two weeks after the state-wide shelter-in-place. 95% confidence intervals
are based on standard errors double-clustered by county and date, as recommended in Brzezinski et al. (2020c).

which is a vector containing a geographic-adjacency-weighted average of all other counties’
policies. The weights wi,k measure the normalized posterior probability of travel to county k
for someone who lives in county i, and Dit is a vector of dummies for county- and state-level
shelter-in-place orders, business closures and school closures.17 As such, this term allows us to
control for spillovers of policies implemented in geographic alter counties. We incorporate this
variable in order to specifically control for the trajectory of voluntary responses coming from the
progression of the disease, before any lockdown has occurred. As previously shown, individuals
in affected areas exhibit voluntary social distancing over and above any country-wide behavioral
trends. Thus, omitting dayssincei,t would result in an upward bias in the estimate for θ. The
event-study approach in section 5 confirms that there is no significant pre-trend in our analysis.

As before, we balance the US-wide sample by county and date. We exclude counties from
the analysis that have implemented county-level policies before the introduction of state-level
policies to reduce the threat of anticipation effects. In contrast to the voluntary response, we
are unable to obtain state-specific lockdown results, since, by definition, state-level lockdowns
are enacted in all counties of a state simultaneously.

17See Holtz et al. (2020, S2.3) for further information on how the geographic adjacency matrix is constructed.
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Column 2 in Table 1 shows the estimate for θ from Equation 2 for the US. We find that the
lockdown increases the percentage of people who stay at home by 1.32 percentage points after
the policy is implemented. Note that full regression results are shown in Appendix Table A.3,
confirming that the control variables have the expected signs or are insignificant.

Row 1 in the same Table shows the estimates when not controlling for policy spillovers.
As expected, the estimated lockdown effect goes down, in line with Holtz et al. (2020). The
voluntary response, on the other hand, goes up. This is intuitive, since counties which have
experienced a first COVID case are less likely to be connected to counties with containment
policies in place. At the same time, those counties that are more connected to counties with
containment policies will have a larger overall social distancing response. Thus, once we account
for the fact that counties with a first case are less likely to be connected to counties that do not
implement policies, the estimates of the voluntary response increases.

Table 1: US-Wide Voluntary and Lockdown Responses

Dependent Variable: Percent at Home
Voluntary Response Lockdown Response

Coefficient 0.0128*** 0.0132***
(0.00428) (0.00488)

Date FE X X
County FE X X
County-Level Controls Eq. 1 Eq. 2
Observations 352,560 300,690
R-squared 0.782 0.841

Note: The table shows US-wide regression results for β and θ from Equations 1 and 2 in
Columns 1 and 2, respectively. Standard errors are double-clustered by county and date,
as recommended in Brzezinski et al. (2020c). Full results shown in Appendix Table A.3.
*** p < 0.01, ** p < 0.05, * p < 0.1.

4 The Costs of Voluntary and Imposed Social Distancing

In this section, we provide direct calculations of the economic costs incurred by voluntary and
policy-induced social distancing. To that end, we combine our estimates for the two forms
of social distancing with a modified version of the workhorse epidemiological SIR model that
allows the disease reproduction number to endogenously depend on the political and societal
response to the virus (Gros et al., 2020).

This ‘controlled SIR model’ provides us with the tools to assess the medical and economic
costs associated with varying degrees of response intensity. As the model admits an analytical
solution, the total response intensity can be estimated from the data. We interpret this response
intensity as the combination of voluntary and lockdown-induced social distancing, which we can
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then decompose based on our counterfactual econometric estimates from the preceding section.
Armed with this decomposition, we re-simulate the model for several US states so as to quantify
the costs associated with the observed total and estimated voluntary reductions in movements.
We thus combine econometric estimates based on detailed micro-data with a modeling approach
firmly embedded in epidemiology to conduct a counterfactual policy simulation of the costs
of staying open. The theoretical model we use is parsimonious and therefore transparent, a
feature we believe makes it preferable to heavily parametrized economic models, as it reduces the
uncertainty associated with estimating a large number of parameters, and facilitates discussion
of the underlying model assumptions. Moreover, while agent heterogeneity is likely to be an
important factor in the spread of the virus, our model assumes that governments are either not
capable of or not willing to target lockdowns towards specific population groups.

Controlled SIR model. At any time t > 0, a population is composed of three types of
individuals: susceptible, infected and recovered; with associated quantities S = S(t), I = I(t)
and R = R(t).18 Population size is constant and normalized such that S+ I +R = 1. The
following set of ordinary differential equations describes an isolated epidemic outbreak:

τ
dS

dt
=−gSI, τ

dI

dt
= gSI− I, τ

dR

dt
= I, (3)

where g is the reproduction number and τ > 0 is the time scale. According to the first equation,
the growth rate of S decreases in g and in the number of contacts between susceptible and
infected individuals SI. The change in infections in the second equation equals this reduction
in susceptible individuals gSI. Finally, the third equation posits that all infected individuals
recover or die. Note that, in the case of COVID, this invites an interpretation of the model’s
time scale as the duration of the disease’s infectiousness, which is estimated to be 2 weeks
(WHO, 2020).

