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ABSTRACT

This study concerns the extension of concepts used in current com-

puter programming languages. The aim is to find ways of designing new

programming languages having increased flexibility without also having

increased complexity. To increase flexibility means to place on the

user as few restrictions as possible on what he can express and modify

and on the notational conventions he may choose. The key to accomplish-

ing this is by generalizing on the current concepts.

II The work is based on the idea that it is possible to designalan-

guage which is truly independent of the hardware characteristics of cur-

j rent computers. In the course of the study, considerable re-examination

of current concepts such as variables, procedure call mechanisms, and

I program sequence controls, has been required.

A new technique of expressing data values, data elements, and data

structures, has been developed. This technique provides for the expres-

sion of: (i) domains of values (familiar examples of which are "real"t,

"integer"I, and "Boolean"), (2) simple data elements ("variables") which

jtake on a value from some domain of values, (3) composite data elements,
which are "associations" of other data elements, and (4) relationships

Sbetween these data elements, where each such relationship is itself a
composite data element. The technique provides for the construction of

arbitrarily-complex data elements, and for arbitrarily-chosen relation-

ships between data elements.

All expressions in a program which cause the language processor to

take some action, which includes "declarations", are viewed as trans-

formations ("procedures"). A basic set of these transformations has been

proposed. The two main classes of transformations are: (i) transforma-

tions of data, which create, test, modify, and destroy data elements,

and (2) transformations of sequence control, which includes control of

iteration, and of conditional execution. Functions (such as "add") are

*a sub-class of transformations, the sub-class which generate a single re-

sult. Functions are definable in two ways: (1) in terms of other trans-

formations, and (2) by enumeration, in the form of function tables. The

following components of computer languages are all regarded as forms of

data elements: (1) calls to transformations, (2) program sequence controls,



(3) domains of values which are defined by enumeration, and (4) identi-

fiers. Thus each of these components can be manipulated by transforma-

j tions defined for data.

The most significant demand on machine design which arises from this

jresearch is that much more freedom of storage organization is needed than

is provided by conveniional machines. Large-scale associative memories

j could be used to provide some of this needed flexibility of storage.

Recommendations for further work are presented and an extensive

bibliography on programming language, concepts, and design is appended.
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CHAPTER 1. INTRODUCTION

The goal of this research is to reduce significantly the programming

effort and e. apsed time required to write and debug computer programs.

The research task can be characterized as showing how:

I 1. To provide the programmer with a wide variety of programming

concepts (that is, data structures and operation), at least as

J wide as the set of concepts collectively available in current

programming languages. However, this must be done without creat-

ing a language so complex as to be unmanageable. The key is to

generalize on the concepts available in current languages, to find

more general notions of which the set in current languages is a

set of more specific cases.

2. To reduce the amount of detail that a programmer must concern

himself with, without preventing him from being able to specify

detail when he wishes. One such avenue of simplification is to

remove from the preqrammer's immediate concern all matters of how

a program will be implemented on a specific machine.

The elimination of any consideration of a compiling phase contributes

to both goals above. First, by so doing, the language is not restricted

to expressions which can be compiled; second, the distinction between pro-

cesses carried out at compile time and those carried out at execute time

vanishes, thereby simplifying the intellectual task of learning and

dealing with the language.

We can view the research task as one of developing a language for

programming a hypothetical machine. Ile can endow this machine with all

the nice characteristics of real machines. We must select for this machine

a set of primitive concepts which are in some sense optimally convenient.

("Primitive" means defined in some other way -than in terms of the structure

jand commands for our hypothetical machine.) We note that it is never a

matter of being unable to represent some concept or terms of the available

primitives: it is only a matter of how much struggle it is.

Devising such a hypothetical machine is not just an academic exercise.

We know that with a simulator, or interpretive program, we can make any

real machine behave like our hypothetical machine. le must qualify this

by -dding "with respect. to the computational results." The simulated

I . L . . .
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hypothetical machine might not be "efficient." That is, it might not com-

pute results for a given program as fast as the real machine could be

programmed (in assembly language) to do it. This possible loss of effi-

ciency is the price that must be paid fQr having the luxury of a hypo-

thetical machine which makes it significantly easier for the programmer

to do his job. We hasten to add that as our ability to write simulators

improves, the inefficiency contributed by the simulator will decrease.

We hope also that knowledge of what is needed for a simulator will stimu-

late developments in machine design which will aid in producing simulators

which operate with more "efficiency."

To repeat, the crux of programming language design is to choose a

good set of primitives, and to relieve the user of as much detail as he

wishes to be relieved of. I do not feel that current languages come close

enough to this goal. I hope to be able to show how we can come closer to

such a goal.

Some languages, both existing ones and proposed ones, have rather

elegant facilities built-in for defining new concepts. But the defini-

tional mechanism is not the issue here. It is rather, how to select a

set of building blocks (primitives) out of which "new concepts" can be

constructed without agony, circumlocutions, and slightly unsatisfactory

j substitutes for the data elements and structures that are really wanted.

Although we will be developing many definitions later in this report,

it is helpful to give at this point a few informal definitions of terms

which will be used in our preliminary discussions:

1. "Language" means a computer programming language representative

of the class whose members are the following current advanced

programming languages: ALGOL, COBOL, LISP, COMIT, IPL-V, FORTRAN,

FACT, SNOBOL, SLIP, JOVIAL, PL/I, and FOR1MAC.

2. "Problem-solution concept" means the programmer's mental concept

of what he wants a program to accomplish. It means the result

of any systems analysis or problem-solving activity which he may

have done in order to decide in principle what he is to write a

program to do. It means a general algorithm, without the complete

detail necessary to make it unambiguous and precise enough for

1



3. "Programming" and "preparing a program" means the to3tal program-

mer activity, beginning with a "problem solution concept" devis-

ing an algorithm, writing it in some language, and debugging it.

It also includes these activities applied to the modification of

a program already written and debugged. By way of contrast,

"programming" as used herein specifically does not include the

task usually called "system analysis"-the refining of a statement

of a problem or goal until it is clear what is desired, or at

least until it is clear what a program is to accomplish.

T 4. "Programmer" means a person who accomplished programming, but it

refers specifically to one who is trained for the programming

job, and has several years experience, rather than one who is a

casual computer user.

-- 5. "Data elements" means instances of data types, which are such things

as numbers, truth values, symbols composed of concatenated charac-

ters, strings, and names of other entities.

6. "Data structures" are the conceptual arrangements of data elements,

such as in tables, arrays, pushdown lists, and hierarchies. hen

we need a collective name for "data elements and structures," we

say "data objects."

ke
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CHAPTER 2. GOALS AND ASSUMPTIONS

STATEMENT OF PROBLEM

Need to reduce programming effort and elapsed time. In the area of

writing computer programs there is an undisputed and increasing need to

reduce both the programmer effort and the elapsed time required to prepare

a program. ("Elapsed time" means the interval between problem definition

and the achievement of a correctly-running program.) Furthermore, since

the cost of programming is going up with respect to the cost of machine

computations and the cost of compu ation is constantly going down, this

need is becoming more intense. In a number of situations today, particu-

larly military command applications, there is a high premium on reducing

elapsed time,

Ways to reduce effort and time is not only needed for preparing new

programs but also for revising old ones. It is widely, if not universally,

recognized that all but the simplest systems must continually evolve if

they are to retain their usefulness. A major problem with current computer-

based systems is that their capability to evolve-to be modified to keep

pace with changing system requirements-is poor. To modify most sizable

computer programs, no matter what language they are written in, is a time-

consuming, expensive, unpleasant process fraught with errors. From my

own experience, I believe it is no exaggeration to say that sizable com--

puter programs, such as those used in military command and control appli-

cations, are obsolete before they are finished and that they cannot be

modified fast enough to be satisfactory for current needs. I contend that

the application of computers to sizable systems is going to be severely

handicapped until signifiant progress is made in reducing programmer and

elapsed time.

Major deficiencies of current languages. Many attempts have been

made at making programming easier and faster. Among the present languages

there have been some mod-st advances. For many problems, useful and seem-

ingly adequate languages do exist. It is my conviction, however, that a

significant advance has been prevented by failure to recognize and over-

come several major deficiencies. All current and widely-known languages

possess these deficiencies in large degree. These deficiencies will be

discussed in turn.

I
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The first major deficiency of current languages is that they are

too restricted in what can readily be expressed in them. A programming

language reflects a philosophy of the world-it represents the way that

the world is viewed, in terms of objects and their possible relationships,

and in terms of the possible manipulations upon these. ALGOL and FORTRAN,

for example, view the world as describable in terms of 3 sets of atomic

objects which can be manipulated as variables:

1. integers less than some magnitude determined by the word length

of the machine on which the program.is to be run;

2. rational numbers representable with a fixed number of significant

digits, determined by the word length and the arithmetic circuitry

of the machine on which the program is to be run;

3. Boolean quantities true and false;

S! and in terms of one relationship: arrangement of homogeneous atomic objects

I in rectangular arrays. ALGOL and FORTRAN literally do not admit the exist-

ence of any other objects for manipulation. (Character strings are per-

mitted only as constants.) Whatever is expressed in computer languages

is expressed either in the primitives (basic terms) of the language or

- in terms defined by these primitives. Every language designer picks what

he thinks is a desirable basic set of primitives. From then on users are

"stuck" with the choice, unless they wish to "go outside the language."

It appears from the present research work that the number of basic data

types and structures required for a broadly-applicab]e language is not

large. It is surprising therefore, that the current programming languages

do not contain a set which is convenient for wide range of problems.

A philosophical observation: Much of the planning effort in algorithm

design, and specifically in the design of data structures, is an attempt

" to take advantage of regularity (in some cases to force regularity) in

order to simplify the description of data structures and proce:-ses.

Example: if the elements of a domain can be ordered in an array or tree,

it is easy to eontruct a name to element mapping algorithm (a "naming

rule") for the elements of the domain, thus avoiding the necessity of

providing individual names for all the individual elements in the domain.

Another example: where processes can be described in iterative or recur-

Il|  sive form, the specification of the processing to be done is thereby made

simpler than if the entire processing actions had to be written outI
1
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sequciially. It is obvious that the more uniform, or regular, the pro-

cessing is, the simpler is the processing algorithm. Much effort there-

fore goes into trying to make the processing more regular, even to the

point where it is a little unnatural. One looks for the common actions

in a series of processing steps to be done, puts these in an iterative

j loop, perhaps with tests and alternate branches to take care of the non-

regular parts of the processing.

This search for simplicity through regularity goes on continually,

particularly in the structuring of data. Attempts are consciously or

unconsciously made to reformulate the data into composite elements having

the same structure.

It is this strong desire for the simplicity which comes with regular-

Iity, I think, which has led programming languages to adopt the "regular"

data elements-such as list, and set, and even binary tree-while tending

to neglect the more complex elements such as those involving multiple

relations.

Too often a programmer must mentally convert the concepts he wants

to write into concepts whiclh can be expressed in the language he has chosen

to write in. This conversion too frequently consumes a large amount of

his total effort. For example, assume it is natural for him to think of

his data as numbers arranged in a tree and his chosen language is FORTRAN.

IIn order to be able to express his ideas in FORTRAN language, he must first
convert his data into rectangular arrays and convert the manipulations

he wishes to make on trees into the corresponding manipulations on rec-

tangular arrays. As a second example, assume that he wishes to process

I alphabetic data in ALGOL. Since ALGOL cannot speak of alphabetic charac-

ters, they must be converted to integers and processed as integers. When

these conversion problems become too aggravating, the programmer may be

impelled to choose another programming language. (Or to design yet another

programming language.. It is my strong conviction that this phenomenon

is largely responsible for the current proliferation of languages.) An

especially insidious effect of such restrictions is that they stifle fresh

"approaches to programming. With sone restrictions removed on what can be

expressed, a programmer should be able to devise algorithms that are funda-

Imentally more efficient (that is, take fewer steps).

I



I It is eppropriate here to digress briefly to emphasize a fact which

is widely known among computer people but often overlooked or forgotten:

IAll programning languages for general-purpose digital computer's are ui___-

versal, in that any computation procedure can be written in any such lan-

guage, input-output operations excepted. (Among the cases where this idea

of universality might be questioned is one where the character set avail-

I able in a language was deficient; transliteration of the data would be

required.) Thus, all computer languages (past, present, and, as far as

anyone knows, future) do not differ in what they can accomplish, but they

do differ in how readily some specific procedure can be expressed in them.

Each language has been designed to make it relatively easy to express some

I class of procedures, to deal with some limited class of problems. To ex-

press in a given language procedures for which it was not designed is aI
relatively difficult task-sometimes miserably difficult-but never impos-

si bl e.

1A second major deficiency of essentially all current languages (there

are a few languages for which I would say "moderate deficiency") is that

they force the programmer, at the stage when he should only be concerned

with working out the "logic" of his program, to be concerned also with the

details of how the program will be implemented on a specific computer.

For example, assume that the data to be processed is strings of alphabetic

characters, that the computer to be used is a fixed-word-length machine

without byte addressing, and that the language reflects this characteristic

of storage. In such a case, the programmer must concern himself with how

the strings are to be stored before he can define in detail the processing

to be done on these strings. Should he store one character per machine

word, which is wasteful of storage? Should he begin each string in a new

word which will usually occur at the end of a string? Or should he ignore

word boundaries, in which case he nmust address a string by both its storage

I location and character position within that location? A consequence of the

presence of such implementation detail "woven" into a program is that it

I "makes the program more difficult to change and therefore more difficult

to check out. A further consequence is that such detail makes a program

] more difficult to understand and therefore more difficult to modify by

someone other than the original programmer.

:I
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Ii The third major deficiency of current languages is that they are

"irregular" with respect to growth or change-in the sense that a simple

change in a concept may necessitate a major change in the program. Simple

examples of cases where this phenomenon can occur: increasing the pre-

]cision of a computation, adding a column of data to a table. A more

striking example is the extensive reworking necessary when a program grows

j Ito exceed the internal memory space available for it.

A fourth major deficiency of current languages is that they have a

large number of conventions, established by the designer, which are im-

plicit and inaccessible to alteration. By "implicit" I mean that the con-

ventlon* are established in an instruction manual, but are not otherwise

"visible" by inspection of the processor. By "inaccessible" I mean that

the conventions are not represented in the processor in a way that can be

accessed and modified by the user. Consider such a trivial example as a

date. In processors which provide for a date, the format of the date is

usually prescribed and unalterable. Such rigidity is both unnecessary

and undesirable.

One reason for the "weakness" of current languages with respect to

flexible data structures is that in most languages the structural relation-

ships are left implicit rather than explicit. This limits the user to the

relationship (or, possibly, a f-w relationships) fixed by the designer;

the user is unable to construct his own, nor to test what relationships

I exist. In the present work, I have taken the position that all relation-

ships must be explicit, and that they must be creatable, accessible (test-

:1 able), and modifiable by the user. With the ability to create new rela-

tionships among arbitrary sets of data elements (each of arbitrary com-

plexity) the user can create new composite data elements of arbitrary

structure and complexity. With relationships explicitly expressed, rela-

tively simple concepts can seemingly become quite messy (that is, complex,

an unfortunate fact of life, perhaps). Since regular strucLures can be

created readily by algorithm, this complexity is more apparent than real.

I A fifth major deficiency prevalent in current languages is the

necessity of specifying data structures at the time the program is written,

with little or no opportunity to thange these structures during program

execution. We need to be able to build data structures as the need arises.

'IL
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Standish was one of the first to recognize this goal and make a contribu-

tion to it (Standish, 1967). le has devised a method and a notation for

the dynamic creation of new data structures. In the present work I have

gone beyond what Standish did.I The continuing presence of the above-mentioned deficiencies is in

many cases closely associated with a desire for efficiency. The designers

of current languages have, with a few exceptions, an almost overwhelming

desire to produce programs which operate "efficiently." I claim that

these designers have sacrificed the productivity of the programmer in order

to attain a questionable efficiency of object program execution. I further

claim that the achievement of good object program efficiency is often an

t fillusion because it is relative to the estimated time required by a pro-

gram hand-coded in machine language to perform the same algorithm. The

I[ algorithm itself can be quite inefficient, however, due to the deficien-
I cies of the language. Without these deficiencies quite possibly the al-

T gorithm could be a much more efficient one: that is, requiring many fewer

steps. I therefore contend that to remedy the current deficiencies cited

above, we must revise our attitude toward efficiency. What this revision

entails will become clearer later.

AN APPROACH TO A SOLUTION

This section discusses the issues involved in trying to overcome the

deficiencies cited earlier, and explains my approach to overcoming these

deficiencies.

The conflict of flexibility with manageability. There is an obvious

conflict between trying to get increased flexibility without increased

complexity and, therefore, decreased manageability. Normally, the more

" features" one adds to a programming language, the more conventions one

Ihas to learn and the greater the effort required to build a processor for

the language.

j Is there a way to get increased flexibility without increased com-

plexity? I believe there is: by increased generality, and by the re-

.moval of unnecessary elements.

Generality is hopefully achieved by analyzing current languages to

jI see what apparently separate concepts could be considered special cases

of a more general concept. For example, perhaps we can find, or define,

!I
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"program statement" in a way which covers all the types of statements.

Some increase in flexibility will be achieved by the addition of con-

r I cepts, which inevitably contributes to an increase of complexity. We com-

pensate for the increase by removing some concepts from the composite pic-

ture of current programming languages. Not all concepts which are removed

are really thrown away; rather they are "factored out" into another part

of the programming task. Thus we are led to the idea of splitting the

programming task.

Splitting the programming task. My approach to overcoming the de-

ficiencies cited earlier is to separate the programming task into two

parts: *

1. The working out of the "logical processes" of a program independently

of the characteristics of any existing computer.

2. Specifying the details of how the program is to be run on an exist-

ing (hardware) machine.

I For the purposes of this discussion we will say that the "logical processes"

of a program, including the structural description of the data, are written

_ j in "logical language," and that the added information necessary to get

such a program to run on an existing machine is expressed in "implementa-

tion language." Independence of the characteristics of existing computers

I means specifically the quality of being independent of the following charac-

teristics of computer hardware:

1. Linear addressing schemes for memory cells

2. Fixed word sizes

~3. Non-homogeneous memory units

4. Internal number representation

5. Serial processing (that is, instructions being executed in sequence)

No current programming language known to me is truly independent of all

the above characteristics.

Another way of expressing independence: A program (in "logical lan-

guage") which is completely independent of a real computer is one which

would not have to be changed no matter what the hardware characteristics

of the real computer might be. (Such a program can, of course, only be

run on the real computer through the intermediary of another program; that

is, a compiler or an interpreter).

I
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That it is possible to make such a split of the programmning task into

two parts should be obvious. The logical language-the language in which

the programmer accomplishes part 1 above--is by logical necessity a lan-

guage for some hypothetical machine. It is a provable fact that any

I general-purpose computer can be programmed to simulate any other definable

computer, input-output excepted. In particular, it is possible to write

a simulator for the above-mentioned hypothetical machine and the logical

language which it obeys. Every computer language processor is such a simu-

lator. For example, an ALGOL compiler for computer X is a program which

makes computer X behave like an ALGOL machine-one which responds to com-

mands written in ALGOL language. Hence we see that it is possible for a

I programmer to write and debug a program usirg only the logical language-

that is, without concern for how the program might be implemented on sonic

specific hardware machine.

The second step-adapting the program written in logical language to

run on some existing machine-.is in fact mechanizable. Use of a simulator

is one way of accomplishing this mechanization. However, mechanization of

the implementation does not always yield an efficient object program.

.1 Hence the adaptation may in practice involve specifying some additional

information via implementation language; for example, how the data is to

I• be arranged in the available storage devices. This additional information

is in the nature of "coaching" the processor of the language in order to

S produce an object program of satisfactory operating efficiency and reliabil-

ity. In other words, implementation lamguape will be needed for those

things that we have not yet learned how to implement mechanically in a

way that gives satisfactory operating efficiency. However, as computation

becomes cheaper, as machines beiome faster, as larger high-speed mei.lories

become available, and as our ability to write processors improves, in many

cases we should be able to dispense completely wilh implementation lan-

fl guage.

The effect of this splitting of the programming task into two parts,

each with its own language, opens the way to overcoming the deficiencies

cited earlier. In considering the design of a logical language, the de-

signer can then be free of the pr.essures imposed by the need for object

program efficiency because that burden has been moved to the province of

I
I
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the simulator and the implementation language. The way is thus cleared

for designing logical languages having many miore capabilities. By "many

more capabilities" is meant "more convenient capabilities" rather than

any increase in computing power. Among these capabilities should be

greater ease of program modification.

Since thp logical language is a language for an abstract machine,

such a split seems to preclude its application to a certain class of pro-

grains we might call "computer-specific." A computer-specific program

commands a specific machine to carry out actions peculiar to that machine.

Examples of computer-specific programs are: a real-time computer program

with .radar inputs and teletype outputs, a monitor or supervisory program

jof an operating system, and a computer reliability check program. I think

it will be the case, however, that computer-specific programs will, in con-

trast to "ordinary programs," be leaning heavily on the implementation lan-

guage: that is, computer-specific programs will generally have only their

skeletons expressed in logical langauge; implementation language will be

required for the expression of details.

Inefficiency of program execution. There may be objections that such

a proposed split will not permit a programmer to take proper account of

hardware limitations, and hence program execution inefficiency will be a

f necessary consequence of splitting the programming task. That some inef-

ficiency will result is probably true. It is my conjecture and strong be-

lief, however, that no significant reduction can be made in computer pro-

gramming effort and elapsed time unless hardware limitations are removed

from the programmer's primary concern. The research reported here is, in

a sense, the exploration of the consequences of ignoring hardware limita-

tions when working in the logical language.

How much program execution inefficiency is likely to result from the

proposed technique is a difficult question because efficiency is expressedI I Ias percent of some norm, or base. In this case, we don't have a satisfac-

tory norm. Often "an expertly-hand-coded machine-language program" is

used as a norm. There are at least 2 reasons why such a norm is unsatis-

factory: (1) it embodies some unknown compromise between the antithetic

]goals of minimizing execution time and minimizing storage requirements,
and (2) it generally implies very conventional programming techniques, yet

we have no way of knowing whether radically different techniques might be
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considerably better. I believe a better norm would be "an expertly-de-

signed special-purpose machine." Compared to such a norm, an expertly-

hand-coded machine-language program is grossly inefficient. I would esti-

mate tile efficiency expressed this way is in the neighborhood of 10%.

This gross inefficiency is the price we must pay, at least at present,

in return for being able to utilize general-purpose digital computers.

'iuppos! for the moment that the proposed approach to developing a program-

ming language resulted in programs which were 50% efficient compared to
expert hand-coding in machine language. lie could then say that these

(the former) programs were 50% of 10% (that is, 50) efficient compared

to expertly-designed special-purpose machines. The idea that I am tryingJto stress is that heavy emphasis on program execution efficiency is rather

pointless, at least where we are concerned with conventional present-day

computers. To sum up, my whole approach is based on the premise that the

possible resulting inefficiency of prograin execution will be a small price

to pay if the efficiency and productivity of programmers can thereby be

increased.

Some of the arguments against a broadly-applicable language have been

eloquently summed up by Mitchell, Cheatham, et al ("A Basis for Core Lan-

guage Design"):

1. The language processor must carry as overhead (in time and space)

all of the mechanisms for language facilities which are not being

used in a given program;

2. Each addition or elimination of a language feature is expensive;

3. Implementation of the processor on a sma.l machine is likely to

be impractical.

In this present investigation I frankly do not care about these arguments.

I am trying to answer the question: "What would be the ideal language,

if any, from the programmer's point of view?" However, when we becomeI
concerned with the problems of implementing any language that I might pro-

pose, these arguments become of concern. How, in fact, we must ask, can

unneeded parts of a language and its processor be stripped off from a

given program?

Emphasis of the present work. This splitting of the programming task

leads to the development of two languages for programming. The first of
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these langu.oes is concerned with expressing a program for some hypo-

thetical machine. The second of these languages is concerned with speci-

j Lying the details of how the program is to be run on some existing real

machine. This report deals almost exclusively with the logical language.

The aim is to show that, given a willingness to tolerate a low efficiency

of execution, we can make a significant step in the direction of improving

progranmmer efficiency.

What I am concecned with is striving for a set of primitives (basic

concepts) .;hich is at a comfortable level of detail, and in terms of which

all predictably useful concepts can be expressed without undue difficulty

(ideally, with uniform degree of difficulty). By "comfortable level of

detail" I mean something analogous to that available in current languages.

What I am attempting here is a formalization of many concepts which

have heretofore been left to informal description in a programming manual,

and to the intuition of the designer of the language processor. By "for-

malize" here I do not in general mean "put into mathematical-looking nota-

tion" but rather "make explicit by diagramming and test." One of my chief

goals is to demonstrate that there is a gain to be had by making explicit

many of the programming language concepts which have traditionally been

left implicit.

REVIEW OF OTHER APPROACHES TO A SOLUTIuN

Of the current work in programming languages, very little is being

carried out under a philosophy similar to the one I have advanced. Most

developments can be categorized as single languages devoted to rather nar-

row classes of problems, with little or no attempt to separate the purely

intellectual problems from the potentially mechanizable ones. Some lan-

guages, such as LISP, do try to minimize the programmer's concern with

implementation; unfortunately these languages tend to be aimed at rather

limited types of problems.

I have found only one hint of a development which attempts to separate

thve writing and debugging phases of programming from the achievement of

an efficient implementation. This occur ii a few sentences in the paper

by E. W. Franks describing the programming system LUCID (Language Used

j to Communicate Information Systems Design)(see bibliography). No details

are given, however, in this or any other document known to me.

1
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There are 3 major current approaches to Lhe problem of reducing

programming effort:

1. The "generalized prograuning system," in which all of the func-

tions needed for some class of problems are built into the pro-

gramming system. An example is The MITRE Corporation's ADAM sys-

tem (see papers by Burrows and Connors in bibliography). While

in principle it may work, it has at least the following deficien-

cies:

(a) It is aimed at a limited class of problems.

(b) It is big and unwieldy, and complicated for the user to

understand.

(c) It has been designed and built around a specific machine com-

plex (the IBM 7030 plus special peripheral devices); it seems

to me that it will have very little "carryover" to the next

generation of machines.

2. The "growing system" which accumulates all the programs and sub-

routines ever written for it and makes them all available for use

as components of any new program to be written. An example, al-'

though not a good illustration, is the University of Pennsylvania's

MULTILIST System (Prywes, 1963). Although a growing system could

conceivably be used for a broad class of problems, it appears to

have the deficiencies (b) and (c) just mentioned. Furthermore,

its primitives (basic terms) are at a level of detail which is

undesirably low.

The "growing machine" as conceived and implemented by Profes-

sor Carr at the University of Pennsylvania is a flexible scheme

for creating linkages among a set of programs through the inter-

mediary of common pushdown lists (Ostrand, 1966). It provides

for the definition of new data types as linear lists of other data

types; the primitive data types are limited to the conventional

ones: integer and real (as defined by the machine hardware), and

identifier (expressed as a machine address). The language of

command strings is basically a Polish suffix language (operators

following operands). Because certain operators (such as QUOTE)

require other than evaluation of its operands, and because the

system conventionally evaluates its operands before it knows what
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operators will be applied, these operators must be prefixed to

their operands instead of suffixed.

3. The "something-for-everybody" language, in which the features of

a variety of languages have been collected into one. The out-

standing example of this type is PL/I (IBM, PL/I, 1965; Radin,

1965). PL/I incorporates the best parts of FORTRAN, ALGOL, COBOL,

and a list-processing language. It attempts to avoid saddling the

user with a mass of detail by being divided into nested sublan-

guages, so that a user does not need to know all about the lan-

guage in order to be able to use a part of it. It may succeed

in avoiding the widespread deficiencies of narrowness of applica-

tion and language complexity. However, I do not believe it avoid.;

two of the major common deficiencies discussed earlier: the one

(deficiency §2) of forcing the programmer, at the stage where he

should only be concerned with the details of how the program will

be implemented on a specific computer, and the one (deficiency

#3) of being irregular with respect to growth and change.

Perhaps the greatest deficiency of PL/I is that it requires

the user to keep in mind the internal representation of his data.

One must know the internal representation in order to understand

the rules of converting from one data type to another. One must

know how the hardware limitations of the machine affect the data

elements used.

The work of Tim Standish at Carnegie-Mellon University is not con-

cerned with the overall problem of simplifying programming but it is an

important contribution to achieving more flexible data structures. In

his doctoral dissertation (A Data Definition Facility for Programming

Languages," 1967), he has a powerful scheme for defining classes of ob-

jects, where an object is some individual variable or some list of objects.

The definitions of data structures are themselves data structures which

can be manipulated by program. His elementary types of objects are: real,

• integer, string, Boolean, and identifier. Overall his scheme is quite

elegant and flexible. Provision does not exist for working readily withJ individual one-of-a-kind objects: such an object must instead be regarded

as a member of a class having only one member. Provision is lacking forI



17

I defining new elementary data types.

These examples are mentioned, not to deride the work cited, but to

point out that current approaches have deficiencies which I believe can

be overcome by the approach described in this report.

MAJOR DESIRABLE CHARACTERISTICS OF A PROGRAMMING LANGUAGE

This section discusses the desirable characteristics of a programming

jI language, given the goal of maximizing the user's efficiency. At this

point the reader may not be convinced. lie must take it on faith, or re-

1 serve judgment. One of the purposes of this report is to justify this

choice of characteristics.

'Generality of data elements and structures. In the structuring of

Idata there are two opposing forces at work:

1. Economy of expression, and possibly also economy of storage, just

because it is a natural human tendency to seek such economies.

2. Explicitness of the structure, so that it can readily be perceived

and readily altered.

When economy is stressed, the explicitness of the structure essentially

disappears. The structure is described on paper somewhere, but not ex-

plicitly stored. The user must learn and -emember the structural infor-

mnation. It cannot be changed during program execution, and usually cannot

be changed at all within the given language. When explicitness is stressed,

economy must thereby be sacrificed.

Current programming languages have tended strongly to take the first

course, economy, with the consequence of inflexibility. For problems well-

I structured in advance, this presents no real handicap. For problems not

so structured, however, current languages have been somewhat cumbersome

I to use, because of their lack of flexibility in data structuring. This

report argues, however, that the cwell-structured problems are now being

handled by languages which havc fixed and limited data structure capability.

For each class of data structures we seem to need a new language. This is

my explanation for the proliferation of higher-level programming languages.

What is needed is a language with great flexibility in the data structures

it can deal with. This paper proposes to show how such generality might

be accomplished. lI particular, for complete flexibility in data struc-

tures, it must be possible to express an arbitrarily- Lhosen relationship

between two data elements, or among any set of data elements. Such a

I.
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relationship creates a composite data elemcnt, and this composite [nay in

3. tturn be an element of another composite.

The exact choice of a data structure depends on the way the programmer

- thinks and c.n the way he intends to manipulate the data. Our concern should

; be that he not be unduly restricted in the way he can express his data.

In particular, we want to avoid the failing of many languages: namely, that

jv a particular structure can be expressed in exactly one way-that there is

a "standard way" of doing a particular thing.

Often a concept cazi be exl.ressed in more than one way. Examples are:

1. A set can be expressed by enumeration of its members, or by an

I algorithm which generates the enumeration.

2. To each list (ordered set) there corresponds an unordered set.

1 3. For each list of characters there is a corresponding string of

characters.

4. A regular structure, such as a tree with n branches from each

node, is readily expressible in the form of a table.

Each method of expression may have its own advantages. Certain kinds of

jmanipulations, however, can be performed only on one of several alternative
modes of expression.

j A related fact is that one of the most important features of a data

processing system is the provision for reorganizing the data into a form

J most convenient for the job at hand. That is, we need to be able to trans-

form data from one structure to another conceptually equivalent one. We

contend that there is no definition of conceptually equivalent that fits

all cases; hence, what "conceptually equivalent" means is up to the user

to define. Except for some well-defined equivalences, "equivalence is in

the [mind's] eye of the beholder."

