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Biological neural network models whereby brains make minds help to understand

autonomous adaptive intelligence. This article summarizes why the dynamics and

emergent properties of such models for perception, cognition, emotion, and action

are explainable, and thus amenable to being confidently implemented in large-scale

applications. Key to their explainability is how these models combine fast activations,

or short-term memory (STM) traces, and learned weights, or long-term memory

(LTM) traces. Visual and auditory perceptual models have explainable conscious STM

representations of visual surfaces and auditory streams in surface-shroud resonances

and stream-shroud resonances, respectively. Deep Learning is often used to classify

data. However, Deep Learning can experience catastrophic forgetting: At any stage

of learning, an unpredictable part of its memory can collapse. Even if it makes

some accurate classifications, they are not explainable and thus cannot be used

with confidence. Deep Learning shares these problems with the back propagation

algorithm, whose computational problems due to non-local weight transport during

mismatch learning were described in the 1980s. Deep Learning became popular after

very fast computers and huge online databases became available that enabled new

applications despite these problems. Adaptive Resonance Theory, or ART, algorithms

overcome the computational problems of back propagation and Deep Learning. ART is a

self-organizing production system that incrementally learns, using arbitrary combinations

of unsupervised and supervised learning and only locally computable quantities, to rapidly

classify large non-stationary databases without experiencing catastrophic forgetting.

ART classifications and predictions are explainable using the attended critical feature

patterns in STM on which they build. The LTM adaptive weights of the fuzzy ARTMAP

algorithm induce fuzzy IF-THEN rules that explain what feature combinations predict

successful outcomes. ART has been successfully used in multiple large-scale real world

applications, including remote sensing, medical database prediction, and social media

data clustering. Also explainable are the MOTIVATOR model of reinforcement learning
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and cognitive-emotional interactions, and the VITE, DIRECT, DIVA, and SOVEREIGN

models for reaching, speech production, spatial navigation, and autonomous adaptive

intelligence. These biological models exemplify complementary computing, and use local

laws for match learning andmismatch learning that avoid the problems of Deep Learning.

Keywords: Adaptive Resonance Theory, deep learning, explainable AI, visual boundaries and surfaces, category

learning, emotion, consciousness, arm and speech movement

1. TOWARD EXPLAINABLE AI AND
AUTONOMOUS ADAPTIVE INTELLIGENCE

1.1. Foundational Problems With Back
Propagation and Deep Learning
This Frontiers Research Topic about Explainable Artificial
Intelligence aims to clarify some fundamental issues concerning
biological and artificial intelligence. As its Abstract summarizes:
“Though Deep Learning is the main pillar of current AI
techniques and is ubiquitous in basic science and real-world
applications, it is also flagged by AI researchers for its black-box
problem: it is easy to fool, and it also cannot explain how it makes
a prediction or decision.”

The Frontiers Research Topic Abstract goes on to summarize
the kinds of real world situations in which a successful adaptive
classification algorithm must be able to learn: “In both . . .
biological brains and AI, intelligence involves decision-making
using data that are noisy and often ambiguously labeled. Input
data can also be incorrect due to faulty sensors. Moreover, during
the skill acquisition process, failure is required to learn.”

Deep Learning uses the back propagation algorithm to learn
how to predict output vectors in response to input vectors.
These models are based upon the Perceptron learning principles
introduced by Rosenblatt (1958, 1962), who also introduced
the term “back propagation.” Back propagation was developed
between the 1970s and 1980s by people like Amari (1972),
Werbos (1974, 1994), and Parker (1985, 1986, 1987), reaching
its modern form and being successfully simulated in applications
by Werbos (1974). The algorithm was then popularized in
1986 by an article of Rumelhart et al. (1986). Schmidhuber
(2020) provides a detailed historical account of many additional
scientists who contributed to this development.

Both back propagation and Deep Learning are typically
defined by a feedforward network whose adaptive weights can
be altered when, in response to an input vector, its adaptive
filter generates an output vector that mismatches the correct,
or desired, output vector. “Failure is required to learn” in back
propagation by computing a scalar error signal that calibrates the
distance between the actual and desired output vectors. Thus, at
least in the algorithm’s classical form, learning is supervised and
requires that a desired output vector be supplied by a teacher on
every learning trial, so that the error signal between the actual and
desired output vectors can be computed.

As Figure 1 from Carpenter (1989) explains in greater detail,
this error signal back-propagates to the pathway endings where
the adaptive weights occur in the algorithm, and alters them
to reduce the error. The location in the algorithm where the

error signal is computed is not where the adaptive weights
are computed at the ends of pathways within the adaptive
filter. Weight transport of the error signal across the network
is thus needed to train the adaptive weights (Figure 1). This
transport is “non-local” in the sense that there are no pathways
from where the error signal is computed along which it can
naturally flow to where the adaptive weights are computed.
Slow learning occurs in the sense that adaptive weights change
only slightly on each learning trial to gradually reduce the
error signals. Fast learning, that would zero the error signal
after any single erroneous prediction, could destabilize learning
and memory because the new prediction that is being learned
could massively recode the information that was previously
learned, notwithstanding its continued correctness in the
original environment.

This kind of error-based supervised learning has other
foundational computational problems that were already known
in the 1980s. One of the most consequential ones is that, even
if learning is slow, Deep Learning can experience catastrophic
forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990; French,
1999): During any trial during learning of a large database,
an unpredictable part of its memory can suddenly collapse.
French (1999) traces these problems to the fact that all inputs
are processed through a shared set of learned weights, and the
absence of a mechanism within the algorithm to selectively buffer
previous learning that is still predictively useful. Catastrophic
forgetting can, in fact, occur in any learning algorithm whose
shared weight updates are based on the gradient of the error
in response to the current batch of data points, while ignoring
past batches.

In addition, in the back propagation and Deep Learning
algorithms, there are no perceptual, cognitive, emotional, or
motor representations of the fast information processing that
biological brains carry out, and no way for the algorithm to pay
attention to information that may be predictively important in
one environment, but irrelevant in another. The only residue of
previous experiences lies in the changes that they caused in the
algorithm’s adaptive weights (within the hemidisks in Figure 1).
All future experiences are non-selectively filtered through this
shared set of weights.

French (1999) also reviews multiple algorithmic refinements
that were made, and continue to be made, to at least partially
overcome these problems. The main computational reality is,
however, that such efforts are reminiscent of the epicycles that
were added to the Ptolemaic model of the solar system to make
it work better. The need for epicycles was obviated by the
Copernican model.
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FIGURE 1 | Circuit diagram of the back propagation model. Input vector ai in level F1 sends a sigmoid signal Si = f(ai) that is multiplied by learned weights wij on their

way to level F2. These LTM-weighted signals are added together at F2 with a bias term θj to define xj. A sigmoid signal Sj = f(xj) then generates outputs from F2 that

activate two pathways. One pathway inputs to a Differentiator. The other pathway gets multiplied by adaptive weight wjk on the way to level F3. At level F3, the

weighted signals are added together with a bias term θk to define xk. A sigmoid signal Sk = f(xk ) from F3 defines the Actual Output of the system. This Actual Output

Sk is subtracted from a Target Output bk via a back-coupled error correction step. The difference bk – Sk is also multiplied by the term f′(xk ) that is computed at the

Differentiator from level F3. One function of the Differentiator step is to ensure that the activities and weights remain in a bounded range, because if xk grows too large,

then f′(xk ) approaches zero. The net effect of these operations is to compute the Error δk = f′(xk )(bk – Sk ) that sends a top-down output signal to the level just below it.

On the way, each δk is multiplied by the bottom-up learned weights wjk at F3. These weights reach the pathways that carry δk via the process of weight transport.

Weight transport is clearly a non-local operation relative to the network connections that carry locally computed signals. All the δk are multiplied by the transported

weights wjk and added. This sum is multiplied by another Differentiator term f′(xi) from level F2 to keep the resultant product δj bounded. δj is then back-coupled to

adjust all the weights wij in pathways from level F1 to F2 [figure reprinted and text adapted with permission from Carpenter (1989)].

Multiple articles have been written since French (1999) in
an effort to overcome the catastrophic forgetting problem. The
article by Kirkpatrick et al. (2017) is illustrative. These authors
“overcome this limitation and train networks that can maintain
expertise on tasks that they have not experienced for a long time
. . . by selectively slowing down learning on the weights important
for those tasks . . . in supervised learning and reinforcement
learning problems” (p. 3521).

The method that is used to carry out this process requires
extensive external supervision, uses non-locally computed
mathematical quantities and equations that implement a form
of batch learning, and operates off-line. In particular, to

determine “which weights are most important for a task,” this
method proceeds by “optimizing the parameters [by] finding
their most probable values given some data D” by computing
the “conditional probability from the prior probability of the
parameters p(θ) and the probability of the data p(D/θ) by using
Bayes’ rule” (p. 3522). Computing these probabilities requires
non-local, simultaneous, or batch, access to multiple learning
trials by an omniscient observer who can compute the afore-
mentioned probabilities off-line.

Further external manipulation is needed because “The true
posterior probability is intractable so. . .we approximate the
posterior as a Gaussian distribution with mean given by the
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parameters θ∗Z and a diagonal precision given by the diagonal of
the Fisher information matrix F” (p. 3522). This approximation
leads to the problem of minimizing a functional that includes a
parameter λ that “sets how important the old task is compared
with the new one” (p. 3522).

Related approaches to evaluating the importance of a learned
connection, or its “connection cost,” include evolutionary
algorithms that compute an evolutionary cost for each
connection (e.g., Clune et al., 2013). Evolutionary algorithms
are inspired by Darwinian evolution. They include a mechanism
to search through various neural network configurations for
the best weights whereby the model can solve a problem (Yao,
1999). Catastrophic forgetting in this setting is ameliorated by
learning weights within one module without engaging other
parts of the network. This approach experiences the same kinds
of conceptual problems that Kirkpatrick et al. (2017) does.

Another way to create different modules for different tasks is
to restrict task-specific learning in a local group of network nodes
and connections by using diffusion-based neuromodulation. This
method places “point sources at specific locations within an ANN
that emit diffusing learning signals that correspond to the positive
and negative feedback for the tasks being learned” (Velez and
Clune, 2017). In addition to conceptual problems about how
these locations are chosen to try to overcome the catastrophic
forgetting that obtains without diffusion, this algorithm seems
thus far to have only been applied to a simple foraging task whose
goal is “to learn which food items are nutritious and should be
eaten, and which are poisonous and should not be eaten” across
seasons where the nutritional value of the food itemsmay change.

A related problem is solved by the ARTMAP neural
network that is discussed below (Carpenter et al., 1991) when
it learns to distinguish highly similar edible and poisonous
mushrooms (Lincoff, 1981) with high predictive accuracy, and
does so without experiencing catastrophic forgetting or using
neuromodulation. ARTMAP has also successfully classifiedmuch
larger databases, such as the Boeing design retrieval system that
is listed below.