In contrast to the standard SIR model, societal and political response to the spread of the
virus is assumed to push g below its natural (intrinsic) number g0 > 0, which depends on the
intrinsic virological characteristics of the disease. This notion can be operationalized by

g = g0
1 + αX

, X = 1−S. (4)

The parameter α ≥ 0 describes the overall reaction strength of the population to the spread
of the virus, which is captured by the cumulative number of cases X. Equation 4 implies that
social distancing has decreasing returns in reducing the reproduction number. This is in line
with established epidemiological evidence that the distribution of individual infectiousness is
highly right-skewed, with a small number of ‘superspreaders’ infecting many individuals at large

18This paragraph closely follows the exposition in Gros et al. (2020).

10



social events (Lloyd-Smith et al., 2005).19 With a given g0, the parameter α determines the level
to which the reproduction number converges as the disease progresses, allowing us to interpret
α as the degree of social distancing. As such, a business-as-usual scenario amounts to α = 0
and g = g0. Using our estimates from section 3, we can decompose α = αv +αl, where αv ≥ 0
captures the degree of voluntary social distancing and αl ≥ 0 the additional response induced
by lockdown policies. Note that our DiD design allows for such an additive interpretation of
both responses, as the estimated lockdown response quantifies the additional social distancing
compared to the counterfactual of no lockdown—i.e. of only voluntary social distancing.

Under the assumption that individuals and policymakers react to X rather than I—what
Gros et al. (2020) call long-term and short-term control, respectively—, the controlled SIR model
described by Equations 3 and 4 admits an analytical solution. This permits the estimation of α
and g0 from the data using the derived ‘XI representation’

I = α+g0
g0

X+ 1 +α

g0
log(1−X), (5)

which is independent of τ . This relation holds remarkably well in the data across highly
dissimilar regions, validating the model and supporting its robustness (Gros et al., 2020, Fig 1).
Figure B.1 in Appendix shows a similarly close model fit for 31 different US states. What is
more, the model is robust to differences in testing as long as I and X are mismeasured by the
same ratio.

Parametrization. To estimate the model parameters, we take It and Xt from our daily data
as the number of newly confirmed COVID cases and the cumulative number of confirmed cases.20

We smooth the number of cases with a symmetric moving average of length 5, as in Gros et al.
(2020), and normalize by dividing It and Xt by the total population size of the geographical
unit under consideration. To parametrize Equation 5, we use weighted least squares to estimate,
for state j at time t,

Ijt = β1Xjt+β2 log(1−Xjt) + εjt, (6)

where the weights equal Ijt to account for the fact that the case data is crowded at low levels
(Gros et al., 2020, p.9). One can then obtain ĝ0 and α̂ using β1 = (α+g0)/g0 and β2 = (1+α)/g0.
We report the parameters estimated in this way for selected US states in Table A.1. Based on α̂,
we obtain estimates for the voluntary response α̂v by using the estimates from Section 3 and the
relationship α = αv +αl. In particular, we use the state-specific voluntary response estimates

19This dispersion in individual infectiousness is commonly denoted as k. Early estimates suggest the k for
COVID is similar (Riou and Althaus, 2020) or even lower (Endo et al., 2020) than it was for SARS and MERS,
two other corona viruses that exhibited strong clustering.

20Note that this is a valid measure of I as long as the infectiousness period does not change in the sample.
This seems reasonable since no probably effective drug treatment had yet been put to wide use during our sample
period. Remdesivir, one of the first drugs that was proven to be effective in initial trials, was only authorized for
emergency use by the CDC on May 1, 2020.
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(V) shown in Figure 2 and the US-wide lockdown response (L) from Table 1 to estimate the
relative size of α̂v by scaling α by the ratio

V

V +L
, (7)

for each state.21

We also calculate a measure of the efficiency of socio-political containment efforts, the
Containment Efficiency Index, CEI= α

g0+α ∈ [0, 1], which scales the estimated α by the estimated
baseline reproduction number and thereby allows for comparisons of the estimated containment
responses. Because we are interested in decomposing the effect of lockdown, we only consider
states that implemented such a policy in our sample. Additionally, we drop all states where
daily case counts had not clearly reached a peak yet, as in that case the parameters are not
identified (Gros et al., 2020, p.2).

With these parameter estimates in hand, one can simulate the discrete-time version of the
model. Denoting the discrete-time equivalents of g and g0 by ρ and ρ0, respectively, it holds
that ρ̂0 = exp( ĝ0), and the discretized model can be written as

It+1 = ρ̂t It (1−Xt), Xt =
∞∑
k=0

It−k, (8)

where ρt is described by the discrete version of Equation 4.22 Note that the estimated baseline
reproduction numbers ρ0 in Table A.1 are closely in line with those from the epidemiological
literature (Li et al., 2020; Liu et al., 2020).

Cost estimates. As shown in Equations 3 and 4, the framework explicitly models the positive
feedback loop between infections and the reproduction number. Both political and societal
factors can lead to variation in g and therefore influence the costs associated with the outbreak.
We use the findings from section 3 to provide an estimate of the costs related to voluntary and
policy measures. One can distinguish four types of costs, expressed in terms of GDP per capita:
(1) the production loss due to infected workers going on sick leave, (2) the medical expenses
associated with infections, (3) the loss of human lives, and (4) the costs of social distancing
(Gros et al., 2020, p.12).