The fact that a concept can be expressed in more than one way forces

us to choose between two philosophies of processor design:

1. Require that the user be aware of a mode of expression so that

: 1he can decide whether a given manipulation is applicable.

2. Require the processor to be able to convert data to an equivalent

form whenever needed to make it amenable to specified manipulation.

I reject alternative 2 as impract'ical at the present stage of development

of processors. In this study I take the viewpoint that it is up to the

.11
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user to be continually aware of the form (structure) of the data that he

is manipulating, and that it is up to him to convert to an "equivalent"

form when necessary to make it more amenable to some specified manipula-

tion.

I make the observation that the design of many programming languages

is based on reducing sets of equivalent forms to single representations

of each set. This has the advantage of simplifying the operations of the

language, by reducing the variety of forms which can occur, but it des-

troys the convenience that alternative forms give us, and sometimes forces

us to mold our ideas in forms that are inconvenient if not downright cum-

bersome.

Multidimensional data. The real world isn't always describable con-

veniently by linear (one-dimensional) strings. Two-, and even three- and

Jhigher-, dimensional problems need treatment by computers. The advent of

computer-controlled graphic displays calls for two- and higher- dimensional

languages. Multi-dimensional languages are those which not only deal with

multi-dimensional data but also have capability for multi-dimensional

expressions of commands, such as are represented in mathematical formulas

(having sigma signs, superscripts, subscripts, etc.).

The difficulty with such multi-dimensional languages is that we knew

practically nothing about grammars for languages which contain other than

linear expressions. What we do in practice is to find some way to map

(set up correspondences of) multi-dimensional' concepts into linear forms.

Cheatham (1066) uses this technique to establish a correspondence between

a desired two-dimensional notation and a one-dimensional representation

of that notation. Put abstractly, his one-dimensional representation is

1 a cartesian product of the possible two-dimensional elements, taken in a

Ispecified sequence. This technique could be extended to accommodate any

two-dimensional language, such as the language of engineering drawings,

the only real problem being the specification of the sequence in which

the two-dimensional languaoe elements are to be taken.

In keeping with this observation, we find that, in our discussions

of how to treat data elements which we think of in terms of g,,aphical

1 structures, we have established correspondence rules for mapping between

graphical structures and linear notation. For example, a pair of nodes

with a relationship between them is mapped into an n-tuple containing theI
~-~ -$ - --
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node names and the relation name.

Generality in the sense of freedom. A programming language should be

essentially unrestricted in what can readily be expressed in it. When

thought of only in terms of the variety of procedures which can be expressed

in it, this "feature" seems to be a banal triviality, since current lan-

guages seem to have this variety. However, when the emphasis is on the

variety of data types and data structures, it is no loncer a triviality.

Clearly we are seeking a high degree of generality. But generality usually

entails some penalty, such as less efficiency in some aspect, greater

learning difficulty, or greater opportunity for error.

'Universality. It cannot be emphasized too strongly that I am not

claiming for m; language approach "more universality" in the computability

sense than is afforded by other current languages. All general-purpose

languages can compute "some representation" of any computable entity.

The proviso "some representation" is necessary to cover the cases where

the input-output character set does not contain a needed character.

What is in fact important is the range and richness of the representa-

i tions which the language offers. No language can offer the full range of
possible representations, for that range is unbounded. Hence, the mental

concept of a given algorithm must be mentally mapped into a corresponding

concept in the available language. It is the difficulty of this mapping

which concerns me. For example, consider that we wish to compute with

a 3-valued variable with arbitrary names "T", "F", and "U". If the lan-

guage has no p-ovision for defining such a variable, then it must be map-

ped into something which the language does have. If it has integers, we

could map T, F, and U into the integers 0, 1, and 2, and then define cer-

tain functions on these integers which would represent the functions we

originally conceived on T, F, and U.

Another example is that of representing trees and operaLions on trees

in a languoge such as FORTRAN which admits only the structure "rectangular

array". A tree can with a non-trivial effort be mapped intc n array.

The array manipulations which correspond tree (list-structure) processing

manipulations are complicated and unnatural.

Balance. A programming 1. iuage should be balanced, in that it should

be approximately uniformly easy ., express any program of the types now
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to be listed in the next section. For example, it should not be the case

that it is very easy to talk of homogeneous arrays but require a circum-

locution (e.g., parallel tables in ALGOL) to talk about a non-homogeneous

array. What constitutes a uniform basic set of language concepts is to

a large extent a matter of taste and judgment.I iMinimal discontinuities. An objective constantly in my mind has been

that of making a language which readily accommodates change. I want a

language which does not have radical discontinuities. This does not mean

that every change in a program specification should result in a triNial

change in the corresponding program. Rather it should mean, in my opinion,I that a given class of changes (e.g., precision of computations) should not

result in radically different amounts of effort to modify the program

accordingly, depending on the values of the parameters of the change. To

be more specific, in the case of precision, it should require approximately

I the same amount of user effort to alter a precision from one value to any

other value. Notice that this goal is definitely not met by most current

languages, because they are based on a fixed word length of the computer

hardware.

Simple changes in concept should result in simple changes to a pro-

gram. Examples of "simple changes" are: changing the collating sequence,

increasing precision of a calculation, inserting a column in a table,

change of domain size (of which increased precision is a special case),

change of domain (e.g., from real to complex), change of domain units,

introducing i-:tances of a model which deviate from the model.

Elt iere I point out that these types of clanges are not limited to
jthe pre-execution phase but can be made during execution.

Si lcty through emphasis on fundamental concepts. 'What I am de-

veloping is a basic framework within which can be determined without too

much trouble a broader range of programming concepts than is available

in current programming languages taken individually. I have not defined

-as many ready-made concepts as are in some current languages, such as some

of the complex searches that are available in SNOBOL and FORMULA ALGOL.

j Hopefully what I have done is to show what basic concepts are needed in

order to be able to define as needed a greater variety of concepts.I

I
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I Hardware independence. A programming language should be unencum-

bored by considerations of the hardware of the computer and of the proces-

sor of the language (the simulator of the hypothetical machine). Speci-

fically, as mentioned before, it should be independent of the following

I characto' istics of computer hardware:

1. Linear addressing schemes for memory cells

-I 2. Fixed word sizes

3. Non-homogeneous memory units

4. Interna' number representation

5- Serial processing (that is, it should be possible to specify

* asynchronous processes)

I These hardware.dependent characteristics can be "hidden" from the program-

mer by the simulator. It would be desirable to include in this list the

I input and output character set and the specific input-output devices.

However, these latter cannot be satisfactorily hidden by the simulator.

IThe language should be independent of processor considerations in the fol-
lowing ways: (a) It should not be limited by concern for the efficiency

1of the processor. (b) It should not require that everything be completely
defined before anything can be processed; that is, it should be possible

to write and debug fragments of programs. (c) A program should not be pre-

vented from modifying itself in an arbitrary way; this includes modifying

definitions as well as commands.

Dynamic modification of program, data elements and structures. There

should be as little restriction as possible as to what can be modified

]during execution. In particular, we may want to increase the precision

of a calculation in order to keep the precision of the result within

bounds, to add elements to a domain, to alter a collating sequence.

One of the obvious consequences of choosing to have dynamic modifica-

I tion is ttiat a program cannot be compiled-it must be interpreted. It

should be clear that in order to be able to dynamically modify a program-

that .is, to be able to have a program modify itself-the program must be

71 viewable as a data structure.

Program sequencing. We need a more generalized concept of program

sequencing than is available in some conventional languages. We need

first: parallel, asynchronous processing. Second, the ability to have

31
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statements which are executed when certain conditions become "true"

(called "chronic" statements by some). And third, we need more explicit

control over branching, as to whether the branch is permanent, or tempo-

rary (meaning return later to the point'of call), with the ability to

remember, on a pushdown, the set of nested calls, and the ability to

manipulate this pushdown.

Undefined functions and "garbage." Consider the class of machine

operations which produce a result. A result is only valid if the opera-

tion ("function") is defined for the values of the arguments given to it.

If it is not defined for its arguments, it still produces a result, but

this'result is "garbage", that is, meaningless. Most machines are con-

structed, however, so that garbage cannot be distinguished from valid re-

sults simply by inspection. In many applications, it is critically import-

ant that garbage values must not be permitted to masquerade as valid re-

sults. In applications such as space flight control or atomic reactor

control, the processing of garbage values in place of valid ones can have

disastrous consequences. It is practically impossible to achieve assurance

that garbage values will not arise in a large computer program, for the

simple reason that it is impractical to completely chk 'k out such a pro-

gram.

The problem of avoiding undetected garbage can be dealt with if

every function can be arranged to yield a recognizable "value" or "un-

defined" for those combinations for arguments for which it is not properly

defined. The "overflow" signal generated in most computers is a very

rudimentary embodiment of this concept, but it may go unrecognized if

the programmer does not expect it and explicitly test for it. What is

necessary is the existence of a "value" which is automatically recognized

as "undefined" by every function. In conventional hardware such a value

does not exist because every bit combination or digit combination has

been assigned a numerical significance.

Two kinds of "undexinedness" should be recognized. It may be the

case that the domain is defined but the member of the domain is not.

Or it may be the case that the domain is not defined either.

It is not only in the case of evaluation of a function that a value

of "undefined" can arise. It may occur when an attempt is made to refer-

ence a data element if the element does not exist; that is, if the reference
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does not refer to an existing storage cell. IL may occur when execution

turns out to be impossible for reasons other than undefined parameters:

e.g., a specified transformation may not be performable on a given (corn-

posiie) data element, or a program statement. may be syntactically or

semantically incorrect.

Accessibility and traceability. The user must have access not only

to the contents (values) of data elements, but also to all their related

entities. Given any data element (atomic or composite) the user must

be able to trace out (via the execution of program statements) ali of the

associations, or relationships, of which the given data element partakes.

For each association thus determined, the user must be able to find out

all the associated data elements and their roles in the associations.

Examples: given a data element, find its identifier, or identifiers, if

there is more than one. Given an atomic data element, or, more properly,

a slot which can contain a value, find the explicit indication of what

domain that value must be taken from. Given a data element which is a

member of a set, find the data elements which are the other members of

the set.

The traceability feature described here is a conceptual one. In par-

ticular it must not demand of the user any knowledge of how data is stored

in a real machine.

Definitions and declarations. One of the needs of a proglamming lan-

guage is to have explicit the consequences of defini'ions. The more ex-

plicit these can be, the easie' to learn and to remember what defi-

nitions are in effect at any gi' time.

In some current languages, such as PL/I, there is a good deal of

"learning" necessary in order to know the effect and scope of definitions

("declarations"). One must learn, for example, when the definitions be-

come effective: i.e., whether tney become effective at compile time or

at execute time, and at what point of execute time. One must also learn

I1 at what point definitions cease to be effective: this generally occurs

at execute time upon leaving a block under some specified set of circum-

stances. Ideally, there should be a simpler set of conventions.

SIIn addition, one needs the flexibility of being able to alter defi-

nitions dynamically. That is, there should be a minimum number of defi-

nitions which are fixed and unalterable.
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Removal of distinction between processinq ,phises." I submit that

making a distinction between times that parts of a program are "interpreted"

or at which variables may be "bound" is an unnecessary complication. These

various "times" are: pievprocessor (macro-processor) time, compile time,

load time, and execute time. Distinction among these times and about what

operations take place at which time is motivated by the desire to be "ef-

J ficient". It is a feature I choose to do away with. The first reason

is because of the unnecessary complication which is otherwise introdIced

into the language. The second reason is that since I wish to have dynamic

modification of both processor and program, compiling in the conventional

jsense is not possible anyway, since such modification is prohibited b)

the nature of the compiling process. A "pure" compiler leaves no source

language to be interpreted at execution time. Compiling is based on the

static analysis of source language statements before execution. Such

analysis is technically impossible to complete for a program which modi-

fies itself in an arbitlrary way. It is, of course, possible, for a pro-

gram which modifies itself in a predictable way, through indexing, for

example.

Provision for exceptions to general rules. An exceedingly important

concept is that of beinq able to give general rules (algorithms and

definitions), supplemented by special, and possibly contradictory, rules

to take care of certain cases. When such rules are employed, the 'xcep-

tion rules" must be distinguishable, so that the processor will know that

they take precedence over a general rule ;henever the exception rule iq

applicable. What does all this really mean? What kinds of rules could

we be talking about? The applicability of algorithms is decided by

Jcontrol sequencing mechanisms, and is wholly determinate. How about defi-

nitions? The applicability of definitions is dynamically determined, like

j the execution of algorithms. The order in which conditional statements,

(algorithms or definitions) are tested automatically establishes the

t priority with which they will be applied.

Shorthand notations. One of the research goals is to provide as

much flexibility of expression and breadth of concept as possible.

Generality and economy of expression, however, are in conflict, hence

we need the capability to introduce shorthand notations for frequently-

used expressions. We need only provide the shorthand mechanism and let
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,no user introduce his own shorthand expressions.

etadata. As important as being able to combine data elements to

make composite data elements is the ability to associate explicitly with

a data element a second data element which represents data "about" the

first data element. This second data & ement we might term a "metadata

element". Examples of such metadata ( .aents are: an identifier, a do-

I main "prescriptor" which specifies from what domain the values of the

first element must be taken, an access code which limits the conditions

under which the first data element c-in be accessed.

An alterable, prunable processor. How can we provide a wide variety

j of features, without: a) making the language processor too big and cum-
berson, b) making the user learn a lot of information he doesn't need,

c) unnecessarily restricting the user with lots of conventions about the

use of the features which are provided. Simply providing a "kernel" lan-

guage, out of' which the user can build anything he likes, is not enough;

Iit is too much work for him to build all his own "tools". Providing him

with a large library of subroutine packages is not enough; he must wade

through catalog descriptions to find out if what he needs exists; then

lie may be frustrated to find that he would like just a slight modifica-

jtion of a cataloged program. Providing a large processor with lots of

features is not enough; some features may be just excess baggage. It may

-]happen that the user wants to modify some processor convention.

A respectable language should provide for him a great many of these

useful definitions, such as formats of dates and times. The point is

that these definitions must be accessible to him, in case he would like

to make some additions or changes, so that he is not stuck with one set

of conventions. In other words, the user should be able to get at and

modify as much of the definitional mechanism as possible.

Envision a system in which we have a processor and an explicit

set of rules which guide the processor. Among these rules will be the

3interpretation rules tr be applied to data and imperatives. The user

can, if he chooses, alter the rules to suit himself, at the risk of

making an error. lie can delete the unused rules, to make less "baggaoe"

:1 and possibly to speed up the processor. A safer elimination procedure

would be to have the processor mark all the rules it used. After an
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I extensive checkout run the unmarked rules could then be deleted, although

there will always be the risk of deleting a needed rule.

IToward meeting all these needs at once, I propose a "large" processor

which includes a program library. The processor will largely be 11acces-

j sible" to the user. le can prune off the parts he doesn't need. He can

alter some of the conventions to suit his needs, not only before but also

1 I during execution.

One of the tricks is how to make the processor alterable and prunable.

1I Among other things the interpretation rules used by the processor must

I be accessible by the user as data.

EXPRESSING AND PROCESSING DEFINITIONS

Types of definitions. One of my goals is to make more explicit and

more simple the handling of definitions.

1First, the concept of "definition" itself needs some discussion and
clarification. "Definition" in the programming context means a variety

of things ("Declaration" below is used in the ALGOL or PL/I sense):

1. Defining a "domain", specifying a set of "values" which a speci-

fied variable must take on. (For example, "Boolean" by convention

specifies the domain (T,F).) Defining a domain is neither an
- "actiont , in the usual sense of imperative, nor is it an allowable

substitution action to be invoked at some appropriate time. It

is rather a specification that restricts some future action.

2. Declaration of a data element, possibly giving an initial value.

3. Declaration or definition of a composite data element, a data

structure.

4. Declaration of a procedure.

1 5. A "standing order", sometimes called a "triggered statement" or

a "chronic statement", to be executed whenever some specified

condition arises.

6. An equivalence between two members of a data domain or between

members of two different domains.

7. A definition of an ordering, such as collating sequence.

8. "Scope" of an identifier, usually defined by a means outside the

] language.

9. Shorthand notation (procedure call, macro) for a larger expression

implying that some form of uninterpreted string substitution is
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to take place.

Dynamic versus static interpretation of definitions. One of the

philosophical problems which must be resolved early is the matter of when

a definition becomes effective. Should it become effective at the time

that it is made (that is, at the time it is written down or created dur-

ing program execution), or should it become effective at the time it is

used (interpreted)? This issue can be illustrated in the following way:

Let us say "hat the definition B is made in terms of some other defini-

tion A: for example, a definition of a new domain in terms of one or more

f domains defined earlier. The question is: should a change in the definition

A automatically invo'-. a change in the definition B? The user ,iay have a

legitimate desire to have it one way or the other. Therefore, we must

have some set of rules by which he can control which is the case..

Since we are assuming a fully interpretive processor, we could if

we wished assume the dynamic situation wherein a change in A results in

a change in B. If we wished to avoid such a change, we can copy A and

rename the copy, then change the copy. Since we want and have the dynamic

change ability, this interpretation is preferable. In other words, under

the dynamic interpretation, w --nn construct a static situ-;don if we want

it. Under the static interpretation, we cannot as readily construct the

dynamic one.

The command interpretation of definitions. We need to identify a

common thread in the above list of examples of definitions. That common

thread is that all such definitions can be interpreted as commands which

affect the contents of storage. Some of these commands will affect unseen

storage within the processor: that is, they will in some way (which is

not defined for the user) affect the action of the processor. It seems

easier to understand and remember what each definition does if it can be

thought of in terms of its action within the program or processor, even

though this command interpretation of definitions seems somewhat contrary

to intuition.

This command interpretation of definitions helps to avoid the com-

plications of hdviag to learn when definitions become effective and when

they cease to become effective. If we take the command interpretation

point of view, it follows that definitions become effective when they are

executed and that they cease to be effective when dynamically superseded

I
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by anther definition. Furthermore, this command interpretation is

nicely compatible with the need for dynamic rather than static inter-

pretation of definitions, discussed above.

To summarize: definitions are to be established and interpreted

d~namically. Note that data is automatically treated this way, so this

choice follows naturally from our desire to be able tolreat definitions

as data until the instait of interpretation.

A vital consequence of this fact is that compilers are ruled out as

possible processors for the language. A compiler necessarily treats all

definitions as static, fixed at the time of compiling, which is before

any 9xecution has taken place.

NATURE OF A PROGRAM PROCESSOR

Basic to the idea of a programming language is the concept of a

processor. A processor is a mechanism, possibly a hypothetical one rather

than one realized in hardware, which translates into some appropriate ac-

tion the expression written in the programming language. We call this

translation "interpreting a program". Earlier, I presented the idea that

definitions were interpretable as commands, hence we can regard a program

as consisting of expressions, some of which is interpreted as commands

and the rest of which is i:.terpreted as data (operands). Which interpre-

tation a given expression gets depends on the control mechanism of the

processor. As a consequence, it is perfectly possible for a given expres-

sion to be interpreted at one instant as a command and at another as an

operand. It naturally follows that a data element which is a program

statement (a "transformation") can be created, modified, moved, etc.,

just as can an "ordinary" data element. The sequence in which data ele-

ments (necessarily having a certain structure) get interpreted as commands

1depends on the conventions for control sequencing, and on the manipula-
tions performed on the control mechanism by other commands (such as

"jumps"). As explained earlier, we want the processor not only to be

able to handle a "single thread of control" but also to be able to exe-

cute multiple control "paths" (through a program) in parallel and asyn-

chronously. In addition it must provide for the execution of "chronic"

(or "triggered") statements which are commands to be executed whenever

specified conditions prevail.

It is convenient to think of the processor as consisting of two main

parts, a "command interpreter" and a "data interpreter". With this in

EN
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mind, we can say that whether a given exprestion is a program statement

or a data element depends on which interpreter it is sent to (by the

"control mechanismn").

It is this data interpreter which is the heart of my concept of data

elements. It is the task of the data interpreter to create, examine, and

provide the means for modifying data elements. It can be said that the

data elements and structure of the language (or any language) is simply

the illusion that this interpreter presents to the user. The senses of

"create", "examine", and "modify" have to be spelled out in greater de-

tail. It is crucially important to realize that the basic actions of the

data'interpreter determine the whole character of the programming language.

We regard every program statement as expressible as a "transformation

call". I have in mind a canonical form for expressing these transforina-

tion calls: it is the familiar "prefix form", of which an example is:

T(AB,C);

Every statement in any programming language should have a counterpart in

this canonical form. For each statement type in each programming language

there might have to be a conversion rule for converting it to the canon-

ical form. In some cases, some "understood" information might also have

to be supplied during this conversation.

With this viewpoint just outlined, the loading and execution of a

program consists of the following two simple steps:

1. Read in and store the following data elements and structures,

some of which will later be interpreted as program statements.

2. Begin by interpreting the data element named "P" as the first

program statement.

The idea that there is a canonical form for all transformation makes

the interpreter mechanism a conceptually simple one. The difficulty of

any such interpreter is that part which must examine (parse) a statement

and in effect reduce i. to canonical form. If we could agree to keep

statements always in canonical form, the parsing mechanism would indeed

be simple.

LANGUAGE DEFINITION

* Defining a language. Every concept in a programming language is

either expressed in terms of other concepts in the language or in terms
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of concepts which are "primitive", not further defined in the language.

Those primitive concepts are defined rather by the behavior of the pro-

Scessor, and the processor itself is expressed, at least partially, by co.-

cepts which are not defined in the language which it is designed to pro-

J cess. (This assertion is not based on personal opinion but rather on

some fundamental ideas from the field of formal logic).

Extending a language. It is appropriate to point out here that any

claim that a language is "extendable" must be understood with the above

explanation in mind. Any extension, in any language, is made in terms

of the concepts for which definitions already exist, and in terms of

primitives. It is clear that the possible extentions are limited to

J what can be expressed by legitimate (that is, defined) compositions of

the already defined terms. The definition of definition requires that

by repeated substitution of definitions in place of the defined terms,

ultimately all defined terms are removed from an expression, thiereby re-

ducing the expression to one composed entirely of primitives. Thus it

is evident that user-created definitions can only introduce convenient

"shorthand" notations. The important consequence of all this is that a

language's primitives and syntax limit what can be introduced by user-

created definitions.

Self description. It is sometimes claimed that a language can be

"self describing", or that a processor can be written in its own language.

This is a misleading claim. Some parts of a language or processor may

be describable in terms of the other parts, but this cannot be true for

the whole language or processor.

In particular, much as we would wish it to be the case, a data ele-

ment cannot be self-describing. When we loolk at some entity, we cannot

interpret it unless we have been given an interpretation ra:le associated

with it. For example, the string of characters

13

"means" a variety of numbers depending on the number base (the interpre-

1 tation rule) -that is understood. Suppose that instead of having the num-

ber base understood, we write it down explicitly, so that now we have the

Inumber pair
1 13 8

I that is, "thirteen to the base 8". Is this now self-describing: interpretable

1
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without recourse to an interpretation rule? No indeed. The interpretation

rule for 8 is understood; among other things we understand it to be written

in base 1O

The conclusion that we draw is: an entity may contain some parameters

which pertain to the interpretation of the iost of the entity, oul. the

interpretation of those parameters must be specified by some understood

rule which has been previously-specified. In other words, no entity can

be wholly self-describing in any formal sense.

The choice of primitives. Selecting what I think is an appropriate

set of primitives for a programming language is one of the major objectives

of this study. At this point I emphasize that in the choice of primitives

I do not take the attitude of a typical mathematician. lie is interested

in elegance- the minimum number of primitive concepts in terms of which

he can express all other concepts of interest to him. I am primarily

concerned with simplicity and convenience. This leads us to some middle

ground between two extremes:

1. A minimal set of primitives, sometimes resulting in complicated

combinations of pri'.tives to express intuitively simple ideas.

2. A large, and therefore inconvenient if not unmanageable, set of

primitives.

I want to maximize the usefulness of the set of primitives to the user.

The choice between the extremes is a matter of judgment and taste.

OTHER ASSUMPTIONS AND COMNTS

This section contains some miscella-neous comments which conclude

the setting of the stage for the research investigation.

Storage deallocation. Matters of storage deallocation are not con-

sidered relevant to the logical language. The argument for taking this

point of view is that with enough storage available, storage dealloca-

tion during a given program will not be needed. Storage deallocation will

therefore be reltgated to the implementation language.

Scope of identifiers. A scope of an identifier of a data element3is that dynamic period (during execution of a program) during which the

identifier can be used to reference that given data element. In languages

3with nested block structure, such as ALGOL and PL/I, the scope of an as-

sociation of an identifier with a given data element is usually for the

period during which "control" is in the block or procedure in which the

I
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data element was declared. This association may be temporarily super-

seded if in a block B contained in block A the same identifier is used

in a declaration of another data element.
Being able to define scopes of identifiers serves two purposes:

1. It can be used to signal automatic storage allocation and do-
t allocation.

2. It permits the repeated use of a given identifier for more than

data element, as lons as, at any given instant, the identifier

refers only to 1 data element. This is most useful for identi-

fiers of "local variables" of a procedure (data elements declared

within the procedure) and formal parameters (bound variables) of

ja procedure.

These uses of scope are conveniences, however, rather than necessities.

Since in this investigation we are not concerned with storage deallocation,

the storage deallocation function of "scope" is of no usefulness to us.

It is not difficult to avoid multiple use of the same identifier, and there

is no great hardship in requiring the user to keep his identifiers unique.

le is already required to do this for labels (identifiers of program state-

ments) at any given "level" of block structure, and to do this for data.

Qualifications of identifiers is a standard technique applied to data.

It is trivially simple to extend this technique to apply to labels in

multiple levels of block structure. With the facility of dynamic modi-

fication and multiple parallel control paths, defining scopes is a diffi-

cult task. For the foregoing reasons I choose to ignore the matter of

scope.
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CHAIPTER 3. OVERVIEW

This chaptei is concerned with an overall look at the research do-

velopments in this report. It summarizes what is to come, and outlines

the major ideas, some of which are new and some of which are simply re-

surrected and revived.

I hope that a major contribution of the research has been the

clarification of a number of programming language concepts which have

heretofore been explained very loosely and intuitively rather than rigor-

ously. Examples of the concepts which have been explored are:

'1. what kinds of treatment can parameters of a procedure undergo,

2. what kinds of relationships need to be provided for,

3. what are the various ways in which a data element can be referred

ii to,

41. what are the implications about copying when invoking a procedure,

5. what is the nature of the result of executing a procedure which

is a function (in the mathematical sense).

Perhaps one of the most valuable contributions of this work is to

show the complexity involved in seemingly simple language concepts. The

very simple concepts of formal logic and mathematics do not remain simple

when they are carried over into the programming context. In the analysis

carried out under this research project, these complexities have been

brought to light and examined. In particular, in being able to see what

flexibilities are possible one should be able to recognize more readily

the inflexibilities of current languages, and have more insight into the

reasons for these inflexibilities.

b The kinds of actions possible in the system outlined here include

being able to create identifiers and data elements, and to destroy same,

to gather data elements into composite data elements, to manipulate identi-

fiers as data [including altering spelling, making lists of same], to

search the structure and contents of data elements, to create and to des-

troy arbitrary relationships between data el-ents, to be able to regard

strings either as integral units or as composites of characters. Current

K languages in general do not have these kinds of facility of course there

are occasonal exceptions.;8
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Aspects of the "logical" part of a language. A logical algorithmic

language (independent of implementation on a specific computer) can be

viewed as having three major parts: data elemenLs. data transformations,

and sequencing rules. In some languages the statements to be executed

can be manipulated as data: we take this capability as the more general

case and accordingly regard program statements as having the same struc-

ture as "ordinary data" until the instant that a statement reaches control,

to be interpreted as a command.

5 A data element can be either simple or composite. A composite data

element is composed of other data elements with some specified relation-

ships between them. The character of a programming language is completely

determined by its primitive (basic) data elements and the allowable ways

of combining those primitives into composite data elements.

Data transformations can be divided into two classes: (1) those which

determine a value, (evaluate a function, perform a mapping) and (2) those

which create or modify a data element. As I mentioned earlier, destroying

a data element is only necessary for the sake of using storage efficiently,

and hence belongs to an "implementation language", not to the logical lan-

guage.

Sequencing rules specify the dynamic sequence in wLich data elements

are to be taken and interpreted as commands. Such rule, specify: (a) start

and stop points, (b) changes of sequence, either temporary or permanent,

from the static sequence in which the statements are stored, (c) execution

conditional upon a predicate, where the predicate ,iay be evaluated either

when it is encountered or whenever any of its operands acquires a new

value, (d) iteration of a set of statements over a set or sequence of para-

I jmeters, (e) initiation of parallel execution of a specified set of state-
ment sequences.

A language for a hypothetical machine. This report describes a lan-

guage for just such a hypothetical machine as mentioned in the Introduc-

tion. The main characteristics of the language are:

1. Storage is viewed as an unlimited supply of "slots", or "cells".

Each such cell can contain a "value", which is some string of

characters. Association'links of various "ypes can express re-

lationships between pairs of cells, or among sets (ordered or

.4
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unordered) of cells. Associated with each cell containing what

we think of as an ordinary variable can be another cell which

specifies the domain of the value in the former cell; in other

words, the domain is the name of a rule for interpreting the

value. An association or relationship among cells creates a

composite data element. A given cell can participate in multiple

relationships.

2. All statements (commands) are in a standard form: the name of

I the command, cr action, followed by a list of parameters. The

parameters may themselves be transformations, and so on, to any

depth of nesting. Transformations which appear as parameters

Iare usually functions: transformations which return a "result".

This result, however, need not be a simple value; it can be a

Icomposite data element (which may be arbitrarily complex).

3. A program is a data structure (a composite data element) which

is a network of statements, not necessarily connected. (That is,

there may be more than one separate network.) A program is exe-

Icuted by having "control" trace through such networks, and execut-

I ing statements in the sequence indicated by the network connections,

except when "jump" statements are encountered. If a program con-

sists of more than one such network, each network is executed

independently (simultaneously and asynchronously). Sonic of the

networks may represent program segments to be executed only when

certain conditions arise (alternatively exprezsed, "are true"f).

Provision exists for several types of "changes of control", or

jumps: they may be permanent ("go out"), cr temporary erform"l).

This hypothetical machine has not been tested, other than on paper.

Among the rec.nitnendations given is the one that a simulator should be writ-

ten and used, so that the concepts presented herein will receive some

realistic testing of their usefulness.

The major ideas. The major ideas presented in this reporc are dis-

I cussed below. Some of the ideas are new, at least in the sense that they

have not been reported in the literature. The ones which are not new are

hopefully a contribution to the state of the art by way of emphasizing

matters that have been given insufficient recognition.I
I
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1. The key to obtaining a wide variety of oata elements without

increasinq the complexity of a prn,2ramminq lannuane is to_ provide general-

ized data elements. The most general structure is the general network,

which provides for arbitrarily-specified relations between arbitrarily-

specified elements. Too much generality, however, can be inconvenient.

Ways are needed to specify more restricted structures within this general

framework. The most impo, tant conceptual device for expressing composite

data structures is the n-ary relation. The mathematical concepts of a

relation is a set of ordered n-tuples (list,i, which our generalized data

element can express. The components of such n-tuples are frequently names

(that is, strings interpreted as names), but can also be pointers (usually

numerical addresses in conventional machines). With such a generalized

element we can, for example, construct partial orderings, total orderings,

and multiple orderings. The ability to express arbitrary relations between

data elements gives us the capability of using relations weaker than order-

ing: such "directed association" permits, among other things, the use of

circular (tiring") structures.