Although these model modifications and variations may at
least partially ameliorate the catastrophic forgetting problem, I
consider them to be epicycles because they attempt to overcome
fundamental problems of the models’ core learning properties.

Another core problem of both back propagation and
Deep Learning, which no number of epicycles can totally
cure, is thus that they do not solve what I have called
the stability-plasticity dilemma; that is, the ability to learn
quickly (plasticity) without experiencing catastrophic forgetting
(stability) over the lifetime of a human or machine. Deep
Learning is, in this sense, unreliable. When the stability-
plasticity dilemma is overcome in a principled way, epicycles
become unnecessary and reliable results are obtained, as I
will show below. In particular, the biological learning models,
such as ARTMAP that will be described below function
in an autonomous or self-organizing way, use only locally
computable quantities, and can incrementally learn on-line and
in real time. When their learning is supervised, the teaching
signals occur naturally in the environments within which the
learning occurs.

Other computational problems than the tendency for
catastrophic forgetting occur in multi-layer Perceptrons like back
propagation and Deep Learning. Even when accurate predictions
aremade to some data, the basis upon which these predictions are
made is unknown in both back propagation and Deep Learning.
As noted above, “it is . . . flagged by AI researchers for its black-
box problem: it is easy to fool, and . . . cannot explain how
it makes a prediction or decision.” Deep Learning thus does
not solve the Explainable AI Problem (https://www.darpa.mil/
attachments/XAIProgramUpdate.pdf). Its predictions cannot be
trusted. It is also not known whether predictions about related
data will be correct or incorrect. Urgent life decisions, including
medical and financial ones, cannot confidently use an algorithm
with these weaknesses.

The popularity of back propagation decreased as the above
kinds of problems became increasingly evident during the 1980s.
Deep Learning recently became popular again after the worst
effects of slow and unstable learning were overcome by the advent
of very fast computers and huge online databases (e.g., millions
of pictures of cats), at least when these databases are presented
without significant statistical biases. Although slow learning still
requires many learning trials, very fast computers enable large
numbers of trials to learn from many exemplars and thereby at
least partially overcome the memory instabilities that can occur
in response to biased small samples (Hinton et al., 2012; Le Cun
et al., 2015). With these problems partially ameliorated, albeit not
solved, many kinds of practitioners, including large companies
like Apple and Google, have been able to use Deep Learning in
new applications despite its foundational problems.

1.2. “Throw It All Away and Start Over”?
It is perhaps because the core problems of these algorithms have
not been solved that Geoffrey Hinton, who played a key role in
developing both back propagation and Deep Learning, said in an
Axios interview on September 15, 2017 (Le Vine, 2017) that he is
“deeply suspicious of back propagation . . . I don’t think it’s how
the brain works. We clearly don’t need all the labeled data . . . My
view is, throw it all away and start over” (italics mine).

The remainder of the article demonstrates that the problems
of back propagation and Deep Learning that led Hinton to
the conclusions in his Axios interview have been solved. These
solutions are embodied in explainable neural network models
that were discovered by analyzing how human and other
advanced brains realize autonomous adaptive intelligence. In
addition to explaining and predicting many psychological and
neurobiological data, these models have been used to solve
outstanding problems in engineering and technology. Section 2
summarizes how explainable cognitive processes use Adaptive
Resonance Theory, or ART, circuits to learn to attend, recognize,
and predict objects and events in environments whose statistical
properties can rapidly and unexpectedly change. Section 3
summarizes explainable models of biological vision and audition,
such as the FACADE model of 3D vision and figure-ground
perception, which propose how resonant dynamics support
conscious perception and recognition of visual and auditory
qualia. Section 4 describes explainable models of cognitive-
emotional interactions, such as the MOTIVATOR model, whose
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processes of reinforcement learning and incentive motivational
learning enable attention to focus on valued goals and to
release actions aimed at acquiring them. Section 5 summarizes
explainable motor models, such as the DIRECT and DIVA
models, that can learn to control motor-equivalent reaching and
speaking behaviors. Section 6 combines these models with the
GridPlaceMap model of spatial navigation into the SOVEREIGN
neural architecture that provides a unified foundation for
autonomous adaptive intelligence of a mobile agent. Section 7
provides a brief conclusion. The functional dynamics of multiple
brain processes are clarified by these models, as are unifying
computational principles, such as Complementary Computing
and the use of Difference Vectors to control reaching, speaking,
and navigation.

2. ADAPTIVE RESONANCE THEORY

2.1. Use Adaptive Resonance Theory
Instead: ART as a Computational and
Biological Theory
As I noted above, the problems of back propagation have
been well-known since the 1980s. An article that I published
in 1988 (Grossberg, 1988) listed 17 differences between back
propagation and the biologically-inspired Adaptive Resonance
Theory, or ART, that I introduced in 1976 and that has been
steadily developed by many researchers since then, notably
Gail Carpenter. These differences can be summarized by the
following bullets:

• Real-time (on-line) learning vs. lab-time (off-line) learning
• Learning in non-stationary unexpected world vs. in stationary

controlled world
• Self-organized unsupervised or supervised learning vs.

supervised learning
• Dynamically self-stabilize learning to arbitrarily many inputs

vs. catastrophic forgetting
• Maintain plasticity forever vs. externally shut off learning

when database gets too large
• Effective learning of arbitrary databases vs. statistical

restrictions on learnable data
• Learn internal expectations vs. impose external cost functions
• Actively focus attention to selectively learn critical features vs.

passive weight change
• Closing vs. opening the feedback loop between fast signaling

and slower learning
• Top-down priming and selective processing vs. activation of

all memory resources
• Match learning vs. mismatch learning: Avoiding the

noise catastrophe
• Fast and slow learning vs. only slow learning: Avoiding the

oscillation catastrophe
• Learning guided by hypothesis testing and memory search vs.

passive weight change
• Direct access to globally best match vs. local minima
• Asynchronous learning vs. fixed duration learning: A cost of

unstable slow learning

• Autonomous vigilance control vs. unchanging sensitivity
during learning

• General-purpose self-organizing production system vs. passive
adaptive filter.

This list summarizes ART properties that overcome all 17 of the
computational problems of back propagation andDeep Learning.
Of particular relevance to the above discussion is the third of the
17 differences between back propagation and ART; namely, that
ART does not need labeled data to learn.

ART exists in two forms: as algorithms that are designed for
use in large-scale applications to engineering and technology,
and as an incrementally developing biological theory. In its
latter form, ART is now the most advanced cognitive and neural
theory about how our brains learn to attend, recognize, and
predict objects and events in a rapidly changing world that can
include many unexpected events. As of this writing, ART has
explained and predicted more psychological and neurobiological
data than other available theories about these processes, and
all of the foundational ART hypotheses have been supported
by subsequent psychological and neurobiological data. See
Grossberg (2013, 2017a,b); Grossberg (2018, 2019b) for reviews
that support this claim and refer to related articles that have
explained and predicted much more data since 1976 than these
reviews can.

2.2. Deriving ART From a Universal
Problem in Error Correction Clarifies Its
Range of Applications
ART circuit designs can be derived from a thought, or Gedanken,
experiment (Grossberg, 1980) that does not require any scientific
knowledge to carry out. This thought experiment asks the
question: How can a coding error be corrected if no individual
cell knows that one has occurred? As Grossberg (1980, p. 7) notes:
“The importance of this issue becomes clear when we realize that
erroneous cues can accidentally be incorporated into a code when
our interactions with the environment are simple and will only
become evident when our environmental expectations become
more demanding. Even if our code perfectly matched a given
environment, we would certainlymake errors as the environment
itself fluctuates.”

The answers to this purely logical inquiry about error
correction are translated at every step of the thought experiment
into processes operating autonomously in real time with only
locally computed quantities. The power of such a thought
experiment is to show how, when familiar environmental
constraints on incremental knowledge discovery are overcome
in a self-organizing manner, then ART circuits naturally emerge.
This fact suggests that ART designs may, in some form, be
embodied in all future autonomous adaptive intelligent devices,
whether biological or artificial.

Perhaps this is why ART has done well in benchmark studies
where it has been compared with other algorithms, and has
been used in many large-scale engineering and technological
applications, including engineering design retrieval systems
that include millions of parts defined by high-dimensional
feature vectors, and that were used to design the Boeing
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777 (Escobedo et al., 1993; Caudell et al., 1994). Other
applications include classification and prediction of sonar and
radar signals, of medical, satellite, face imagery, social media
data, and of musical scores; control of mobile robots and
nuclear power plants, cancer diagnosis, air quality monitoring,
strength prediction for concrete mixes, solar hot water system
monitoring, chemical process monitoring, signature verification,
electric load forecasting, tool failure monitoring, fault diagnosis
of pneumatic systems, chemical analysis from ultraviolent and
infrared spectra, decision support for situation awareness,
vision-based driver assistance, user profiles for personalized
information dissemination, frequency-selective surface design
for electromagnetic system devices, Chinese text categorization,
semiconductor manufacturing, gene expression analysis, sleep
apnea and narcolepsy detection, stock association discovery,
viability of recommender systems, power transmission line fault
diagnosis, million city traveling salesman problem, identification
of long-range aerosol transport patterns, product redesign
based on customer requirements, photometric clustering of
regenerated plants of gladiolus, manufacturing cell formation
with production data, and discovery of hierarchical thematic
structure in text collections, among others. References and
discussion of these and other applications and their biological
foundations are found in Grossberg (2020).

As a result of these successes, ART has become one of the
standard neural network models to which practitioners turn to
solve their applications. See the web site http://techlab.bu.edu/
resources/articles/C5 of the CNS Tech Lab for a partial list of
illustrative benchmark studies and technology transfers. Readers
who would like a recent summary of the many applications
of ART to large-scale applications in engineering may want
to look at the December, 2019, issue of the journal Neural
Networks. The following two articles by Da Silva et al. (2019) and
Wunsch (2019) from that special issue are of particular interest
in this regard: https://arxiv.org/pdf/1910.13351.pdf and https://
arxiv.org/pdf/1905.11437.pdf.

2.3. ART Is an Explainable Self-Organizing
Production System in a Non-stationary
World
ART is more than a feedforward adaptive filter. Although
“during the skill acquisition process, failure is required to
learn” in any competent learning system, ART goes beyond
the kind of learning that is due just to slow modifications
of adaptive weights in a feedforward filter. Instead, ART is a
self-organizing production system that can incrementally learn,
during unsupervised and supervised learning trials, to rapidly
classify arbitrary non-stationary databases without experiencing
catastrophic forgetting. In particular, ART can learn an entire
database using fast learning on a single learning trial (e.g.,
Carpenter and Grossberg, 1987, 1988).