21Note that our decomposition of α constitutes a conservative way of estimating the fraction of the total
measured response made up by the voluntary response. The reason for this is that there are likely other ‘weaker’
forms of voluntary social distancing that our estimate does not take into account, which are, for example,
captured in the country-wide time trend (Farboodi et al., 2020). Our definition of voluntary social distancing is
‘strict’ in that we only consider people’s response to the local spread of the virus, which is a feature we should
always expect to be associated with a pandemic outbreak. The country-wide time trend, on the other hand, likely
captures the response to more contingent features of the outbreak, such as national emergency declarations. Our
‘strict’ definition is thus conservative in the sense that it underestimates what percentage of the total response is
due to voluntary social distancing, and hence it will lead us to underestimate the economic costs associated with
voluntary distancing.

22We initialize I0 = 2×10−5 and end the simulation at It = 10−5, after which it is assumed that new cases
are fully reduced to zero by test and trace strategies (Gros et al., 2020).
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Since the first three types are related to health and medical costs, they are directly propor-
tional to Xtot, the cumulative number of cases at the end of the pandemic.23 Hence, these costs
can be approximated as Cmedical = kXtot, where Gros et al. (2020) suggest a value of k ≈ 0.305,
or k̃ ≈ 0.14 if the value of human life is not considered. These estimates are based on data from
the Diamond Princess cruise ship, which can be regarded as a natural laboratory for COVID.
They include appraisals of the costs induced by the lost work time of sick people, as well as
conservative estimates of hospitalization costs in Europe, which are based on early estimates of
the hospitalization rate of COVID (CDC, 2020).24 Under a laissez-faire scenario, Xtot = 0.94
and the upper bound for the medical cost estimate is roughly 29% (or 13% if not accounting for
the value of life) of annual GDP per capita.

The fourth cost factor depends on the degree of social distancing, which can be captured by
the decrease in ρ/ρ0:

Cecon =
∑

I>Imin
m

[
1− ρ

ρ0

]
2
52 , (9)

where Equation 9 sums over all points in time when the pandemic is in a large-scale containment
stage, that is, when individual testing and tracing is not possible. The parameter m maps
the social distancing efforts into their economic costs. We estimate m based on the observed
relation between the weekly average of the state-level reproduction rate and the weekly insured
unemployment rate across US states, as shown in Figure B.4.25

We obtain the unemployment rate from the United States Department of Labor, while we
estimate the reproduction rate using a modified version of the algorithm of Bettencourt and
Ribeiro (2008), and express it with respect to the basic reproduction number R0 = 3 taken
from the literature (Liu et al., 2020).26 This gives an estimate of the relationship between
the change in the unemployment rate and the change in the reproduction rate of mu = 0.1262.
From there, we obtain the relationship between regional GDP and the reproduction rate as
m=mu×2.22 = 0.2804, using an estimate of Okun’s coefficient for the US (Ball et al., 2013).
In the next section, we perform a series of robustness checks across different values of m to
validate our results. Our baseline estimate of 0.28 is close to the estimate Gros et al. (2020)
use based on China’s experience (0.25). One would expect that when a larger share of GDP
is consumed domestically (low openness to trade), a drop in domestic demand corresponding
to a decrease in Rt leads to a higher drop in GDP. In that light, it makes sense that the US’s
estimate is close to, but slightly larger than, China’s. Note that the economic costs estimated
in this way will include local general equilibrium as well as partial equilibrium effects. The
local unemployment rate might, in addition, be affected by cross-state and international general

23We assume that Xtot ≈X at time t= T , with T the final time period.
24Note that these are truly conservative estimates insofar as hospitalization costs in the US are generally

higher than in Europe.
25We exclude 5 outlier states, though the estimated m is very similar (13.74) when we retain them.
26As time progresses and more economic data becomes available, it will be possible to estimate m more

precisely. Already, however, our robustness exercises in Section 5 suggests that our results hold for a wide range
of credible parametrizations of m.
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equilibrium effects. Yet, insofar as these should not be systematically related with the local
reproduction rate, such effects should only act by shifting the intercept, while not affecting the
slope of the line in Figure B.4. Lastly, note that since the US pandemic was in effect marked by
several semi-distinct regional outbreaks, it makes sense to study the relation between Rt and
economic output at a regional level.

Overall, the model reflects the trade-off faced by governments between medical and economic
costs. Less restrictive policies lower the direct economic burden of the pandemic due to an
increase in g at the expense of an increase in medical costs, which enters the estimated costs
through a higher level of Xtot. Clearly, our estimates of the economic and medical costs of the
pandemic are based on a highly stylized model. For instance, it does not take into account the
possibility of a collapse of the health care system, which would lead to a discontinuous surge in
the death toll (Thunstrom et al., 2020). Moreover, the model also abstracts from externalities
arising from social distancing, such as increases in domestic violence or mental health issues.
We address some of these issues by checking the robustness of our results for a wide range of
different parameter estimates further below.