The composite data elements available in current languages encountered

thus far all seem to be special cases of a set of ordered sets (lists)

whose sizes (lengths' may differ and whose components may differ in type.

2. Domains of values of a "new" type of data element should be

creatable within a programming language (during p rooram execution). What

is needed is the ability to name a new domain and define by enumeration

or by algorithm arbitrary strings which represent the members, or val,,es,

of this domain. In conventional programming languages this is, in general,

not possible. For example, we could define a three-valued domain with

the nmiie "t13VI and with members "t1-1f, "0", and "+1". We should be able

to go further and define synonyms for any members. The example just given

illustrates an elementary (non-composite) domain. However, the ability

to define domains must include composite values. For purposes of explana-

tion here, a composite value can be thought of as a vector of values;

actually it is a mu:!, -ore complex object.

3. We should be able to define arbitrary functions on the members

of any domains. Such functions will give a proper result only for proper

(defined) arguments, and a result of "undefjned" otherwise.

Here is an illustration of defining a domain and a function upon it:

Let there be a new domain, called "Truth", containing the repreentations
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"T"1 ""m, and "U". Let there be a function, called "T.AND" , defined on

this domain by 1he following table:

arg1 ar92 result

T T T
T F F

T U U
F T F
F F F
F U F
U T U
U U U

where argi, arg2, and result are all from the domain "Truth." We picked

a particularly simple example. The individual arguments and the result

of a function, of course, need not be from the same domain of values.

The representations in a domain are not restricted to single characters;

in general they will be strings. It will sometimes be impractical to de-

fine a function by means of a table (even though it is theoretically pos-

sible to do so); some functions, such as addition, will be defined by

giving an algorithm which operates on strings representing values.

4. The concept of one element serving as the "name" of another ele-

ment is in itself a relation. Algorithms deal in manipulations of ele-

I ments. But in fact we never "see" these elements nor exhibit them. We

refer to them only by their names or some directions for locating them.

Even so familiar a mark as "101" is not a number, for example, but is

rather a name of a number. It is not the name of a number, for the same

number can have many names. Furthermore, this name can name many num-

I bers, until the number base associatLd with this name is known. Entities

which serve as names for other elements are sometimes to be treated as

data elements. The name "101" nmay at one moment be the decimal name of

a number, and at the next may be the name of a string whose second charac-

Ster is zc:u. To further complicate the matter, the name "101" may in

turn have a name, say, "BVAL". Programming languages have tended toi I avoid these interpretational ambiguities by fixing the interpretations

K J of names, and thus they have tended to prevent the manipulations of

names as data and the use of indirect nming (allowing names to have

Inames). If this flexibility is desired, then clearly the programmer must

hoae control over which way an element is to be interpreted.
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5. The explicit association with each data element of its "ty)e"i

designation provides another degree of flexibility and another technique

for discover) of programming errors.. "Type" in the case of a simple

element is the name of the domain from which the element's value is taken.

An example of such a type designation is "integer". "Type " in the case

of a composite element designates a class to which the composite belongs.

The inclusion of a type indicator in each element can be used as a basis

for testing the type of the element and making further action contingent

upon its type, and also upon its structure. The explicit carrying of

type information makes it possible to avoid the -ution of a function

or piocedure when its parameters are not of the required type. For ex-

ample, a procedure defined for three input parivneters of types integer,

string, and label, respectively, should not be executed if any of the

input parameters are of the wrong type, but should instead return with

a specific error message.

An example of type might be length-in-inches. Even though the repre-

sentation of a spec "ir length is the same as for an integer, a function

defined for arguments iroin %e domain of length-in-inches could be ar-

ranged to refu.e an argument from the domain of length-in-feet.

6. The concept of having a value called "undefined" is a valuable

one for the rapid discovery of programming errors. With proper use of

the value "undefined", any program can readily be prevented from computing

"garbage", values which look reasonable but which are in fact meaningless.

7. There can be two fundamentally different kinds of composite data

elements (data structures). The first kind contains its own structural

information; in the second kind at least some of the structural informa-

tion is abstracted and put in some place common to a set of similar ele-

ments. In the second type, there can be defined a class of similar compo-

site elements. Each specific occurrence of a composite element is then

an "|instance" of the class. Such a class description we have called a

"model". (In the case of a simple element, we call the model a "type"

and an occurrence a "tokenfi.) In the first kind of composite data ele-

sment description, a composite ele-nent is created explicitly giving re-

lationships which tie together elements already defined. Tn this latter

case there is no model; we could call an occurrence of such a data ele-

ment a "model-less instance". Most, if not all, current programming
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:1 languages provide for only one of these methods. This is a serious de-

ficiency, for each method has its advantages.

8. The user must have complete control over data -lements and struc-

tures. Having this capability implies several things. It implies that

all available information about a given data element must be explicitly

stored and accessible to the user. Not only values should be accessible

and modifiable but also a variety of inform|ation about a data element:

such as its structure, the specific relationships between its parts, re-

strictions on any of its parts as to values it may take or as to what kinds

of access it can have, when it was last modified, etc. Having this capa-

bility implies that components of composite data elements should not only

be accessible in the basis of an identifier but also by its position and

by its relationship to another explicitly-known data element. It implies

that the user is not limited to the set of relationships fixed by the

designer, but can construct his own, and test what relationships exist.

With the ability to create new relationships among arbitrary sets of data

elements (each of arbitrary complexity) the user can create new composite

data elements of arbitrary structure and complexity.

9. The user should have explicit and flexible control over the pro-

cedure call mechanism. This means he should have control over how the

parameters are interpreted, and when they are interpreted. The conventional

procedure ca!] mechanisms do not in general provide such flexibility. ALGOL

does give the user a choice as to whether a parameter is to be "evaluated"

("call by value") or substituted without evaluation ("call by name"); but

it does not give the user any control over when this parameter treatment

takes place: it is always done upon entrance to the called procedure.

The user Fhould be able to assess dynamically whether a parameter is de-

fined, so that "garbage" cannot be passed as a parameter. The user should

be able to examine the parameter "type", or "domain", and make the treat-

ment of the parameter, and possibly the domain of the result, conditional

upon the parameter type.

10. The concept of "string" has a dual aspect. On the one hand, a

string is frequently used as an identifier or name; in this role, the

string is an indivisible entily. On the other hand, a string may be an

ordered set of characters; in this role, the string can be inspected, dis-

sected, elements replaced, etc. The same string can be viewed in only one

I
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able characteristics. One of these characteristics is whether the element

is simple or composite.

The same thing may be wanted in bolh roles; thus provision is needed

for converting from one form to the other. This duality of roles gives

us the ability, for example, of composing a string and then using it as

an identifier. A second example would be the ability to alter the spell-

ing of an identifier.-

Furthermore, a string may be wanted as a unit, a "character", in a

"higher-level alphabet" of strings. This is a fundamental device for

creaiing an unlimited number of symbols out of a limited number of charac-

ters.

11. It is useful and helpful to view definitions and declarations

as commands. As discussed in more detail in Chapter 2, this viewpoint

makes it easier to explain and easier to remember what effect definitions

have and the times at which they become effective.

12. The provision of multiple, equivalent viewpoints of a given con-

cept makes a significant difference in a programming language. It is fre-

quently the case in programming languages that the user is constrained to

look at a concept in only one way. This has the advantage that one user

can know in advance how another user has viewed and treated the concept.

It has the disadvantage that full flexibility needs the multiple view-

points. By restricting the viewpoints to one, in any given instance, the

user may lose some of his ability to expresz. his ideas in the way most

natural to him.

In the research work reported here, I have made a concerted effort

to avoid limiting ourselves arbitrarily to single viewpoints. The conse-

quence is that the user must pay more attention to which of several possible

viewpoints is being used. fie must know, for example, whether a given set

is defined by an enumeration of its members, or by an algorithm which gene-

rates the members.

13. Such fundamental mathematical notions of "set", "relation", and

"function" are not expressible simply and uniquely in the programming con-

text. There are multiple, equivalent forms of expression, but the equiva-

lence is not automatically invoked. It is impractical to legislate the use
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of only one of a set of equivalent forms, because eaich form has its ad-

vantages. It is the burden of the user, therefore, to know which alternate

equivalent form is being used in a given circumstance.

14. The ALGOL concept of ")call by value" has been replaced by one

J of "call by reference". A parameter called by reference must either be

an identifier of a data element or an expression which when "executed"

I or "treated" will yield an identifier of a data element. here identifiers

of data elements such as literals and function results are not supplied

by the user, they must be automatically supplied by the processor.

I

I:
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CHAPTER 4. DATA EIEMENTS AND STUCTURFS

FUNDIUHNTALS

"Basic elements." An algorithmic language is largely characterized

by the kinds of data elements that can be described and manipulated. One

of my goals is to define a set of elements that include the elements col-

lectively available in current "higher-level" programming languages. I

call this set my "basic set" of elements. "Basic" does not imply that the

elements are not composites of other elements. Rather it connotes that it

is the set of elements which are "given"-"undefined in the language sys-

tem", as the logician would say.

Those basic elements which admit of no further subdivision, or alter-

natively stated, have no structure or are not composite, I term "simple

data elements", or "simple elements". Rather obviously, those elements

which are not simple must necessarily be composite. As we shall see later,

the components of composite elements may themselves be composite elements,

so that the definition of "composite" is necessarily recursive. Also as

we shall see later, 1 will choose some frequently-used composite elements

to be in the "basic" category.

Alphabet. An alphabet is some set of distinguishable marks which are

considered not to be decomposable into other marks without some special

operation. A language is based upon having a given alphabet. In the con-

text of programming languages, the alphabet is some set of characters that

can be concatenated into strings. Examples of an alphabet for program,,ing

are tne set of characters on a typewriter keyboard, or the set on a card

punch.

We might ask the question: Can the given alphabet for language be ex-

tended by means expressible within the language? it is indeed possible to

conceive of a miechanical processor which can perceive a character, add it

to the stock of characters in the processor's working alphabet, and be

able to outpit the character in a form recognizable by humans. Such a

processor would hat.e to have some means of recording and reproducrng an

arbitrary mark. Most programmning languagje processors (coniputers) available

today do not have the extension capability just outlined. For this reason,

I have chosen to limit the present phase of investigation to languages

and processors with fixed alphabets.



I shall henceforth call the alphabet the "given alphabet" The

given alphabet includes all the characters found on a standard type-

writer keyboard, plus some other characters which will be specified later.

String. The notation of string is primitive (not defined in the lan-

guage). A string is a sequence of any characters of the alphabet, r-ssibly

including blanks.

Having chosen the notion of string as pilmitive we are faced with a

problem: how can a string be split into its component parts? We have on

the one hand the notion of a string as a unit, playing the role of a

single, individual symbol. On the other hand we at times want to consider

a string as an ordered set of characters, and have the ability to scan undj to modify this set. It is this dual role for strings which presents the

problem. We simply note the problem at this point; its resolution will

be treated later after the concept of composites has been developed.

Note that a string as here defined can contain quote marks. When a

string containing quote marks is quoted-surrounded with quote marks-
ambiguity may result. That is, it may not be possible by inspection to

discover the original string. Techniques exist for preventing such ambi-

guity from being created; these are discussed elsewhere, in a section en-

titled "The control character interpretation problem".

Defining sets. One of the primary abilities needed in a programming

language is that of defining sets. One class of members of sets is value-

strings. Another class of members is data elements, both simple and com-

posite.

There are a variety of ways of expressing sets. All these ways should

be usable by the programmer:

1. enumeration, a listing of the names of the members. (If the mem-
bers are value-strings, their names are simply the quoted value-

strings.) Such an enumeration is represented as a composite data

element (unordered).

2. generation, an algorithm (or formation rule) for generating the

names of the members. For example, "all strings of length less

than 10 which are composable with the substrings 'A', 'AB', and 'C'."

3. restriction of a given set by a condition (a predicate). Alterna-

tively stated, this is a decision rule, a recognition algorithm,

for deciding if a member of some given set (some "universe of dis-

course") is a member of the desired set. The desired set is in

I
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effect derived by examining in turn every member of the desired

set. lWhere the universe of discourse is small, this "total exam-

ination" scheme is workable and useful ; where the universe of dis-

course is not small, however, this scheme is impractical. There

are some interesting special cases of this method:

a. stating properties that members, assumed to be composites,

have in conmion;

b. being in a class of data elements which stand in a given

relationship to a given entity. Specific examples:

1) having a given element as a model;

2) being an identifier of a given element (a set of identi-

fiers thus defined are synonymous).

(Some fairly cumberson devices have been used to express

this concept. In AEDNET, for example, this set of relation-

I ships is expressed by tying the related members together in

a "ring" structure.)

'k" some st-theoretic combination (that is, union or intersection)

of sets already defined.

Note that some sets exist by virtue of satisfying some predicate (e.g.,

have some specified relationship to a specified set of properties), and

are not otherwise explicitly listed as being in a list or set.

For the purposes of testing whether a member is in a g."ven set or

list, the user theoretically need not be conscious of whether the answer

is delivered by a recognition algorithm or a list search. For the purpose

of modifying the set, however, the user must be conscious of the distinc-

tion, because the modification of each must be done differently.

From a practical standpoint, however, even the asking of questions

about set membership would appear to require the user to know how the set

is defined. To do otherwise would burden the processor with deducing how

the set was defined; this seems to ba a non-trivial task.

I make the provisional definition that "set" is a general, abstract

concept not representable in a unique way. The construction, testing,

and modification of sets demands that the user know, and be explicit about,

how the sets are defined. The testing of set membership must then be

spelled out explicitly according to the nature of the set. E.g., is X

in an association list (X,Y,Z)? Does X stand in the relationship R to
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I element h? Does X have elements A,13 standing in the relationship P to it-

self? Since a list is a set with a total ordering imposed in it in some

way, these arguments apply to the concept of list as well, and, in general,

to any ordering. In this connection, it may be useful and desirable to

have transformations which will convert one type of set representation to

another.

Sets. It will on occasion be desirable to provide for sets having

repeated members. In order to be consistent with the well-established

mathematical definition for "set" I call such an entity a "set with pos-

sible duplications" or, perhaps, abbreviate it to "set wpd" when I am

lazy.

A set is a single entity whose cardinality is 1. We will on occasions

encounter an aggregation which has not been explicitly defined as a set.

1It will be more convenient for certain purposes not to regard this as a

set but rather as an entity haviug the cardinality of the number of mem-

bers. I arbitrarily choose the new name "aggregate" for this entity.

Equivalent concepts. There are fundamentally different ways of ex-

pressing the same concept. In our thinking, and in expressing a concept

in natural language, however, some means must be available for dealing

with equivalent concepts. Of course, it would be desirable to have the

processor recognize such equivalences so that the user did not have to

concern himself with them. This is too much to expect at the present time,

however; I dismiss this possibility from further consideration. As a con-

sequence, we must place on the user the burden of knowing which of several

j equivalent forms he may be using, and of converting f~om one equivalent

form to another when the need arises. Another way to phrase the problem

1 is that a set of concepts may be equivalent at one level of detail (or

"level of abstraction") but may not be equivalent at another level. The

import of this philosophy will become clearer as the concepts of data

I ]elements z.re introduced and discussed.

Aotational conventions for brackets. I adhere to the following use

of brackets:

[.......................... imply an ordered set, or "list"

I .......................... imply an unordered set

(..........................) imply grouping, without specification

as to ordering

4K
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H" DOMAINS, ,MMBES, AND VALUE-STIUNGS

A domain is defined to be a set of entities where "entities" is about

p to be defined by example. Examples of the domains used in current lan-

guages are:

1. "real", meaning positive and negative rational numbers (up to

some magnitude usually dictatcd by the word-length of the machine

on which the processor is implemented);

1 2. "integer", meaning positive and negative whole numbers (up to some

magnitude usually dictated by the word-length of the machine on

j which the processor is implemented);

3. "Boolean", meaning the set of 2 members- "true", and "false".
4. "String", meaning the set of all strings composeble with the alpha-

bet of characters available on some assumed processor, and with a

specified bound on length.

The members of a domain are variously describable as "entities", "concepts",

or "lvaluesf. However they may be described, the individual members are

ideas, and these ideas are not directly sensible by a machine. Each mem-

ber is therefore represented by some sti-ing of characters. It is this

string of characters that can be sensed and manipulated by a computer pro-

gram. These strings of character. representing members of domains I call

"value-strings" because they represent "values". because they are strings,

and because they need to be distinguished 1rom other types of strings.

To repeat, computer programs deal with classes of entities called

"domains of value-strings". Value-strings and domains are discussed in

more detail below. This research is based on the idea that the user should

be able to create domains of whatever value-strings he wishes, and to be

able to define functions on these domains.

Value-string. A "value-string" is a member of the set of finite,

non-null strings* which can be formed from the given alphabet.I

*iFinite, non-null strings" is the mathematician's way of saying

"all strings except those composed of no characters and those com-

posed of an infinite number of characters.

A value-string represents a value, where a value is a member of some set

I of co,,cepts called a "domain". A processor cannot sense this member (this

!jj- -
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J value): it is only a concept, such as a "number", a "truth ,value", a

"state" of an objecl, or a "value of a property". We can only represent

a member of a domain of values, though possibly we can represent it in

more than one way. It is only in terms of these representations, which

are arbitrarily chosen, that machines can be made to deal with concepts.

The "meaning" of a valuc--string may be suggested to us by its forIII, but

its meaning or behavior in an algorithmic process is wholly determined

by the functions that are defined on it.

Words sometimes used to mean what I define as "value-string" are:

"value", "literal", "string", "representation", "constant", and "non-

logical constant".

A value-string may be used to represent members in more than one

specific set of concepts (domain of values). Or, what amounts to the same

thing, a value-string can simultaneously be associated with more than one

domain of values. In such cases, to avoid ambiguity, it is necessary

when exhibiting a value-string to specify at the same time to which set

>or domain it belongs.

A "value" can then be defined as an abstract concept or invisible

]entity which is represented in some processor by a value-string. I use

"abstract" and "invisible" to emphasize that the represented member is

3not present inside the processor: only its rep ? sentation is present.

Domain of values. A "domain of values" is a set of concepts. A do-

main of values has a corresponding set or domain of value-strings, which

is some subset of the finite, non--null strings composable with the given

alphabet. An example of such a set of ,alue-strings is (T,F). (Note to

ithe non-mathematician: the curly brackets are conventionally used to mean

a "set", a collection of elements in no particular sequenca)

A domain of values has a name (possibly more than one name), which

itself is a value-string from the set of possib]e strings. I call such

a name a "domain designator". An example would be "Boolean", which is

the usual name for the domain whose associated value-strings are "T" and

"F". It is a convenient and harmless ambiguity to let Z single string

serve both as a name for a domain of values and as a name for the set of

associated value-strings. Henceforth, I allow this ambiguous role of the

t"domain designator". After thLs present section, however, my use of

"donain designator" will refer consistently to sets of value-strings. A

f set of value-strings I will consistently call a "domain."
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At first it might seem (esirable to have all possible value-strings

in one big domain-a "universal domain", or "universe of discourse". It

is desirable, however, to divide the set of value-strings (that represent

values) into named, possibly overlapping, subsets (domains) for the fol-

lowing reasons:

1. To permit the use of a given value-string to represent different

concepts. Example: 1121 could simultaneously represent a length

in inches, a weight in pounds, an amount of money in cents, and

the number of members in a specified set.

2. To make possible the prevention of nonsense: the prevention of

the computation of "garbage". Examples of nonsense: (a) to set

the value of a Doolean variable to "30"; (b) to set the value of

a data element intended to take the values of weight in pounds

to the character "Z"; (c) to multiply inadvertently 3 feet by 18

inches expecting to get an answer of area in square inches.

lWe need the ability to specify and name new domains to suit special pur-

poses, for reasons of convenience and checking, and to get an output in

a specified form. It should be possible to define new domains not only

at the time a program is written, but also during the execution of a pro-

gram.

Defining a domain. A set of value-strings corresponding to some do-

main of values can be described in any of several basic ways: by enumer-

ation, by a generation algorithm, or by a universe of discourse and a

recognition algorithm. These basic techniques for describing a set can

be used in combination to describe other sets. It is also possible to

create new sets out of set-theoretic combinations of sets already defined.

Enumerated domains can be in the form of composite data elements,

while domains described by algorithm will be implicit in those algorithms.

In order to be able to construct a new domain, however, the concept of

domain must already exist, as must the domain of strings. The concept

of domain is created by having as part of the given system a domain of

domain names. This is a composite of fixed structure, telling for each

domain whether it is defined by a data element (a composite) or by an al-

gorithm, and for the algorithm case it may gi-Ce an identifle" of a gene-

rator of the members ol the domain, an identifier of an existe-ce recog-

nizer for members of the domain, and the identifier of an equivalence

('
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generato' and recognizer. An initial entry in the domain of domains must

bL the name STRING. It should go without saying that the given system

must also have the functions and transformations needed to carry out this

domain definition process, including the algorithms for generating and

recognizing strings.

It will on occasio,' be desirable to be able to specify an ordering

of the members of a domain. For example, for the * omain of characters,

Ione might wish to be able to define a total ordering of the value-strings:

this order'.ng is commonly referred to as "collating sequence." Another

example: to give in order the designations of the hours in a day: the first

hour is anomalously numbered 12 rather than 0, so we have the ordered set

[12,1,2,3,4,5,6.7,8,9,10,11]. (The reader is reminded that throughout this

work, I shall consistently use the curly brackets to bracket an unordered

set, the square brackets to bracket an ordered set, and parentheses to

indicate grouping without regard to the ordering of the parenthesized mat-

erial.)

Expressing ordering on a domain will be done in one of two ways:

1. If the domain is defined as a composite data element, the order-

ing will be expressed as relationships between the component

simple elements.

2. If the domain is defined by algorithm, that is, by a pair of al-

gorithms, one of which generates the domain and the other of

which recognizes an element in it, then ordering will be expressed

by a third algorithm which tells if two elements stand in the

ordering relation.

Note also that ordering a domain makes possible another means of

referencing a value-string: that of giving a domain name and the ordinal

1position of the desired element within that domain.
Including units of measure in a domain. How do we apply our domain

and representation concept to the expression of numerical units? How,

for example, shall we prepare to deal with Icngth in feet? There are

1two obvious choices:

1. Let the domain-name be "length-in-feet" and let the representations

associated with it be numbers, say, integers;

2. Let the domain-name be "length", and let the representations as-

sociated with it be numbers (say, integers) followed by a unit

name, say, inches.

:1
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T From the standpoint of domain definition, both approaches are equally

acceptable. The second approach, however, imposes the additional burden

I on the processor of recognizing that a number followed by a unit desig-

nation is to be considered a single representation.

I Similarly, one might wish to have a domain of U.S. dollars. We have
B the choice of including the dollar sign and decimal point as part of the

I value-string, or we can supply it by an editing transformation when needed.

If the non-numeric characters are included in the -..lue-strings, however,

the functions defined on these value-strings are somewhat more complicated

I to write.

.Multiple value-strirngs for the same concept. We may wish to have

multiple representation for the same conLept. For example, the numbers

10 and 8 in base 8 and base 10 notations, respectively, represent the same

integer. In order to be able, for output, to choose between these repre-

sentations or to check them upon input we should be able to assign them

. t o different domains. However, there is no reason that we cannot have

two different but equivalent representations in the same domain. This

-may give rise to some ambiguities, but as far as I can tell, they will

be harmless ones. (There may arise a need for some convention as to which

_ of the equivalent representations is the "principal"' one; this might be

needed for debugging or output purposes where the specific domain was not

explicitly specified.)

In order to be able to use equivalent value-strings interchangeably,

however, we need some means of expressing their equivalence. That is,

we need some explicit way of declaring that two value-strings, whether

they be in the same domain or in different domains, represent the same

concept. Whether two equivalent representations can be used interchange-

ably depends on how functions are defined on these representations; this

will be discussed in more detail later under "Definitions of Functions".

Defining pairwise equivalence for sets of representations can be

done either by explicit enumeration or by algorithm. For large sets, how-

IT ever, such as for the range of integers handled by a given processor, it

is obviously unfeasible to do it by enumeration.

I Special and universal concepts. There are a number of concepts with

broad applicability which could be conatdered automatically to be members

of every domain. For the purposes of permanent preservation and ready
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availability for the construction of new domains, we might have these "uni-

versal" concepts stored in a domain called "UNIVIRSAI.". These universal

concepts are discussed briefly below.

The concepts of "arbitrary" and "random" are useful for selecting

an element from a composite such as a set or a list. We take the view

that they are functions which can be applied to sonic element. In parti-

cular, they can be applied to domain designators (which name a set of

value-strings) to select one of those strings. It can also be applied

to the set of domain designators, in which case it selects a domain desig-

nator.

.The concept of "undefined" has the nature of being an explicitly-de-

fined member of every domain, including that of domain designators. It

seems impractical to have to include the value-string of "undefined" in

every domain. An alternative is to construct a special domain, which we

might call the "universal" domain, in which we will put value-strings{ common to all other domains. Our first member of the universal domain is

then the value-string "undefined". We might also have a special charac-

ter reserved for this role, which we would then declare to be equivalent

to "undefined".

Note that there are two kinds of "undefined":

1. domain unspecified and not uniquely determinable from value-string.

2. value-string unspecified, although domain is specified.

Note also that these two types of "undefined" can apply both to arguments

and to funntions. Diagnostic messages should distinguish between the 2

types of "undefined" and should indicate whether it arises from evaluation

of arguments or of a function.

Other candidates for the "universal" domain include:

I. "missing", meaning"relevant but unknown"l; perhaps "undefined" is

good enough for this purpose;

2. "non-existent entity": empty (cardinality zero), no correspondent;

3. -structure undefined";

4. "structure improper";
5. "inconsistent", contradictory; overdefined;

6. "ambiguous", as might result from asking for "the name" of an

element which has more than one name;

"unrestricted" or "any"-this will have applicability as a value

'I of a restrictor;i A
a-'
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8. "unspecified" means "derivable from other information" as is the

domain designator associated with a value-string which exists

1in only one domain.

9. "null", an element of cardinality 1, as distinguished from "empty",

above, which has a cardinality of zero. The concept of null is

extremely useful for constructing recursive definitions.

SIMPLE DATA ELEMENTS

"Cells"I "variables", and "constants". A "cell" we define to be a

storage slot of unspecified size which contains e.,actly one value--string.

I (If no value- ,tring has been put into it by the user, then it must con-

tain one which is interpreted by the processor as meaning "undefined".)

SapWords sometimes used to mean what we define as "cell" are "variable" and

"atomic element". A cell may have identifiers associated with it, by means

I to be discussed later.
There is a distinction between a "variable X" and a "constant X".

If X is a variable, "X" is the identifier of a slot containing some value-

string which is called the "value of X". The "constant X", however, is a

value-string. It does not have an associated identifier and it cannot be

T modified in the sense that a variable can be modified.

When a variable is assigned a value, that is, when a cell has a value-

string put into it, we say the variable is "bound". It is then no longer

variable, it is constant (although temporarily so, perhaps). A variable,

or cell, is not a constant in the sense of being a value-string. Rather

it contains a constant, or value-string.

Simple data elements. A simple data element, as distinguished from

a composite one (to be defined later), is compised of one or more cells.

A simple data element can be thought of as one which expresses a single

value of a variable, a single concept. It corresponds roughly to the idea

of "simple variable" in ALGOL.

-I One of the cells of a simple data element holds the "principal value-

string" of that data element. Other cells, tied to the principal value

cell in specified relationships, can hold such entities as identifiers,

domain designators, and other pieces of information "about" the principal

value-string. This definition of "simple data element" may be confusing

because the cells tied to the principal value cell can themselves be simple

data elements. In general these latter are incomplete simple data elements.

|7
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If they were not, a simple data element would have a set of simple data

elements giving information about each, and so on, ad infinitum.

A cell can have associated with it, in various naming relationships,

a set of strings from the domain of "identifiers". Examples of such

Jnaming relationships are: ordinary-name-of, principal-name-of, class-name-

of.

I A domain designator can stand in either of two relationships to a

cell: it can be in the relationship of "domain descriptor", or "domain

prescriptor". A domain descriptor is used when the domain of the value-

string cannot be discovered by inspection: that is, when the value-string

occupying the cell is not unique to a single domain. A domain prescriptor

is used to prevent the cell from being assipned (from containing) a value-

string from an unwanted domain; ultimately this helps to prevent the com-

putation of "garbage". In other words, the value-strings which stand in

a domain prescriptor relationship to a given cell specify the domains from

which value-strings can be accepted. A domain prescriptor is not limited

to being a single domain designator, however; it can be a set of domain

designators, -which are then interpreted as being alternative possibilities.

I Some intuitive (informal) illustrations of these concepts are given

in Figure 4-1.

Constants. A constant is a value-string, stored as the constants

of some cell, and having an associated identifier. A constant may be pro-

tected from "damage" (inadvertent alteration) by having some protection

indicator attached and by having the referencing mechanism make a check

for this indicator. This indicator is under the user's control, so that

he can turn protection on and off as he wishes.

Identifiers. There is a very special class of value-strings which

serve as names of data elements. Henceforth we call these names "identi-

fiers". The reason that identifiers are singled out for special mention

and treatment is that as a class they provide the fundamental technique

by which reference is made to data elements. However, individual identi-

fiers are not the only device for being able to reference (access) a data

element. The whole issue of referencing will be discussed in detail in

Chapter 5.

An identifier is some string of characters of the alphabet. To avoid

parsing problems, I arbitrarily restrict identifiers to be strings not
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containing blanks. The spelling of an identifier can be changed by pro-
grammable action, though not without running a risk of adverse consequences.

I take the point of view that the identifier of a data element is

another element that stands in an "identifier relationship" to the first

element. I say, for example: "The string"CI" stands in the identifier

relationship to the number represented by the string "123". The identi-

fier relationship is not fixed; that is, a given string considered to be

an identifier can become "un-related" (in the sense of dissociated) to

one data element and be put into an identifier relationship with another

data element.

The relationships of naming by identifiers I take to be primitive,

becatlse there is no way in general of referring to a data element in order

to explicitly state that it stands in an identifier relationship. We will

be able to attach any string (having no imbedded blanks) as an identifier

of a storage cell. How this attachment is to be represented in a proces-

sor is undefined in the language. More precisely, it is undefined in the

user language, though of course it must be defined in some way so that

the processor behaves appropriately when it receives one of the following

directions:

1. Access the cell whose identifier is the (named or exhibited)

string

2. Exhibit the string which identifies the data element which has

the following properties__

A string can be made to stand in an identifier relationship to more

than one cell, as pictured in Figure 4-2. This makes the identifier an

ambiguous one. Used by itself it involves a set of elements (but it does

not name an element which is a set). It is up to the user to be aware

of any ambiguities he may create, and provide for their resolution when

necessary. To access a cell which has an ambiguous identifier, the ambi-

guity must be resolved by some information in addition to the ambiguous

identifier. For example, a pair of ambiguous identifiers may have a unique

intersection: that is, there may be only one cell to which they both stand

in the identifier relationship.

Several identifiers can stand in the identifier relationship to a

single element, as pictured in Figure 4-3. We say that these identifiers

are "synonyms" with respect to that element. One of these identifiers

L can be-made to stand in the relationship of "principal-identifier" to an

[i
:1
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element. This latter provision is to make possible the obtaining of a

consistent answer to the question "what is the principal identifier of

I the element having the following characterstics ?"

Notice that wie nmaw have a complex situation, pictured in Figure 11-4, in

which tA"t is 4ht, principal identifier of element I and an ordina.-., identi-

fier of element 1, while "B" is the principal identifier of ele.';ea. 2 and

an ordinary identifier of element 1.