ART’s predictions are explainable using both its activity
patterns, or short-term memory (STM) traces, and its adaptive
weights, or long-term memory (LTM) traces. I will summarize
more completely below why both the STM and LTM traces
in ART systems are explainable. For example, at any stage of

learning, adaptive weights of the fuzzy ARTMAP algorithm
can be translated into fuzzy IF-THEN rules that explain what
combinations of features, and within what range, together predict
successful outcomes (Carpenter et al., 1992). In every ARTmodel,
due to matching of bottom-up feature patterns with learned
top-down expectations, an attentional focus emerges that selects
the activity patterns of critical features that are deemed to be
predictively important based on past learning. Already learned
critical feature patterns are refined, and new ones discovered, to
be incorporated through learning in the recognition categories
that control model predictions. Such explainable STM and
LTM properties are among the reasons that ART algorithms
can be used with confidence to help solve large-scale real
world problems.

2.4. Competition, Learned Expectation,
and Attention
ART’s good properties depend critically upon the fact that
it supplements its feedforward, or bottom-up, adaptive
filter circuits with two types of feedback interactions. The
first type of feedback occurs in recurrent competitive, or
lateral inhibitory, interactions at each processing stage.
These competitive interactions normalize activity patterns,
a property that is often called contrast normalization
(Grossberg, 1973, 1980; Heeger, 1992). At the level of
feature processing, they help to choose the critical features.
At the level of category learning, they help to choose the
contextually most favored recognition categories. Such
competitive interactions do not exist in back propagation
or Deep Learning.

ART also includes learned top-down expectations that are
matched against bottom-up input patterns to focus attention
using a type of circuit that obeys the ART Matching Rule. The
top-down pathways that realize the ART Matching Rule form
a modulatory on-center, off-surround network (Figure 2). The
off-surround network includes the competitive interactions that
were mentioned in the last paragraph. This network realizes the
following properties:

When a bottom-up input pattern is received at a processing
stage, it can activate its target cells if no other inputs are received.
When a top-down expectation is the only active input source,
it can provide excitatory modulatory, or priming, signals to
cells in its on-center, and driving inhibitory signals to cells in
its off-surround. The on-center is modulatory because the off-
surround also inhibits the on-center cells, and these two input
sources are approximately balanced (Figure 2). When a bottom-
up input pattern and a top-down expectation are both active,
cells that receive both bottom-up excitatory inputs and top-down
excitatory priming signals can fire (“two-against-one”), while
other cells in the off-surround are inhibited, even if they receive
a bottom-up input (“one-against-one”). In this way, the only cells
that fire are those whose features are “expected” by the top-down
expectation. An attentional focus then starts to form at these cells.

ART learns how to focus attention upon the critical feature
patterns that are selected during sequences of learning trials
with multiple bottom-up inputs, while suppressing irrelevant
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FIGURE 2 | The ART Matching Rule circuit enables bottom-up inputs to fire

their target cells, top-down expectations to provide excitatory modulation of

cells in their on-center while inhibiting cells in their off-surround, and a

convergence of bottom-up and top-down signals to generate an attentional

focus at matched cells while continuing to inhibit unmatched cells in the

off-surround [adapted with permission from Grossberg (2017b)].

features and noise. The critical features are the ones that
contribute to accurate predictions as learning proceeds. This
attentional selection process is one of the ways that ART
successfully overcomes problems noted in the description of this
Frontiers special topic by managing “data that are noisy and
often ambiguously labeled,” as well as data that “can also be
incorrect due to faulty sensors.” Only reliably predictive feature
combinations will eventually control ART decisions via its ability
to pay attention to task-relevant information.

Back propagation and Deep Learning do not compute
STM activation patterns, learned LTM top-down expectations,
or attended STM patterns of critical features. Because back
propagation and Deep Learning are just feedforward adaptive
filters, they do not do any fast information processing using
STM patterns, let alone attentive information processing that can
selectively use critical features.

2.5. Self-Organizing Production System:
Complementary Computing
Because of this limitation, back propagation and Deep Learning
can only correct an error using labeled data in which the output
vector that embodies an incorrect prediction is mismatched with
the correct prediction, thereby computing an error signal that
uses weight transport to non-locally modify the adaptive weights
that led to the incorrect prediction (Figure 1).

This is not the case in either advanced brains or the
biological neural networks like ART that model them. In ART,
an unexpected outcome can be caused either by a mismatch
of the predicted outcome with what actually occurs, or merely
by the unexpected non-occurrence of the predicted outcome. In
either situation, a mismatch causes a burst of non-specific arousal
that calibrates how unexpected, or novel, the outcome is. This

FIGURE 3 | The ART hypothesis testing and learning cycle whereby

bottom-up input patterns that are sufficiently mismatched by their top-down

expectations can drive hypothesis testing and memory search leading to

discovery of recognition categories that can match the bottom-up input

pattern well-enough to trigger resonance and learning. See the text for details

[adapted with permission from Carpenter and Grossberg (1988)].

arousal burst can initiate hypothesis testing and memory search,
which automatically leads to the discovery and choice of a better
recognition category upon which to base predictions in the
future. Figure 3 and its caption detail how an ART system can
carry out hypothesis testing to discover and learn a recognition
category whereby to better represent a novel situation.

When a new, but familiar, input is presented, it too triggers
a memory search to activate the category that codes it. This is
typically a very short cycle of just one reset event before the
globally best matching category is chosen.

The combination of learned recognition categories and
expectations, novelty responses, memory searches by hypothesis
testing, and the discovery of rules are core processes in ART that
qualify it as a self-organizing production system. These processes
have been part of ART since it was introduced in 1976 (Grossberg,
1976a,b, 1978, 1980, 2017b).

Why does ART need both an attentional system in which
learning and recognition occur (levels F1 and F2 in Figure 3),
and an orienting system (A in Figure 3) that drives memory
search and hypothesis testing by the attentional system until
a better matching, or entirely new, category is found there?
This design enables ART to solve a problem that occurs in a
system that learns only when a good enough match occurs.
How is anything new ever learned in a match learning system?
The attentional and orienting systems have computationally
complementary properties that solve this problem: A sufficiently
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bad mismatch between an active top-down expectation and a
bottom-up input pattern, say in response to a novel input, can
drive a memory search that continues until the system discovers
a new approximate match, which can either refine learning of an
old category or begin learning of a new one.

As described more fully in Grossberg (2017b), the
complementary properties of the attentional and orienting
systems are as follows: The attentional system supports top-
down, conditionable, specific, and match properties that occur
during an attentive match, whereas an orienting system
mismatch triggers bottom-up, unconditionable, non-specific, and
mismatch properties (Figure 3C). This is just one example of
the general design principle of complementary computing that
organizes many brain processes. See Grossberg (2000, 2017b) for
more examples.

The ART attentional system for visual category learning
includes brain regions, such as prestriate visual cortex,
inferotemporal cortex, and prefrontal cortex, whereas the
ART orienting system includes the non-specific thalamus and
the hippocampal system. See Carpenter and Grossberg (1993)
and Grossberg and Versace (2008) for relevant data.

2.6. ART Search and Learning Cycle to
Discover Attended Critical Feature
Patterns
The ART hypothesis testing and learning cycle (see Figure 3)
explains how ART searches for and learns new recognition
categories using cycles of match-induced resonance and
mismatch-induced reset. These recognition categories are
learned from the critical features that ART attends as a result of
this hypothesis testing cycle, which proceeds as follows:

First, as in Figure 3A, an input pattern I activates feature
detectors at level F1, thereby creating an activity pattern X.
Pattern X is drawn as a continuous pattern that interpolates the
activities at network cells. The height of the pattern over a given
cell denotes the importance of its feature at that time. As this is
happening, the input pattern uses parallel pathways to generate
excitatory signals to the orienting system A with a gain ρ that is
called the vigilance parameter.

Activity pattern X generates inhibitory signals to the orienting
system A while it also activates bottom-up excitatory pathways
that transmit an input pattern S to the category level F2. A
dynamic balance within A emerges between excitatory inputs
from I and inhibitory inputs from S that keeps S quiet while level
F2 is getting activated.

The bottom-up signals S in pathways from the feature level F1
to the category level F2 aremultiplied by learned adaptive weights
at the ends of these pathways to form the input pattern T to F2.
The inputs T are contrast-enhanced and normalized within F2
by recurrent lateral inhibitory signals that obey the membrane
equations of neurophysiology, also called shunting interactions.
This competition selects a small number of cells within F2 that
receive the largest inputs. The chosen cells represent the category
Y that codes the feature pattern at F1. In Figure 3A, a winner-
take-all category is shown.

As depicted in Figure 3B, the activated category Y then
generates top-down signals U. These signals are also multiplied
by adaptive weights to form a prototype, or critical feature
pattern, V which encodes the expectation that is learned by the
active F2 category of what feature pattern to expect at F1. This
top-down expectation input V is added at F1 cells using the ART
Matching Rule (Figure 2). The ART Matching Rule is realized
by a top-down, modulatory on-center, off-surround network that
focuses attention upon its critical feature pattern. This matching
process, repeated over a series of learning trials, determines what
critical features will be learned and chosen in response to each
category in the network.

Also shown in Figure 3B is what happens if V mismatches
I at some cells in F1. Then a subset of the features in X—
denoted by the STM activity pattern X∗ (the pattern of gray
features)—is selected at cells where the bottom-up and top-down
input patterns match well enough. In this way, X∗ is active
at I features that are confirmed by V, at the same time that
mismatched features (white region of the feature pattern) are
inhibited. When X changes to X∗, the total inhibitory signal from
F1 to A decreases, thereby setting the stage for the hypothesis
testing cycle.

In particular, as in Figure 3C, if inhibition decreases
sufficiently, the orienting system A generates a non-specific
arousal burst (denoted by Reset) to F2. This event mechanizes
the intuition that “novel events are arousing.” The vigilance
parameter ρ, which is computed in A, determines how bad a
match will be tolerated before non-specific arousal is triggered.
Each arousal burst initiates hypothesis testing and a memory
search for a better-matching category. This happens as follows:

First, arousal resets F2 by inhibiting the active category cells
Y (Y is crossed out in Figure 3C). After Y is inhibited, then, as
denoted by the x’s over the top-down pathways in Figure 3C,
the top-down expectation V shuts off too, thereby removing
inhibition from all feature cells in F1. As shown in Figure 3D,
pattern X is disinhibited and thereby reinstated at F1. Category Y
stays inhibited as X activates a different category Y∗ at F2. This
memory search cycle continues until a better matching, or novel,
category is selected.

As learning dynamically stabilizes, inputs I directly activate
their globally best-matching categories directly through the
adaptive filter, without activating the orienting system. Grossberg
(2017b) summarizes psychological and neurobiological data that
support each of these processing stages.