Results. Figure 3 plots our results. It shows the total costs, in terms of GDP per capita, of
the total containment response (T) and the counterfactual voluntary response (V) for those
US states that had a lockdown and were past the virus’s peak before our sample cutoff. As
explained above, the total response cost is estimated using the α measured from the data, while
the voluntary response is a counterfactual based on our estimates from Section 3. Also shown
are the total and voluntary costs for the US as a whole. Both costs are broken down into
economic (red) and medical (blue) costs. Note that the state-level costs should be interpreted
as relative to the GDP per capita of the state in question, not of the US as a whole.
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Figure 3: Results From Controlled SIR Model
(a) Costs of Voluntary and Total Social Distancing by State, Without Value of Life
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(b) Intensities of Voluntary Social Distancing That Incur Same Cost as
Lockdown, Plus Costs for Each, for Various Lockdown Strengths
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1 Panel a): estimated costs under voluntary social distancing (V) compared to total social distancing (T)—which includes
voluntary (V) and lockdown-induced reductions (L) in movement. Estimated costs for (T) are based on simulations of the discretized
C-SIR model using the α and ρ0 estimates reported in Table A.2. Costs for (V) are re-estimated with α scaled by the estimated
ratio V/(V +L) = V/T . Estimates of responses V and L are those reported in Figure 2 and Table 1. Costs are in terms of GDP
per capita. Costs are broken down into economic (red) and medical (blue, without value of life), see Equations ?? and 9. NB the
small decrease in total costs for ID, MT, NV is due to numerical inaccuracies and discontinuities in the cost function.
2 Panel b): Black line: gives, for each control strength α on the x-axis, the corresponding lower α on the y-axis that would incur
the same costs, i.e. the maximal corresponding level of voluntary social distancing that could obtain without incurring higher costs
than full lockdown. Estimates are from C-SIR model simulations with ρ0=3. Bars: give the total (saturated color) and voluntary
(transparent color) costs as % of GDP p.c. incurred by the total control strength α given on the x-axis and the corresponding
(given by black line) voluntary response strength α on the right y-axis. Costs are broken down into economic (red) and medical
(blue).

15



Panel a) in the figure depicts a stark result. For the US overall, we estimate COVID to
generate costs of around 13.9% of annualized GDP per capita under a laissez-faire scenario
compared to 12.2% if a lockdown is imposed. Taking into account the statistical value of a life,
these estimates increase to 13.9% and 12.2% (see Figure B.3). For all states considered, reducing
the measured containment response to levels consistent with voluntary social distancing would
only marginally decrease the economic costs incurred by social distancing, while at the same
time drastically increasing the medical costs. This result is more or less pronounced depending
on both the estimated total containment response α and the estimated voluntary response for
each state from Figure 2. States with a combination of a high estimated containment efficiency
and a high estimated voluntary response, such as Montana and Idaho, barely see a change in
either medical or economic costs when changing to voluntary containment, as they remain close
to the respective asymptotic minimum and maximum of both cost cost categories.27 On the
other hand, states with a combination of low estimated containment efficiency and low estimated
voluntary response, such as New York and Massachusetts, see a stronger change in both cost
categories when moving to voluntary response, with the increase in medical costs outweighing
the decrease in economic costs.

The reason why the model predicts that voluntary social distancing will lead to higher overall
costs can be more easily appreciated by considering Figure B.2 in the Appendix, which shows
how total costs change with an increase in control strength α. The model implies a trade-off
between medical and economic costs as α gets higher. While the former fall with a stronger
reaction strength, the latter increase. Initially, for low values of α, an increase in its value
rapidly generates higher economic costs, causing larger estimates of total costs. However, once
α is sufficiently high, further increases in the control strength will generate smaller marginal
increases in economic costs, which are easily offset by the medical benefits. This means that the
economic costs follow an approximately concave shape in α. Following this logic, for a range
of values for the control strength there are two strategies that yield the same costs: either a
weak response that implies small economic and large medical costs, or a strong response that
generates small medical and larger economic costs. For all the states in our sample, we estimate
that the strong responses result in lower overall costs. This conclusion is robust to a range of
alternative voluntary and lockdown strength estimates, as we discuss in further detail below.

5 Robustness

The previous section has concluded that lockdown strategies yield lower economic costs than
strategies that rely on voluntary responses. We corroborate this result by performing a series of
robustness checks. First, we consider the robustness of our baseline DiD results by pursuing a
staggered event-study approach. As a second step, we show that our main conclusion would

27Note that the Figure actually shows a slight decrease in total costs for ID, MT and NV, which is due to
numerical inaccuracies and discontinuities in the cost function.
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still hold for estimates that differ considerably from our baseline, by considering the sufficient
conditions under which lockdowns are the most cost-effective strategy. For this purpose, we
take the model calibration of our SIR model and show the range of alternative estimates of
the combined response strength and of the relative magnitude of the voluntary response for
which our conclusions would still hold. Lastly, we consider the robustness of our results to
different estimates of the cost parameter m. Together, these robustness checks show that our
main conclusion, that lockdown strategies outperform voluntary strategies, holds for a large set
of different model parametrizations and estimation approaches.