If strings "All and "B" both stand in the samie identifier re- 4.,c-IvQrp

to the same data element, "At' and "B" are synonyms. That they stand in

the synonym relationship to each other is an implied relationship, but it

is not explicit unless we make it so. The language processor is not going

If to make logical deductions for us!

The set of all possible identifiers forms the domain of identifiers.

This domain will necessarily be defined by an algorithm because it is

too large to enumerate. The set of identifiers actually used in a given

program, however, must be explicitly enumerated and stored in some special

place known to the processor, for this set of identifiers must be examined

each time a reference is made to a data element by giving its identifier.

How a given identifier is "tied", or "related", to the data element it

identifies will be explained later.

Since each identifier used is actually stored, it has the status o f

a data element. As a data element, it is accessible to the user; he can

inspect itt modify it, or replace it. One might think that in order to

access a data element which is an identifier one would need to reference

a. oit by yet another identifier; this is possible but not necessary. An ob-

vious way to reference an identifier is to exhibit the identifier strings

in quotes, since quoting a string makes it into a name for itself. There

I are yet other ways to reference identifiers, which are based on relation-

ships to other known data elements; how this can happen will become clearer

'I; later.
Since identifiers are data elements, they can be created, accessed,

modified, associated with and dissociated from other data elements. Such

abilities are in distinct contrast to those in current programming lan-

guages which are designed to be compiled. In such languages, identifiers

1: expressed in the source language are "lost": they are converted to machine

addresses by the compiling process and are thus made inaccessible to mani-

pulati6n by a program.aI
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There will be occasions when a data element will need an identifier.

In such a case, if an identifier is not supplicd by the user, it musL

be supplied automatically by the processor. On the occasions when an

identifier is generated by the processor, the generation must be done

in such a way as to avoid conflict with existing identifiers. This con-

flict could be avoided by the processor's using one or more characters

reserved for the purpose. This is undesirable, however, because the user

should be able to ask: "What is the identifier of the element designated

?" or "What is the identifier of the element having the

characteristics __

On occasion the programmer could accidentally generate or specify

an identifier that the processor had generated automatically. If we wish

to avoid this, we must either tell the prograimer how to avoid accident-

ally picking an identifier that could be generated, or we must make every

introduction of an identifier give rise to a check of all existing identi-

fiers. The foner is undesirable, and the latter, in the general case,

is costly to implement. A compromise, but not a foolproof system, is to

have the generated identifiers be of such composition that no human being

yould normally conceive of it as an identifier: for example, such un-

likely sequences as "XXX.IG".

Unless oprohibited by formation rules for identifiers, a given string

may both be an identifier of a cell and be a value-string. Which inter-

pretation it should have in a given instance must be determined from con-

text. For example, if a string is an argument of a function cell, the

definition of the function may determine whether that argument is to be

interpreted as an identifier or a value-string. It is less confusing,

however, if a given string is not used both as an identifier and as a

value-string.

The concept of "indirect name" is readily seen to be represented by

an element standing in an identifier relationship to a second element which

in turn stands in an identifier relationship to a third element. The

firA element can then be said to be an indirect name of the third element.

Such a chain of elements linked by ah identifier relationship could be

arbitrarily long. In such a multiple-link chain, the number of steps to

be taken from an element, regarded as an identifier, to its correspondent

could be given in any of several ways:

1. One might trace identifier relationship steps as far as they go.
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2. One might expect to give the number of identifier relationship

steps to go.

3. One might find an explicit "indirection indicator" attached to

some el emen ts.

I have not said the last word on identifiers. Later I will deal

with two more issues:

1. The association of an identifier with a composite data element.

2. The association of an identifier, or marker, with a point "between"

two succesive data elements.

Review. The following example shows in more detail how we can use

the concepts explained thus far. We assume the existence of a processor

which has the defining capabilities that are needed, but which has as yet

no particular domains or functions defined other than the primitive domain

of a given alphabet. Assume that the following statements are steps in

a program:

1. Choose strings "T" and "F" as value-strings of a new domain.

2. Associate the identifier "Boolean" as a name of this new domain.

3. Define a function on this Boolean domain as follows:

a. arguments 1 and 2 called by value (in the ALGOL sense)

b. result is from the domain "Boolean"

c. function table is:

argl arg2 result

T T T
T F F
F T F
F F F

4. Associate the identifier "AND" as the name of this new function.

5. Evaluate the function AND ("T", IT"); answer "T".

6. Evaluate the function AND (IIFIi, "TRUE"); answer: "undefined",

because the argument "TRUE" is not yet defined.

7. Add to this "Boolean" domain the value-string "TRUE".

8. Let "IT" and "TRUE" be equivalent.

9. Evaluate the function call AND ("TRUE", 'IT"); answer '"T".

10. Add to the "Boolean" domain the value-string "U".

i. Evaluate the function call AND (h ' I, IIF"I) answer: "undefined",

because the function hasn't been defined for this combination of

arguments.

I I
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112. Add to the function table for the function "AND":

ar91 __ arq2 result

[ T U U
F U F
U T U
U F F
U U U

13. Evaluate the function call AND ("Ulf, 'IF"); answer "F".

j In this example we defined the concept of Boolean variable, then defined

the Boolean function AND, and then extended the domain and the definition

or the function to include a new member of the domain. Try that in your

favorite programning language'
"The reader has been introduced to the idea of setting up arbitrary

domains of value-strings and defining functions upon them. These are the

most trivial, fundamental concepts, yet fei, if any, programming languages

provide for them. Current progranming languages provide a few, fixed do-

mains: letters, digits, and possibly a few other characters and strings

of these; decimal integers up to some maximum arbitrarily chosen to match

the word length of sonic hardware machine; a set of rational numbers cor-

responding to that set of quantities manipulatable by some "floating-

point" circuitry of the same hardware machine; a 2-ralued, or "Boolean"

domain. It should be painfully obvious that most current languages lack

the facilities for defining new domains, for representing the concept of

"undefined", for constructing identifiers freely.

flow, in current languages, do we define, or simulate, a new domain?

We may be lucky enough to find that the domain we want is a subset of an

already-defined domain. If we aren't so lucky, we will have to map men-

tally the domain we want into a domain that we have. And this seemingly

j'  simple mapping can be very troublesome. Consider what we must do if we

want a domain of "true," "false," and "undefined". We might map these

I into a restricted integer domain of 0, 1, and 2, or perhaps -1, 0. and

+1. Then we would have to redefine all the conventional Boolean operators

I ("tandi", "or", and "not", etc.) as operators on a set of numbers. This is

possible, and workable, but an unnatural and confusing situation.

COMPOSITE DATA ELEMENTS. ILLUSTRATED

Introduction to composites.- For all but the most trivial computations,

data elements are needed which are riot individual data elements but which

~I._ _ _ _ _
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are sots of elements associated in some way. Such a set of related ele-

ments we shall call a "composite data element". A simple example of a

Jcomposite data element is a complex number, which is an ordered pair of

two numbers, the components of the composite being termed the "real

part" and the "imaginary part"', respectively. A second example of a com-

posite is a human family. Such a composite has, usually, three components:

termed a "father"!, a "mother", and "children", where children in turn is

another composite, a set each of whose members is a "child".

The design and storage arrangement of composites is a non-trivial

undertaking. In fact, for some complex data processinig problems, it is

probably the activity that takes the majority of the analyst's effort.

This section intends to explain what is needed in the way of methods of

dealing with composites and to show one way of attaining the desired end.

Because the subject of composites can be complex and difficult, I am

initially going to avoid definitions and abstractions, and present instead

a segies of examples. Thus I will exemplify the requirements before for-

malizing them.

When I am describing composite data elements I must indicate which

of two kinds of description I am using: one kind describes the individuals

in the class; the other kind describes a single composite as if it were

the only instance of a class. The first kind of description I will say

concerns a "model" and its instances, and I will refer to it as the "model"

type of description. An example of the model type of description is the

record description as used in COBOL and PL/I, which gives a record layout.

Each record of the file to which the record description belongs is an

instance of this record description or "model". The second kind of des-

cription is that of a lone instance which is not a member of a class of

similarly-structured composites, and I will refer to it as a "modelless-

instance" type of description. An example of this modelless-instance

type of description is the occurrence of a list structure in IPL-V. It

applies to exactly one structure, not to a class of similar structures.

Current programming languages usually provide for only one or the other

of these types of description, and rarely, if ever, for both.

As the first example I choose a calendar date with a specific mean-

ing, say, "calendar date of latest revision". This will be given in the

j • modelless-instance type of description. (Later examples will be presented



which are constructed around the concept of the class of calendar dates.)

A series of examples based on this composite are given in order to

Tillustrate a variety of points. In all these examples I shall observe

the following conventions:

1. Expressions in capitals represent expressions which can be con-

sidered as actually stored.

-. a. Expressions without quotes are considered to be names: that

is, they could be found in some list of identifiers.

b. Expressions in quotes are "value-strings".

T 2. Expressions enclosed in square brackets are explanatory material

which is not explicitly stored.

3. Where there is no notation to the contrary, sequence is understood

to be material. Where sequence does not matter, either the nota-

tion "set" appears, or the conventional curly brackets ( and ]
will be used.

Examples. The series of examples labeled la, 1b, etc., are concerned

with the modelless-instance type of composite in which the parts are not

referenceable except by ordinal position. (That is, the components are

not explicitly named.)

The second series of examples, 2a, 2b, etc., introduces identifiers

of components and illustrates the fact that when the components have

identifiers, the s3quence of the components may not matter.

The third series of examples, 3a, 3b, etc., introduces models which

apply to a fixed sequence of components in the instances.

The fourth series of examples, 4a, 4b, etc., introduces models which

describe their associated instances but in which the components do not

necessarily have a 1-to-i correspondence with the components of the in-

stances.

The fifth series of examples, 5a, 5b, etc., illustrates complex(tmul-

tiple-level") composites, and the fact that the concepts of model and

modelless instance can be used together.

The sixth series of examples, 6a, 6b, etc., shows how relationships

and relations can be handy ed as composites.
The seventh series, example 7a, discusses the concept of models of

models.

V

- .. . . .
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Example lia.

[Identifier] REV-DATE

[Value-String]

[First component: year] "1967"

[Second component: month] "APRIL"

[Third component: day] 111511

Thus we have a three-component composite. The components are un-

named (that is, their names are not explicitly stored). The components

are accessible (referenceable) only by giving their ordinal positions

in the composite. Thus, the month component must be referred to as "com-

ponent 2 of REV-DATE".

Example Ib.

[Identifier] REV-DATE

[Identifier] DATE.OF.REVISION

[Value-String]

[First component: year] "1967"

[Second component: month] "APRIL"

[Third component: day] "15"

Here we have two synonymous identifiers for the same composite as

illustrated in example la above. The "synonymity relation" exists only

with the respect to this particular composite. It could be the case that

DATE.OF.REVISION, but not REV-DATE, is an identifier of some component

in some other composite.

Example Ic.

[Identifier] REV-DATE

[First component: year] [restrictor] "INTEGER" [Value-String] "1967"

[Second component: month] [restrictor] "MONTH" [Value-String] "APRIL"

[Third component: day] [restrictor] "INTEGER" [Value-String] "15"

Here we have added a new dimension of information: a restriction as

to the nature of the value-strings which are legal components. These

restrictors specify that the value of the first and third components must

be from the domain of integers, and that the value of the second component

must be from the domain of months. (We assume that these domains have al-

ready been defined.)I

I_ . .
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Example Id.

[Identifier] REV-DATE

[First component: year] [restrictor] "INTEGER" [Value-String] "1967"

[Second component: month] [restrictor] "MONTH" or [Value-String] "APRIL"
"INTEGER"

[Third component: day] [restrictor] "INTEGER" [Value-String] "15"

Here we have introduced another concept; the restriction of a value-

string not to a single domain but to a set of alternative domains. In

the example I have restricted the second component to be expressed either

as a month name or as an integer (that is, month number).

Example le.

[Identifier] REV-DATE

[Value-String]

[First component: year] "1967"

[Second component: month] "APRIL"

[Third component: day] "15"

[Fourth component: change marker] "RESET"

This is one way to have a marker, or indicator, associated with the

date, which marker can be programmed to indicate if the date has been

changed in some prescribed time interval.

Actually, this technique is intellectually unsatisfying. This tech-

nique implies that the marker is part of the date, which is nonsense. The

marker is "associated" with the date in a relationship which we could call

"'a' is a change-indicator of 'b'". We would like some appropriate way

of explicitly showing this relationship, so that we could get programmed

answers to such queries as:

1. "Does anything stand in the relationship of 'change-indicator' to

'REV-DATE' ?"

2. "What is the 'value' of the element standing in the relationship

of 'change-indicator' to 'REV-DATE' ?"

Example If. It might happen that we want our calendar date to be

available in two different sequences depending on its use. The year-

mont) -day sequence is preferable for computational purposes, where we might

be incrementing the date by a given time interval between this date and

another one. For printout purposes, however, a different sequence may

be preferable, such as the government standard sequence: day-month-year.
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The important concept here is that a single set of values should be

viewable as two separate composites. The concept of a composite thus

cannot be a single set of storage cells. It must instead be a referenc-

ing scheme to an arbitrary set of storage cells which does not preclude

applying other referencing schemes to those same cells.

The following illustrates in a very informal way the concept of having

two views of the same composite:

[Identifier] REV-DATE [Ident i fi er] REVISED

[Value-String] [Value-String]

[First component] [year] 11196711 [day] "15"

[Second component] [month] "APRIL" [month] "APRIL"

[Third component] [day] "15" [year] "1967"

Example 19. A situation could arise in which the "day" component

of the date was not given. Assuming that the composite structure for REV-

DATE was already set up, temporarily omitting the third component, and

possibly having to restore it later, is a bit clumsy. In such a case we

need a value-string such as "undefined" which represents the fact that no

value-string representing a day has been supplied.

[Identifier] REV-DATE

[Value-String]

[First component: year] "1967"

[Second component: month] "APRIL"

[Third component: day] "UNDEFINED"

Example Ih. In the preceding examples, the components of the com-

posite have been simple data elements. The components need not be limited

to simple elements, however; they can be composite. If an arbitrarily

complex composite, A, is to be a component of a higher-level composite,

'B, the reasonable way to represent A within B is by its identifier.

To illustrate, suppose a composite representing a transaction, in-

Sevolving a sender, receiver, and transaction-date. Sender and receiver

can be thought of as simple elements, while transaction-date can be re-

garded as a composite, identical in structure to the revision-date shown

in example la. We could represent this with two separate composites as

follows:

I.

["
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rIdentifier] TRANS-DATE [Identifier] TRANSACTION.1
[Value-String] LValue-Strin]

[year] "1967" [sender] "JOE SMITHI"'I [month] "JUNE" [receiver] "TOM JONES"

, [day] "21" [date] TRANS-DATE

Example 2a.

1[Identi Liaer] REV-DATE
[ [Part-Identifier] [Value-String]

[First component] YEAR "1967"

1 [Second component] MONTH "APRIL"

[Third component] DAY "15"

Here the components have individual identifiers so that a component

.* can be accessed by giving its component identifier as well as the main

T identifier. For example, to access the value-string "APRIL", one could

refer to it as "month of REV-DATE".

T example 2b. With the part-identifiers explicit as they are in ex-

ample 2a, there is no need for a fixed sequence of components. The com-

posite can be represented without any implied sequence of components thus:

[Identifier] REV-DATE

[Part-Identifier Value-String]

YEAR "1967"

DAY "15"

MONTH "APRIL"

This form corresponds to that of the "property list" of IPL-V, the

"association list" of LISP, and the "description list" of FORMULA ALGOL.

The contents of such a list need not be regarded as properties or des-

criptions. We will treat property lists later in this series of examples.

Example 2c.

j [Identifier] REV-DATE
+ [Part-Identifier] [Value-String]

[component] (YEARYR] "1967"

[component] (MONTH, MO] "APRIL"

[component] (DAY, DA) "15"

Here the components have multiple individual identifiers. Now a com-

ponent can be accessed by giving any oae of its components or part identi-

I, fiers in addition to the main identifier. For example, to access the

- -
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" value-string "APRIL" one could refer to it equally well either as "MONTH

of REV-DATE" or as "MO of REV-DATE".

Any of the part-identifiers may be omitted, leaving gaps in the

above layout. If the layout is constrained to be regular, the gaps

must be filled with some string such as "UNSPECIFIED".

Example 2d.

PART-IDENTIFIER: YEAR RESTRICTOR: "INTEGER" VALUE-STRING: "1967"

PART-IDENTIFIER: MONTH RESTRICTOR: "MONTH" VALUE-STRING: "APRIL"

PART-IDENTIFIER: DAY RESTRICTOR: "INTEGER" VALUE-STRING: "15"

Here have been made explicit the types of association, or "roles".

Now we are completely freed of the necessity for regularity. We could

omit any of the above pairs without introducing confusion.

Example 2dl. Because the component description of example 2d is

quite regular, we might be tempted to rewrite it as follows:

[Identifier] REV-DATE

[RESTRICTOR] [VALUE-STRiNG]

[First i.zmponent: year] "INTEGER" "1967"
[Second component: month] "MONTH" "APRIL"

[Third component: day] "INTEGER" 1"15"

We have taken advantage of the regularity and have in some sense

effected an economy of description. However, with this economy we lose

the freedom to omit any part. We must substitute the string "unspecified"

or "undefined" for any missing part.

Example 2d2. But suppose we had a composite like 2dl, with some

irregularity:

[Identifier] REV-DATE

[First component: year] [RESTRICTOR:] [VALUE-STRING:] "1967"
"INTEGER"

[Second component: month] [VALUE-STRING:] "APRIL"

[Third component: day] [VALUE-STRING:] "15"

We can easily force it to be regular; in the style of example 2di:

[Identifier] REV-DATE

[RESTRICTOR] [VALUE-STRING]

[First cor.ponent: year] "INTEGER" 11196711

[Second component: month] "UNSPECIFIED" "APRIL"

[Third component: day] "UNSPECIFIED" "15"

I

~~'
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in loing so we have been forced to specify "unspecified" which

is a nuisance, and in some sense must waste storage.

- Example 2e.

£ [modelless instance]

[Identifier] A A MFG.

T [Part-Identifier] [Value-String]

NAME "A A MfG"

STREET "1400 MARKET STREET"

CITY "WILMINGTON"

Se p STATE "DELAWARE"

This example shows that a given string, here "A A MFG", can be used

both as an identifier and as a value-string. As long as we know from

form or from context which of these two interpretations to give a string,

I we do not have ambiguity. We can even reference the "NAME of A A MFG",

which is, naturally enough, "A A MFG".

Example 3a.

j [Model] [Instande 1] [Instance 2]

[Identifier] DATE [Identifier] REV-DATE [Identifier] ORIG-DATE

[Model name] DATE [Model name] DATE

[Value-String] [Value-String]

First component
identifier:] YEAR "1967" "1967"

Second component
identifier:] MONTH "SEPTEMBER" "MARCH"

Third component
I identifier:] DAY "23" "2"

Here we have a "fixed" model, in the sense that the number and se-

If quence of the components are fixed. A model is thus a rule concerning

the component parts of a sqt of like composites ("instances"). At a

minimum, the model provides for identifiers of the parts. It can also

provide for any other information which applies uniformly to the components

of instances individually.

I Notice that a model itself is a composite data element. This sug-

gests that a set of similar models may themselves have a model. Later

we shall see that such is indeed possible.

!i
§1
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jExampl e 3b.
[Model] [Instance 1]

[Identifier] DATE [Identifier] REV-DATE

[Model Name] DATE

[Part-Identifierl [Restri ctor] [Value-String]

[First component] YEAR "INTEGER" "1967"

[Second componen tJ MONITH "MONTH" "SEPTEMBER"
[Third component] DAY "INTEGER" "23"

This model possesses domain-restrictors for each component. Other

types of information that apply individually and uniformly to all the cor-

responding components of all instances are: initial values, access-con-

trols, range limits on value-strings in an ordered domain. Information

which applies collectively must be handled in a different way (see example

]6a). Information which does not have the same value for all of the nth
components must also be handled differently (see example 3c).

Example 3c. Suppose we wished to have a "changed-marker" associated

with each component of each instance. The contents of such markers can-

not be stored in the model, since each marker is associated independently

Iwith each component of an instance. That is, the contents (value-string)

is not necessarily the same for the corresponding component in all in-

stances. lie need the following arrangement:]I
[Model] [Instance i]

[Identifier] DATE [Identifier] REV-DATE

[Model Name] DATE

[Changed-marker] [Value-String]

[1st component identifier] YEAR "UNCHANGED" "1967"

[2nd component identifier] MONTH "CHANGED" "SEPTEMBER"

[3rd component identifier] DAY "CHANGED" "23"

Examlple 3d. Certain kinds of models, called "skeletons", have the

interesting property that every instance of the model starts out as a

Icopy of the skeleton. That is, before any of its value-strings are modi-

fied, an instance is simply a copy of the skeleton. The kinds of infor-

mation that would go in a skeleton are structural information and values

which are initially the same for all newly-created instances but which

thereafter are subject to change. Examples of these are: initial value-

'I strings, changed-markers, and slot allocation. Since part-identifiers

I . .
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3rd component of TRACT-,. However, the members of a set are understood

to have no fixed sequence within that set, hence a later access to the

3rd component of TRACT-k, will not necessarily access the same element as

before.

Example 3f.-

[Model] [Instance i] [Instance 2]

[Identifier] BOOK [Identifier] B1 [Identifier] B2

[Model nanc] BOOK [Model name] BOOK

[Part-Identifier] [Value-Stringj] [Value-String]

TITLE "SYNTAX" "ROOT TABLES"
AUTHOR "SMITH, J.P." "JONES, X,X."
PUBLISHER WILEY WILEY

[Model] [Instance]

[Identifier] PUBLISHER [Identifier] WILEY

[Model name] PUBLISHER

[Part-Idertifier] [Value-String]

NAME "JOHN WILEY & SONS, INC."

CITY "NEW YORK, N.Y."

This illustrates the occurrence of a composite WILEY as a component of

two other composites (Bi and B2). This occurrence of a component common

to two or more composites is what takes the data representation scheme

out of the pure hierarchy, or "tree," category.

Example Zia. It is not always appropriate to use a model having a

fixed structure. It may be desirable to have instances which contain

components chosen from a specified overall set of components. In such

a case the model may specify the overall set. Clearly it is necessary

for each instance to identify explicitly which components are present.

In this example, this identification has been accomplished by giving ex-

plicit part-identification.

[Model] [Instance I]

[Identifier] DATE [Identifier] REV-DATE

[Model name] DATE

[Part-Identifier] [Repetition factor] [Part-Identifier][value-String]

YEAR "1" YEAR "1967"
MONTH !10 or I"
DAY "0 or 1"
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and dotain-restrictors are not ,ubject to change on a per-instance basis

they are not appropriate to a skeleton. Both a mod 1 and a skeleton may

be used with a given set of instances. flere is an illustration:

Model Skeleton Instance

[Identifier] DATE [Identifier] DATE-A [Identifier] REV-DATE

[Skeleton name] DATE-A [Model name] DATE [Model name] DATE

[Value-String] [Value-Strinq]

[,st component identifier] YEAR 11196711 "1967"

[2nd component identifier] MONTH "UNDEFINED" "UNDEFINED"

[3rd component identifier] DAY "UNDEFINED" "UNDEFINED"

If the part-identifiers were not needed, the model in this example

could have been omitted.

Example 3e. flow do we give a name to a set of elements? In some

cases this set is the set of instances associated with a model. But there

will be cases in which the members of the desired set either:

i. are not all the instances of a given model;

2. belong to one of several models;

3. are modelless instances;

/k. are some combination of 1,2,3 above.

To sum up, we need a method of specifying arbitrarily-chosen elements to

be members of a set. One way to do this is to consider that we have a

primitive model called a "set". "Primitive" means that the concept of "set"

is not defined in the user language. Any set we wish is then an instance

of this model, and is essentially a list of identifiers of members of the

set. An example of a set is:

[Identifier] TRACT-i

[Model name] SET

[Value-String]

HOUSE-A

HOUSE-B

HOUSE-C

j IHOUSE-D

House-A, House-B. etc., are the identifiers of composite data elements,

each of which might be an instance of a model called HOUSE. Since at any

given time there exists soe sequence of the components of a set, the

components of their identifiers can be accessed by ordinal position, e.g.; f
:1!
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S"[Instance 2] [Instance 3]

[Identifier] PUB-DATE [Identifier] ORIG-DATE
[Model name] DATE [Model name] DATE

I [Part-ideritifier] [Value-String] [Part-Identifi er] [Value-String]

MONTi "APRIL" MONTH "APRIL"
YEAR "1967" DAY "15"

YEAR "1967"

% The model illustrated here says, in effect:

1. The component YEAR must occur once.

2. The components MONT1 and DAY are optional.

Note that the sequence of the components is imimai rial, because each com-

ponent explicitly contains its associated po:t-identifier.f Example I.~e may want a structure which is a set of similar com-

ponents but for which the number of components is not known until after

I program execution has begun. An example might be a specific set of chil-
dren, illustrated thus:

[Identifier] CHILD-SET [Identifier] CHILD-SET-I [Identifier] CHILD-SET-2

[Model name] CHILD-SET [Model name] CHILD-SET

[Part-Identifier] CHILD [Value-String] [Value-String]
[Repetition factor] any "JOE" "MARY"

"FRANK"

"BETTY"

Tne data-definitior. language of Standish calls this "indefinite replication".

Example 5a.

[Identifier] SALE-I

[Part-Identifier] [Value-String]

SELLER "JOE"
BUYER "MAX"

DATE DATE-i

[Model). [Instance 1]
[Identifier] DATE [Identifier] DATE-I

[Model name] DATE

I irst component] YEAR "1967"

[Second component] MONTH "APRIL"

I [Third component] DAY "15"

This example illu tes two things:

- .|AM--W-
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1. Composites can have as components other composites.

2. A component which is composite need not be of the same kind as

its overall or parent composite. Here the parent composite is

a modelless instance while one of its components is a modelled

instance.

It is also true that the components of a given composite need not be all

of the same kind: there can be a mixture of imodelled and modelless instances.

Example 5b. There is a fine but important distinction between two

uses of a component which has several members. Consider this example:

[Identifier] ITEM-i [Identifier] DI
[Model name] ALTERNATIVE-SET

[Part-Identifier] [Valne-String] [Value-String]

TITLE: "BUGS" "TR-103"

AUTHOR: "J.J. JONES" "AD 000 122"
PUB-DATE: "1963" "sP-io66"
DOC-NO: D1

In order to be able to locate this composite by searching, we want to be

able to say something like "that composite which has a (presumably unique)

value-string of 'SP-1066' as a value of DOC-NO". Further assume we do

not know in advance whether DOcf-NO has as its value a single value-string

or a set. We could test each occurrence of DOC-NO to find out whether

its correspondent was a single value-string or was a set. This is rather

clumsy. What we want is the flexibility of having a component (DOC-NO)

for document number which can have any number of associated value-strings

without having to make an artificial distinction between the cases of I

and more-than-I. It should be noted that there is an alternative, and

equivalent method of expressing groups of similar components, as exempli-

fied below:

[Identifier] ITEM-i

[Part-Identifier] Value-String

TITLE: "BUGS"
AUTHOR: "J.J. JONES"

PUB-DATE: ":TR-i03"
DOC-NO: "AD 000 122"
DOC-NO: "SP-io66"
DOC-NO:

Example 5c. Certain inform.tion applies to a set of instances col-

lectively rather than individually. Examples of such information: The

number of instances, the "highest value" of a value-string of a specified

1



component of all the instances, and arbitrary properties assigned to the

set of instances. Such information goes by the name of "property list"

(IPD-V), "association list" (LISP), or "description list" (FORMULA ALGOL).

We call it "summary information". There are two fundamentally different

ways of attaching summary information to a set, which here we will call

the "data set", to distinguish it.

The first method is to consider the summary information as a com-

posite, the data set as a composite, and the first composite standing to

the second composite in the relation "property set of".

[Identifier] PROPERTY-RELATIONSHIP-i

[Model name] SET

PROPERTIES-A

TRACT-l

[Identifier] TRACT-i [Identifier] PROPERTIES-A

[Model name] SET [Model name] SET
[Eart-Identi fierl [Value-String]

HOUSE-A LOWER-PRICE: "$18,200"
HOUSE-B UPPER-PRICE: "$22,500"
HOUSE-C SCHOOL-NAMC: "HUGHES"
HOUSE-D

This approach says, in effect, the composite named PROPERTIES-A is a list

of properties which apply collectively to the set (of houses) named TRACT-i.

The second approach is to make a composite of the properties, as individual

components, along with the name of the data set.

[Identifier] TRACT-DATA-I [Identifier] TRACT-i
[Model name] SET [Model name] SET

[Part-Identifier] [Value-String]

Lower price: "$18,200" HOUSE-A

Upper price: "$22,500" HOUSE-B

School name: "h1UGHES" HOUSE-C

Tract-Ident: TRACT-1 HOUSE-D

Example 5cl. A possible variation on example 5c is to replace the

component pair

LOWER-PRICE: "$18,200"

UPPER-PRICE: "$22,500"

wi th PRICE-RANGE: RANGE-i

where RANGE-i names a separate composite as follows:
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[Identifier] RANGE-i
[Model name] SET

[Part-Identifier] [Value-Strinq]

LOWER-PRICE: "$18,200"

UPPER-PRICE: "$22,500"

Example 6a. Suppose we wanted to express a relationship among several

entities, where by "relationship" we mean an instance of a relation, and

by "relation" we mean a set of relationships. Let us name these entities

A,B, and C without saying what they actually consist of. (They might be

names of cities, for example). Then an instance would be:

[Identifier] X1
[Model name] LIST
[Value-String]

AI B
C

This could be a relationship which is an instance of the relation "between".

This relationship corresponds to the sentence "B is between A and C". The

reader is reminded that the mathematical definition of a relation is a

set of n-tuples (I call it the set of instances), where each n-tuple is

a list (ordered set) of names of entities which stand in that relationship.

Note that we could give ccmponent identifiers to the parts of a relationship:

[Identifier] Xl
[Model name] SET

[Part-Identifier] [Value-.Strinq]

LEFT-OBJ A

MIDDLE-OBJ B

RIGHT-OBJ C

We might prefer a form in which the model was explicit:

[Model] [Instance]

[Identifier] BETWEEN [Identifier] X1
[Model name] BETIWEEN

[Part-Identifier] [Value-String]

LEFT-OBJ A

MIDDLE-OBJ B

RIGHT-OBJ C

If we wanted the relationship to be symmetric we could have instead:



[Instance]

[Identifier] Xi
[Model name] LIST

[Part-Identi fi or] [Value-String]

END OBJ A

END OBJ C

MIDDLE OBJ B

Example 6b. A slightly different viewpoint is to regard the "between"

relationship as a special case of linear ordering. For an ordered set

of components we have the primitive model LIST. We could express the

fact that B is between A and C by writing

[Model name] LIST

A

B

C

Notice that here an identifier is not needed. We in general do not associ-

ate identifiers with individual relationships. The meaningful entity to

have an identifier is the set of all the individual relationships; this

identifier would most sensibly be the name of the relation concerned.

Example 7a. Since a model is itself a composite data element, one

might conjecture that a model could itself have a model. This is indeed

the case. It is possible to go another "level", and have a model of a

model of a model. It is not clear that this latter capability is neces-

sary, however. It appears that one can supply the second-level model with

enotrjh primitives to take care of almost any conceivable situation.