2.7. Feature-Category Resonances,
Conscious Recognition, and Explainable
Attended Features
When search ends, a feature-category resonance develops between
the chosen activities, or short-term memory (STM) traces,
of the active critical feature pattern and recognition category
(Figure 4). Such a feature-category resonance synchronizes,
amplifies, and prolongs the activities within the critical
feature pattern, and supports conscious recognition of the
chosen category.
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FIGURE 4 | When a good enough match occurs between a bottom-up input

pattern and top-down expectation, a feature-category resonance is triggered

the synchronizes, amplifies, and prolongs the STM activities of the cells that

participate in the resonance, while also selecting an attentional focus and

triggering learning in the LTM traces in the active bottom-up adaptive filter and

top-down expectation pathways to encode the resonating attended data

[adapted with permission from Grossberg (2017b)].

This resonance also triggers learning in the adaptive weights,
or long-term memory (LTM) traces, within the active bottom-
up and top-down pathways; hence the name adaptive resonance.
The attended critical feature pattern at F1 hereby learns to
control what features are represented by the currently active
category Y in Figure 3. Inspecting an active critical feature
pattern can “explain” what its category has learned, and what
features activation of this category will prime in the future using
top-down signals. Looking at the critical feature patterns also
explains what features will control intermodal predictions that
are formed via supervised learning and are read-out by this
category (see Section 2.10 and Figure 8 below).

2.8. Catastrophic Forgetting Without the
Top-Down ART Matching Rule
Before turning to intermodal predictions, I will provide examples
of how learned top-down expectations prevent catastrophic
forgetting, and how vigilance controls how specific or general
the categories that are learned become. The intuitive idea about
how top-down expectations in ART avoid catastrophic forgetting
is that ART learns critical feature patterns of LTM weights in
both its bottom-up adaptive filters and its top-down expectations.
ART can hereby focus attention upon predictively relevant data
(Figure 4) while inhibiting outliers that could otherwise have
caused catastrophic forgetting.

In order to see more clearly how top-down expectations
prevent catastrophic forgetting, a set of simulations that were
carried out using the ART 1 model by Carpenter and Grossberg
(1987) will be summarized. Carpenter and Grossberg (1987)
illustrated how easy it is for catastrophic forgetting to occur by
describing a class of infinitely many sequences of input patterns

FIGURE 5 | When the ART Matching Rule is eliminated by deleting an ART

circuit’s top-down expectations from the ART 1 model, the resulting

competitive learning network experiences catastrophic forgetting even if it tries

to learn any of arbitrarily many lists consisting of just four input vectors A, B, C,

and D when they are presented repeatedly in the order ABCAD, assuming that

the input vectors satisfy the constraints shown in the figure [adapted with

permission from Carpenter and Grossberg (1987)].

whose learning exhibits catastrophic forgetting if top-down
expectations that obey the ART Matching Rule are eliminated.
In fact, sequences of just four input patterns, suitably ordered,
lead to catastrophic forgetting in the absence of top-down
expectations. Figure 5 summarizes the mathematical rules that
generate such sequences. Figure 6A summarizes a computer
simulation that demonstrates catastrophic forgetting when top-
down matching is eliminated. Figure 6B illustrates how stable
learning is achieved when top-down matching is restored. As
Figure 6A illustrates, unstable coding can occur if a learned
subset prototype gets recoded as a superset prototype when a
superset input pattern is categorized by that category.

This kind of recoding happens every time any sequence of
four input patterns that is constrained by the rules in Figure 5

is presented in the order ABCAD. Note that pattern A is a
superset of each of the other patterns B, C, and D in the
sequence. Pattern A is presented as the first and the fourth
input in the sequence ABCAD. When it is presented as the
first input, it is categorized by category node 1 in Figure 6A,
but when it is presented as the fourth input, it is categorized
by category node 2. This oscillatory recoding occurs on each
presentation of the sequence, so A is catastrophically recoded
on every learning trial. The simulation in Figure 6B shows
that restoring the ART Matching Rule prevents this kind of
“superset recoding.”

2.9. Vigilance Regulates Learning of
Concrete and General Category Prototypes
Figure 7 illustrates how different vigilance levels in a single ART
model can lead to learning of both concrete and general category
prototypes, and thus categories that can code a small number
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FIGURE 6 | These computer simulations illustrate how (A) unstable learning and (B) stable learning occur in response to a particular sequence of input vectors A, B,

C, D when they are presented repeatedly in the order ABCAD to an ART 1 model. Unstable learning with catastrophic forgetting of the category that codes vector A

occurs when no top-down expectations exist, as illustrated by its periodic recoding by categories 1 and 2 on each learning trial. See the text for details [adapted with

permission from Carpenter and Grossberg (1987)].

of very similar exemplars (concrete) or a large number of only
vaguely similar exemplars (general). This figure summarizes the
results of computer simulations in Carpenter and Grossberg
(1987) showing how the ART 1 model can learn to classify
the letters of the alphabet. During alphabet learning in real
life, the raw letters would not be directly input into the
brain’s recognition categories in the inferotemporal cortex. They
would first be preprocessed by visual cortex in the manner
summarized in Grossberg (2020). How vigilance control works
is, however, vividly shown by inputting letters directly to the
ART classifier.

If vigilance is set to its maximum value of 1, then no variability
in a letter is tolerated, and every letter is classified into its own
category. This is the limit of exemplar prototypes. Figure 7A
shows how the letters are classified if vigilance is set at a smaller
value 0.5. Figure 7B shows the same thing if vigilance is set at
a larger value 0.8. In both cases, the network’s learning rate is
chosen to be high.

Going down the column in Figure 7A shows how the network
learns in response to the first 20 letters of the alphabet when
vigilance equals 0.5. Each row describes what categories and
prototypes are learned through time. Black pixels represent
prototype values equal to 1 at the corresponding positions. White
pixels represent prototype values equal to 0 at their positions.
Scanning down the learning trials 1, 2,. . . 20 shows that each
prototype becomes more abstract as learning goes on. By the
time letter T has been learned, only four categories have been
learned with which to classify all 20 letters. The symbol RES,
for resonance, under a prototype on each learning trial shows
which category classifies the letter that was presented on that trial.
In particular, category 1 classifies letters A, B, C, and D, among
others, when they are presented, whereas category 2 classifies
letters E, G, and H, among others, when they are presented.

Figure 7B shows that, when the vigilance is increased to 0.8,
nine categories are learned in response to the first 20 letters,
instead of four. Letter C is no longer lumped into category

Frontiers in Neurorobotics | www.frontiersin.org 10 June 2020 | Volume 14 | Article 36

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Grossberg Adaptive Resonance Theory and Explainable AI

FIGURE 7 | These computer simulations show how the alphabet A, B, C, … is learned by the ART 1 when vigilance is chosen to equal (A) 0.5, or (B) 0.8. Note that

more categories are learned in (B) and that their learned prototypes more closely represent the letters that they categorize. Thus, higher vigilance leads to the learning

of more concrete categories. See the text for details [reprinted with permission from Carpenter and Grossberg (1987)].

1 with A and B. Rather, it is classified by a new category 2
because it cannot satisfy vigilance when it is matched against the
prototype of category 1. Together, Figures 7A,B show that, just
by changing the sensitivity of the network to attentive matches
and mismatches, it can either learn more abstract or more
concrete prototypes with which to categorize the world.

Figure 7 also provides examples of how memory search
works. During search, arousal bursts from the orienting system

interact with the attentional system to rapidly reset mismatched
categories, as in Figure 3C, and to thereby allow selection of
better F2 representations with which to categorize novel inputs
at F1, as in Figure 3D. Search may end with a familiar category
if its prototype is similar enough to the input exemplar to satisfy
the resonance criterion. This prototype may then be refined by
attentional focusing to incorporate the new information that
is embodied in the exemplar. For example, in Figure 7A, the
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FIGURE 8 | The fuzzy ARTMAP architecture can learn recognition categories in both ARTa and ARTb by unsupervised learning, as well as an associative map via the

map field from ARTa to ARTb by supervised learning. See the text for details [adapted with permission from Carpenter et al. (1992)].

FIGURE 9 | (A) A prediction from ARTa to ARTb can be made if the analog match between bottom-up and top-down patterns exceeds the current vigilance value.

(B) If a mismatch occurs between the prediction at ARTb and the correct output pattern, then a match tracking signal can increase vigilance just enough to drive

hypothesis testing and memory search for a better-matching category at ARTa. Matching tracking hereby sacrifices the minimum amount of generalization necessary

to correct the predictive error [adapted with permission from Carpenter and Grossberg (1992)].
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prototype of category 1 is refinedwhen B andC are classified by it.
Likewise, the prototype of category 2 is refined when G, H, and K
are classified by it. If, however, the input is too different from any
previously learned prototype, then an uncommitted population
of F2 nodes is selected and learning of a new category is initiated.
This is illustrated in Figure 7A when E is classified by category 2
andwhen I is classified by category 3. Search hereby uses vigilance
control to determine how much a category prototype can change
and, within these limits, protects previously learned categories
from experiencing catastrophic forgetting.

The simulations in Figure 7 were carried out using
unsupervised learning. Variants of ARTMAP models can learn
using arbitrary combinations of unsupervised and supervised
learning trials. Fuzzy ARTMAP illustrates how this happens in
how this happens in Section 2.10.

2.10. How Learning Starts: Small Initial
Bottom-Up Weights and Large Top-Down
Weights
In a self-organizing system like ART that can learn in an
unsupervised way, an important issue is: How does learning
get started? This issue does not arise in systems, such as back
propagation and Deep Learning, where the correct answer is
provided on every supervised learning trial to back-propagate
teaching signals that drive weights slowly toward target values
(Figure 1). Here is how both bottom-up and top-down adaptive
weights work during ART unsupervised learning:

Bottom-up signals within ART adaptive filters from feature
level F1 (Figure 3A) are typically gated, before learning occurs, by
small and randomly chosen adaptive weights before they activate
category level F2. When F2 receives these gated signals from
F1, recurrent on-center off-surround signals within F2 choose a
small subset of cells that receive the largest inputs. This recurrent
network also contrast-enhances the activities of the winning
cells, while normalizing the total STM-stored activity across the
network. The small bottom-up inputs can hereby generate large
enough activities in the winning F2 cells for them to drive efficient
learning in their abutting synapses.

Initial top-down learning faces a different problem: How
does a top-down expectation of a newly discovered recognition
category learn how to match the feature pattern that activates it,
given that the category has no idea what feature pattern this is?
This can happen because all of its top-down adaptive weights
initially have large values, and can thereby match any feature
pattern. As learning proceeds, these broadly distributed adaptive
weights are pruned to incrementally select the appropriate
attended critical feature pattern for that category.

2.11. Fuzzy ARTMAP: A Self-Organizing
Production and Rule Discovery System
The fuzzy ARTMAP model (Figure 8; Carpenter et al., 1992;
Carpenter and Markuzon, 1998) is an ART model that
incorporates some of the operations of fuzzy logic. Fuzzy
ARTMAP enables maps to be learned from a pair of ART
category learning networks, ARTa and ARTb, that can each be

trained using unsupervised learning. The choices of ARTa and
ARTb include a huge variety of possibilities.