Robustness of DiD estimates. To assess the robustness of our baseline DiD estimates we
apply an event-study approach where we estimate the effect separately for each day after the
first case or policy implementation date. This approach is recommended in Goodman-Bacon and
Marcus (2020) in order to check for potential biases that may arise from the dynamic evolution
of effects over time. Lockdown responses have been estimated in this way by a number of papers
in the literature (Brzezinski et al., 2020a; Painter and Qiu, 2020; Wright et al., 2020). For
our baseline specification, however, we do not opt for this approach since the cost calculations
presented in section 4 require one overall estimate per state. For further details on the exact
specification for these robustness checks, see sections C.1 and C.2 in the Appendix.

Figure 4 shows the resulting estimates from the staggered DiD specification, which are very
close to the baseline estimates presented in Table 1. Moreover, across almost all dates after the
treatment date considered, our baseline estimates in section 3 lie within the 95% Confidence
Interval of the event-study estimates. Considering the pre-trends, there is no significant effect
for either the voluntary or the lockdown response, indicating that we sufficiently control for the
previous dynamics in order to attribute a causal interpretation to the result. Moreover, both
event studies expose limited time heterogeneity in the treatment effects, suggesting that our
stacked ‘DD’ estimates are not strongly affected by bias introduced by such heterogeneity.
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Figure 4: Staggered DiD estimates
(a) Voluntary Response, Event-Study Design
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(b) Lockdown Response, Event-Study Design
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1 Panel a): Event-study approach for the Voluntary Response showing estimates from 10 days before to 10 days after the first
local case. Reference periods are -10 and -1. Periods > 10 and < −10 are absorbed by ‘bin’ dummies. Vertical lines indicate 95%
confidence intervals. For details, see section C.1.
2 Panel b): Event-study approach for the Lockdown Response showing estimates from 10 days before to 10 days after a lockdown.
Reference periods are -10 and -1. Periods > 10 and < −10 are absorbed by ‘bin’ dummies. Vertical lines indicate 95% confidence
intervals. For further details, see section C.2.

Finally, as discussed before, note that our definition of voluntary responses as the event-study
estimates around the occurrence of first local cases is very narrow. Alternatively, one could for
instance view the country-wide trend in absence of lockdowns a behavioral change which is not
induced by policies and hence voluntary. These estimates, presented in Farboodi et al. (2020),
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among others, are a much larger than the results shown here, strongly reinforcing the overall
conclusion of this paper.

Robustness to different response estimates (α,αv,αl). To consider the robustness
of our results to different estimates of the voluntary versus lockdown responses obtained in
sections 3-4, panel b) of Figure 3 further elaborates on the trade-off between higher economic
costs and lower medical costs. The black line shows, for each response strength α ∈ (x-axis),
the corresponding lower α ∈ (right y-axis) that generates the same amount of total costs (as
indicated in Figure B.2).28 Thus, the black line links the two strategies that yield the same
economic costs: a lockdown strategy that relies on diminishing medical costs at the expense of
higher economic costs (x-axis), and the corresponding voluntary strategy that would yield the
same costs by alleviating pressures on the economy at the cost of higher medical costs (y-axis).
Due to the (approximate) concavity of total costs in α in this range, the more intensive the
lockdown strategy, the less intensive the corresponding voluntary strategy required to generate
the same level of costs. The reason for this is further elaborated by the bars in the figure, which
show the cost decomposition for the lockdown strategy (saturated color) and voluntary strategy
(transparent color) for each α: the former relies on low medical costs and the latter on low
economic costs.

Thus, there are two necessary conditions for a voluntary strategy to yield lower costs than a
lockdown strategy: First, α needs to be lower than around 36, as a value of above 36 yields lower
costs that cannot be replicated by any α below. Second, the voluntary response needs to be
sufficiently weak such that the economic costs are indeed kept at low levels when no lockdown
is imposed. The latter condition implies that the counterfactual control strength α that would
apply under no lockdown has to be at or below the black line of Panel b) in Figure 3.

These two conditions are very unlikely to be jointly satisfied. First, around three quarters
of the states lie above the critical threshold of 36, implying that for these states no voluntary
strategy can yield lower total costs—regardless of the precise ratio of voluntary to lockdown
response. In this case, lockdown measures are always the most cost-effective solution. Second,
even if some estimates are below 36, it is unlikely that the counterfactual voluntary responses
would be sufficiently muted to generate lower costs than a lockdown strategy. For the most
part, this would require very low levels of voluntary social distancing that do not come close
to our results from section 3, combined with unrealistically low levels of α that are far from
our lower bound estimates. For instance, even an α of 10—substantially lower than our lowest
estimate—would require for the voluntary response to be at most at α = 1.5, or less than
15% of the total control strength. This is unlikely according to our results in section 3: Even
for the lowest significant point estimate for the voluntary effect obtained from our sample

28Note that the relevant range for the figure is α ∈ [3,36], since below 3 and above 36 there is no lower α that
would lead to the same total costs.
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(Massachusetts), the size of the voluntary response is as large as 50% of the combined response,
as the voluntary and lockdown response are approximately equal.