A very rough indication of this concept of a model of a model is

given in the xamnple below:

[Instance]

[Identifier] P1
[Model name] PERSON

[Part-Identifier] [Value-String]

NAME "JOE WILLIAMS"

SEX "MALE"

BIRTIIDATE "4/15/27"

STREET "12 POST ROAD"

[Model]

[Identifier] PERSON
[Model name] MODEL-2

___ _ _ _ __ _ _- - - -- - - 5 .
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1 [Part-Identifier] [Domain Restrictor] [Repetition Factor]

NAM STRING 1

BIRTIIDATE SHORTDATE 0 or 1

STREET STRING 0 or I

- SEX SEX-ABBR 0 or I

Note: this model has to say, in a way not shown here, that every related

instance of this model is a set of "Part-Identifier: value-string" pairs.

[Model of model]

[Identifier] MODEL-2
[Model name] -

j Note: This model has to say, in a way not shown here, that every related

instance of this model is a set of"Part-Identifier: domain-restrictor:

repetition-factor" triples.

The foregoing examples of composite data elements are intended only

to be illustrative. They lack completeness and rigor. For example, in

example 3b, I have not indicated how the different components of the model

are to be recognized. In example 3c I have not shown how the parts of

Ithe instance are to be recognized.
These examples try to convey the range of variation of data struc-

tures. They have not illustrated all possible combinations of features.

To have done so would have been needlessly confusing. When all possible

combinations are considered, there is a very large number of data struc-

tures. A truly flexible language must provide for them all. Such a lan-

guage will be practical only if it can provide for this wide variety of

structures by a simple but general technique. If it cannot, then either

it will accommodate too few structures, or it will be cumbersome through

having too many individual ("ad hoc") types of data description. A goal

in this work is to show such a general method of dealing with a wide variety

of data structures.

One of the general goals has been to provide explicitly as much of

jthe structural information as possible about a composite data element.
When all of the structural information is made explicit, then it can be

changed during program execution, thereby providing for the maximum

flexibility.

I
I
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COMPOSITE DATA ELEMENTS DEFINED

The basic concept of a "composite". In the preceding section I have

given examples of composite data elements and by these examples have estab-

lished some terminology. Now I abstract the essence of those examples

in order to develop the requirements for composite data elements.

A "composite data element", or a "composite", for short, is a data

element formed by an association or relationship of some number of other

data elements. The "core", or "heart", of a composite is a set of "pri-

mary" component data elements which are to be considered as standing in

some "primary" relationship to each other. This primary relationship

can be thought of as a sequence of cells, where the contents of the cells

indicate the primary component data elements. The sequence of the cells

may matter, in which case we call it a "list", or it may not matter, in

which case we call it a "set". (A cell does not necessarily correspond

to a storage location in a computer).

Associated with this core of primary elements can be "secondary"

data elements. I say that these secondary data elements stand in "second-

ary" relationships to the core. A secondary element may be related to a

single member of the core, or it may be related to the whole core considered

as a unit. We can think of these secondary data elements as conveying in-

formation "about" the core elements. This suggests the word "metadata"

as a collective term for them. Thus we see that a composite is a complex

network of relationships among data elements.

These primary and secondary associations are not required to be des-

cribable in terms of any simple storage concept for a machine. It would

of course be convenient if it were so describable, for most programmers

are trained to think in terms of storage concepts and manipulations. I

foresee, however, that this concept of primary and secondary associations

will not be representable in terms of present-day storage concepts in any

neat way.

The fundamental need that has been illustrated is that of being able

to associate a group of data elements. By "associate" I mean indicating

what members are in the group, indicating whether the group is ordered

or unordered, and being able to have this group play the role of a data

element. By having a composite able to play the role of a data element,

I mean that it can have identifiers and it can be a component of another

composite data element.
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I am not concerned at present with how such an association is to be

realized'in a real environment. What I am concerned with is how the

association appears from a conceptual standpoint. There are several pos-

sible views we might take: 1) that the association is represented in a

list of the identifiers of the components, and 2) that the association is

represented by some mechanism not know to the user, such as a list of the

machine addresses of the components, and 3) that the association is aI sequence of the actual components. #3 is untenable because of the fact

that we may want the same set of components to appear in different corn-

j posites in different physical sequences-an obvious impossibility. #1

and #2 differ only in that one uses identifiers (strings over the avail-

able alphabet) while the other uses machine addresses. The choice between

these two is somewhat a matter of taste. In fact, they need not be mutual-

ly exclusive, as long as the processor can tell whether it is looking at

a machine address or an identifier in a composite. #2 appears to me the

better choice. I can graphically suggest it by the following sketch:

jI
.>I ,

- I )

The pointers of a composite are invisible to the user. All the user has

access to are the data elements to which the pointers point. If what we

want as the composite itself is a list of identifiers (of data elements),1 we can easily provide for it, according to the following sketch:

BB..

I ~C:DDD __



The p6inters of the composite may point directly to a set of data ele-

ments, which elements may or may not have individual identifiers. We

portray this latter situation, with individual identifiers, thus:

-- identifier \

name of
composite

AA
c:::

~>Q~iD identifier G l
detfi er

The "name of the composite" is subject to two interpretations. It

can be the unique name of an individual composite, e.g., "JONES FAMILY,"

whose components are: "TOM1", "MARY", "SUSIE", and "JACK". It can alter-

natively be the ambiguous name of a relationship, such as FAMILY, which

is the identifier of all composites which portray family relationships.

Then the following sketches depict two family relationships.

rel'ship
rel'shipF L

* Q__ -l----
>QIZ
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Of course, one can go a step further and have both individual identifiers

plus ambiguous relationship names.

P FAHILY > relationshij IL Y e-2i~nsiP

CHT FAIL fenLferY
Mi d e n t i f i e r I identifier_

-> y

An alternative way of indicating relationship is by being in a given set.

In this case the relation of FAMILY is the set of instances of family

relationships:

identifier

FAMILY "FAMILY

JONES 
jdAMIIcY i d

11

I

We simply note at this point that the concept of order versus lack

j of order in an association is a matter of some variation. It could be
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left to functions defined on composites to consider them ordered or not.

An indicator of order could be explicitly attached to each composite where

it was desired to indicate specifically whether order was material; although

in the majority of cases it might be left to ronvention rather than to

specifically indicate it.

There are two fundamentally different meanings to the word "set" in

the programming context:

1. an explicit set or sequence, expressed as a composite of components,

2. an implicit set, defined by a group of common characteristics.

The explicit set may be diagrammed:

The implicit set may be diagrammed as follows, where the R stands for some

relationship.

R _

j R KIZI

It is the burden of the user to k.now at all times which kind of set he is

dealing with, because the transformations he uses may not apply equally to

__________ V
-3 U
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both idnds of sets.

By way of illustration, consider the task of expressing the following

graph structure as a composite data element:

A

~AQ

The nodes A,B,C, and D represent data elements not further defined. The

arrolrs represent some homogeneous relationship, say, "potential succession-"

The numbers on the arrows represent some sequencing imposed on the rela-

tionship.

As long as the relationship indicated by the arrow is the same for

all arrows, the relationship can be left "understood" rather than be made

explicit. Thus a simple list could be used.

KQii

If we wished to set "A" apart as an initial node, we might use the alter-

native formulation:

! __I___
A>C- oID

B.
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If we did not wish to consider the relationship a homogeneous one,

however, or if we wished to attach one or more data elements (or inetadata

elements) to a relationship, each relationship could be expressed as a

single composite, thus:

It is vitally important to note that here we have a set of relationships,

but it is not an explicit set of relationships. An explicit set of rela-

tionships would be one in which the members, in this case relationships,

were components of a composite. Here is an illustration of the same re-

lationships as shown above, but here they are tied together as components

of a single composite.

A

oiD

A two-element relationship has often been represented here by means

of a single arrow labeled with the relation name, thus:

c ..-.>..
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This is a shorthand notation for a two-component composite which is dia-

grammed as:

Gill>identifier

or even more properly diagram ed as:

IA

where the construction ... ....

I

signifies the primitive relationship of identifier. The above shorthand

notation will be used throughout this report.

Sets vs. lists. It is not obvious that it is really necessary to make

an explicit distinction between a set and a list (that is, between an un-

ordered set and an ordered set). We could in general leave undefined the

property of being ordered or unordered. In specific applications we might

want to label a composite as ordered or unordered: this can be done by

rel ating a property of "order" or "unorder". When the ordering property

is left undefined, then a composite is ordered or-unordered according to

the function that the user chooses to apply to it. That is, some func-

tions may treat a composite as ordered, which it necessarily is because

of the physical characteristics of machines. Other functions may treat

a composite as unordered, and will not take advantage of the fact that

I
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it is ordered in a machine.

What actions can be taken involvingj a composite. We can get a further

understanding of a composite by noting the actions that can involve a

composite during program execution:

1. We can obtain an identifier of given composite considered as

a unit. I say "an identifier" because there may be more than one

identifier associated with the composite.

2. We can obtain an identifier of the nth primary component. Hfere

we are talking about an identifier which applies to a primary

component only in the context of the composite. I have in earlier

examples called such identifiers "part-identifiers". Each primary

component can have other identifiers unrelated to the existence

of the composite.

3- We can obtain the value-string of a primary component, where that

component is designated either by its ordinal position in an

ordered list or by a part-identifier.

4. We can obtain the value-string of a secondary component, via ex-

pressing the binary relationship in which the secondary component

stands to some identified primary conmponent.

5- We can add secondary components without limit, and we can select-

ively delete them.

6. We can create a composite description, called a "model", which

provides the information necessary to carry out actions 2,3,4,

and 5 above for some class of composites.

7. We can create a new composite, and may give its structure in any

of several ways:

a. We can say that the new composite is "like" an existing one,

in which case the structure and contents of the existing one

will be copied. (This "like" feature has a similar counterpart

in PL/I.)

b. We can say that the new composite has as its mode] some exist-

ing model.

c. We can say that the new composite has the form of a list or a

set. Actually "list" and "set" can be regarded as primitive

models.

The following sections describe composites in more detail.
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Primary association. The first requirement of a composite data ele-

ment is that it provide for an association of a set of data elements. I

call this first association the "ijrimary" association. It can associate

any number of data elements. These associated elements can be simple

data elements, composite data elements, or a mixture of the two. The as-

sociated set of elements can be either ordered or unordered. (I omit the

partially-ordered case as being too complicated; it can be built up from

ordered and unordered components.) Each composite must therefore have

associated with it in some way, as yet unspecified, an indicator as to

whether ordering is material.

The components of such an association may simultaneously be components

of other associations. This suggests that, at least in such cases, the

association of elements is not one of being physically proximate. It

might be realized by putting in physical proximity some representatives

(identifiers, pointers) of the elements to be associated.

Identifiers of composites. Having introduced the subject of composites,

we are now ready to extend the notion of "identifier" to cover identifiers

of composite data elements. Everything said earlier concerning identifiers

of simple data elements also applies to identifiers of composite data ele-

ments. With the introduction of composites, however, the subject of identi-

fiers becomes more comnl.icated. The general concept of identifier rela-

tionships in a composite data element is introduced in Figure 4.--5.

COMPOS ITE

Q principal identifier

Qidentifier

r - ... ,<individual
(: apart-i dentifi er identifie

FIG. 11-5 GENERAL CONCEPT OF IDENTIFIER RELATIONSHIPS IN A CONPOSITE
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Note that the part-identifier is in a sense a label on a position,

while an individual identifier is a label on an element. However, probably

the best way to distinguish a part-idcntifier from a position identifier

is in the association transformation which, when a data element is moved,

does or does not move the corresponding'identifier.

Identifiers associated with data elements are one means of referencing

those elements. When a data element, either simple or composite, becomes

a component of some composite data element, it becomes accessible in

another way which we say is "in the context of this composite:" we can

refer to the component by a part-identifier. To show that a part-identi-

fier is related to a given composite, we qualify the part-identifier by

the identifier of the composite as a whole. Example: we might refer to

FATHER OF JONES-FAMILY where "FATHER" is a part-identifier and "JONES-

FAMILY" is an identifier of a composite. We recognize that this is an

examnple of the hierarchical method illustrated below.

Note that the identifiers of parts can be attached in different ways.

Consider the string

HF-CHOSEbIT

A substring of this string could be designated:

1. by character position, e.g., "characters 3 through 7 inclusive",

2. by characteristics or properties, e.g., "the first substring

beginning 'CH' and ending in 'E'".

Both of these designations yield the same substring, namely "CHOSE". Let

these substrings be named "A" and "B" respectively. For an invariant string

it matters not which of these identifiers is used to designate "CHOSE".

In the case of a string which can be modified, however, it does make

a difference how the identifier is attached. In the above string, substi-

tute "SHE" for "IHE". "B" names the same substring as before, "CHOSE". But

"All names the substring consisting of characters 3 through 7, which is

"IbCHOS". This distinction suggests that we need two different varieties

of the relationship "part-identifier of:" the first is "idientifier of posi-

tion", the second is "identifier of content".

The fact that a component of a composite can be referenced by a part-

identifier has just been discussed. A component of a composite can also

in general be referenced in ways other than by a part-identifier. One

such technique is by giving its ordinal position. This makes sense only

if the components are in fact ordered; that is, they are in a composite

[P-
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which is a list rather than a set. Another technique of selection is to

give some unique property; this technique will be discussed in more detail

later.

Providing for identifiers for a composite as a whole and individual

part-identifiers for its components does not exhaust the possible needs

for identifiers. Consider the following case: a composite representing

a set of children. There may be an identifier for the set as a whole,

say "child-set-i". There will be identifiers for the individuals, say

"Allen", "Barbara", and "Charles". We also need to provide for the notion

of "child", which is a name for a single, undistinguished member of this

set. There does not seem to be an intuitively nice way to handle this

by another relation within the framework thus far developed. Rather than

create a separate relationship for this concept, we can get the desired

effect via a function which will select an arbitrary member of a named

set. We need to be able to create a definition which says "'child' is

any arbitrarily-selected member of 'child-set-i'".

Used by itself an ambiguous identifier will select a set of data

elements. If it is necessary to select a single one of these elements,

then other identifiers must be assigned such that some combination of

identifiers will indicate the data element uniquely. There are two main

ways in which such a conjunction of identifiers can be used:

i. Hierarchical, or ordered. The identifiers are given in hierarchi-

cal sequence; whether in sequence of "going up" or "going down"

is understood by convention. Example: in COBOL we can have a

compound identifier of the form "dataname-1 OF dataname-2 OF

datanane-3", as in "DAY OF MONTH OF TAXABLE-YEAR". This means

that MONTH must be defined as a component of TAXABLE-YEAR, and

that DAY must be defined as a component of MONTH. DAY and MONTH

may be names of components of other elements as well; that is,

; Ithey may appear in other naming hierarchies, and these latter

appearances will be independent of the former.

2. Set-intersecting, or unordered. The identifiers are given in

1any sequence. Each identifier names a class of elements. The

intersection of the named classes need not yield a unique ele-

ment, though under normal circumstances a single element would

most likely be expected.
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'The problem of applying identifiers to points versus segments. There

is a distinction between attaching an identifier to a point (for example,

a starting-point in a series of imperatives) and attaching an identifier

to a segment (for example, a set of imperatives constituting a procedure).

If we say "performA" we expect A to ideitify a segment. If we say "Go

to A", we expect A to identify a point. A "point" in a program or body

of data corresponds to some data element; to refer to that point, we give

I an identifier of that element. A "segment" or "sequence" in a program

or body of data is a set or list, which is a.composite data element; to

I refer to that point, we give an identifier of that element. A "segment"

or "sequence" in a program or body of data is a set or list, which is a

j compdsite data element; to refer to the segment or sequence as a whole,

we give an identifier of the composite.

Metadata relationships. To any data element, or to any of the com-

I ponent cells of a composite, can be associated, in a binary relationship,

certain data elements which represent data "about" the related element.

j We refer to such data as "metadata"I and call the relationship one of "second-

ary association". Examples of metadata relationships are:

i. identifiers, "regular" and "principal", of whole data elements,

or of their component cells (the latter heretolore called "part-

identifiers);

2. reset, indicating the contents of the cell is to be reset to the

value-string indicated by the contents of the metadata element;

3-. cell prescriptor, which prescribes in terms of a domain/class

prescriptor what is allowed as the contents of a component;

4. cc 3nent prescriptor, which prescribes in terms of a domain/

class prescriptor what is allowed as the contents of a component

designated by the contents of a cell;

5. access code, -hich can limit the type of access and accessor to

a composite or to a component designated by the cell contents;

6. repetition factor, which when used in a model tells how many oc-

currences may exist of a given class of component;

7- uniqueness indicator, which can be used to indicate an element

which can be modified without fear of upsetting other relationships.

Some of these metadata concepts are illustrated in Figures 4-6, -7, 4-8,

and 4-9. The user need not be limited to the set of metadata relationships
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I which are presented here. He should be able to define other relation-
ships when he needs them.j Figure 4-6 conveys the following facts: There is a composite of which
"quantity" is the identifier of one of its components. The simple data
element representing the "quantity" has'the individual identifier 11A",
but as yet has no value-string assigned. When a value-string is assigned,
the component prescriptor "integer" specifies that it must be from the3domain of integers.

Figure 4-7 co veys the same facts with the exception that the exist-
ence of the composite and a part-identifier is not mentioned.

compoent resciptor"

component
UN. -UNDEFINED

1]
FIGURE 4-6.

]A

,e1 E h"N.

'e

FIGURE 4-7.
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94

FMETADATA RELATIONSHIP COMPOSITE

QD~aceorde iao

cell-i xi.

cop~n-__Iprescriptor

Figure I1-9. Example of a Composite Data Element and Associated Metadata

.I ....
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It should be noted that an element which stands in some metadata

relationship to another element is in some sense not a "normal" data

element. Many of its characteristics are implied by the type of relation-

ship. For example, the element which stands in the domain-prescriptor re-

lationship to some other element need not itself have an associated domain

prescriptor; the domain-prescriptor relationship itself serves to imply

that such an element can only have value-strings fr'om the domain of domain-

identifiers.

A somewhat confusing issue is the fact. that some relationships apply

between a metadata element and the contents of a cell, while others apply

between a metadata element and the element designated by the contents of

a cell. This will become clearer in the pictorial illustrations given

later under "structures of a composite".

We can now make the general observation that any element which plays

a metadata role need not have metadata elements tied to it. The type of

* relationship of the metadata element to the data element implies what

the domain of the metadata is. This is not to say that a metadata ele-

ment cannot in turn have a metadata element; but it need not have it. The

requirement for metadata must obviously terminate at some level, and we

have chosen the lowest level as being the most convenient place to termin-

ate it.

We now proceed to discuss these meta"'ata relationships in more detail.

The most important of these is the identifier relationship, which has al-

ready been discussed above.

"Reset" concerns a relationship used for resetting or initialization

upon command. Resetting of a cell, putting a new value in a cell.

A "cell prescriptor" is used to define from what domain or domains

of values may be taken the value-string for the related element, presumed

to be a simple data element. Thus a cell prescriptor may be the name of

a domain, such as INTEGER, or it may be the name of a set of domains, such

as NUMBER, elsewhere defined to mean "INTEGER OR RATIONAL".

A "component prescriptor" is used to define from wha class or classes

may be taken the data element which corresponds to -that component. Thus a

component prescriptor, as a metadata element, can contain the name of a

class, such as FAMILY, or it can contain the name of a set of classes,

such as S2OCCKIOLDER, elsewhere defined to mean "PERSON OR COMPANY". It is

-- -
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quite possible for a component name and its associated component prescrip-

tor to have the same identifier. An example is "month" in the illustra-

tion of the composite element for "clocktime". The distinction between

cell prescriptor and component prescriptor is shown in Figure 1-10. The

cell prescriptor and the component prescriptor are alternative ways of

giving the same information about the domain of the contents of the principal

ii value cells.

component of
a composite

1 .cNTGER PPj -Qy

cell
prescriptor

FIGURE 4-1O. DISTINCTION BETWEEN COMPONENT PRESCRIPTOR AND CELL. PRESCRIPTOR

An access code can be used to limit the access to the related data

element. It may limit the type of access, to READ ONLY. for example. It

may limit the accessors, by allowing access only to those users present-

ing a specified code.

In a model, to be discussed in further detail later, is presented

information about a class of similar composites. Certain composites may

be variable: that is, a given component may be allowed to occur multiple

times. A repetition factor in a model can be used to specify the numbers

of occurrences of a given type of component in any composite. It may

give a minimum value, a maximi mm value, both a minimum and a maximum, or

it may give some set of allowable valu-,s.

A "uniqueness" indicator could be used to indicate that some element

(data or metadata) was to stand in some specified relationship to only

one other data element. This would be used to show that the latter could

7be modified without inadvertently spoiling another relationship. Example:

If A stands in relationship R1 to J and A stands in relationship R2 to J

and if the user wishes to modify that element which stands in relationship
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RI to J (namely A), he runs the risk that the relationship A R2 J is no
longer valid, even though it is still explicitly expressed in the data
structure. ITf the user knows, by a uniqueness indicator associated with
A, that A does not stand in any relationship with any element other than
J, then A can safely be modified.

The concept of a model I feel is an important one. We have several
possible courses of action on how a model might be realized:

1. It could be a primitive concept, not defined in the languaVe, in
which case certain transformations for manipulating models would

need to be provided and learned;

2. It could be a composite in the form of a standard structure, with
some interpretation rules built into the processor.

3. It could be left to the user to construct his own models and pro-
vide his own accessing transformations.

We may want part-identifiers associated with the model rather than
with the individual composites which are instances of the model. This
brings to four the number of ways that an identifier can be related to
a component of a composite(which is an instance of a model). These ways
are illustrated in the figure below.

model instance

A

GDl

These four ways are:

1. To relate the part-identifier to a node point of the model, as
with "All in the figure;

2. To relate the part-identifier to a node point of the instance,

as with "B"3~ above;
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3. To relate the identifier to the corresponding cell of the instance,

as with "C" above;

4. To relate the identifier simultaneously in all three ways just

I mentioned, as with "D" above.

All but one of these ways may seem intuitively objectionable because of

j the fact that an identifier is not tied directly to the component it identi-

fies. How the component is in fact located given the identifier, or how

Ithe identifier may be located given the compotient, is an implementation

matter which need not concern the user.

Models. There are two fundamentally different approaches to expres-

sing composite data elements. The first of these approaches is to have

a composite "carry its own" descriptive information (metadata), in the

sense of having these metadata elements directly associated with the com-

ponents. The second of these approaches is to collect in one place, called

a "model", some or all of the descriptive information common to a class of

composites.

We illustrate these approaches. Consider the concept of human family.

Here are two self-describing, or "modelless", instances of family (where

square brackets set off information which is understood but not explicit):

[Instance 1] [Instance 2]

[Identifier:] F1 [Identifier:] F2

[Part-Identifier] [Value-String] [Part-Identifier] [Value-String]

father Harry father Sam

mother Susan mother Molly

children (Betty, Margaret] children (Michael, Stephen,
Alice)

It may be convenient, however, to abstract the common information from

these instances and place it in another data element which we call a "model":

[Model] [Instance i] [Instance 2]

[Identifier:] FAMILY [Identifier:] F1 [Identifier:] F2

_ ..4___n_..er _ [Value-Str__ n._ _ [Value-String]

modelname FAMILY FAMILYV father Harry Sam
mother Susan Molly
children (Betty, Margaret) (Michael, Stephen

Alice)

Note that in this latter illustration, which we called the "fixed model"
2 case, elements (here simply part-identifiers) of the model must stand in

IL
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1-to-1 correspondence with the elements of each instance. In this il-

lustration the only common information is part-identifiers. Other kinds

of common information, however, could be included: anything in the cate-

gory of metadata, described earlier.

Briefly then, a model contains methdata abstracted from a class of

composites, plus possibly some information about the structure of the

composites, such as the numbers of repetitions of components. I originally

thought of a model as information on how to interpret an instance. This

is obviously not the case. A model is that descriptive information (meta-

data) -bstracted from a class of instances; or in the case where no in-

stances have yet been created, the information in the model may be regarded

as a"prescriptor.

A model, it should be noted, is not a prototype, or "skeleton", the

concept of which will be explained later.

It is appropriate to use a model in connection with a simple data

element, which can be considered to be a composite with only one component.

One kind of information provided by a model is identifiers of com-

ponents. For example, a model might be used for a class of data elements

called "complex numbers," each member of the class being a pair of numbers,

the first member being called "realpart" and the second member "imagpart".

Notice that a part-identifier names the individual members of a class

of components. For example, "realpart" names, ambiguously, each first

component of all the component pairs representing complex numbers. Only

when one of these part-identifiers is qualified by the identifier of a

particular composite is the ambiguity resolved.

The information which can occur in a model can be given in any of

several ways. A given metadata element may be given as a quoted value-

string, as an identifier ultimately interpretable as a value-string, or

as an indicator that the value is to be taken from a given component of

the corresponding composite. This latter means that the number of repe-

titions of some component, for example, might be given as another component

of the same composite.

Observe that while a model is capable of carrying information common

to a set of composite data elements, not all of such common information

need be carried in model. Which data is carried in a model and which in

the composites .:,emselves is up to the choice of the user. His choice

will depend on the ways that he will access and modify information.

t -- 7
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TF e information in the model must be recorded in such a way that

it can be matched up with the parts of the composite to which it applies.

The simplest way to achieve this correspondence is to have a fixed com-

posite and a fixed model; then the correspondence is simply 1-to-i. How-

ever, we want more flexibility than a fixed composite gives us. We want

the possibility of having composites which can have components added or

deleted dynamically. If we wish a model to describe a set of such vari-

able composites, then clearly the simple 1-to-i correspondence won't work.

The model must carry enough more information to be able to set up a

correspondence between the components of the model and the components of

any related composite. Such a model we call a "variable model". One of

the kinds of information unique to a variable model is "repetition fac-

tor" which tells how many of the corresponding components we may expect

to find in a composite. We may establish some conventions, too, such as

the convention that an omitted repetition factor is taken to have the

value "ill. A variable model should also provide a way to state under

what conditions a given substructure is to occur. Obviously at this point

we have left a great deal unsolved or unsaid about variable models.

To every instance of a model, together with the model, there exists

a corresponding non-modelled, or modelless, or self-contained, instance.

These two forms are equivalent in one sense, but not equivalent in a second

sense. In terms of the information contained, and from the point of view

of accessing the instance, they are equivalent. From the point of view

of accessing the model, or of modification of any information other than

the value-strings of the instance, they are not equivalent. For example,

consider the modification of a part-identifier. If the part-identifier

is associated with the component of the instance, the part-identifier change4 affects only that instance. If the part-identifier is associated with the

component of the model, then the change affects the corresponding components

for all of the instances of that mode!.

We note also that the modelled and modelless modes of representation

are not mutually exclusive. They can be mixed. At any level of detail

a model can be used within a modelless framework, and vice versa. Examples:

a document can be described using the model framework, while the publica-

tion agency for the document uses the modelless framework. Conversely, a

document description can use the modelless framework while the publication

agency is handled in a model. It is a search for "right mixture" of'
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modelled and modelless concepts which is one of the time-consuming oc-

cupations of the systems analyst. He is always trying to abstract from

instances as much as possible which fits into a regular structure, for

it is easier to describe and more economical to manipulate.

It is generally the case that a given programming language provides

for either the modelled or the modelless structures but not both. I con-

sider it a critically important fact that experimental applications de-

mand at least the flexibility afforded by the modelless structure; I there-

fore believe that languages which don't provide modelless structures are

unfit for any non-production type application. Full flexibility of course

demands that a language provide for both the modelled and modelless struc-

tures.

Standish, in his dissertation on data definitions proposes only a

model concept, similar to that outined above, for describing composite

data elements. It seems to me that it is essential to have the modelless

instance concept. Imagine for the moment a model and a sizeable set of in-

stances of a composite data element type representing library books. Sup-

pose that we wish to record the fact that two specific books in the library

have been lost, plus the date that the loss was discovered; further sup-

pose that no provision for recording this fact exists in the composite

data element as defined. In order to record this fact, it istechnically

possible, but manifestly undesirable, to modify the model, with the con-

sequence that every instance must be modified to conform to the new struc-

ture. One would rather "tack on" to the two instances in question some

expression of the desired fact. But in doing so one would create non-

standard instances: that o, they would no longer wholly correspond to

the model.

Skeletons. A skeleton is an element related to a class of elements,

such that every element of the class is initially a copy of the skeleton.

4 An instance of the class is first created by copying the skeleton, in-

eluding possibly some initial values in its components. After this in-

itial creation, of course, each instance can be modified in an unrestricted

.way. A skeleton looks like an instance, with its value-strings undefined

or set to initial values. An instance generated from a skeleton may or

may not give the name of the skeleton from which it was derived, depend-

ing on the wishes of the user.

A simple example of a composite, its model, and some results. The

following example may help to clarify the notion of model and composite. Con-

struct a two-element relation, or ordered model, called "FATHER-SON".
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I 
identifier [model ]

Its part-identifiers are FATHER and SON, respectively.

I[model]
F TH _-- identifier
FATHER-SON

- ' part-identifier,

J The components are prescribed to be from the domain of PERSON.

4[model]
._..d e idnti f ier

dar i _omain prescriptor

FATHER PERSON

ISON e

JOE and TOM are simple data elements from the domain of PERSON.

JO doa2M4descriPtorV PERSON

. dO do X,

TO



.103

JOE and TOM stand in the relationship of FATHER-SON, where JOE is FATHER

and TOM is SON. ("The relationship" of FATHER-SON is an instance of the

j "relation" FATHER-SON.)

[model] [instance]

1 ~RSO idetfi. r... model of

D ar-in ti fiery4._JO

I FATHER

D~~__*_art-identi fier N  ~e O

SON GoD z TOM

-2 domain d ior
PERSON -_,

domain descriptor

Value of a composite. It is interesting to discuss in what sense

a composite data element can be said to "have a value". In the case of

a composite data element whose components are values as expressed by value-

strings, the set of values possessed by that composite element could be

said to be a value (a "vector") from a Cartesian product space. Where a

component has as its "value" not a value-string but rather another com-

posite data element, the value could be regarded as one coming from a

Cartesian product space where some factors are not sets of individuals,

but sets of vectors. Even the latter viewpoint may not be particularly

sensible, for these sets of vectors need not be of uniform composition,

such as the set E(O), (1,2), (3,4,5)].

Properties, property-sets, and property-lists. There are fundamentally

different ways of treating the expression of properties: the "unary-rela-

tion" viewpoint, and the"property-value" viewpoint. Under the unary-re-

lation viewpoint, a property is expressed by a set of names of the elements

having a given property. For example, to express that an element has a

certain property, say, "is red", or "is 5 inches long", we say that the

property belongs to the set of elements having the property "is red", or

"is 5 inches long". Under the property-value viewpoint, to express that

an element is red, we associate with the property-name "color" the value

"red"; similarly, to express that an element is 5 inches long, we associate
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with the property-name "length in inches" the value "5". An alternate

to the last example is to associate with the property-name "length" the

value "5 inches". Both of these viewpoints have their merits, and it is

inappropriate to arbitrarily rule out the use of either one. I admit,

however, to a strong preference for the'second method; most of the discus-

sion ihich f-)llows is concerned with the property-name-and-value viewpoint.

Properties of an object (in this context, properties of a data ele-

ment) can be expressed in either of two ways: implicitly or explicitly.

Properties expressed implicitly are called implicit properties. Implicit

properties are those whose values are discoverable only by search or by

algorithm: they are not explicitly given in some "property-list". Examples

of implicit properties are: number of components in a composite, minimum

value of a given component (that is, a component having a given part-identi-

fier, for some set of composites), whether a given access code lies within

a specified range, whether a designated value-string equals a given value-

stijing. Explicit properties, on the other hand, are those that are ex-

plicitly given in some way. An explicit property may take the form of:

I. a component of a composite;

2. a metadata eleiient standinq in a specified relationship to a data

element;

3. a componen.. of a particular composite called a "property set",

,which is a composite standing in a property relationship to a

given data element. Explicit properties are distinguished from

implicit ones by being capable of being looked up directly, of

being found by a simple search of a given property set. He who

would use property values must know whether they are implicit or

explicit, because the method of modifying them depends on in

II which category they fall.