For example, the categories learned by ARTa can represent
visually processed objects, whereas the categories learned by
ARTb can represent the auditorily processed names of these
objects. An associative mapping from ARTa to ARTb, mediated
by a map field Fab (Figure 8), can then learn to predict the correct
name of each object. This kind of intermodal map learning
illustrated how supervised learning can occur in ARTMAP.

In the present example, after map learning occurs, inputting
a picture of an object into ARTa can predict its name via
ARTb because each of ARTa and ARTb learns via bottom-up
adaptive filter pathways and top-down expectation pathways. If
a sufficiently similar picture has been learned in the past, its
presentation to level xa in ARTa can activate a visual recognition
category in ya. This category can then use the learned association
from ARTa to ARTb to activate a category of the object’s name
in yb. Then a learned top-down expectation from the auditory
name category can activate a representation in xb of the auditory
features that characterize the name.

In a very different application, the categories learned by
ARTa can include disease symptoms, treatments for them, and
medical test results, whereas the categories learned by ARTb can
represent the predicted length of stay in the hospital in response
to different combinations of these factors. Being able to predict
this kind of outcome in advance can be invaluable in guiding
hospital planning.

A hospital’s willingness to trust such predictions is bolstered
by the fact that the adaptive weights of fuzzy ARTMAP can, at
any stage of learning, be translated into fuzzy IF-THEN rules that
allow practitioners to understand the nature of the knowledge
that the model has learned, as well as the amount of variability
in the data that each of the learned rules can tolerate. As will
be explained more completely in completely in Section 2.13,
these IF-THEN rules “explain” the knowledge upon which the
predictions have been made. The learned categories themselves
play the role of symbols that compress this rule-based knowledge
and can be used to read out predictions based upon them. Fuzzy
ARTMAP is thus a self-organizing production and rule discovery
system, as well as a neural network that can learn symbols with
which to predict changing environments.

Neither back propagation nor Deep Learning enjoys any of
these properties. The next property, no less important, also has
no computational counterpart in either of these algorithms.

2.12. Minimax Learning via Match Tracking:
Maximize Generalization and Minimize
Error
In fuzzy ARTMAP, as with all ART models, vigilance is initially
set to be as low as possible before learning begins. A low initial
setting of vigilance enables the learning of large and general
categories. General categories conserve memory resources, but
may do so at the cost of allowing too many predictive errors.
ART proposes how to use vigilance control to conjointly
maximize category generality while minimizing predictive errors
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by a process called match tracking that realizes a minimax
learning rule.

Match tracking works as follows (Figure 9): Suppose that an
incorrect prediction is made from ARTb in response to an input
vector to ARTa on a supervised learning trial. In order for any
prediction to have beenmade, the analogmatch in ARTa between,
as described in Figure 8, the bottom-up input A = (a, ac) to
xa and the top-down expectation from ya to xa must exceed
the vigilance parameter ρa at that time, as in Figure 9A. The
mismatch in ARTb (see Figure 8) between the actual output
vector that is read out by yb, and desired output vector B = (b,
bc) from the environment, then triggers a match tracking signal
from ARTb, via the map field Fab, to ARTa. The vectors A = (a,
ac) and B= (b, bc) are normalized by complement coding, where
ac = 1-a and bc = 1-b.

Thematch tracking signal derives its name from the fact that it
increases the vigilance parameter until it just exceeds the analog
match value (Figure 9B). In other words, vigilance “tracks” the
analog match value in ARTa. When vigilance exceeds the analog
match value, it can activate the orienting system A, for reasons
that will immediately be explained. A new bout of hypothesis
testing and memory search is then triggered to discover a better
category with which to predict the mismatched outcome.

Since each increase in vigilance causes a reduction in the
generality of learned categories, increasing vigilance via match
tracking causes the minimum reduction in category generality
that can correct the predictive error. Category generality and
predictive error hereby realize minimax learning: Maximizing
category generality while conjointly minimizing predictive error.

2.13. How Increasing Vigilance Can Trigger
Memory Search
A simple mathematical inequality explains both how vigilance
works, and why it is computed in the orienting system A. Since
back propagation and Deep Learning do not have an orienting
system, they cannot compute a parameter like vigilance in an
elegant way.

Vigilance is computed in the orienting system (Figures 3B–D)
because it is here that bottom-up excitation from all the active
inputs in an input pattern I are compared with inhibition from all
the active features in a distributed feature representation across
F1. In particular, the vigilance parameter ρ multiplies the bottom-
up inputs I to the orienting system A; thus, ρ is the gain, or
sensitivity, of the excitatory signals that the inputs I deliver to
A. The total strength ρ |I| of the active excitatory input to A is
inhibited by the total strength |X∗| of the current activity at F1.

Memory search is prevented, and resonance allowed to
develop, if the net input ρ |I| − |X∗| to the orienting system
from the attentional system is ≤0. Then the total output |X∗|

from active cells in the attentional focus X∗ inhibits the orienting
system A (note the minus sign) in ρ |I|− |X∗|more than the total
input ρ |I| at that time excites it.

If |X∗| is so small that ρ |I| − |X∗| becomes positive, then the
orienting system A is activated, as in Figure 3C. The inequality
ρ |I|−|X∗| > 0 can be rewritten as ρ > |X∗| |I|−1 to show that the
orienting system is activated whenever ρ is larger than the ratio of

the number of active matched features in X∗ to the total number
of features in I. In other words, the vigilance parameter controls
how bad a match can be before search for a new category is
initiated. If the vigilance parameter is low, then many exemplars
can all influence the learning of a shared prototype, by chipping
away at the features that are not shared with all the exemplars.
If the vigilance parameter is high, then even a small difference
between a new exemplar and a known prototype (e.g., letter
F vs. E) can drive the search for a new category with which
to represent F.

Either a larger value of the vigilance ρ, or a smaller match
ratio |X∗| |I|−1 makes it harder to achieve resonance. This is
true because, when ρ is larger, it is easier to make ρ |I| − |X∗|

positive, thereby activating the orienting system and leading to
memory search. A large vigilance hereby makes the network
more intolerant of differences between the input and the learned
prototype. Alternatively, for fixed vigilance, if the input is chosen
to be increasingly different from the learned prototype, then X∗

becomes smaller and the match ratio ρ |I| − |X∗| becomes larger
until ρ |I| − |X∗| becomes positive, and a memory search is
triggered by a burst of arousal.

2.14. Learned Fuzzy IF-Then Rules in Fuzzy
ARTMAP Explain Its Categories
The algebraic equations that define fuzzy ARTMAP will not be
reviewed here. Instead, I will just note that each adaptive weight
vector has a geometric interpretation as a rectangle (or hyper-
rectangle in higher dimensions) whose corners in each dimension
represent the extreme values of the input feature which that
dimension represents, and who size represents the degree of
fuzziness that input vectors which code that category can have
and still remain within it.

If a new input vector falls outside the rectangle on a supervised
learning trial, but does not trigger category reset and hypothesis
testing for a new category, then the rectangle is expanded to
become the smallest rectangle that includes both the previous
rectangle and the newly learned vector, unless this new rectangle
becomes too large. The maximal size of such learned rectangles
has an upper bound that increases as vigilance decreases, so that
more general categories can be learned at lower vigilance.

Inspection of such hyper-rectangles provides immediate
insight into both the feature vectors that control category
learning and predictions, and how much feature variability is
tolerated before category reset and hypothesis testing for another
category will be triggered.

3. EXPLAINABLE VISUAL AND AUDITORY
PERCEPTS

3.1. Biological Vision: Completed
Boundaries Gate Filling-in Within
Depth-Selective Surfaces
Perhaps the most “explainable” representations in biological
neural models are those that represent perceptual experiences,
notably visual and auditory percepts. The functional units of
visual perception are boundaries and surfaces, whose formation
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FIGURE 10 | Spatially abutting and collinear boundary contour (BC) and

feature contour (FC) signals in a Filling-In-DOmain, or FIDO, can trigger

depth-selective filling-in of the color carried by the FC signal in that FIDO. See

the text for details [adapted with permission from Grossberg and Zajac (2017)].

and properties have been modeled to explain and predict a
wide variety of psychological and neurobiological data about
how humans and other primates (see Grossberg, 1987a,b,
1994, 1997; Grossberg and Raizada, 2000; Kelly and Grossberg,
2000; Grossberg et al., 2002, 2007; Grossberg and Howe, 2003;
Grossberg and Swaminathan, 2004; Cao and Grossberg, 2005,
2012; Grossberg and Yazdanbakhsh, 2005; Grossberg and Hong,
2006). Visual boundaries are formed when perceptual groupings
are completed in response to the spatial distribution of edges,
textures, and shading in images and scenes. Visual surfaces
are formed when brightnesses and colors fill-in within these
completed boundaries after they have discounted the distorting
effects of spatially variable illumination levels.

Figure 10 illustrates one step in the process whereby
boundaries capture surfaces at different relative depths from an
observer. Here, depth-selective boundary representations are
completed at different depths. Each boundary representation
generates topographic boundary inputs, called Boundary
Contour (BC) signals, to all the multiple color-selective surface
representations (red, green; blue, yellow; black, white) at its
depth. Color signals from which the illuminant has been
discounted are also topographically input to their color-
selective surface filling-in domains across all the depths. These
color signals are called Feature Contour (FC) signals because
they represent the “features” that may eventually become
consciously visible.

A BC input can capture the color represented by an FC input
if both contours are spatially contiguous and orientationally
aligned within a particular depth-selective Filling-In Domain, or
FIDO. When this happens, the color will selectively fill in the
boundaries of that FIDO. It is in this way that FC signals that are
broadcast to all surface depths capture colored surface percepts
within some depth-selective FIDOs but not others.

Various boundary completion and surface-to-boundary
feedback processes, among others, are needed to complete
depth-selective filled-in surface representations. The articles
cited above explain in detail how this happens. How all these
boundary and surface interactions occur and explain many
interdisciplinary data about vision is the central explanatory goal
of the Form-And-Color-And-DEpth, or FACADE, theory of 3D
vision and figure-ground perception. FACADE theory derives
its name from the prediction, which is supported by a great
deal of perceptual and neurobiological evidence, that surface
representations multiplex properties of form, color, and depth in
prestriate visual cortical area V4. The qualia that are supported
by these surface representations are, in principle, explainable by
measurements using parallel arrays of microelectrodes in the
relevant cortical areas.