Two conclusions about the robustness of our results emerge from this discussion. First, since
most of our estimates of the total control strength all lie above 36 (see Table A.1), the benefits of
a lockdown always outweigh the costs for most of the states we consider. Thus, our main finding
is not dependent on the precise magnitude of the estimates in section 3. Second, we show that,
even for those states that have a very low estimated lockdown effectiveness, it is highly unlikely
that an approach that relies on voluntary social distancing would yield lower total costs than a
lockdown strategy. This is because one would require implausibly low counterfactual voluntary
responses, combined with a very ineffective lockdown response, for the voluntary scenario to be
more efficient.

Robustness to different economic cost estimates (m). We now consider how changing
the baseline economic cost estimates m would affect our conclusion that lockdown responses
generate lower total costs. Higher estimates of m could in theory change our conclusion, as they
would change the trade-off between economic and medical costs: for any given level of social
distancing, the economic costs would be more substantial, making a voluntary strategy more
attractive.

Figure 5 shows how many of the states we consider would experience lower total costs from
a voluntary response than from a lockdown, for different estimates of m. As discussed in section
4, for our baseline estimate of 0.28, no state would fare better under a voluntary strategy. The
first state would perform better under a voluntary strategy at a parameter value of m of around
0.33. Note that even at an estimate of 0.7, we would estimate only twelve states to perform
better under a voluntary response. This estimate, however, is unreasonably high: it would imply
that a change in the reproduction number of a factor of 10 would decrease GDP per capita by
70%. Since the reproduction numbers empirically changed by a factor between 8-10, this would
thus imply an economic cost of more than 50% of GDP. Even at such unreasonable estimates,
however, the vast majority of states in our sample would be better off with a lockdown strategy,
given the magnitudes of their estimated voluntary response.
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Figure 5: Number of States for which Estimated Voluntary Costs are Lower than Lockdown
Costs, by m
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Note: The figure shows, for increasing cost parameter m, how many states could have ‘empirically’ attained
a break-even between voluntary and lockdown response for their estimated control strength α. The empirical
break-even point here corresponds to the estimated state-specific voluntary responses from Figure 2.

It is important to note that the model very much allows for the possibility that, in theory,
the voluntary response can lead to smaller costs. Thus, the finding that lockdowns generate
smaller costs is not simply a foregone conclusion that trivially follows from our SIR specification.
Figure 6 further elaborates on this point by looking at the necessary estimates of m under which
it would be theoretically possible that the voluntary response generates lower costs, given the
overall α parameters estimated for our sample of states. In other words, the figure considers the
counterfactual situation where the voluntary response would have been close to zero for different
cost parameter estimates. In general, already at a parameter of m= 0.3 it could be possible
for half of the states to have lower costs under a voluntary regime, if people barely responded
independently to the spread of the virus. However, our estimates of the relative strength of the
voluntary responses and lockdown responses found in section 3 combined with any reasonable
parametrization of our SIR model suggest that lockdown responses most likely generate lower
total costs than voluntary responses across all US states in our sample.
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Figure 6: Number of States That Could Theoretically Break Even, by m

(a) Number of States

0.2 0.25 0.3 0.35 0.4 0.45

0

5

10

15

20

25

30

35

(b) Corresponding ‘Threshold Control Strength’ α

0.2 0.25 0.3 0.35 0.4 0.45

0

200

400

600

800

1000

1200

1400

1 Panel a): Shows, for increasing cost parameter m, how many states could have ‘theoretically’ attained a break-even between
voluntary and lockdown response for their estimated lockdown control strength α. The theoretical break-even point here corresponds
to the absence of any voluntary response, i.e. α= 0. Obtained from simulations of C-SIR model, as in Figure 3.
2 Panel b): Plots corresponding ‘threshold control strength’ α. Lockdown responses equivalent to any α′ higher than this threshold
are always better than no response at the given cost parameter m.
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6 Conclusion

Lockdown policies are an important tool in the hands of policymakers to combat the spread of
COVID-19. Nonetheless, several governments across the world have been reluctant to swiftly
adopt such policies out of fear that their economic costs outweigh their medical benefits. In
contrast to this view, this paper argues that the costs of staying open outweigh the benefits. The
reason for this is that individuals engage in substantial voluntary social distancing even in the
absence of lockdowns, once the virus takes hold in their area. Hence, substantial economic costs
are unavoidable, even when not locking down. At the same time, we show that lockdowns lead
to a significant uptake in social distancing over and above any voluntary response. While large
economic costs materialize in any event, such additional social distancing still plays an important
role in further reducing medical costs by flattening the curve. Indeed, for our estimates of the
voluntary and mandated social distancing responses, all US states that imposed a lockdown
would have incurred larger overall costs had they stayed open. This suggests that the observed
reluctance of some governments to lock down was unwarranted insofar as it was guided by a
concern over the economic costs of such a policy.

Our study is subject to several caveats. First, the cost estimates presented are simulated
for the trajectory of a large-scale pandemic for which test and trace strategies are not feasible.
This implies that our results may not apply to other diseases and should not be interpreted
as a justification for lockdowns in all contexts. Second, it should be noted that we only allow
for variations in the strength of the response – and not, for example, in its speed – while
assuming that containment remains operative until the number of infectious people drops below
a certain threshold.29 Third, we do not specifically take into account possible externalities on
outcomes such as mental health (Brodeur et al., 2020; Rossi et al., 2020; Twenge and Joiner,
2020) or inequality (Adams-Prassl et al., 2020; Alon et al., 2020; Bell et al., 2020; Galasso, 2020).
Fourth, while we hope our results can guide the response to possible future waves of COVID-19,
such extrapolation should be done with caution and with consideration of the fraction of the
population infected in the first wave.30 Finally, note that our model does not preclude the
possibility that well-targeted partial lockdowns that take into account regional and demographic
heterogeneity can achieve similar reductions in medical costs, at lower economic costs.31 Our
central contribution is to show that, even in the extreme case of an across-the-board lockdown,
such a measure in all likelihood fares better than a laissez-fare approach.