Note that a property set, in any of its possible forms, can be

associated with:

1. a simple data element;

2. an instance of a composite data element;

3. a special case of (2) above: a composite (representing a set of

homogeneous data elements), implying that the properties apply

to the members of the set considered collectively;

4. a model of a composite data element, implying that the properties

apply to the instances considered individually.



105I
Consider for a moment the case where a property-set is expressed in

the form of a composite tied in the property-relationship to a data ele-

ment. It is interesting to note that this property set (or list) can be

expressed either as a modelled or as a modelless composite.

Property values may be either value-strings or names of data elements.

For example, a set of composite data elements may correspond to a set of

books. Some or all of these data elements may have an associated property

named "color of binding" whose corresponding value-string is from the do-

main of colors. Some of the composite data elements may have a property

named "publisher" whose corresponding contents or "value" is the name

(identifier) of a data element which represents a specific publisher.

Such *a data element representing -a publisher might, for example, have as

components the publisher's name, address, type of publications, and standard

I discounts.

Certain useful properties apply to the representation rather than to

the thing represented. Examples of such properties are: access-control-

indicator (which might take on such values as "privileged access only",

"read only", "initialize only"}, and changed--indicator (which might take

on such values as "unchanged since reset," and "changed since reset").

It is appropriate to raise the question: what is the difference be-

tween a property of some element and a component of that element? Put

more concretely: if a data element exists to represent a book what as-

pects or attributes of this book are components of the composite represent-

ing the book and which attributes ought to be on some property-list or in

some property-set related to this composite~? I think this is a matter of

viewpoint, or of taste. Some programming languages seem to let an object

be represented by a list of its properties and .their values. For certain

j applications it probably does not matter whether these properties appear

as components or on a separate property list. One example will serve to

I 1indicate that there might be some point in making a careful distinction.

Consider a family unit represented as a composite, where the components

are "father", "mother," and "children". This family unit may have proper-

ties such as "address" and "religion". It would be misleading, however,

to make these components of the composite "family". It makes more sense

J1 to have them on an asspciated property-list (or in an associated property--

set).

I We note in passing that the languages and system AEDNET represent

1*
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some Signal must be provided to indicate that the modified interpreter is

to be used. A special flag position might be reserved in every data

element for this purpose, or a special ,netadata item might be used as a

flag.

Another related capability is the ability to define new metadata

relationships. The user must be able to give the new relationship an identi-

fier, and define how the metadata item is to be treated when accessed (that

is, whether it is to be evaluated or to be copied).

Input and output of composites. The expression of composite data

elements, for the purposes of input and output, is a matter quite separate

from the structure of these data elements inside the machine. Considered

statically (not from the viewpoint of incremental change) the modelled and

modelless concepts are equivalent: hence the input and output of data struc-

tures can be based on either point of view. It is up to the input-output

routines to provide whatever conversion may be necessary. It is generally

easier for purposes of input, for example, to organize the data elements

of a composite in some tabular form, paralleling in some sense a modelled

format- the actual resulting structure desired in the machine may be the

fmodelless form. It isn't yet clear whether data elements as a whole should

have some convenient notation, or whether we should be content to express

in any one expression simply pieces of a data element. What expressions

one uses is primarily a matter of choosing a notation, which matter we

postpone until later.

Relationships versus composites. We call an elemLnc of a relation-set

(which is an explicit relation) a "relationship". A fundamental question

is whether such a relationship is essentially different from a composite.

Both a relationship and a composite are an association, possibly ordered,

of a set of components. One or more part-identifiers may be asscciated

with each component. The association as a whole may have one or more

identifiers. A set of similar associations may in turn belong to a set

which is itself a composite.

When a relation-set is considered as a composite, the identifier of

Ithe relation is the identifier of the relation-set. The individual re-

lationships do not need to take identifiers; they are usually referred

to as being some (undesignated) member of the relation-set. When it

comes to specifying members of relationships, a binary relationship is

rather unique; it is easy to say "the other element of the relationship

eay1a
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J elements by their property-lists, and represent composites by tying a set

of elements together with a ring of pointers.

Manipulation of composites. For creating, accessing, and modifying com-

posite data elements I postulate the existence of a "standard" data inter-

preter. We in effect enter this interpreter with a message as to what ac-

Jtion is desired, und the interpreter provides the necessar,; action. The

data interpreter provides for the storage of the data, so that the physical

and logical problems of storage are hidden from the user.

Listed here are the abilities which are wanted in connection with

processing composite data elements; it is the providing of these capabilities

that is the job of the data interpreter:

'l. To determine if the sequence of components matters;

2. To obtain the components separately, and in sequence if sequence

is material;

3. To associate identifiers with the components, and to find a con-

ponent given its identifier, or to find an identifier given a com-

ponent identified by some other means;

4. To access or modify the "value-string" of a component (assuming

it is a simple data element), and to find the domain of this value-

string;

5. To access or modify any metadata standing in a specified relation-

ship to a specified component, such as domain prescriptor, com-

ponent prescriptor, access code;

6. To determine if the composite has a model or a property set, and

if so, to access and modify its parts in the same way as can be

done for a modelless instance of a composite;

7. To be able to add components to, or delete components from, or re-

j sequence the components of, a composite or its mudel;

In summary, to be able to create, access, and modify structures and values

of composites and their models.

The matter does not end here, however. Another needed capability is

that the oser be able to modify the interpreter to provide some feature

which he needs. This in turn brings up two matters. First, there must

be some prescribed way to modify the interpreter; just how this might be

done must be postponed for later consideration. Second, there must be some

way to indicate when the modified interpreter is to be called into play;

I
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in the relation R in which the element E occurs" With n-ary relationships,

with n)2, we must say analogously: "the coiponent in role k (or in ordinal

position k) in .he relationship (composite) oC relation R that has ele-

ment E with part-identifier I.

The expression and t-sting of relations. There are two approaches

to the expression of relations:

1. The explicit method. This utilizes an explicit relation list or

set, which is a set of n-tuples of the identifiers of the ele-

ments which stand in the relation. Logicinns call this the

"extensional method". I call such a set a "relation-set".

2. The implicit method. This is based on an algorithm which decides

whether a given set of elements stand in a given relation. That is,

it returns a value of "true" or "false" given an n-tuple of identi-

fiers. Logicians call this the "intensional method". I call such

an algorithm a "relation-algorithm".

The explicit method is advantageous where additions are to be made to, and

deletions are to be made from, the relation-list. The predicate (the

question of whether a given set of elements stand in the given relation)

is made by a search of the set of n-tuples. This latter operation is rela-

7 ,tively easy in an associative memory device. The implicit method utilizes

no relation-set and therefore does not lend itself readily to applications

which require additions to and deletions from the relation, because such

changes require reworking of the algorithm. Naturally the algorithm con-

stitutes the predicate. This implicit method is preferred for relations

on large sets, particularly where the basic elements are in some metric

(have a measure of distance or ordering). An example would be the "greater-

than" relation on a set of integers.

Because of the inherent differences in these two techniques for deal-

ing with relations, the user must know which method (the explicit or Lhe

implicit ore) is being used in any given circumstance.

Properties of relations. A relation may have properties. such as

being transitive, or not, and being commutative, or not. These properties

can be implicit (discoverable only by examination) or explicit (expressed

in a property-set associated with the relation).

J Defining a domain: continuel. Now that we have considered the con-

cept of composite data element we are ready to return to the issue of de-

fining a domain. Recall that a domain of value-strings is to be a set,

possibly ordered, which can be added to, and manipulated, by the user.



I
log

A domain is also used by the processor for checking whether a given domain

contains a given member and for whether a given member stands in a giv en

relation (possibly of ordering or of equivalence) to another given member.

The composite data element is an appropriate device to meet these needs,

in those cases where a domain is expressible by enumeration, or listing,

of its members. An explicit domain is then a set, or an ordered set, of

strings. In order to be able to construct such a composite, however, the

domain of strings must already have been defined; this becomes a require-

ment on the virgin system.

Orderings. Let us review the needs for various kinds of orderings.

First we may hnve orderings based on a single relation, which we might

call "precedence" These include:

1. Unspecified ordering, the usual meaning of the word "set"1; examples

of unordered sets include relations and functions.

2. Partially-specified order, expressible by a combination of lists

and sets; examples of partially-ordered sets include lattices

and trees, list structures and algorithms.

3. Wholly-speci! rd-r, corresponding to, ard expressible in the

form of, a list, examples include strings, iteration lists, para-

meter lists, and vectors.

1k. Multiply-specified order, expressible by a set of lists; examples

include arrays of dimension greater than 1, and multi-listed re-

cords (as in the Multi-list concept).

Where a single relation is involved, it is often not expressed explicitly,

but rather is left "understood". When the relation involved is not hor o-

geneous, however, (that is, when there is more than one relation involved),

then simple sets and lists are no longer sufficient to express the order-

ing; we must instead go to a more complex structure: namely, the network,

or association, concept.

Defining orderings. There is a problem of defining orderings, both

on domains and on data elements. Suchdefinitions are needed as a basis

for generalized transfoimations which put data elements in sequence, or

which test that a set of data elements is in sequence. We need a general

method of specifying orderings. There are several possibilities: one is

to let the method of specifying order be undefined in the system, and to

have primitives which allow the specification and testing of order. A

second possibility is to define orderings by data structures. This latter

,j-. -
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seems the more flexible. It has the advantage that we are not limited

to the kinds of order that one might build into the primitives but can

express an unlimited variety of orderings. One might, for example, wish

to express partial ordering.

Elsewhere is discussed the usefulness of orderings expressible as

data structures for the purposes of control sequencing.

It is tempting to think of having ordering of elements in a domain

(such as collating sequence) be a primitive concept who~e method of repre-

sentation is undefined in the system. The advantage of this viewpoint

is that a processor can be arranged to create and test such orderings

more efficiently than if the orderings are expressed as data structures.

Howevei, i have committed myself not to be swayed by concern for effici-

ency of implementation.

Furthermore, we must not lose sight of the fact that ordering is a

relationship. Hence it has alternate modes of expression: by relation-

ship indicators between cells (which means that the members must be ex-

plicitly stored in a data structure), and by algorithm.

Note that there are two important types of ordering or precedence

relations. The first is the familiar ordering relation, which is transi-

tive. "Greater-than" is an example of this type of relation. The second

type is the "immediate precedence" relation, which is not transitive.

Example of this second type: "is to the immediate right of", "has a for-

ward connection to". The importance of this second type of relation is

in the formation of loops. In a loop, a circular element, the transitive

type of ordering relation cannot be used; it would lead to a contradiction.

Defining lexicographical ordering. It is important for some appli-

cations to have transformations which create lexicographical ordering and

which test for it. In order to have these transformations, we must have

some way to define lexicographical ordering.

The concept of lexicographical ordeiring is one of ordering strings

of characters, where the strings have been made of equal length by padding

j on the right (or left) end with blanks (or zeros). An ordering ("collat-

ing sequence") must be defined on each character pc.ition in these strings;

usually this collating sequence is the same for all positions. Examples

'1of simple lexicographical orderingjs are: sequences of decimal integers,

sequences of mixed radix numbers, alphabetized lists of English words.1
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This lexicographical ordering concept can be extended to super-

lexicographical ordering wherein each position contains a string rather

than a single character. The set of strings permissible in a given posi-

tion is defined. This set must have some ordering imposed on it; this

ordering could be, but need not be, lexicographic.

Calendar plus clock time is an interesting example of super-lexico-

graphical ordering. For example, the time instant "1967 June 9 2:24:2011

is a composite data element of six components. The value of the first

component is an integer. The value of the second component is a member

chosen from the 12-member domain of months. The value of the third is

taken from a domain which is a function of the month; in this case, it

is a 30-member domain of integers from 1 to 30. The value of the fourth

component is a member of the 24-member domain of hours (military time).

The fifth and sixth components have values from the minute and second do-

mains which are both the ordered set of integers from 0 through 59- If

the conventional hour designation were used instead, then an extra com-

ponent would be needed, whose values came from the two-member domain [AM,

PM], and the value of the hour component would be from the ordered domain

[12,1,2 ......... 10,11]. Note that this latter domain of hour is one which

has an ordering but this is not a lexicographical ordering.

DATA ELEMENTS APPLIED

In this section we discuss hov the concept of composite data ele-

ments can be used to provide some of the data st:'uctures which are al-

ready familiar, and also some of the data structures which are less familiar

because they are not easy to realize in current languages.

Strings as unitary symbols vs. strings as ordered lists. Having chosen

the notion of string as a primitive we are now faced with a problem: how

can a string be split into component parts? We have on the one hand the

notio.. of a string as a unit, playing the role of a single symbol, neces-

sarily indivisible. On the other hand e at times want to consider a

string as an ordered set of characters, and have the ability to scan and

modify this set. It is this dual role for strings which presents the prob-

lem.

It is clear that the resolution of this problem requires two ways

of interpreting strings: (1) as unitary symbols, and (2) as concatenations

of characters. There are two fundamentally different approaches for

coping with this. The first of these is to provide a separate set of
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siring transformations which operate on value-strings. Tile second way

is to provide a transformation which converts a string into a linear

composite whose components are cells containing individual characters,

and the corresponding inverse transformation. These latter conversions

can be accomplished by means of the string transformations plus the

basic transformations which manipulate data elements.

Programs viewed as composite data structures. lie can view programs

as data structures. In the interpretation of programs as data, we need

not concern ourselves with dynamic structure, which can be much more con-

plex than static structure. Each statement is expressible, in current

languages at least, as a linear string. These strings can be tied together

in a variety of ways, limited only by the ability of the sequence con-

troller to sequence properly through the statements. The automatic, or

follow-on, sequencing between statements (which is different from the

sequencing dictated by explicit "jumps") and the grouping of statements

into procedures correspond to the arrangement of conventional data elements

into composites. A segment of a program is then an ordered set ("list") of

strings. The components can be named (can have identifiers) and the com-

posite as a whole can have identifiers, which correspond to names of seg-

ments or procedures. Composites more complex than ordered lists may be

useful: an example would be parallel ordered lists.

Program statements would normally be stored as uninterpreted strings,

the interpretation being deferred until the moment of execution. It may

on occasions, however, be useful to represent a parsed statement, for which

* a "tree" structure is fairly natural. Block structure, as in ALGOL and
PL/I, is also representable in tree form.

Observe that a program can now be described as a sequencing through

a composite data element whose components are strings interpretable as

statements.

Text-handling. Tile processing of text presents a problem with regard

to the utilization of composite data elements. This problem is related

to the dual nature of strings discussed in Chapter 3. For the purposes

of scanning, a body of text might conveniently be thought of as a single

string. However, the user may wish to do such things as place markersI within the string, and attach identifiers to substrings within the string.

For such manipulations, the strings needs to be a composite data element

Ir
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where the characters adjacent in the text are tied together by some

precedence relationship. It is the user's responsibility to have the

text in composite form in order to perform such manipulations. To con-

*vert between strings and composites will require some primitive transfor-

mations, since a string is properly an integral symbol not amenable to

being viewed as a composite. The specific text-manipulation abilities

which are desirable are discussed in Chapter 5 on Transformations.

fA pointer or marker is useful to indicate a point of "current interest"

in some text. Some ways of constructing pointers within the framework

I of composites are showm in Figure 4-11.

Files. A file, in the conventional sense, can be viewed as a set

of elements. The set, if unordered, is a random file (corresponding to

a disc file). If ordered, the set is a sequential file (corresponding

to a tape file). In Lhe abstract, however, a file is simply a set, orderedI
or not as we may choose.

Trees. Figures 4-12 and 4-13 graphically portray two trees, showing

data elements at tie nodes, with nodes related by a single type of prece-

dence relationshir. Each such relationship is expressed by a composite,

represented in th: figures by an arrow.

Matrices and multi-dimensional arrays. While mathematically a rec-

tangular array caa be considered a vector (ordered set) of vectors, this

viewpoint is not adequate for my purposes. One of my criteria of adequacy

for a theory of data elements is that it should be possible to determine

easily the answer to the question: Ihat elements are associated (related)

directly to a given one? For example, we can easily obtain this answer

in the case of two-dimensional arrays by defining elements to be adjacent

if their row subscripts are identical and their column subscripts differ

by one unit. Such an explicit adjacency should be one which will work

equally well for other arrays than rectangular ones: such as triangular

2arrays and tetrahedral arrays.
Figures 4-14 and 4-15 graphically portray a rectangular, 2-dimension-

al array, and a symmetrical triangular array, respectively. The small

letters stand for specific relationships. In the case of the rectangular

array, the two relationships are "horizontal" and "vertical". In the

I triangular array, the relationship letters "a", "b", and "c" are the three

coordinates of the array. The regularity of arrays obviously suggestsI
1
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Figure 4-12. Symmetric Binary Tree
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that arrays can and should be constructed by iterative or recursive pro-

cesses.

Tables. The conventional table is a rectangular array of data ele-

ments. It is distinguished from the usual mathematical array or matrix

Iby the fact that it can contain non-homogeneous elements. In general,

the elements are organized into classes by rows and into other classes

by columns. If another dimension is needed, the table may be furher organ-

ized into classes by pages. A data element is selected by specifying a

row-class and a column-class (and perhaps a.page-class). le could say'I
that the members of a row have an ambiguous identifier, as do the members

of a.column; these ambiguous identifiers used together refer to only 1

J|  element in common. This view of a table then is one of sets, certain in-

tersections of which have unique members. It may be the case that the

members of a column are not independent, as in certain portions of a de-

cision table. In such circumstances, it may be more convenient to regard

a table as a set of lists, where each list corresponds to a column.

The individual elements of a table may not have any meaningful rela-

tionships between them other than the physical relationship of juxtaposi-

tion when the table is displayed in two or three dimensions. This should

be intuitively obvious, since we can have a meaningful four-dimensional

table but we cannot display it. The relationship that often exists is

more one of similarity of element names. Yet even this does not hold in

a table whose indices -re non-numeric (that is, where the concept of ad-

jacency of index values does not exist).

By extension of the notion of table, we can have a complex table,

in which the elements are not constrained to be simple, but rather can

be composite elements. An element might, for example, be an ordered set

of elemients. To access the lower-level e2-,ments would then require a two-

step access. We observe that the language known as "Decision Tables" is

I an application of complex tables.

Another view of tables is that they are a special case of Cartesian

j space. The n-tuple is regarded as the ordered set of coordinates. The

element at the intersection of the coordinates can be of any type; in part-

j icular they may in turn be composites in Cartesian space.

It is perhaps more helpful and more meaningful to view a table as

i a set of n-tuples in which the first elenents are from a single domain,

the second elements are from a single dom.ain, etc. Another way to sayI.
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this is that the zi-tuples "have a model". A row is selected, or a set

of rows are selected, from a table by specifying certain "match criteria"

for specified positions ("columns" of the table). Results, or "output",

is selected by naming the desired parts (positions). In a table of n-tuples

in a specified order (that is, the table is "an ordered set of n-tuples"),

a row can be selected by giving the table name and an ordinal argument or

subscript. However, if the table takes the form of an ordered set of ele-

ments within an ordered set, we have a structure isomorphic to a tree. As

we note elsewhere under tree-naming, access to a terminal node ("leaf")

of a tree can be done by giving the tree name followed by an ordered set

of subscripts. The ordered set of subscripts performs the selections at

successively lower levels.

Note that a function table is a special case of a table, in which,

for a given set of input arguments, only a single n-tuple is selected

(which is another way of saying that the result of a function must be unique).

Note that the defining table itself need not contain unique results, but the

lookup algorithm must yield a unique result, if only bys ch a simple device

as not looking further once one result has been found.

The multilist and multiset concepts. The multilist concept, first

suggested by Pryw¢es (1962), provides for the appearance of data elements

on more than one list simultaneously. Example: )nsider the set of ele-

ments A,B,C,D, and E. Some or all of these elements could appear on several

lists. Composite #1 could be a list of the elements (or, more properly, the

sequence of element names) "A", "C", "E", "B", "D". Composite #2 could be

simply the one-element list "D".

* The sequence of elements in a composite may not matter, however. In

such a case, we would have sets instead of lists, and the concept might

analogously be called the "multiset" concept. It provides for the siniul-

taneous appearance of data elements in more than one set. Continuing with

the example above: Composite //1 could be unorde-ed set of element names

"C" , "E", B", "D"; composite //2, the set "311, nEII, "A", composite

#'3, the set of one element "D".

My method of expressing composites provides equally well for both

the multiset and multilist concepts. Note that there is no limit on the

complexity of the data elements which may be components of the multilist

or multiset.

Data elements of high]y variable structure. There are types of data

elements which not only are not fixed in configuration, but also which

I
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have structures which change on nearly every access. Examples are: queues

and pushdowns. Their common characteristic is that the structural frame-

work is in a sense fixed though unbounded. That is, we know in advance

and by convention how each new element is to be added to an existing struc-

ture, and how each old element is to be removed from an existing structure.

The variable data elements employed to date have been largely of the homo-

geneous type: the componcnt element types being identical and the relation-

ships being identical, as in LIFO queues (pushdowns) and FIFO queues.

However, there is no reason why we should be limited to structures having

identical elements and identical relationships. Wie could have an iterative

structure, for example, in which a fixed substructure occ-irs repeatedly.

Where the variation in a data element is one of variable repetition, a

model is sufficient to express this. When the variation is more complex,

however, a better solution is to use transformations which produce the

appropriate alteration in the structur,. when such a transformation is in-

voked.
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CHAPTER 5. CONCEPTS OF TRANSFORMATIONS

GENERAL REMARKS

Definitions. A "transformation" is an action, a program step, which

causes a change in storage. This change of storage may not be the storage

which the user "sees", however; it may be inside the processor, and

changed in a way which is defined for user only behavioristically. Dec-
larations (in the ALGOL and PL/I sense) and definitions of various types
are therefore viewed and described as transformations. Later the various

kinds of transformations will be distinguished.

A transformation is defined by a sequence of transformations, com-

monly called a "procedure". The ultimate definitions are in terms of

transformations which are primitive (not defined within the user language,

the language interpreted by the processor).

A transformation is invoked, or activated, by a "transformation call".

The form of a transformation call is the familiar function notation of a

transformation name, possibly followed by a list of parameters. Examples:

T; T(A,B,C);.

Sources of transformation definitions. The stock of transfqrmations

which the user has at his disposal must be defined. There are several

ways in which a given transformation definition becomes available for a
programmer's use. Some fixed set of transformations is provided as primi-

tive. These are the fundamental building blocks out of which the user

must build everything he needs.

A second set of transformations is provided as a "basic set". These

are defined in terms of the primitives and are modifiable by the user.

These are the frequently-used transformations which are provided merely

as a convenience to the user. The user is free to select those he needs,

modify some, and discard the rest. i
The third source of transformations available to the user is that

set which he defines for himself. How much work he has to do to define

new transformations depends on what has been.provided for him in the

primitives and in the basic set, and on the amount of freedom he has in

jdefining new transformations.
A given programming language is to a large extent characterized by

the amount of freedom the programmer has in defining new transformations,
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and the convenience with which he can do it.

Functions vs. transformations. Among the parameters of transforma-

Ition calls may occur explicit function calls. The format of a function

call may be identical to that of a transformation call, namely: a func-

I tion name followed by a list of parameters (arguments) in parentheses.

Since function calls and transformation calls can have identical format,

I 'this leads naturally to ask what the essential difference is between a

function and a transformation. A function is sin.,,iy a transformation

'I that has a single "result". A result may be an identifier of a value-

Istring, or it may be an identifier of some arbitrarily-complicated data
element.

I Some languages make the distinction that functions do not permanently

modify storage; that is, they can change only local variables. Another

T way to say this is: functions are not allowed to have "side effects".

We do not so restrict them; a function can be written to affect an arbit-

rarily-chosen transformation of storage. Thus we can write functions as

the parameters (.rguments) of any function. (In principle, we can also

* - write as parameters transformations which are not functions. As they will

* • each return a null value, it would seem pointless to write such transfor-

mations as parameters.)

Some languages, such as LISP, require that all transformations be

functions. This means that all non-function transformations must be

treated as functions producing null values. This is workable but some-
what clumsy.

Defining an arbitrary transformation as a function requires some care

in the definition to avnid ambiguity. Consider the list of lists:

i1 ((a,b), (c,d), (e,f))

Suppose we want to perform the transformation of interchanging c and d.

What do we consider the "value" of the result? How much of what we

started with is the result? Is the result "(d,c)"? Is the result

"((a,b), (d,c), (e,f))"? The definition of the function must tell whether,

1 after execution of the function, the original data structure exists? Is

the result of this function a modified original or a modified copy? We

can of course define it to be either choice. LISP demands that it be a

modified copy, which is to my mind not flexible enough. We should have

li

1
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the flexibility of defining it either way.

FUNCTIONS

Representation of functions. What is a function, in relation to a

computer algorithm? There are two fundamentally different forms which

functions can take; alternatively put, a function can be represented in

two different ways:

1. by enumeration, a set of ordered pairs; the first member of each

pair is a set of arguments, and the second member is the corres-

ponding result (which may be composite).

2. by algorithm, a computational process which maps the arguments

into a result.

Notice that the algorithmic representation of a function depends on the

fact that a concept is represented in the form of a value-string and that

the components of this value-string can be individually inspected. Thus

a function defined on value-strings is defined in terms of other functions

on the components of these value-strings. These defining functions may

in turn be defined in a similar fashion. The ultimate definitions, how-

ever, must be either primitives, or functions expressed by the technique

of enumeration. For example, the addition function for decimal integers

is reducible to an algorithm based on t!e addition table for decimal digits,

where the table is an enumeration.

Both representations of functions can lead to an identical result.

In a given circumstance, one technique will generally be strongly pre-

ferred over the other. An ill-behaved function, for example, ii likely

1 to be difficult to compute but relatively easy to represent by a set of

ordered pairs (a functi,.n table). Where standard interpolation techniques

can be used, such function tables can often be shortened. Where there

can be a large number of sets of imput argument values, however, a com-

putation (procedure) will usually be preferable to a function table,

Where either representation of a specific function may be satisfactory

from the standpoint of readily producing the proper result, the choice

iof representation may be dictated by the type of modification that the

function is to undergo.

]Where a function is represented as a procedure, it is structured

and treated as a transformation, a set of imperatives. Where a func-

tion is represented as a zet of ordered pairs, it is a composite data

It
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element.

Note that a function table is a special case of a "table," which can

j I be defined to be a set of n-tuples. A table which is a function is. dis-

tinguished by the fact that for a given" set of arguments, only a single

n-tuple of the table is selected; this is another way of saying-that the

result is unique. For an ordinary table there is no requirement that the

result be unique.

Because we allow this dual representation of functions, we must be

prepared .o have function calls carried out properly regardless of which

of two me i of function representation is used, and preferably without

the user having to distinguish between the two modes in the way he writes

the call. To accomplish the latter, that is, .to make the calls of the

two types of representation indistinguishable, both tyles must have a com-

mand interpretation. Functions of" the algorithmic type naturally have a

command interpretation. Functions of the enumeration type are expressed

as composite data elements. To give these a command interpretation$ we

must apply some accessing function to the data element.

To illustrate the preceding discussion, consider the function expressed

by the following table:

A B C

A B C A

B C A B

C A B C

An algorithm f which would realize this function is:

f: result = if (1) is 'C' then (2) else

if (2) is 'C' then (i) else

if (i) is 'B' & (2) is 'B' then 'A' else
if (1) is 'A' & (2) is 'A' then 'B' ese 'C';

In table form this functioi. would be written

(W) (W) Result
* A A B

A B C
A C A
B A C
B B A

-- B C B
C A A
C B B

. C C C

-ft
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To mak1c this table representation a callable function, we need a table

search function to operate on it. In order to design a search function

I we must have in mind a specific data structure. The data structure of

the table need not conform to some uniform standard. There is a variety

F of data structures and companion searching functions which would serve.

To summarize, a user-defined function will be some procedure called

by means of a standard procedure call. There are two philosophically

different forms of function procedures; each form has its advantages and

disadvantages. One form is an algorithm which computes a result according

to some set of rules; the other is some table lookup procedure which finds

the result in a table.

Predicates. One of the most common types of function used in pro-

gramming is a predicate, a function which yields a result of either "tiue"

or "non-true". An example of the use of this function is as the Boolean

expression part of an IF-THEN statement. An important ust of this type

of function will be the determination of the existence of specified data

elements and relationships. Such functions will of necessity be defined

by rather complex algorithms which search and inspect composite data

elements.

Nature of the result of a function. From a mathematical standpoint,

the result of a function is an unnamed, uristored value. In contrast to

this, the result of a function from a data processing point of view is

an entity which is both stored (if only in some temporary location) and

named (otherwise it could never be accessed for a subsequent processing

step). In the data processing case, a result could be a value-sting

(if it is a simple data element). If the result is a composite, however,

it cannot have a value-string as a result; in such a case, the only mean-

ingful rrpsult is the identifier of the resulting composite.

With this discussion as background we are ready to consider the

issue of what is an exit-value of a function. Tnat is, what is the meaning

of a function call when it is written as a parameter? If the function

yields a value-string, its exit-value could be that value-string. If the

function yields a composite, which by definition has no value-string,

then the exit-value could only be the identifier of the composite. Since

we have already established that every value-string which is the result

of sonic function has an identifier (supplied automatically by the proces-

sor, if necessary), we take the simpler point of view that the exit-value
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of every function call is an identifier of the result.

Result domains. I earlier expressed the philosophy that it should

be possible for the user to prevent the computation of "garbage"; that

is, to be able to write programs such that invalid values of data ele-

nents cannot masquerade as valid ones. We should accordingly think of

a result as an ordered pair, consisting of a type designator (usually a

domain designator) and an associated value-string or composite. In order

to implement this philosophy, it is necessary to provide explicitly with

the result of a function calculation the "type" of the result: that is,

its domain, or class. Exactly how this type information is to be expressed

and stored has been treated in detail in Chapter 4.

Storaae allocation of function results. A problem exists in connec-

tion with storage allocation of results of executing functions. If each

function leaves its result in a standard place, say in "RESULT", then

some conflicts of storage can occur when asynchronous parallel operations

are allowed. Even if each function or each execution leaves its result

in a location unique to that function, the same kind of conflict can occur.

This conflict can occur both in the case of asynchronous parallel execution
of the same function, and in multiple occurrences of the same function in

a single parameter list. The completely gener" solution, and the one

which I favor; is to generate a new (previously unassigned and unused)

storage location for each result. The difficulty here, of course, is that

the available storage gets used up if there i-s no automatic method for

reclaiming it. Such an automatic method might be easy to specify-namely

that the result can be used only once and then the storage cells it oocupies

are to be made available for new assignment. (This applies only to the

result, not to side effects.) Another possible resolution of the problem

is to provide a name for a function result as part of each call-then it

is up to the user Lo avoid storage conflicts; however, even this technique

.. ,may fail when asynchronous parallel processing occurs!

Choice of domain of a transformation result. We have considerable

flexibility in how the domain of a result of a function is to be specified:

1. The simplest case is to have one fixed type, specified by the

writer of the transformation definition. Example: A concatenation

function could be defined on two parameters of type string, yield-

ing a result of type string.

I



2. The type of the result could be defined to be "appropriate" to

the types of the input parameters. Example: a sum function could

be defined on two parameters of the same type (that is, both

integer, or both real, or both i;omplex, or both vectors of inte-

[gers, etc.), and the result could be defined to be of the same

type as the input parameters (arguments).

3. The type of the result could be specified by an input parameter.
Example: We could define a procedure which computes area, given

length and width parameters in some'linear measure such as inches,

feet, yards, etc. One of the parameters of this procedure could

specify the domain of the resulting area, that is, specify that

the result is to be given in square inches, square feet, square

yards, etc.