3.2. Surface-Shroud Resonances for
Conscious Seeing and Reaching
These surface representations are predicted to become
consciously seen when they form part of surface-shroud
resonances that occur between cortical areas V4 and the posterior
parietal cortex, or PPC. Grossberg (2017b) reviews model
processes along with psychological and neurobiological data
that support this prediction, including clinical data about how
parietal lesions—by disrupting the formation of surface-shroud
resonances—lead to visual neglect (Driver and Mattingley, 1998;
Mesulam, 1999; Bellmann et al., 2001; Marshall, 2001), visual
agnosia (Goodale et al., 1991; Goodale and Milner, 1992), and
impairments of sustained visual attention (Robertson et al., 1997;
Rueckert and Grafman, 1998). Problems with motor planning,
notably reaching deficits, also occur as a result of parietal lesions
(Heilman et al., 1985; Mattingley et al., 1998), in keeping with
the hypothesis that “we see in order to look and reach.” Thus, the
dual roles of parietal cortex—focusing and maintaining spatial
attention, and directing motor intention—are both disrupted by
parietal lesions.

The resonating surface representation in V4 during a surface-
shroud resonance is explainable in principle, especially when it
is correlated with the visual qualia that it represents. So too is
the attentional shroud in PPC that configures its spatial extent
to cover, or shroud, the surface representation with which it
is resonating.

3.3. Stream-Shroud Resonances for
Conscious Hearing and Auditory
Communication
Grossberg (2017b) also summarizes theoretical, psychological,
and neurobiological evidence for the assumption that stream-
shroud resonances arise in the auditory system, where they
support conscious hearing and auditory communication,
including speech and language. Stream-shroud resonances are
predicted to be homologous to the surface-shroud resonances
in the visual system, although visual surfaces represent physical
space, whereas auditory streams represent frequency space.
Parietal lesions that undermine stream-shroud resonances lead
to clinical data that are similar to those in the visual system,
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including neglect, agnosia, attentional problems, and problems
of auditory communication.

Auditory streams separate different acoustic sources in the
environment so that they can be tracked and learned about, a
process that is often called auditory scene analysis (Bregman,
1990). Perhaps the most famous example of streaming occurs
in solving the classical cocktail party problem (Cherry, 1953),
which asks how listeners can hear an attended speaker even if
the frequencies in her voice are similar to the frequencies of
nearby speakers or are occluded by intermittent background
noise. Grossberg et al. (2004) introduced the ARTSTREAM
neural model to explain design principles and mechanisms
whereby our brains track acoustic sources whose frequencies
overlap and may be occluded by intermittent noise. Auditory
streams are explainable because our brains generate spatially
distinct frequency representations over which auditory streams
can be followed through time. The parietal shrouds in stream-
shroud resonances cover auditory streams just as the shrouds
in surface-shroud resonances cover visual surfaces, and thus are
also explainable.

4. EXPLAINABLE EMOTIONS DURING
COGNITIVE-EMOTIONAL INTERACTIONS

4.1. Where Cognition and Emotion Meet:
Conditioning and Cognitive-Emotional
Resonances
In addition to explainable representations of perception and
cognition, explainable representations of emotion and cognitive-
emotional interactions have also been modeled. These models
explain how events in the world learn to activate emotional
reactions, how emotions can influence the events to which
attention is paid, and how emotionally salient events can learn
to trigger responses aimed at acquiring valued goals. This kind
of cognitive-emotional learning is often accomplished by either
classical conditioning, also called Pavlovian conditioning (Pavlov,
1927), or operant conditioning, also called instrumental or
Skinnerian conditioning (Skinner, 1938).

The current review will discuss only classical conditioning
models of cognitive-emotional learning, although the same
models also perform appropriately during operant conditioning.
During classical conditioning, a neutral sensory event, such as a
tone or a light, called the conditioned stimulus (CS), is associated
with an emotionally-charged event, such as the presentation of
food or shock, called the unconditioned stimulus (US). The US
typically elicits a reflexive response, such as eating or withdrawal,
called the unconditioned response (UR). Pairing a CS a sufficient
number of times at an appropriate time interval before a US can
elicit a learned response, called the conditioned response (CR) that
is similar to the UR.

Figure 11A depicts the macrocircuit of the MOTIVATOR
neural model, which explains many psychological and
neurobiological data in this area (Grossberg, 1975, 1978, 1984,
2018; Brown et al., 1999, 2004; Dranias et al., 2008; Grossberg
et al., 2008; Silver et al., 2011; Grossberg and Kishnan, 2018). The
MOTIVATORmodel describes how four types of brain processes

interact during conditioning and learned performance: Object
categories in the anterior inferotemporal (ITA) cortex and the
rhinal (RHIN) cortex, value categories in the amygdala (AMYG)
and lateral hypothalamus (LH), object-value categories in the
lateral (ORB) and medial orbitofrontal (MORB) cortices, and
a reward expectation filter in the basal ganglia, notably in the
substantia nigra pars compacta (SNc) and the ventral tegmental
area (VTA). Only the VTA is shown in Figure 11A.

A visual CS activates an object category in the ITA,
whereas a US activates a value category in the AMYG. During
classical conditioning in response to CS-US pairings, conditioned
reinforcer learning occurs in the ITA-to-AMYG pathway, while
incentive motivational learning occurs in the AMYG-to-ORB
pathway. After a CS becomes a conditioned reinforcer, it can
cause many of the internal emotional reactions and responses
at the AMYG that its US could, by activating the same
internal drive representation there. After the CS activates a drive
representation in the AMYG, this drive representation triggers
incentive motivational priming signals via the AMYG-to-ORB
pathway to ORB cells that are compatible with that drive. In
all, when the CS is activated, it can send signals directly to
its corresponding ORB representation, as well as indirectly via
its learned ITA-to-AMYG-to-ORB pathway. These converging
signals enable the recipient ORB cells to fire and trigger a CR.
All of these adaptive connections end in hemidiscs, which house
the network’s LTM traces.

The representations in ITA, AMYG, and ORB are explainable
because presentation of a visual CS will be highly correlated with
selective activation of its ITA object category, presentation of a
reinforcer US will be highly correlated with selective activation
of its AMYG value category, and the simultaneous activation
of both ITA and AMYG will be highly correlated with selective
activation of the ORB representation that responds to this
particular object-drive combination.

The basal ganglia carries out functions that are
computationally complementary to those of the amygdala,
thereby enabling the system as a whole to cope with both
expected and unexpected events: In particular, as explained
above, the AMYG generates incentive motivational signals to
the ORB object-value categories to trigger previously learned
actions in expected environmental contexts. In contrast, the basal
ganglia generates Now Print signals that drive new learning in
response to unexpected rewards. These Now Print signals release
dopamine (DA) signals from SNc and VTA to multiple brain
regions, where they modulate learning of new associations there.

When the feedback loop between object, value, and object-
value categories is closed by excitatory signals, then this circuit
goes into a cognitive-emotional resonance that supports conscious
recognition of an emotion and the object that has triggered it.

4.2. Where Cognition and Emotion Meet:
Conditioning and Drive-Value Resonances
Figure 11B shows how reciprocal adaptive connections between
LH and AMYG enable AMYG cells to become learned value
categories that are associated with particular emotional qualia.
The AMYG interacts reciprocally with taste-drive cells in the
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FIGURE 11 | (A) Object categories are activated by visual or gustatory inputs in anterior inferotemporal (ITA) and rhinal (RHIN) cortices, respectively. Value categories

represent the value of anticipated outcomes on the basis of current hunger and satiety inputs in amygdala (AMYG) and lateral hypothalamus (LH). Object-value

categories occur in the lateral orbitofrontal (ORB) cortex, for visual stimuli, and the medial orbitofrontal (MORB) cortex, for gustatory stimuli. They use the learned value

of perceptual stimuli to choose the most valued stimulus in the current context. The reward expectation filter in the basal ganglia detects the omission or delivery of

rewards using a circuit that spans ventral striatum (VS), ventral pallidum (VP), striosomal delay (SD) cells in the ventral striatum, the pedunculopontine nucleus (PPTN),

and midbrain dopaminergic neurons of the substantia nigra pars compacta/ventral tegmental area (SNc/VTA). (B) Reciprocal excitatory signals from hypothalamic

drive-taste cells to amygdala value category cells can drive the learning of a value category that selectively fires in response to a particular hypothalamic homeostatic

activity pattern. See the text for details [adapted with permission from Dranias et al. (2008)].

LH at which taste and metabolite inputs converge. Bottom-
up signals from activity patterns across LH taste-drive cells
activate competing value categories in the AMYG. A winning
AMYG value category learns to respond selectively to specific
combinations of taste-drive activity patterns and sends adaptive
top-down expectation signals back to the taste-drive cells that
activated it. The activity pattern across LH taste-drive cells
provides an explainable representation of the homeostatic factors
that subserve a particular emotion.

When the reciprocal excitatory feedback pathways between
the hypothalamic taste-drive cells and the amygdala value
category are activate, they generate a drive-value resonance that
supports the conscious emotion which corresponds to that drive.
A cognitive-emotional resonance will typically activate a drive-
value resonance, but a drive-value resonance can occur in the
absence of a compatible external sensory cue.

5. EXPLAINABLE MOTOR
REPRESENTATIONS

5.1. Computationally Complementary What
and Where Stream Processes
The above examples all describe processes that take place
in the ventral, or What, cortical stream. Only What stream
representations for perception and cognition (Mishkin, 1982;
Mishkin et al., 1983) are capable of resonating, and thus

generating conscious representations, as examples of the general
prediction that all conscious states are resonant states (Grossberg,
1980, 2017b). Criteria for a brain representation to be explainable
are, however, weaker than those needed for it to become
conscious. Accordingly, some properties of representations of the
dorsal, or Where, cortical stream for spatial representation and
action (Goodale and Milner, 1992) are explainable, even though
they cannot support resonance or a conscious state.

This dichotomy between What and Where cortical
representations is clarified by the properties summarized in
Table 1, which illustrates the fact that many computations
in these cortical streams are computationally complementary
(Grossberg, 2000, 2013). As noted in Table 1, the What stream
uses excitatory matching, and the match learning that occurs
during a good enough excitatory match can create adaptive
resonances (Figure 4) which learn recognition categories that
solve the stability-plasticity dilemma. Match learning can occur
when a bottom-up input pattern can sufficiently well match a
top-down expectation to generate a resonant state (Figure 4)
instead of triggering a memory search (Figures 3B,C). In
contrast, the Where stream uses inhibitory matching to control
reaching behaviors that are adaptively calibrated by mismatch
learning. Mismatch learning can continually update motor maps
and gains throughout life.

Section 5.2 describes the VITE model of how arm movement
trajectories are formed and executed. In particular, when an arm’s
target position vector—or the position where the hand wants to
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TABLE 1 | The What ventral cortical stream and the Where dorsal cortical stream

realize complementary computational properties. See the text for details [reprinted

with permission from Grossberg (2009)].