29For some results on alternative “short-term control” strategies, see (Gros et al., 2020).
30This is because non-linear dynamic systems such as the C-SIR model we rely on are highly sensitive to

initial conditions.
31Due to the skewed distribution of virus transmission (Endo et al., 2020; Riou and Althaus, 2020; Sneppen

and Simonsen, 2020) and the importance of ‘superspreader’ events, recent research suggests that local and quick
measures may indeed be best suited for mitigating the spread of COVID (see e.g. Bonardi et al., 2020 or here.
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A Tables

Table A.1: Model Parameters

Parameter Description Value

k Proportionality factor linking Xtot and medical costs Cmedical; including cost
of value of lifes

0.305

k̃ Proportionality factor linkingXtot and medical costs Cmedical; excluding cost
of value of lifes

0.14

m Proportionality factor linking social distancing and social costs Csocial 0.28

I0 Starting value for share of infected I 2 × 10−5

Imin Share of infected in a population I that can be controlled by testing and
tracing without the need for imposing large-scale lockdown policies

10−5

Note: The table provides a summary of the parameters used for the model in section 4, including the descriptions and
the values obtained from Gros et al. (2020).

Table A.2: Controlled SIR Estimates

State α g0 ρ0 CEI
NJ 13.2 1.12 3.064 0.922
NY 13.5 1.131 3.099 0.923
IL 15.5 1.084 2.956 0.935
MA 16.6 1.116 3.053 0.937
DE 21.7 1.103 3.014 0.952
CT 23 1.125 3.081 0.953
VA 32.2 1.085 2.96 0.967
IN 34.5 1.09 2.974 0.969
MS 34.6 1.084 2.956 0.97
CO 37.2 1.085 2.96 0.972
PA 40.5 1.111 3.036 0.973
WI 41.5 1.07 2.914 0.975
NM 47.1 1.089 2.971 0.977
MI 52.9 1.132 3.1 0.979
GA 53.3 1.099 3 0.98
LA 62 1.206 3.341 0.981
UT 54.4 1.077 2.937 0.981

State α g0 ρ0 CEI
CA 57.3 1.076 2.933 0.982
MN 61.3 1.126 3.084 0.982
NC 62.2 1.075 2.931 0.983
WA 67.5 1.092 2.979 0.984
NV 82.3 1.096 2.993 0.987
OH 86.8 1.113 3.043 0.987
ME 98.6 1.074 2.928 0.989
SC 100.3 1.092 2.979 0.989
FL 108.4 1.112 3.041 0.99
US 168.5 1.202 3.326 0.993
OR 148.1 1.076 2.932 0.993
VT 309.2 1.222 3.395 0.996
WV 318.2 1.128 3.09 0.996
ID 349.9 1.211 3.357 0.997
HI 1007.5 1.216 3.374 0.999
MT 1185.7 1.246 3.476 0.999

Note: The table shows the parameter estimates for the controlled SIR model by state. Parameters
α and g0 are obtained from Equation 6, estimated by weighted least squares with weights It. Data
obtained from the New York Times, where Xt is the cumulative confirmed cases and It the daily
new cases. We also calculate the discretized bi-weekly reproduction number ρ0 = exp(g0) and the
containment efficiency index CEI = α/(g0 +α), CEI ∈ [0, 1], following Gros et al. (2020).
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Table A.3: Full Regression Results, With Spillovers

Dependent Variable: Percent at Home
Voluntary Response Lockdown Response

Policies
First Case 0.0128***

(0.00428)
State Lockdown -0.00374 0.0132***

(0.00638) (0.00488)
State Lockdown × First Case 0.0126***

(0.00469)
County Business Closure 0.0140 -0.00106

(0.0147) (0.00990)
School Closure 0.000575 -0.00162

(0.00221) (0.00404)
SOE -0.0539*** 0.00126

(0.0139) (0.00132)
County SOE 0.00614*** 0.00287

(0.00215) (0.00183)
Spillovers
Geo Adj Business 0.0134***

(0.00213)
Geo Adj School 0.00103

(0.00560)
Geo Adj Shltr 0.00445

(0.00708)
Constant 0.256*** 0.262***

(0.00178) (0.00146)

COVID-19 Spread
State Cases 7.40e-07*** 4.79e-07***

(1.70e-07) (1.63e-07)
State Deaths -6.82e-06*** -4.92e-06**

(2.15e-06) (2.15e-06)
Constant 0.255*** 0.342***

(0.00194) (0.0139)

Observations 346,560 78,588
R-squared 0.793 0.858

Note: The table shows US-wide regression results from Equations 1 and 2 in Columns 1 and 2,
respectively. Standard errors double-clustered by county and date as recommended in Brzezinski
et al. (2020c).
*** p < 0.01, ** p < 0.05, * p < 0.1.
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B Figures

Figure B.1: Data Collapse for XI Representation, US States
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Note: Figures shows data collapse of Equation 5 to near-universal inverted parabola, obtained by rescaling by
Xpeak and Ipeak, as calculated from ĝ0 and α̂ for each state. As in Gros et al. (2020, Fig.1), but for 31 US states.