Methods 2 and 3 above require the existence of program statements which

can determine the domains of the input parameters.

Extension of functions. We would like to have the analog of the

mathematician's ability to extend a function to deal with a different

algebraic structure. Example, let the function SUM (A,B) be defined,

say, for integers. We would like it to be extended to treat complex inte-

gers, then to be extended again to treat rectangular arrays of complex

rationals. It should be apparent from the preceding discussion that such

an achievement is not difficult. The procedure which defines the function

SUM must analyze the types of the arguments and select a computation se-

quence appropriate to the argument types; naturally the appropriate com-

putation sequence must also be added where needed.

CHARACTERISTICS OF TRANSFORIATIONS

General types of transformations. It is convenient for the purposes

of study and discussion to organize the types of transformations into

three general categories: transformations of data, of context, and of se-

quence control. Each of these will be discussed in turn.

"Transformations of data" are those processes which change data ele-II ments, or compute functions, or both. Changing a data element includes
creating and modifying relationships between storage cells. Functions

have been discussed earlier; the reader is reminded that Lhe computation

of a function may or may not permanently modify data elements.1
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"Transformations of sequence control" include all those transfor-

mations which modify special storage cells uniquely associated with the

I "control element" of the processor. Also included are iteration state-

ments which control re,) ated execution of a set of statements. Further

I discussion of this type of transformation must await a treatment of se-

quence control later in this chapter.I Transformations which are neither of the above types are classified

as "transformations of context", which can be further subdivided into

3 subclasses:

i. Transformations of domain can define a new domain of members,

add members to a domain, delete members from a domain, define a'I subdomain, set up equivalences between members of domains (which

can be done either by correspondences or by algorithms), define

orderings on members of domains. Members of domains need not oc-

cupy storage cells; they.may instead be defined by algorithms.

Thus transformations of domain may involve the modificaticn of

algorithms; since in these developments we regard algorithms as

-- data until the moment of interpretation by control, these modi-

fications can be carried out as modifications of data.

2. Transformations of processor action concern modes of processor

action such as types of evaluation or calling. Examples of modes

of processor action not present in some languages are "macroex-

pand" and "evaluate without becoming.undefined."

3. Transformations of specification can set conventions to be used

whenever specifications are deficient or non-contradictory. This

corresponds to the "default attributes" of PL/I.

Recursive calls, recursive procpdures, and reentrant procedures. Notice

that a "call" to a transformation can be intcrpreted in several ways:

I. Remember the return point, move the program control pointer to

the entry point of the transformation, and proceed with normal

execution.

_ 2. Remember the return point. Make a fresh copy of the transforma-

tion (i.e., the data structure which will be interpreted as pro-

gram). Move the program control pointer to the entry poinit of

the cop and proceed with normal execution.
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The occasions when this distinction matters are in the case of reentran

or recursive procedures or where a procedure modifies itself. On these

[occasions it indeed matters whether one has the effect of copying or not.

What actually happens in the processor is not of consequence here. What

[does matter is the behavior of the processor as seen by the user. The

presence or absence of the copying effect strongly influences how the pro-

cedure must be written.

Notice that a recursive call (a call to transformation T as a para-

meier of another call to transformation T) can be considered a special

case of recursion, since the procedure in eff .t calls itself not during

execution of the procedure, but during the "prologue" to the procedure

during which its parameters are being processed.

The most usual way of handling recursive procedures is to have the

rule that only the Ilatest incarnation" of the procedure and its associ-

ated variables are accessible. This requires that all exits from these

procedures must be orderly so that everything can be carefully unstacked.

Thiv rule implies, although it does not require, that no copies are made

of the procedure. This limitation of access only to the latest incarna-

tion makes it difficult to refer to data in previous incarnations, since

they must nece:sarily be passed as parameters in order to be referenced.

In these cases involving copying, we necessarily have multiple

uses of identifiers, and hence have ambiguities of reference. These

must be resolved in sonic systematic way. One possible solution is to

have the "local" variables automatically converted to lists with incarna-

tion numbers automatically supplied as indices. In turn this raises the

problem of defining scope of variables, an issue heretofore avoided.

The point of all this discussion is to raise the issue of what a

call to a transformation really means, and demand that the issue be clari-

fied. Does copying of the transformation oncur? If so, under what circum-

stances? Can the user control when copying occurs, or is It determined

by the system designer? If copying occurs in tlhe cases of recursion, how

are ambiguities resolved?

It is obvious that in the case of a procedure having formal para-

meters, the prototype of this procedure should remain untouched, so that

it can be reused to satisfy additional calls of the procedure. Hence some

copying of the prototype should take place at each call. Exactly what

I..
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I should be copied is the matter for consideration.

I digress briefly for a conment. There has been much interest in

recent years in "pure procedures", procedures which do not modify them-

selves. It has been argued that pure procedures have two advantages; that

they are easier to debug, and that ..n a parallel processing environment

they can b! used simultaneously and asynchronously by multiple threads

of control (can be used "reentrantly").

I The argument about "debugging" is perhaps true, in the sense that

some users find it less confusing if procedure bodies are not modified.

1 However, to avoid modification of a procedure body, one may have to build

a slightly more complicated program. in such a case it may not be true

that'debugging is thereby made easier.

The argument that procedures must not modify themselves in order to

1" be usable in a parallel processing environment stems from the storage-

conserving practice of using only one edition or copy of a procedure body

to serve multiple purposes. From a logical viewpoint, however, a procedure

is intended to be a prototype, and each invocation of this prototype may

be with different parameters. Each invocation involves a fresh copy of

the prototype with appropriate substitutions for the parameters. If the

invocation of procedures is in fact implemented in this way, then there

is no need to restrict procedures from modifying themselves.

REFERENCING A DATA ELEMNT

Definition. A "reference" is effectively a pointer to some data

element, either simple or composite. It may be convenient to think of

-. a reference as a machine address. In a higher-level language, however,

the concept of machine address is not defined; hence we might take an

alternative view, namely , that a pointer is invisible and is considered

T to be undefined in the language. This concept of invisible pointer could

be dispensed with if the processor were such that it generated an identi-

fier automatically for every data element when an identifier was needed.

I take the view that every data element has an identifier, and that

every reference is a function which yields an identifier of the data ele-

ment being referenced.

'|I Expressing a reference. A reference is expressed as a "reference

A.I expression," which will appear as a parameter of some transformation.

A reference expression can take any of a variety of forms. These forms
ap, are enumerated briefly here and explained later in this section. The

'2
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3 ways that references can be expressed are:

1. As an identifier. A variation of this is to have indirect refer-

encing, in which a value-string corresponding to an identifier

is taken; then this value-string is re-interpreted as an identi-

fier. This process can be repeated as many steps as desired.

2. As. a "nle", which requires the existence of a name-to-element

mapping function. Examples of such names are array element names

and tree element names.

3. In terms of standing in a unique relationship to some other data

element already "known". Examples of such relationships are:

1"precedingt, succeeding", "corresponding", having a specified

ordinal position in some ordered composite. It is possible for

the reference to be a chain of such relations.

4. In terms of satisfying some predicate, such as "is a substructure

of", or "is an instance of".

5- As an identifier of a composite data element plus a part-identi-

fi er.

6. In terms of an algorithm which yields a reference; for example,

an algorithm which performs a search or traces a path. A speci-

fic example is the hierarchical name in COBOL, which has an im-

plied search algorithm.

7. In terms of a call to a function which yields a value-string.

8. By pointing, as with a light pen or cursor.

9. By exhibiting a value-string (unnamed) in quotes.

10. In terms of an intersection of classes having ambiguous identi-

fiers.

11. In terms of some pronoun which refers by convention to some pre-

viously-determined data element.

A comment on lookup versus search. I digress briefly to make an ob-

Jservation concerning when referencing by identifier is appropriate and
* U

when it is not. Consider a structure which allows representation of full

text of, say, a book. We have, in the main text, the book as a whole,

chapters, sections, paragraphs, sentences, words and characters. If we

had a naming scheme down to the level of sentences, for example, we could

obtain any sentence by direct lookup, assuming that there is some name-to-

storage-location mapping mechanism. To go to any level of finer detail,

- - -



that is, to a word or character, we must resort to a search procedure.

We can make the observation that in general we can expect to access by

direct lookup any substructure that is named (that is, has an identifier),

but accessing any unnamed substructure requires a search.

Naming components of a composite by "mappable names". We note that

among the methods of naming individual components of a composite, there

are the methods exemplified by arrays and trees. We observe that sub-

scripted identifiers are a naming scheme for elements organized in an

-. array or tree. Consider, for example, the identifier "1Y[A,B,C1". This

designates some composite element called "Y". The ordered set "A,B,C"

tell* us how, starting from some standard starting point, to proceed

to a single selection. Each subscript value in turn represents a choice.

Imagine a tree named "Y". Beginning at its root, we choose the Ath

branch, and proceed down this branch to the next node. At this node, we

choose the Bth branch and proceed to the next node. At this node we

choose the Cth branch and proceed to the next node. 'This final node has

a corresponding value-string, which is the value we have selected. If

the tree is a regular one, by which we mean that each node at a given

level has the same number of branches, then it cani as readily be visual-

ized as an array. Consider the Figure 5-1. This shows a regular tree

and the corresponding multidimensional array. If we make one minor

change, so that the tree is no longer regular, then there is no longer

a corresponding array. We can, of course, add dummy branches to the

tree so as to make it regular again; and if we do so, then there is again

a corresponding array.

Putting what we have just discussed into more abstract language:

naming schemes for components of trees and arrays simplify the naming

of component elements of a composite element. The technique is based on

taking advantage of regularity so as to be able to make a simple naming

rule. Rather than give each element of a composite its individual name,

the composite name is like a generic name, and the elements are ordered

in such a way that the sequence of subscripts tells us how to trace

through this ordered structure to obtain a single component element.

Particularly in the case of arrays we have been conditioned to think of

the subscripts as numeric ones, but there is no logical reason why the

values of subscripts need be restricted to numbers.

17T
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A. A regular tree has a corresponding array.

I

I B. A non-regular tree does not have a corresponding array.

23i order of choice

3 5 nd

0 1 2

C. A non-regular tree can be padded out to make it regular and
B thus have a corresponding array.

Figure 5-1. Naming of Elements Via Trees and Arrays.
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I An example of a naming tree is shown in Figure 5-2, where a constant

troe, whose nodes are company names, is -accessed by the generic name

"COMPANY NAME" plus a list of subscripts signifying state, city, and utility.

We note that the class of naming trees .that have just been described is a

special case of the class of trees having arbitrary relationships between

the nodes, which is in turn a special case of networks with arbitrary re-

lationships between nodes.

Little has been said about the name-to-element mapping rules. It

should be obvious that there must be a way to indicate when a name-to-ele-

ment mapping rule is to be invoked, and which such rule is to be applied.

.A general data referencing function. The identifier function is in

1 turn a special case of a more general data referencing function which we

might call Rel. The arguments of Rel are the identifier of a given ele-

ment and a relationship of the given element to the desired element. For

instance, if SAM and DAVE are identifiers of two data elements) pictured

thus ... .i ier

C father-
son

d~entifer>...
and "father-son" is the relationship of the first element to the second,

then

Rel (SAM, father-son)

would be synonymous with DAVE. That is, it would be equivalent to DAVE

for the purpose of accessing the same data element. Note that whether

DAVE has a value or not is irrelevant here: DAVE might be a composite

I data element and not have a proper value.

Ambiguous relationships. The system being developed here allows

Iarbitrary relationships between arbitrarily-chosen elements. In such

systems, there is the possibility of more than one element being in a

given relationship to a given element. I call such a situation an "am-

i1 . biguous relationship". The user must be conscious of whether such ambi-

guous relationships actually occur in his data. The succeeding para-

I[ graphs explain why.

Consider first the case where a, b, and c each stand in the rela-

* j tionship R to X. Diagrammatically:

II
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Company [state] [City] [utility]

name

I Arizona sFlantaff gas People's Gas and Electric

I . lectric People's Gas and ElectricPheni x g hone Arizona BellPhoeni 

Pex 
gas

-- v M- Phoenix Gas

1electr 2 Sunset Electric

telephone Arizona Bell

Alabama Flotspot pas Southern Gas
Electric Hotspot Electric

telehone Hotspot Tel & Tel

Birmingham gas Southern GasL electric Birmingham Electric

ee phon e Southern Bell

Arkansas Little Rock gas Faithful Gas and Electric

-ectric Faithful Gas and Electric

telephone Midwestern Telephone Company

oa Road's End as__ Midstates Gas

e Tristate Electric

tl n Midwestern Telephone Company

; Border asBorder Utility Corp.
electric Border Utility Corp.

telephone Border Utility Corp.

FIGURE 5-2. Example of a tree of names

Ii

I
I'

I
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a a

To make the illustration more concrete, think of a, b, and c as identifiers

of the object x. Suppose now that the object x has been referenced by

some means other than by any of its identifiers, and that we wish to be

able to determine one of its identifiers. We must be careful what we

ask. If we say "What is the identifier of x?" , which is more precisely

stated "What is the unique identifier of x?", the question has no proper

answer. To give as the answer "The set a,b,c" is perhaps technically

correct but not very useful. To get a proper answer we must instead ask

'What is an identifier of x?", which itself is an abbreviated way of saying

"What entity stands in an identifier relationship to x?" The user must

in general know, or have a means of finding out, if this question has a

unique answer. If it does not, he might ask the same question twice in

his program, and get a different answer each time; this may lead to a pro-

gram error.

Consider a second case, where a stands in the relationship R to x,

y, and z. Diagrammatically:

R 
'C

R
a I

R_ z

To make the illustration more concrete, third of x, y, and z as riements

each individually identified by a. Suppose now that we wish to make a

reference to y. Clearly a does not uniquely identify y. We must jive

other relationships concerning y, either instead of; or in addition to, a.

Suppose we say "the element identified by al. This is meaningless. By
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a slight stretch of the imagination we could interpret it to mean "the

set x,y,_;l to treat x,y,z as a set when it has not been explicitly recog-

nized as such may lead us into trouble. (It will have multiple components

where only one might be expected.) We might say "The set of elements

identified by a." This is meaningful and correct. It is important to.1 reccgnize that it is different from the two substantives just given above.
It is also meaningful to say "VAn element identified by a."V As in the first

case, the user must in general know, or have a means of finding out, if

this substantive refers to a unique object.. If it does not, the program-

mer may use it twice in his program, and refer to a different object each

time, thereby leading to a program error.

In summary then: if more than one element can stand in a given re-

lationship to another element, the user may have to take precautions

to avoid nonsense and ambiguity.

Referencing a value-string. There are two fundamental ways of refer-

encing a value-strino:

1. exhibiting the value-string within paired quotation marks.

2. calling a function, which yields an identifier of a value-string

as a result. Where a domain has an ordering imposed on it, there

is another means of referencing a value-string: that of giving

the domain name and the ordinal position of the desired element

within that domain.

A single representation may name several members in different do-

mains. The letter "T", for example, is the name of a letter of the alpha-
bet, and is frequently used as a synonym of "true", a member of the domain

I of Boolean values. In cases where a representation is ambiguous, the

ambiguity must be resolved by an accompanying domain designator. The do-

main designator tells in which domain lies the member that the representa-

tion is intended to represent.

- .Pronouns. It would be desirable to have expressions which roughly

correspond in function to pronouns in English. Specifically, we might

find the following concepts useful:

1. The last (or next-to-last) element accessed.

2. The result of the most recently executed transformation.

3. The name (or a name, or the principal name) of the statement most

recently executed.

'I
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Ii. The name of the next return point, established at tile ast

temporary change of control.

lat pronouns can be made available depends on the nature of the data

accessing mechanism, and what pronouns actually are available depends on

what the designer and the user together have built into the data accessing

mechanism.

PROCEDURES AND PARAMETERS

Abstractions from programs. It may be the case that a program con-

tains some similar pieces. It may be convenient, either to save the pro-

grammer's time, to simplify the program, or to conserve machine storage,

to abstract these pieces from the program as it might have been originally

written. By "abstract" we mean to remove them from the main body of tile

program and to add to the program something (an "abstraction") which re-

presents all of these pieces. Such an abstraction is often called a

"closed subroutine" or "procedure". Wherever the abstraction is not "per-

fect"-where two pieces abstracted from a program do not match-the dif-

fering elements are not abstracted. In their place in the abstracted pro-

cedure are put placeholders, usually called "formal parameters". These

formal parameters are replaced at execution time by "actual parameters"

which are supplied in the "call".

Thus we see that any two or more pieces of a program can be abstracted

and replaced by references (calls) to a common procedure. The greater

the number of differences among the pieces, the greater the number of para-

meters that must be used. A major object in writing a program is to ab-

stract as much as possible without making the number of parameters exces-

sive. The tradeoff is always a matter of individual taste and judgment.

Calls and parameters. At the point in a program where a piece of

program has been removed ("abstracted") we put in its place a call-a

reference, by identifier, to the procedure which was abstracted-followed

by any parameters which may be needed. In some languages, some calls are

distinguished by being preceded by the word "CALL". This explicit way

of marking calls has some advantages which will become apparent later.

There are two main places, from the grammatical point of view, that

calls can occur. A call may occur in place of a command (or "imperative",

or "sentence", or "statement", or in place of a sequence of statements,

sometimes called a "compound statement"). Then we say the call is a "pro-

cedure call". A call may occur as a substantive (or "operand", or "1para-

meter"), and it is therefore expected to have a "value"; then we say it
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is a "function call".

The distinction in actual use between calls to procedures and to func-

tion procedures is convenient for purposes of classification and explana-

tion, but it is not a necessary one. It is allowable in some languages

to have a call to a procedure which call is used as an operand. Since

in such a case some value is expected, the resulting value is convention-

ally taken to be null. Conversely, a call to a function procedure can

sometimes be written where a statement is expected. In such a case, the

"value" of the function procedure is discarded; the function procedure

is being used only for whatever "side effects" it may have (that is,

for whatever changes in 9torage that it makes).

Call execution. What happens at the time a procedure call is executed

is the following:

~1. A copy is made of the called procedure.

2. Each actual parameter, if there are any, may be "treated" in any

of several ways. The choice of treatment method can be based on

the form of the parameter or it can be specified in the body of

the procedure. The kinds of treatment methods which have been

popular are discussed below.

3. Each treated parameter is substituted for a corresponding formal

parameter in the body of the procedure. low the correspondence

may be indicated will be discussed later.

4. The procedure is executed.
5. If the call plays the role of an operand (that is, if a value is

expected), the result of a function procedure, or a "null", is

substituted in place of the function call.

jThere is a variety of requirements that I would like to place on the
procedure call mechanism, all contributing to flexibility. Some of the

generalrequirements imposed earlier are:

1. It should accommodate recursion. That is, a given procedure

mast be able to calJ itself ("recursive body"), and an argument

of a call to a procedure may be a call to the same procedure

("recursive call").

2.. A procedure must be able to modify itself.

Additional requirements are:

f1. The processing of the parameters of a call should be under complete

control of the procedure. That is, the procedure may decide,TI
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during execution, which parameters are to be picked up from the

call, and how they are to be processed and substituted. The ex-

pression "how they are to be processed" refers to whether a

parameter is to be interpreted or simply to be left uninterpreted,

and if it is to be interpreted, how it is to be interpreted.

2. The parameter passing mechanism should work properly even in a

parallel asynchronous processing environment.

3. The parameters in a call should be uble to be matched with the

formal parameterE either on the basis of position in the call

("positional parameter") or on a partial match of the actual

parameter ("keyword parameter").

4. A procedure should be able to access the call of any specified

"incarnation" of any specified active procedure, not just a call

to itself and not just the most recent call.

5. Two types of substitution techniques are needed for substitution

within the body of a procedure:

a. To be able to replace occurrences of an arbitrary substring

by an actual parameter.

b. To be able to replace elements on the basis of giving their

identifiers, or to replace substrings of such elements.

6. It should be possible to have more than one standard procedure

call mechanism.

The matter of grammar. To my mind, grammar is an issue almost wholly

separable from other programming language consi lerations. A set of gram-

mar rules and a granunatical processor is necessary for what? For finding

out what a given statement "means". In the programming language context

it can only mean one thing: a call to a transformation. A call to a

transformation has a standard format: a transformation name possibly

followed by a list of parameters. If all the transformations are writ-

ten in this standard formax, there is exactly one grammar rule. This re-

duces the issue of gramunatical analysis to a triviality.

Now it is of course true that programmers like to express transfor-

mations in other formats. For example, the normal algebraic expression

with its infix notation for functions of two arguments is a popular one.

A programming language usually has a variety of statement forms. For

example, in ALGOL, some of the basic ones are: assignment, go to, condi-

tional, iteration, procedure definition, declaration.

I T
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One of the virtues of a compiler over an interpreter is that, with

the formbr, grammatical analysis of a given statement has to be done only

once. However, notice that if the progranmning language consisted of only

one statement form, this advantage would disappear. We note also that

many current compilers are not pure compilers. Much of what they do is

in fact interpretive: such things as dynamic declarations, execution of

^format statements containing variable specifications, etc. Hence I con-

clude that the advantages of real compilers over interpreters is not as

great as many would like to believe.

The control character interpretation problem. A classic problem in

interpreting strings of characters is to distinguish those characters

I which are "controls" from those characters which are "objects" (not to

be further interpreted at the moment of scanning). Examples of control

f characters are: quote marks, paired brackets or parentheses of various

shapes, commas, and blanks. Problems of interpretation arise when a charac-

ter normally used as a control character is desired as an object charac-I ter. How do we say unambiguously that a c'ertain character is not to be

T |given its normal control interpretation? The answer is that we must estab-

lish some workable convention. There are several workable conventions

that will serve except in rare pathological cases. (No matter how elaborate

the convention, I think one can always construct a case in which the con-

vention won't work, so we must be content with a reasonable convention

that works except in rare cases; these latter will have to be handled

individually on an ad hoc basis.)

I qu Convention 1. Any intentionally unmatched bracketing character or

quote mark shall be immediately surrounded by quote marks. This means

that whatever scanner is used must treat the sequence

I quote-mark bracketing-character quote-mark

as a special case, to be interpreted as meaning the bracketing character

standing alone.

Convention 2. Provide a command i,,ich temporarily deprives a certain

character of its status of being a con .rol character, and possibly substi-

tutes another character; the status quo to be restored by the execution

of a countermanding command. For example, to deal with the string abcldef

as a quoted parameter, let " be temporarily replaced in its control role

by '. Now we can have the quoted parameter 'abc"def' without misinterpre-

tation. Second example: Suppose that we wish the string abcdef to appear

!i
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in a list of parameters, where contia is the usual separator. We could,

for the purposes of interpreting this list, declare blank to be the

separator ch.)racter. Then we could write

F ( ADF abc,.def ghi )

and have abcdef properly recognized as the second parameter.

Both of the conventions mentioned here require explicit provisions

in the language processor to handle them.

There is another problem, closely related to the control character

interpretation problem, called the "matching brackets problem," which

is discussed in the next sectien. Solutions to the matching brackets

problem are automatically solutions to certain aspects of the control

character interpretation problem.

The matching brackets problem. The matching brackets problem is con-

cerned with control characters which are normally used only in matching

pairs: these are quotes, round brackets, (parentheses), square brackets,

and curly brackets. The problem is concerned with how to decide which

brackets form matching pairs. If there is a convention for denoting an

individual unmatched bracket, and if all other brackets are present in

properly nested form, then there is no problem in finding which brackets

form pairs. However, if there is an error, in that a member of a pair

is erroneously missing, or through some transposition the brackets are

not in properly nested form, then the pairing cannot in general be dis-

covered by inspection alone. To provide for discovering and dealing with

such errors, some facility is needed for uniquely discovering which brackets

form matched pairs. There is a convention which can be used and which

will serve except perhaps in rare cases. This convention is one that can

be brought into play at the user's option but it need not be "built in"

to a language and processor system. This convention is simply a rule

for forming an unlimited number of different bracketing expressions. The

rule is this: let a left-bracket expression be any string (1) beginning

and ending with a blank, (2) not containing a blank, and '3) containing

one left parenthesis. A right-bracket expression will be a similar expres-

sion except it contains one right parenthesis. Examples of such bracket

expressions are:

abc( )abc

a(bc abc)
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It helps readability if the expressions have the parenthesis at the inner

ends, but this is not a necessary restriction. It is easily seen that we

j Ihave an unlimited stock of convenient brackets

1( )1f2( )2

793( )793

A complicated function call written using this matched bracket convention

might look like this:

func i( A,tw 2( f 3( j,m )3 ")",r )2 , )I

If an error occurred, which resulted in the bracket )2 being lost, a scan

of the set of parameters of funct would show immediately that an error

existed and the procedure call mechanism would Pot be prevented from con-

tinuing its analysis of the expression in which this function call to funct

I was embedded.

What is a formal parameter? It is appropriate for us to examine care-

I fully what a formal parameter iz, and how it behaves. It is commonly agreed

that a formal parameter is a placeholder (in a prototype); something is to

I be substituted for this placeholder in a copy of the prototype. "Proto-

type" in this context of course means "procedure body", and "substituted

...in a copy of the prototype" means that a call of a procedure has this

effect, whether or not it is actually carried out that way.

When we consider further the actual nature of thc placeholder we find

that "placeholder': can be interpreted in a variety of ways:

1. As an individual parameter in a structured string: that is, as a

I given parameter in a transformation call. Example: Consider a

program statement in our standard prefix form: T(X,Y,Z) Any

of the names T,X,Y, and Z can be regarded as formal parameters,

to be replaced under some set of rules specified elsewhere.

2. As an individual parameter appearing possibly more than once in

Ua partially-ordered set of structured strings (in this context,

a procedure body). We can forget for a moment the complication

Iof allowing partially-ordered sets of strings; the procedure

bodies that we normally think of are simply linear strings. This

role of parameter is the .one that applies to conventional pro-

cedure calls in ALGOL, FORTRAN, PL/I and the like.

As one or more appearances of a substring in an unstructured
string. This viewpoint allows a more general application

3
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3 of the formal parameter concept. In fact, being able to sub-

stitute one substring for another is the most general kind of

I string substitution that we can envision.

4. As an identifier associated with one or more components of a

data structure, which structure nay later be interpreted as a

procedure.

A placeholder of the third type mentioned above is fundamentally

different from types I and 2. Type 3 obviously requires a scan of the

procedure definition at call time (that is, at the time a procedure is

invoked). Notice that type 4 could be used to avoid the need for this
scan, by making it possible to "name" the insertion points, which would

Sperhaps be initially represented by null substrings.

While the discussion of formal parameters has here centered about

procedure definitions, it should be remembered that the concept of for-

mal parameter applies equally well to data structures, for in fact pro-

cedure definitions are simply a specific form of data structure.

Formal and actual parameters. There is no real need to distinguish

between formal and actual parameters as far as how identifiers for them

are constructed. The feature which distinguishes a formal parameter from

an actual one is the fact that the formal name is systematically replaced

at some point by an actual name. This substitution must be made with due

regard for the l.resence of local data elements ("local variablesl:), other-

wise the prototype may be rendered unusable for a succeeding substitution

(because, as the logicians would say, of the confusion between bound and

free variables). Consider the prototype procedure:

proc Pl(a,b);

local x;

a*---- b;

end Pl;

I In the above, 2 is bound (is a "dummy variable", and it could have any

arbitrary name) while a and b are "free". If we give the call

I CALL PI(x,y);

then a copy of procedure P1 is made and in this copy x replaces a and y

SI replaces b, yielding:

I P-



proc Pl(x,y);

loceil x;
~x(--.x;

end P ;

which is not what is wanted, and which will not yield the desired result.

If the prototype itself is to be manipulated by the program, then

calls of the procedure should make substitutions in a copy of the proto-

type, leaving the prototype intact. Otherwise names may be arbitrarily

changed by the substitution process, thus invalidating later references

j- to the prototype for purposes of manipulation.

Several situations can be described which exemplify the difficulties

of making a distinction between formal and actual parameters:

1. A procedure P1 operates on a procedure P2, patching sections of

P2 together to make a new procedure P3. A call is then made to!
P3.

2. A procedure P4 when first called tailors itself to be more efficient

in response to the class of calls exemplified by the current call.

After tailoring itself, it closes off the tailoring process from

further use, and then proceeds to do its regular work.

The common characteristic of these problems is the dual nature of some of

the parameters, parameters which at one time are considered to be actual
and at another time are treated as formal.

Reinfelds (in his paper "The Call-By-Symbol Concept: A symmetrization

of the Scope of Variables in Actual Parameter Expressions of Subroutine

Calls", submitted for the 1968 FJCC) advances the interesting concept that

in a procedure call one may wish to express formal parameters. One can

in this way achieve the effect of a call by name but at the saint time pre-

Ivent side effects. In order to indicate that a formal parameter name is

being used in the procedure call, some special indicator must be used.

Reinfelds advocates that the declaration symbol x appear in the parameter

list indicating that 11x1" in the param'eter list is a formal parameter of

the procedure being called. My approach of making no distinction between

actual and formal parameter identifiers, however, renders Reinfelds' con-

cept of no use in this context.

I _ _
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Parameter-passing mechanisms. The task to be considered is the

means of "passing" to a procedure parameters given in a call to that

procedure.

We need to be able to access each actual parameter, knowing which

formal parameter we want the correspondent of. We should be able to ask

for an actual parameter either by its position in a call, or by its

keyword parameter name if it has one. To do this we must be able to

reference the "current call of the procedure P". It is not sufficient

'I simply to say "the current call" since at the time of referencing other

calls and other procedures may have intervened. In the case of recursive

calls one must be able to access the call"n" levels back, where n will

I frequently be "1".

I had originally thought of setting up an explicit correspondence

1' table between formal parameters and actual parameters. This table would

have to be filled in either automatically by the call mechanism or by

statements explicitly given in the body of the procedure. A problem aroseI
with trying to define the structure of this table, for some formal para-

meters may have the role of identifiers but other parameters may simply

be uninterpreted substrings.

Upon further consideration, it didn't seem that explicit construc-

tion of this table was necessary. Each entry in the table would in

general be referenced only once, as each actual parameter was picked up

to be treated. It seems simpler to have a primitive which accesses an

actual parameter corresponding to a given formal parameter. This will

I be discussed in more detail below.

There must be a way of matching up actual parameters with formal

j parameters. There are actually two standard ways of accomplishing this:

Here are some illustrations of simple procedure calls:

i. Call with "positional parameters1 , that is, the correspondence

between the actual and formal parameters is known because the

actual parameters occur in pre-specified positions (in the pera-

meter list). An example of a call having positional parameters

is:

REMAINDERCA ,B)

In the definition of REMAINDER tai)re occurs implicitly or ex-

plicitly the information that the first actual parameter cor-

responds to the first formal parameter, and the second actual



I parameter corresponds to the second formal parameter. The formal

parameters may have explicit identifiers. They might be identi-

fied as x and y respectively. Then the parameter matching process

would say that x corresponds to A and y corresponds to B. How-

ever, they need not have explicit identifiers. Assuming that we

have a way of referencing the first actual parameter, in a way

that we have not yet discussed, the definition of REMAINDER might

use the expressions "actual parameter #1" and "actual parameter

/2" in the statements to be executed.

2. Call with "keyword parameters", that is, the correspondence between

the actual and formal parameters is specified by explicitly giving

pairs, each of which consists of a formal parameter followed by

its corresponding actual parameter. An example of a call having

j keyword parameters is:

DISP (p2=M,p4=S,pl=KT)

Notice that in such a call an actual pfaameter need not be given to cor-

respond to each possible formal parameter, and the actual parameters which

are given do not need to be given in a specified sequence.