WHAT WHERE

Spatially-invariant object

learning and recognition

Spatially-variant reaching and

movement

Fast learning without

catastrophic forgetting

Continually update

sensory-motor maps and

gains

IT PPC

WHAT WHERE

MATCHING EXCITATORY INHIBITORY

LEARNING MATCH MISMATCH

move—equals its present position vector—or the position where
the hand is now—then the hand is where it wants to be, so stops
moving. Correspondingly, the difference vector that is formed by
subtracting the present position vector from the target position
vector then equals zero. This kind of match cannot resonate.
Hence, it cannot solve the stability-plasticity dilemma. As a
result, the parameters that control arm movements can adjust
throughout life to adapt to bodily development, exercise, and
aging. As I will describe in Sections 5.3–5.5, this is a kind of
mismatch learning, unlike the match learning that takes place in
ART. I will also explain that it is unlike the kind of mismatch,
or error-based, learning that takes place in back propagation and
Deep Learning.

5.2. Vector Integration to Endpoint
Computations Control Reaching Behaviors
Just as an attended pattern of critical features is explainable in
the What cortical stream, a difference vector is explainable in
the Where cortical stream, as are other vectors that are used
for arm movement control. As explained below, observation of
a difference vector is sufficient to determine the direction and
distance of an impending reaching movement by an arm.

A difference vector is computed as part of the Vector
Integration to Endpoint, or VITE, model of arm movement
control (Figure 12A; Bullock and Grossberg, 1988, 1989). The
VITE model clarifies how the Three S’s of reaching—Synergy,
Synchrony, and Speed—are achieved. To do this, the model
computes a target position vector T, an outflow present position
vector P, a difference vector D, and a volitional GO signal G.
Variable T computes the position that the end of the hand/arm
wants to go, P the position where it is now, D the direction and
distance that it has to go to reach T, and G the motor energy
needed to support this movement.

The first S is the flexible choice of a motor Synergy. Choosing
T defines the collection, or Synergy, of muscle groups that will
contract to carry out the arm movement to the desired target
position. The second S controls the Synchronous performance of
this arm movement. In other words, the muscles in the chosen
Synergy contract together during the same time interval, even if
they contract by different amounts. Finally, the third S enables the
VITE model to cause the same arm movement trajectory to be

executed at variable Speeds. Increasing the GO signal translates
into a faster performance speed.

These properties follow from the fact that the GO signal
G multiplies the difference vector D, or more precisely the
thresholded difference vector [D]+ = max(D, 0), to form
the product [D]+G in Figure 12A. Multiplication by G does
not change the direction that D computes, so the same arm
movement trajectory can be traversed in response to any positive
value of G. The product [D]+G is integrated through time by
P until P equals T. This property explains the name, VITE, of
the model. When P equals T, the arm has attained the desired
target position.

Multiplying by G ensures that all muscles in the Synergy
get integrated with velocities that scale proportionally with the
distances that they have to travel, so that contractions within
the Synergy are Synchronous during the movement. Indeed,
[D]+G is the outflow velocity vector of the circuit. Because
[D]+G is integrated by P, increasing G increases the rate at
which P approaches T, and thus the velocity of movement, while
decreasing G causes slower movements.

All of these variables are explainable: Inspecting vector T
discloses the movement’s target position, P its current position, D
the desired direction and distance of the movement, and [D]+G
the movement’s outflow speed.

An illustration of how STM variables and neurophysiological
recordings contribute to explainable descriptions of brain data
is given in Figure 13. The top half of Figure 13 summarizes
neurophysiological data that was recorded by Georgopoulos
et al. (1982) during a reaching movement of a monkey. The
bottom half of Figure 13 shows how the VITE model simulates
these data. In particular, the difference vector D of the VITE
model closely matches the shape of the neurophysiological data.
The VITE model has also been used to simulate many other
psychophysical, anatomical, and neurophysiological data about
arm movements, using the same set of parameters. It should be
noted for readers who prefer spiking models to the rate model
dynamics of VITE that any rate model whose cells obey the
membrane equations of neurophysiological can be converted into
a spiking model, without a change of key properties (Cao and
Grossberg, 2012).

5.3. Mismatch Learning via Circular
Reaction to Calibrate Spatial and Motor
Networks
The signals used in VITE need to be calibrated throughout our
lives by learning to ensure that they actually work the way that
they are supposed to work. In particular, the inputs to D from
T and from P come from different cell populations and are
carried by different pathways. Signals to T often come from visual
representations, whereas P is often coded in motor coordinates.
If a VITE model is representing a postural state where T and P
represent the same position, then D should equal zero. How are
signals from T and P to D calibrated to assure this? This requires
learning that matches the gains of the pathways. The Vector
Associative Map, or VAM, model of Gaudiano and Grossberg
(1991, 1992) generalizes VITE to explain how mismatch learning
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FIGURE 12 | The Vector Integration to Endpoint, or VITE, model of Bullock and Grossberg (1988) realize the Three S’s of arm movement control: Synergy, Synchrony,

and Speed. See the text for details [adapted with permission from Bullock and Grossberg (1988)].

changes the gains in the T-to-D pathways until they match those
in the P-to-D pathways.

The VAM model does this using a circular reaction that
generates reactive movements which create a situation in which
both T and P represent the same position in space. This happens
when a person moves her arms around in space. I will explain
in a moment what a circular reaction is and how it gets T and
P to represent the same position in space. Given that this is so,
if the VAM model were properly calibrated, the excitatory T-to-
D and inhibitory P-to-D signals that input to D in response to
the same positions at T and P would cancel, causing D to equal
zero, since then the model has already moved the arm to where
it wants it to be. If D is not zero under these circumstances,
then the signals are not properly calibrated. VAM uses such
non-zero D vectors as mismatch, or error, teaching signals that
adaptively calibrate the T-to-D signals. As perfect calibration is
achieved, D approaches zero, at which time mismatch learning
self-terminates.

The concept of a circular reaction was introduced by Piaget
(1945, 1951, 1952). As noted in Grossberg (2020), during a
circular reaction, babies endogenously babble, or spontaneously
generate, hand/arm movements to multiple positions around
their bodies; see the Endogenous Random Generator, or ERG+,
in the upper left panel of Figure 12B. When the ERG+ turns on,
it activates P, and causes an arm movement. Random activities
in the ERG+ generate random movements that sample the
workspace. When the ERG+ shuts off, the movement ends, and
a postural state begins. The offset of ERG+ triggers the onset
of an opponent ERG- which opens a Now Print (NP) gate that
allows P to be transmitted to T, as shown in the top right panel

of Figure 12B. Then both T and P send signals to form the
difference vector D, as in the lower left panel of Figure 12B.

If D equals zero, the network is properly calibrated. If not, then
D acts as an error signal that drives adaptive weights, or LTM
traces, in the T-to-D pathway to change until D does equal zero,
as in the lower right panel of Figure 12B. Computer simulations
in Gaudiano and Grossberg (1991, 1992) demonstrate how the
model samples the work space during the critical period and
learns the correct LTM traces with which to enable accurate later
volitional movements to be made.

This kind of DV-mediated mismatch learning is just one of
the kinds of mismatch learning in the Where cortical stream that
is summarized in Table 1. Mismatch learning allows our spatial
and movement control systems to adjust continually to our
changing bodies through time. It is not the only kind of mismatch
learning that occurs in these systems. A different kind of error-
driven learning occurs in the hippocampus, cerebellum, and
basal ganglia to control adaptively-timed motivated attention,
motor control, and reinforcement learning. All of these brain
regions seem to have similar circuits and underlying biochemical
mechanisms, despite their very different behavioral functions.

5.4. Mismatch Learning Using Local
Computations
Note that, unlike back propagation and Deep Learning, there is
no non-local weight transport during the mismatch learning that
occurs in Figure 12B. Rather, the teaching signals that drive this
learning are vectors T that are locally transported from vectors P
along pathways that form part of the network’s physical anatomy,
regulated by opponent ERG+ and ERG– control signals.
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FIGURE 13 | (Top half) Neurophysiological data of vector cell responses in motor cortex. (Bottom half) VITE model simulations of a simple arm movement in which the

model’s difference vector D simulates the data as an emergent property of network interactions [data of Georgopoulos et al. (1982) and Bullock and Grossberg (1988)

are reproduced with permission. Figure as a whole is reprinted with permission from Grossberg (2020)].

5.5. ART and VAM: A Self-Stabilizing
Synthesis of Match and Mismatch Learning
There is also no collapse of recognition memory by catastrophic
forgetting due to this kind of mismatch learning. As summarized
in Table 1, ART explains how perceptual and cognitive processes
in the What ventral processing stream use excitatory matching
and match-based learning to solve the stability–plasticity
dilemma so that perceptual and cognitive learning can occur
quickly without causing catastrophic forgetting. Excitatory
matching also supports sustained resonance, and thus sometimes
conscious awareness, when a good enough match with object
information occurs.

Match-based recognition learning also supports additional
learning of recognition categories at higher cortical regions
that are increasingly invariant under changes in an object’s
views, positions, and sizes when it is registered on our
retinas. The 3D ARTSCAN Search model (Fazl et al., 2009;
Cao et al., 2011; Foley et al., 2012; Chang et al., 2014;
Grossberg et al., 2014) shows how such invariant category
learning enables us to categorize and search the world without
causing a combinatorial explosion of memories. However,
positionally-invariant object category representations cannot,
by themselves, manipulate objects at particular positions
in space.
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Complementary spatial and motor processes in the
Where/How dorsal cortical processing stream can be used
to manipulate objects in space using VAM inhibitory matching
and mismatch learning to continually update spatial maps
and sensory–motor gains as bodily parameters change
through time. Their difference vector computations cannot
support an adaptive resonance and thus do not solve the
stability-plasticity dilemma.

Each type of matching and learning in Table 1 is thus
insufficient to learn about the world and to effectively act upon
it. But together they can. Perceptual and cognitive processes use
excitatory matching and match-based learning to create self-
stabilizing representations of objects and events that embody
increasing expertise about the world. Complementary spatial and
motor processes use inhibitory matching and mismatch learning
to continually update spatial maps and sensory-motor gains
to compensate for bodily changes throughout life. ART match
learning provides a self-stabilizing perceptual and cognitive front
end for conscious awareness and knowledge acquisition, and
provides a stable platform upon which VAM mismatch learning
enables our changing bodies to act effectively upon a changing
world, without experiencing the catastrophic forgetting that
afflicts back propagation and Deep Learning.

5.6. Motor Equivalent Reaching and
Speaking: The DIRECT and DIVA Models
The VITE model has been substantially refined and developed
over the years. These developments have shown, among other
things, that models which explain how speaking may be
controlled in response to auditory cues are homologs of VITE-
like models for reaching in response to visual cues. The variant
of VITE for which this is true is the DIRECT model of motor-
equivalent reaching (Figure 14; Bullock et al., 1993), which
includes the ability to reach a new target on the first try under
visual guidance with either clamped joints or a tool. The speech
homolog of DIRECT is the DIVA model (Figure 14), whose
motor-equivalent speech includes the ability to compensate for
coarticulation (Guenther, 1995; Guenther et al., 2006).