Figure B.2: Costs As A Function of Control Strength α
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Note: Reproduction of Gros et al. (2020, Fig.5) Costs are in terms of GDP per capita. Total costs (black line)
are defined as Ctotal = Cecon + Cmedical. Economic costs (red line) are calculated as Cecon = ΣI>Imin 0.25[1−
ρ/ρ0]×2/52, while medical costs (blue line) are calculated as Cmedical = 0.14Xtot, which excludes the estimated
statistical value of a life.
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Figure B.3: Costs of Voluntary and Total Social Distancing by State, With Value of Life
Included
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Note: The figure shows the estimated costs under the voluntary social distancing scenario (V) compared to
total social distancing (T), which includes voluntary (V) and lockdown-induced reductions (L) in movement.
The estimated total costs for (T) are based on simulations of the discretized C-SIR model using the α and
ρ0 estimates reported in Table A.2. The costs for (V) are re-estimated with α scaled by the estimated ratio
V/(V +L) = V/T . Estimates of the social distancing response V and L are those reported in Figure 2 and Table
1. Costs are in terms of GDP per capita. Costs for both (V) and (T) are broken down into their economic and
medical components. Economic costs are calculated as Cecon = ΣI>Imin 0.2804[1−ρ/ρ0]×2/52, while medical
costs are calculated as Cmedical = 0.305Xtot, which is based on Gros et al. (2020) and includes the estimated
statistical value of a life.
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Figure B.4: ∆Rt Vs. ∆ Unemployment, Feb-April 2020, US States
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Note: % change in insured unemployment rate and the effective reproduction number Rt, as measured in the
week of April 18, 2020. ∆ unemployment rate is the change with respect to February 2020, as measured by the
US Department of Labor. ∆Rt is the change in Rt, as estimated using a modified version of Bettencourt and
Ribeiro (2008), with respect to the baseline reproduction number R0 = 3 (Liu et al., 2020).
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C Event-Study Approach

C.1 Voluntary response

The estimates presented in Figure 2 are based on a so-called ‘stacked’ DiD design. As shown in
Goodman-Bacon (2018) and Abraham and Sun (2018), this estimand averages over heterogeneous
treatment effects and is biased if these effects vary over time. Therefore, we pursue a staggered
DiD event study approach to explore the dynamic response of voluntary social distancing.

The results are obtained by estimating

pcti,j,t = αi+ δt+ ζ̃Lockj,t+
10∑

s=−9
(βsCi,t0+s+γsCi,t0+s×Lockj,t0+s) + Ω̃yi,t + ε̃i,t,

with s 6=−1 (C.1)

where all the variables are as in Equation 1, except that the indicator Firsti,t is replaced by
the set of dummies Ci,t+k. These are centered around the time period t0 that refers to the first
county-level COVID case, and are equal to 1 at time t0 +k if the first case is k days away and
0 otherwise. For all t where it holds that t < t0−10 and t > t0 + 10, we include two binning
dummies that equal 1 when these respective conditions hold and 0 otherwise. β−9 to β−2 serve
as placebo checks for the common trends assumption. We follow Borusyak and Jaravel (2017)
in leaving out the two most disparate placebo checks as reference periods, namely -10 and -1,
so as to alleviate the underidentification problem they point out for this type of fully dynamic
event studies with two-way fixed effects.

Panel a) in Figure 4 shows the resulting estimates for the voluntary response. One day
after the first case, there is a 0.9 percentage point increase in the number of devices that stay
completely at home, which increases slightly during the following days. Compared to a base-level
of 25% in February, this amounts to a 3.6% increase. This estimate is very similar to the
estimate in the main specification.

C.2 Lockdown response

As a robustness check and following a number of papers in the literature (Brzezinski et al.,
2020a; Painter and Qiu, 2020; Wright et al., 2020), we pursue a staggered DiD approach to
estimate the lockdown response:

pcti,j,t = αi+ δt+dayssincei,t+
10∑

s=−9
θsPj, t0+s+ ζ̃DGEO

i,t + Ψ̃yi,t + ũi,t,

with s 6=−1 (C.2)
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where all the variables are defined as in the main specification, except that Pj, t0+k is a dummy
variable centered around the state-wide shelter-in-place policy implementation date t0 which is
equal to 1 at time t0 +k and 0 otherwise. Following the reasoning outlined in C.1, k does not
take the value -1, and we bin periods larger than t0−10 and t0 + 10.

Panel b) in Figure 4 shows the results. The introduction of shelter-in-place policies leads
to a 2.2 percentage points increase in the devices that stay completely at home one day after
the implementation. The pre-trend is not significantly different from zero, indicating that we
sufficiently control for increased social distancing before the enactment of the shelter-in-place
policy.
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