The property of motor equivalence enables spatially defined
target objects to be reached using multiple arm movement
trajectories. These multiple possibilities derive from the fact
that a human arm is defined by components with a higher
dimensionality than the dimension of a target object in space;
e.g., a seven degree of freedom arm moving its hand along a
desired path in three-dimensional space. Given that multiple
trajectories are possible, how does a human or other primate
choose among these possibilities to efficiently perform spatially
defined reaching tasks?

The DIRECT model is able to fuse visual, spatial, and motor
information to achieve this competence. An important part of
this ability is to represent target information in space and to
show how to transform it into motor commands; e.g., the spatial
target position vector, spatial present position vector, and spatial
direction vector in Figure 14 get converted into amotor direction
vector and a motor present position vector that commands the
arm’s present position.

Another important part of this ability is that DIRECT learns
these transformations between spatial and motor representations
by using another circular reaction, albeit an intermodal circular
reaction that links vision to action. As noted in Grossberg (2020),
during a visual circular reaction, babies endogenously babble,
or spontaneously generate, hand/arm movements to multiple
positions around their bodies; see the Endogenous Random
Generator in Figure 14. As a baby’s hands move in front of
her, her eyes automatically, or reactively, look at her moving
hands. While her eyes are looking at her moving hands, the
baby learns an associative map from its hand positions to
the corresponding eye positions, and from eye positions to
hand positions. Learning of the map between eye and hand
in both directions constitutes the “circular” reaction. After
map learning occurs, when a baby, child, or adult looks at
a target position with its eyes, this eye position can use the
learned associative map to activate a movement command to
reach the corresponding position in space when a GO signal is
activated (Figure 12A). Because our bodies continue to grow for
many years as we develop from babies into children, teenagers,
and adults, these maps need to continue updating themselves
throughout life.

Computer simulations have been carried out in Bullock
et al. (1993) of how DIRECT carries out reaches under various
conditions, including how a reach is accurately made to a target
in space on the first try, how the end of a tool touches the target
position accurately on the first try without having to measure the
length or the angle of the tool with respect to the hand, and how
an accurate reach can be made on the first try with the elbow
joint held fixed. A nearly accurate reach can also be made under
memory guidance when the actor is blindfolded.

As can be seen by inspecting Figure 14, the DIRECT
and DIVA models have homologous circuits to control arm
movements and speech articulator movements, respectively. One
evolutionary reason for this may be that speech articulators
evolved from the same circuits that control chewing, and both
motor-equivalent reaching and motor-equivalent chewing are
integrated into a larger system for eating (MacNeilage, 1998).

DIVA models how learning and performance are initiated
by an auditory circular reaction that occurs when babies
endogenously babble simple sounds and hear the sounds that
they create. When the motor commands that caused the
sounds and the auditory representations of the heard sounds
are simultaneously active in a baby’s brain, it can learn a
map between these auditory representations and the motor
commands that produced them. After a sufficient amount of map
learning occurs, a child can use the map to imitate sounds from
adult speakers, and thereby begin to learn how to speak using
increasingly complicated speech and language utterances, again
under volitional control.

Both DIRECT and DIVA contain explainable representations,
just as VITE does. Inspection of these representations as arms or
speech articulators move “explains” how these competences are
realized. For example, a clear correlation will exist between when
an actor is looking and its spatial target position vector. A more
detailed review of various of these model developments is found
in Grossberg (2017b, 2020).
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FIGURE 14 | The DIRECT and DIVA models have homologous circuits to learn and control motor-equivalent reaching and speaking. Tool use and coarticulation are

among the resulting useful motor-equivalent properties [reprinted with permission from Grossberg (2020)].

6. EXPLAINABLE AUTONOMOUS
ADAPTIVE INTELLIGENCE:
HIPPOCAMPUS AND SOVEREIGN2

6.1. Balancing Reactive and Planned
Movements During Learning of a Route to
a Valued Goal
The article has thus far summarized examples of explainable
representations that are computed by brains during perception,
cognition, emotion, and action. In addition to noting that
the LTM traces of fuzzy ARTMAP can be represented as
fuzzy IF-THEN rules which can be used to explain the
basis of categorization and prediction dynamics in this
model, the article has focused upon the critical role that
activity, or STM, variables play in representing and controlling
brain processes. All of the summarized STM representations
are explainable. By contrast, back propagation and Deep
Learning compute only LTM traces, and no STM traces
or dynamics.

These examples are just a subset of those that can be
explained in biological neural models. A great many other
examples can be found in the SOVEREIGN (Gnadt and
Grossberg, 2008) and SOVEREIGN2 (Grossberg, 2019a)
architectures, which embody capabilities for autonomous
adaptive perception, cognition, emotion, and action in
changing environments. SOVEREIGN was designed to serve
as an autonomous neural system for incrementally learning
planned action sequences to navigate toward a rewarded
goal. The acronym SOVEREIGN summarizes this goal:
Self-Organizing, Vision, Expectation, Recognition, Emotion,
Intelligent, Goal-oriented Navigation.

SOVEREIGN illustrates how brains may, at several different
organizational levels, regulate the balance between reactive and
planned behaviors. Balancing between reactive and planned
movement during navigation occurs during the transition
between exploratory behaviors in novel environments and
planned behaviors that are learned as a result of previous
exploration. During initial exploration of a novel environment,
many reactive movements may occur in response to unexpected
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or unfamiliar environmental cues (Leonard and McNaughton,
1990). These movements may initially appear to be locally
random, as an animal orients toward and approaches many
stimuli. As the surroundings become familiar to an animal, it
learns to discriminate between objects likely to yield reward
and those that yield punishment. More efficient routes to
the goal are learned during this process. SOVEREIGN begins
to model how sequences of such behaviors are released at
appropriate times during autonomous navigation to realize
valued goals.

Such approach-avoidance behavior is often learned
via a circular reaction (Figure 14), in this case a
perception-cognition-emotion-action cycle during which
an action and its consequences elicit sensory cues that are
associated with them. Rewards and punishments affect the
likelihood that the same actions will be repeated in the
future (Figure 11). If objects are not visible when navigation
begins, multiple reactive exploratory movements may be
needed to reach them. Eventually, these reactive exploratory
behaviors are replaced by more efficient planned sequential
trajectories within a familiar environment. One of the
main accomplishments of SOVEREIGN is to explain how
erratic reactive exploratory behaviors lead to learning of
the most efficient routes whereby to acquire a valued
goal, without losing the ability to balance reactive and
planned behaviors so that planned behaviors can be carried
out where appropriate, while still retaining the ability to
react quickly to novel challenges. These capabilities were
demonstrated in SOVEREIGN by simulations showing how
an animal or animat could, using its control structure, learn
and execute efficient routes to a valued goal in a virtual
reality environment.

6.2. Difference Vectors During Navigation
and Reaching
SOVEREIGN proposes how the circuit designs for spatial
navigation are homologous to those that control reaching
behaviors. In both cases, difference vectors are computed to
determine the direction and distance of a movement (cf.
Figure 12). During both navigation and reaching, in order to
compute a difference vector D, both a target position vector T
and a present position vector P first need to be computed. The
target position T can be computed, for both arm movements
and navigation, from visual information. Because an arm is
attached to the body, its present position P can be directly
computed using outflow movement commands that explicitly
code the commanded arm position. In contrast, when a body
moves with respect to the world, no such immediately available
present position command is available. During navigation, the
ability to compute a difference vector D between a target
position and the present position of the body requires more
elaborate brain machinery. When D is computed, it determines
the direction and distance that the body needs to navigate to
acquire the target.

Navigational difference vectors are explainable, just as arm
movement difference vectors are.

6.3. Hippocampal Place Cells: Computing
Present Position and Target Position
Hippocampal place cells provide information about present
position during spatial navigation. They selectively fire when
an animal is in a particular position within an environment
(O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978;
Muller, 1996). The GridPlaceMap neural model proposes how
entorhinal grid cells and hippocampal place cells are learned
during real-time navigation in realistic environments (e.g.,
Grossberg and Pilly, 2014). Once our brains can compute a
difference vector between present and desired bodily position,
a volitional GO signal can move the body toward the
desired goal object, just as in the case of an arm movement
(Figure 12). During navigation, a GO signal can control
movements with different gaits, such as walk or run in bipeds,
and a walk, trot, pace, and gallop in quadrupeds, as the
GO signal size increases (Pribe et al., 1997). In summary,
both navigational movement in the world and movement
of limbs with respect to the body use a difference vector
computational strategy.

A considerable amount of additional machinery is
needed to successfully navigate in the world. Successful
navigation requires that humans and animals be able to solve
basic problems of social cognition, such as how a student can
learn a skill from a teacher whose behavior is observed in a
different spatial location. The ability to share joint attention
between actors in different locations is part of this competence.
The CRIB (Circular Reactions for Imitative Behavior) model
explains and simulates how this may be done (Grossberg and
Vladusich, 2010).

For the moment, I will just note that “social” place cells
in the hippocampus can fire in a bat as it observes another
bat navigating a maze to reach a reward. In these experiments,
the observer bat was motivated to do this so that it could
subsequently navigate the same route to get the same reward.
Under these circumstances, a social place cell can fire in the
brain of the observing bat that corresponds to the position of the
observed bat (Omer et al., 2018; Schafer and Schiller, 2018, 2020).
The position of the observed bat can then function as a spatial
target position vector (cf. Figure 14) to guide the navigation of
the observer rat along the route.

These observations suggest a role for hippocampus, as
part of its interactions with many other brain regions, in
computing both present position vectors P and target position
vectors T during spatial navigation, thereby enabling difference
vectors D to be computed from them that can control
navigational directions.

Various additional processes that have been modeled
with a view toward achieving true adaptive autonomous
intelligence in a mobile agent, whether biological or artificial,
have been summarized in the SOVEREIGN and SOVEREIGN2
architectures (Grossberg, 2019a, 2020). These interactions
among circuits to carry out aspects of perception, cognition,
emotion, and action clarify how the “places” that are computed
in brain regions like the hippocampus can become integrated
into “social” and other higher forms of behavior. All of the
STM representations in these architectures are explainable,
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in principle, using neurophysiological and functional
neuroimaging methods.

7. CONCLUDING REMARKS

As summarized at the end of Section 1, this article outlines an
explainable neural architecture for autonomous adaptive mobile
intelligence. Each of the Sections 2–6 focuses on a different
functional competence whereby biological brains, no less than
artificial devices and robots, may be designed to achieve such

autonomy. In addition to its clarifying effects on understanding
brains and designing AI systems, achieving a computational
understanding of autonomous adaptive intelligence may be
expected during the coming century to have transformative
effects on all aspects of society.
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