An additional problem of matching formal and actual parameters arises,

however, where a transformation is defined for a set of parameters of the

Isame type but thL number of the parameters in the set is not fixed. An

example might be SUP, ( ) which could easily be defined to compute the

proper result for an indefinite number of arguments. What we have here

then is a function defined on a set of arbitrary size, where the parameter

to be passed is not an identifier of the set but rather an enumeration

of its members. For functions which are defined in algorithmic form, it

is of course possible to write the procedure so that it examines the para-

meter list and computes the function properly for the number of arguments

exhibited as actual parameters.

If the transformation procedure knows whether to expect a list of

parameters, or only the identifier of such a list, explicitly following

the transformation identifier, then there is no ingenuity required to

/ pick up the individual parameters properly. If we wish to be able to

give either, that is, interchangeably, the explicit list or the identifier

of such a list, then the transformation procedure must be able to examine

the parameter actually delivered and decide how to handle it.

f
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I There is a variation on the format of a procedure call: namely, in-

stead of explicitly listing the relevant parameters, giving a reference

I to a parameter list. This list may, in turn, be either a single list of

positional parameters, to be matched I for I with the formal parameters,

I or it may be a list of key-word-parameter pairs, matching actual and for-

real parameters. Example: let f(a,b) represent a function f with formal

I parameters a and b. Let z be a list of two actual parameters x and y.

The function call might then be written f(z), where the function defini-

tion will recognize that the type of z is list, and that when a parameter

of type list is presented, it must be decomposed into its constituents

and these constituents used as the parameters.

There is a question as to whether this should be caller's option or

procedure definer's option. If it is the caller's option, some special

j symbol is needed to indicate the use of this option, and some extra mech-

anism in the call interpreter to test for this option. If it is the pro-
Ij cedure definer's option, there is no need to provide any special mechanism;

the procedure writer is responsible for testing the type of the parameter

1I and taking appropriate action.

I Parameter interpretation. There are several fundamentally different

ways to interpret a parameter which appears in a procedure call. The

first issue is whether or not the parameter is to he interpreted at all.

We must decide between the following two cases:

1 1. The parameter is a string which is to be substituted without in-

terpretation at this time. This is often called "call by name".

A more suggestive term is Strachey's term "call by substitution",

and it is the term I will use henceforth.

2. Tile parameter is a reference to a data element. This is called

"call by reference".

The processor must be told whether a given parameter is to be interpreted

or not. in principle this decision could be made on the basis of the

form of the parameter, but this would mean a lack of flexibility, since

in the call by substitution we want to be able to substitute an arbitrary

string. I conclude therefore that the indication of whether a given para-

meter is called by substitution or called by reference must be explicitly

given in tile called procedure.
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A parameter to be interpreted is a reference to a data element.

The types of such references are two:

1. A string to be interpreted as naming a data element. Wile it

may be a complex name, we can assume that the interpretation of

this name is a standard process. I call this string a "data re-

ference".

2. A string with or without an explicit set of parameters in para-

meter brackets, to be interpreted as a function call. I call

this a "command reference".

The intellectual distinction I have made between data reference and

command reference is really only a matter of emphasis, for in the case

of a data reference we are in fact invoking a function. This function

is the standard naming function. It is, for example, the function which,

given an expression such as PR[33, accesses an element of the array "PlI".

We will see later that the naming function logically must be called im-

plicitly rather than explicitly.

Notice that a consequence of my philosophy is that there is no con-

cept corresponding to the ALGOL, call-by-value. Call by value yields a

theoretically unnamed, unstored value, and my approach says that there

can be no such entity, that every value-string used as a parameter is

! Istored and has at least one identifier.

The problem at hand is how to distinguish a data reference from a

command reference. We must do it either by inspecting the form of the

parameter or by referring to information external to the parameter itself.

This need to distinguish between a reference which accesses a data

element and a reference which invokes a function is seen in the use of

two sets of brackets in ALGOL.

AEN] means access the Nth element of the array A. Note that this

includes a label array (a switch).'A(N) means invoke the function A with the parameter N.

The shape of the brackets indicates which kind of access. Where there

is no parameter list in brackets, however, the two kinds of reference

cannot be distinguished.

A fundamental problem of ambiguity crops up here, in the case of a

parameterless function call. The call appears as a string. The problem

is that we cannot tell by iz-pectionwhether it is to be referenced (given

I



149

a "data interpretation"f) or to be invoked (given a "command interpretation").

Some languages avoid this ambiguity by requiring the parameter brackets to

be present, thus distinguishing the function call, and always giving the

function call a command interpretation. In such languages, of course,

the function can never be interpreted as data, which is an undesirable

restriction.

Here is an illustration of a parameterless function call. Assume

that TI and T2 are the identifiers of two parameterless function procedures,

each procedure yielding an integer result.

SUM(CALL(TI),CALL(T2)) computes the sum of the results of executing

T1 and T2.

SUM(T1,T2) is undefined because SUM is not defined for the data type

of the procedures T1 and T2 (distinct from the data type of their

results, which is integer).

CONCAT(TI,T2) is defined; the result of the string obtained by con-

catenating the string named T1 with the string named T2.

Most programming languages resolve this ambiguity by establishing

some arbitrary and restrictive rules. For example: a designator of a para-

meterless function procedure is indistinguishable from an identifier of a

data element. Grenoble ALGOL requires such a function procedure designator

to be enclosed in parentheses in order to force its execution. FORTRAN

avoids the problem by requiring function names always to be followed by

a parameter list, even if it is a "dummy" list. PL/I dete:mines if the

parameter is the name of a function, and, if so, executes it. None of

these languages, and in fact none of the languages with associated compilers,

permit a function definition to be referenced as data, that is, as a string.

A second example is where a parameter consists of an identifier fol-

lowed by a list of parameters enclosed in parentheses. This could be in-

terpreted either as a function call, in which case a command interpreta-

tion is probably wanted, or as a compound identifier such as an array ele-

ment name, in which case a data interpretation is probably wanted. ALGOL

avoids the problem of distinguishing these two uses by requiring that in

the second case, special subscript brackets (square brackets) be used.

FORTRAN and PL/I determine whether the parameter nahes a function or a com-

pound data element and give the parameter a command interpretation or data

interpretation accordingly. As before, these interpretation rules are

.. .. .. .. . . .. . . .. . . . ....
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fixed and therefore do not permit executing a function procedure stored

in an array of procedures, nor of treating a procedure as a data element.

It is often convenient to write a literal as a data reference. That

is, instead of writing a data reference we may wish to write instead an

actual value-string. If we wish this feature, then the processor must

be arranged to recognize when we have done so, create a storage cell for

the value-string, and create an identifier for it. The value of the para-

meter is the identifier thus created. A frequently-used convention is to

enclose the literal in quotation marks, and I adopt that convention.

To summarize, we can have the following forms of reference expressions:

Form. MeaninQ Int :4retation

A identifier of data elemen data

A identifier of parameterless procedure command or data

A(P,Q) function procedure designation with command or data*

parameters

A(P,Q) identifier of component data element data
within a composite, or a set of argu-
ments of a function represented as a
function table

"A" the value-string "All data

* We might choose not to define what this expression means.

Note that in general we want to be able to give any one of the five forms

of references. We would not, in general, wish to resolve ambiguities by

giving the type of interpretation (data vs. command) in the parameter

Itreatment specification, because we want the flexibility of using these

types of parameters interchangeably. Hence the distinction between com-

mand references and data references must not be made on the basis of

parameter inspection alone.

One solution to the problem would be to label each parameter as to

whether it was a command reference or a data reference, such as CALL(Y)

or DATA(X), respectively. This is somewhat clumsy. What is worse, it

is technically inconsistent, as will become apparent in the later discus-

sion of the fact that the data referencing function cannot be an explicit

one. The remaining question is flow to simplify this clumsy convention of

CALL(Y) and DATA (x). We could, for example, dispense with DATA ( ) andI
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use simply X for a data reference. Only if X had the form CALL (Y) would

we have it receive a command interpretation instead.

j So, for example, to compute the value of the formula (which we assume

appeared as an actual parameter)

A + random integer

where the random number is obtained by a parameterless function procedure,

we would write

e CALL(PLUS(A,CALL(RANDOM ));

If we allow ourselves the simplification of omitting parentheses surround-J ing a one-member parameter list, or at least after the expression CALL,

we could write this more readibly as

CALL PLUS(A,CALL RANDOM);

Some users may regard as inconvenient the inclusion of the word CALL

in each parameter whose execution is invoked. Such users may choose in-

stead t'- specify in the definition of a transformation a fixed interpre-

tation of the parameter: he can specify either "access"l or "execute".

IThe price to be paid for this convenience is the lack of flexibility in
being able to have the mode of treatment deducible from the form of the

actual parameter.

As a notational convenience we could easily define the CALL state-

ment to accommodate multiple parameters; that is, for example,

CALL A,B,C;

could be used to mean call A then call B then call C. Each call could

have a parameter list as well; thus we might write

CALL A(X,Y),F(Z);

I have suggested here one reasonable set of conventions for dis-

tinguishing command interpretations from data interpretations. It should

be possible for the user to change readily whatever conventions might he

established initially for a given processor.

Not all the possible complications have been resolved. For instance,

it could happen that both a parameter list and a subscript list occur in

the same parameer expression. For example:

T(A) (B,C)

might mean "select the function with index A in an array T of function

definitions and use the function 'with the parameter list (BC)". If this

construction is to be allowed, then we need to have a way of defining the

I
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convcn(" 1 to be used for interpreting it. Further we must keep in mind

that we might want a data interpretation expressed simply

T(A)
in order to access the function definition as data. Hence whatever con-

ventions are established should allow for the proper interpretation of

the latter expression.

The data referencing function-a necessarily implicit function.

Notice that obtaining the identifier of an element whose data reference

is given is itself the performance of a function. It is, and necessarily

must be, a function which is not expressed explicitly but is rather im-

plied. Suppose a function of one argument:

If(a)
If we wanted to show the data referencing function i explicitly, we might

I write

f(i(a))

But in doing so we have not been consistent, in that the argument of the

function i is the "bare" data reference a. lie cannot overcome this no
I matter how many times we replace the inner a by the more explicit i(a).

We are forced to realize that an innermost parameter must be interpreted

as a data reference expression, of which we are usually to take the identi-

fier. If the data reference expression is a single identifier, then its

interpretation is simply that identifier.

This leads us to a related issue, that of indirect naming.

Indirect addressing or naming. It may on occasion be useful to refer

to a data element by an "indirect name", that is, by giving an identifier

of an identifier of a data element. This feature is often called "indirect

addressing" when speaking of an address of an address of a machine word.
Explicit indication of indirect naming in SNOBOL is given by the prefix-

ing to a name the symbol . symbol can be taken to be the function

I"evaluate" in the conventional sense. Example: let "II be the contents

of a simple data element identified by the string A. Let "A" be the

contents of a simple data element identified by the string B. If we

write as a parameter

IF (A)
this will be interpreted as

Fi1)
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that is, the function F applied to the value "I". If we write as a para-

meter

F($(B)) or F(eval(B))

this will c l.o be interpreted as

0
In this Ia~ter case, the parameter is effectively being evaluated twice

in succession. The first evaluation is called for by virtue of the func-

tion F callinL; for the normal evaluation of its parameter. An evaluation

of the result of the first evaluation is called for by the "evaluation

I function" designated by either one of the devices exhibited above. SNOBOL

uses the symbol S as the -name of this function, so that

;f "SAI

in SNOBOL means the data element whose identifier is the value of another

data element whose identifier in turn is Al. Such expressions can be

nested to any practical depth to chieve multiple-level indirect naming,

for exampl e

8($AI)) $($($A)))

Parameter types. The matter of concern is the "types" of parameters

associated with transformations-both input parameters and an output

parameter or parameters. "Type" requires some definition. Where a para-

meter stands for a simple data element, the parameter type is the name

of the domain of that element. Where a parameter stands for a composite

data element, the concept of parameter type embraces structure class names

(such as "list", or "lcompanyl) and perhaps also the domain names of its

components. Thus, a parameter type specification of a composite element

might be "list of integers", or "set of 4 x 4 arrays of integers", or

"set of arrays".

Every transformation is necessarily defined only for some specific

choice of parameter types. That is, if a parameter in a call is not of£I
-g a type specifically provided for by the transformation definition, exe-

cution of the transformation will "fail". What "failure" means is dis-

cussed elsewhere under "Invalid transformations". To illustrate these

concepts, consider that a function "sum" could be defined for a variety

of parameter types: possibly any mixture of values from the domains of

integer, real, and fraction. It might be defined also for strings: in

this latter case it would probably mean "concatenation". But the function

- I
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would probably not be defined for a mixture of strings and integers. To

repeat, a given transformation is necessarily defined for one or more

1 fixed combinations of paramleter types. If the transformation re,-eives

as input any other combination of parameter types, it will not give a

correct result. In such a case the transformation must not give a result

which could be misleadingly interpreted as Qorrect; that is, it must

explicitly signal wh'n such a failure occurs. Whether a transformation
is to avoid the computation of invalid results ("garbage") or not is up

to the person who writes the transformation definition.

It may hatppen that a parameter is not from a domain (or of a type)

specifically anticipated by the writer of a procedure. It may also hap-

pen that the given parameter value has an ecouivalent in a domain which

is acceptable. Example: Let there be a procedure which computes area,

given dimensions in feet. Wat should happen if a call to this procedure

has parameters given in inches? It would be desirable to have a convenient

mechanism whereby the writer of the procedure could ask to have, in such a

case, a search made automatically to find the corresponding .alues in feet

and use these converted values to proceed with the computation. Note

that invoking such a mechanism should be at the writer's option; it would

be unnecessarily clumsy to always invu e such a search automatically.

The writer of a transformation definition (procedure) needs program

statements (calls to transformations, probably primitive ones) which en-

able him to determine the types of his input parameters, to check the

types to verify if they are acceptable, possibly to convert the values

I to equivalents in an acceptable domain, and to signal whether the trans-

formation has been successful (or, if not, what the nature of the failure
Iwa).

Substitution of parameters. Having picked up an actual parameter

and treated it, we must next specify how and where the result is to be

substituted. it may be substituted for each appearance of a given charac-

ter (or substring) in the procedure body, which will require a full scan

j of the procedure body. Or it may be substituted as the "value" of a

named part of the structure which constitutes the procedure body. The

choice of these two substitution methods must be specified in the procedure

body, or in the call mechanism (that is, in the interpreter).

Invalid transformations. As mentioned earlier, it may happen that

.1
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part way through the execution of a transformation a parameter may be

found to be of the wrong type, or the argument specification may be in

some other way not satisfied. Even if the arguments (parameters) are pro-

per, it might happen that the transformation cannot be correctly completed.

There arises the question of how to know the precise effect of the tranls-

formation attempted under such circumstances. Since side effects can oc-

cur, the effect of an invalid transformation must be known to the user

in order for him to be able to recover.

There are two extreme choices for the effect of an invalid transfor-

mation: (i) no action, and (2) all possible actions up to the point of

invalidity. The no-action case might be preferable; in a sense it is a

cleaner alternative. In some cases, however, it is extremely difficult

to achieve because it can mean having to remirmber an arbitrary amount of

processing in order to put things back the way the, were before the trans-

formation began. The all-possible-legal-actions case seems wasteful, in

that some unnecessary actions may be done, but it is much simpler to ex-

plain, comprehend, and remember.

Another choice is to let the user in general define how he wants in-

valid transformations handled by the way he defines a given transformation.

He can, for example, check to see that all arguments are legal before

transformational changes are executed.

Thc-e is a need for some standard error signal mechanism. Earlier

I discussed the use of a result value-string of "UNDEFINED" as a way to

indicate failure of a function. We need a similar convenient convention

to indicate the failure of a transformation which is not a function. Some

of the possibilities for such a convention are:

1. A success-failure flag to be set by each transformation. If there

is only one such flag, however, confusion will arise in the cir-

cumstance of parallel execution.

2. A success-failure first-in-first-out queue, on which is entered

a transformation name and success-failure flag (and perhaps other

identifying information such as an identifier of a statement in-

voicing the transformation). This que'ue would be a standard data

element accessible by conventional referencing techniques. An

alternative would be to have this queue maintained in the pro-

cessor in an undefined way, and to have it be able to be refer-

enced only through some primitive function specifica~ly designed
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j for that purpose.

3. To pass success and failure return point identifiers ("labels")

as parameters to each transformation.

Procedure call mechanism. We have discussed at length the actions

and requirements of procedure calls. Now we must be more specific as to

how procedure calls are accomplished. Assume that control has been trans-

ferred to (a copy of) a desired procedure. The actions that can occur

which are related to the calling process, as distinguished from the "work"

the procedure is called upon to do, are:

j1. Locate the call.

2. Select an actual parameter from the cali.

3. Treat this parameter according to some prespecified method.

'k. Optionally, check the type of the parameter to varify that it is

acceptable to this procedure.

& 5. Optionally, if the type of the parameter is not acceptable, seek

an equivalent in a specified domain.

6. Substitute the result of the parameter treatment into the procedure

body, according to some prespecified substitution rule.

7. Repeat steps 2 through 6 for all' parameters required.

8. Upon exit from the procedure, set an indicator to "success" or

"fai lure".

We now proceed to discuss these actions in more detail.

The need for locating a specific call seems at first unnecessary.

Why should it not always be the most recent call executed? The answer

is that the parameters need not be picked up, processed, and substituted

immediately upon entry to a procedure; in general we want to be able to

process them anytime during the execution of the body of a procedure, and

perhaps in some cases certain parameters will not be needed and therefore

need not be processed at all. So we may find that in procedure A we exe-

cute first a call to procedure B, and then wish to process parameters of

the call to procedure A. Another possibility arises in a recursive pro-

cedure, where at some point we may wish to process a parameter in the cur-

rent call, and at another point we may wish to process a parameter in a

previous call.

Having located the desired call, we next need to be able to select

from it a desired parameter. It may be selected on the basis of its

A
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position in the list of actual parameters, if it is a list of positional

parameters. Or it may be selected on the basis of its name or keyword

accompanying it in tile list of actual parameters. (Keyword parameters

can be considered a special case of a more general concept: that of pick-

ing parameters on the basis of their partial contents. That is, we could

select a parameter they begins KEY= , or one that ends in S, or one that

contains at least two asterisks, etc.) Naturally it can happen that the

sought-for parameter is absent, in which case provision must be made

for indicating this fact to the parameter-pickup mechanism (a function).

Next the parameter is interpreted. We have discussed earlier the

standard interpretation methods. For flexibility, however, the user need

not be confined to these standard methods. lie should be able to devise

his own.

A check of the "type" of a parameter means to inspect the parameter

and determine if it has the characteristics assumed by the procedure body.

If the parameter is expected to be a simple data element, then the check

would probably be to verify that the parameter value was from the proper

domain. In case a parameter is expected to be a composite element, a

variety of checks are possible: to check that the composite element has

the desired structure, to check also that the mlues of simple components

are from specified domains, or to check that the element is of a given

class (has a given model name).

Suppose that a parameter has been selected and that the type check

reveals that the value is not from an acueptable domain. It would on

occasion be desirable to call for a search for an equivalent value in a

specified domain. For example, if a parameter delivered a value in feet

for a procedure designed to expect inches, and if suitable equivalence

tables or algorithms existed, a search could be expected to yield the

equivalent value in inches. It is not essential that such a search be

built into a system; the essential point is that the creation of such a

search routine and its invocation as part of the procedure call mechanism

should be possible.

Assuming that a parameter has been processed and found valid, the

next step is substitution of the treated form of the parameter into the

procedure body, replacing a formal "parameter". This is a non-trivial

matter, however, in view of the earlier discussion about the alternative

I
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interpretations of formal parameters. The substitution operator must

specify the nature of the substitution to be performed, according to the

assumed characteristics of the formal parameters. The substitution may

be for a given parameter in a procedure body, or for a given substring,

Sfor a given named component of a composite data element, or for some

other programmer-specified part of a procedure body.

There should exist sonic simple way to indicate the successful com-

pletion of a transformation. In the case of a function, which returns

a value, the value "null" can often be taken as an indication of failure,

although not always. In the case of a transCormation which does not re-

turn.a single value, however, we need some way to be able to determine

whether the transformation procedure completed its assigned task success-

fully. I am not suggesting that this flag be set automatically, but rather

that primitives exist for setting and testing s;uch flags, and that the

setting and testing be done at the option of the user.

It should be obvious that whatever transformations are needed for

implementing this procedure call mechanism must be primitive. If they

were not, then these elements of the procedure call mechanism would them-

selves invoke the procedure call mechanism, ard a non-terminating recur-

sion would occur.

Remark on multiple entry points. Procedures can have multiple entry

points (though personally I think it is poor programming practice). Since

we treat declarations as executable commands there is an important con-

sequence related to multiple entry points: that is, that the thread of

control from each entry point must "pass through" the "declarations" that

are going to be needed in the body of the procedure. This can be done

fairly simply by packaging the set of declaration statements as a sub-

procedure and calling it immediately after entry at any entry point.

CONTROL SEQUENCING

This section is concerned with how the processor is told the sequence

in which transformations are to be executed.

The "thread of control" concept. Nearly all sequence controls in

current use are based on a "thread of control" concept, by which is meant

that the ma-'-rity of transformation calls have a successor defined by

convention. The advaiitage of this technique is that control sequencing

can usually be expressed by physical arrangement of transformation calls

:1
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rather than by the successor of each transformation call having to be

explicitly given. We therefore provide for this thread of control

concept. The user is not required to use it for user-defined transfor-

mations, however; he may instead define all his transformations with

a parameter which explicitly specifies the successor.

Some elaboration is in order concerning the physical arrangement

of transformation calls. Each transformation call is a data element

interpretable as a transformation name plus a set of actual parameters.

The standard form of a transformation call is a simple data element whose

contents is a value-string. An alternate form which may be useful is a

composite, the first component of which is the transformation identifier

and the remaining components of wli ch are the actual parameters. The

successor of any given transformation is explicitly tied to that call by

a successor relationship.

A thread of control may split, or "fork", into two or more threads,

which requires the creation by the processor of parallel asynchronous

paths of control. Several such threads of control can merge, or ":join"l,

into one; control must reach the merge point from all merging threads be-

fore control proceeds forward from that point. Every thread of control

eventually terminates, either in a join, or at some transformation which

stops further processing of that thread.

Since the successor relationship as used here is not a transitive

one, loops are not prohibited. Hence in the most general case, the paths

of control may form a network, which I will henceforth refer to as a"con-

trol network", or a "network of control".

The sequence control mechanism. Our concept of the sequence control

mechanism is that of a processor, defined as a primitive, which receive.

its commands via primitive transformations. It provides for parallel

asynchronous threads of control as well as for the initiation of execu-

tion sequences whenever specified conditions become true.

Part of the sequence control mechanism is a set of control lists,

which are"ordinary" data elements with known identifiers. These data

elements are created as needed, one for each thread of rontrol, and des-

troyed when no longer needed. Each such data element is a composite;

it is in effect a pushdown list which stores a list of identifiers of

return locations. Since these data elements are ordinary ones, the user

has access to them and can inspect or modify them as he wishes. In order
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for the tuser to know the identifiers of these control lists, they must

be identified by some standard naming scheme. In order for the user to

know the identifier of a control list of a particular thread of control,

a primitive transZormation TIIREAD-IDENT executed in that thread of con-

j trol will yield the ideitifier of the associated control list.

Arbitrary complex sequencinq. Successor relationships, iteration

controls, and branch instructions will provide for the majority of se-

quencing needs. When more complex sequence controls are needed, how-

ever, they can be written as procedures. The general. form of such a pro-

cedure is a loop. ], the first part of the loop is determined the identi-

fier.of the transformation to be executed next. In the second part of

this loop, this identifier is substituted in a call expression and the

specified transformation is thus invoked. The thread of control usually

returns to the beginning of this control procedure, though on occasion

it may terminate. This technique of programming sequence control rules

may find applicability in applying various priority control algorithms

[See Gorn, 1959]. It can also be used in controlling iterations, and in

following explicit "chains" of identifiers, where the successor relation-

ships have been expressed between elements which contain identifiers of

transformation calls rather than the calls themselves. It is interesting

I to note, and it may be of considerable usefulness, that a user program

can have all the transforination calls which "do useful work" written as

Iindividual and independent data elements iithout successor relationships

between them, while all the sequencing of execution can be controlled by

I a separate procedure.

Transformations of sequence control. Transformations which are con-

cerned with control sequencing are presented in the next chapter along

I~ with the other types of transformations.

I
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CIIAPTI 6. BASIC TRANSFOVMATIONS

hiat follows is a list of manipulations and functions which illus-

trates the nature and variety of transformations which are needed in the

system being developed here. This list may not be complete, as it has

simply been 'thought up' and has not been tried out in real-life situa-

tions.

BASIC TRANSFORMATIONS AS DATA

Having developed a theory of data elements and values, and having

discussed the framework of transformations, we are now in a position to

define a set of basic transformations of data. To the extent that do-

jmains are defined by enumeration, transformations of domain will also

turn out to be transformations of data. As we have just seen in Chapter

j5, transformations of sequence control are largely transformations of

data.

Transformations of data can be divided into two broad classes which

may overlap slightly:

1. Transformations which perform creation, destroying, selcclion,

and testing of identifiers, ceils, aad composites.

2. Functions which take value-strings as arguments and have a value-

string as result. A special sub-class of such functions consists

of those which operate on the strings which are transformation

calls.

The description of a transformation will follow the general format.

1. Name of the transformation or function, including parameter list.

2. fect of the transformation.

3. M.it-value resulting when the transformation appears as a para-

meter of another transformation. The exit-value is always an

identifier. it is either an identifier of a valid result (which

is a data element), or an identifier of a cell containing the

value-string UNDEFINED or NULL.

4. Illustration, if useful.

5. Comment, if applicable, including a mention of when a transforma-

tion is readily definable in terms of other transformations.

Create a cell.

Name: CREATF-CELL, or CRPATE-CELL( I

Effect: To generate a new cell and associate with it an identifier. If

I specifies or references all identifier, then that identifier will
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be associated with the new cell. If no such identifier is given,

then the processor will generate one.

Exit-value: The generated or specified identifier of the new cell.

Illustration: The result can be diagrakmied:

Comment: CREATE-CELL(I) can be defined in terms of CREATE-CELL and ASSOCI-

ATE-IDENTI (ER (to be defined later), thus:

CALL ASSOCIATE-IDENTIFIER(I,CALL CREATE-CELL);

Copy_ a cell.

This is a case of COPY ELEMENT, which see.

Assign contents of a cell.

Name: ASSIGN-CONTENTS(I,E)

Effect: Replaces contents of cell or cells referenced by I by a copy of

the contents of the cell referenced by E.

Exit-value: An identifier of the result cell. If I is an identifier, then

the exit-value is precisely I.

Illustration: Consider the transformation call:

CALL ASSIGN-CONTENTS (B, A)

Before execution After execution

( A /==_==== identifier

idntfir i iden t if ierBUNDEFINEDB 11

Comment: This transformation corresponds closely to the familiar "assign-

ment statement" I = E or I <-- -- E.

Destroy a cell.

This is a case of DESTROY-ELEMCNT, which see.

Associate an identifier.

Name: ASSOCIATE-IDENTIFIER(E, I), or ASSOCIATE-IDENTIFIER(E)

Effect: To associate the identifier referenced by I, with a data element

referenced by E. If the second form is used, where the user does

not specify the identifier, then the processor will generate one.

If the identifier to be associated is not already in the identifier

list, the processor will put it in the list.

Exit-value: The identifier associated with the referenced data clenient.

I
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N Illustration: To create a cell with an identifier of "XI":

CALL ASSOCIATE IDENTIFIER (CALL CREATE-CELL, "XI")

CommIent: While a separate transformation could be defined to create an

identifier there seems to be no need for it, since ASSOCIATE-IDENTI-

FIER creates an identifier at the same time a data element is created.

Dissociate identifier.

Name: DISSOCIATE-IDENTIFIER(l), or DISSOCIATE-IDENTIFIER( i ,,x)

Effect: To destroy the identifier re]atiusnip between the identifier

referenced by I and the data element referenced by E. If no E is

referenced, then all identifier relationships between the identi-

fier (referenced by I) and all data elements are destroyed. If this

transformation destroys all identifier relationships associated with

the referenced identifier, then the identifier is automatically re-

moved from the identifier list.

Exit-value: Null.

Destroy identifier.

A separate transformation to destroy an identifier is unnecessary in view

of the actions performed by DISSOCIATE-IDENTIFIER.

Associate components to create composite.

Name: CREATE-EXPLICIT-SET(El ,E2,E3,...)

Effect: To create a composite whose components are the referenced ele-

ments EI,E2, etc.

Exit-value: The generated identifier of the composite.

Illustration:

Before After

= didtntj ident.

idnt
iideri

Associate components to create implicit set.

Name: CREATE-IM LICIT-SET (Q,,A,B,...)

Effect: To set up binary relationships QRA,QIZD, etc.

Exit-value: Null.

.1
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:1 Befo re After

i dent

C .. A

dI

Comment: This transformation is definable in terms of CREATE-EXPLICIT-

SET, where each invocation creates one relationship(composite), thus:

CALL ASSOCIATE-IDENTIFIER( "R" ,CALL CREATE-EXPLICIT-SET(Q,A))

CALL ASSOCIATE-IDENTIFIER( "R" ,CALL CREATE-EXPLICIT-SET(Q,B))

IDissociate components of a composite.

To dissociate all components and desiroy them, use DESTROY-ELEMNT, which

see. To dissociate one or more individual cumponents of a composite, use

REMOVE-COMPONENT, which see. To dissociate all components of a composite

without destroying them, use REMOVE-COMPONENT in an iteration over all

components, thus:

CALL ITEIRATE-OVI-EXPLICIT-SET ) I, J, CALL REMOVE-COMPONENT ( I, J))

Destroy an element.

Name: DESTROY-ELEMENT ( I)

Effect: Destroys the referenced cell or composite and all associations

and relationships atta-h.-d 'he components themselves are not

destroyed. If there are idei Siers uniquely associated with com-

ponents of the element, these identifiers are destroyed also.

Exit-value: Identifier I of element destroyed.

Add a component.

) I Name: ADD-COMPONENT (U , C) or ADD-COMPONENT (I, , N)

Effect: To include the elemcnct refe, eitued by C as a new component of

the composite referenced by I. If the parameter N is given, the

new component is entered in the composite at ordinal position N.

Exit-value: Null.

Select a component by name.

Name: SELECT-COMPO'ENT-BY-PART-IDENTIFI]ERCI(I,P)

Li

/
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Effect: In composite referenced by I selects the component having the

part-identifier referenced by P.

Exit-value: An identifier, generated if necessary, of the indicated com-

ponent. If there is no such component, the resul.t is undefined.

Select a component by position.

Name: SELECT-COMPONENT-BY-POSITION (I , N)

Effect: In composite referenced by I selects the component having ordi-

nal position referenced by N.

Exit-value: An identifier generated if necessary, of the indicated component.

If there is no such component the result is undefined.

Determine component position.

Name: COMPONINT-POSITION( ,P)

Effect: In composite referenced by I, search--s for the component having

the part-identifier referenced by P.

Exit-value: A generated identifier of N, the ordinal position of the speci-

fied component. If there is no such component, the result is undefined.

Remove component by name.

Name: DELETE-COMPONENT-BY-PART-IDE.NIFIER ( I,P)

Effect: In composite referenced by £, selects the component having the

part-identifier rc2erenced by P ann deletes the component from mem--

bership in the composite. The component itself is not destroyed.

Exit-value: Null.

Remove component by position.

Name: DELETE-COUIONENT-IIY-POSITI ON ( I, N)

Effect: In composite referenced by I, selects the component having ordi-

nal position referenced by N, and deletes this component from mem-

bership in the composite. The component itself is not destroyed.

Exit-value: Null.

Copy an element.

Name: COPY(E) or COPY(EI)

Effect: Make a complete copy of the element referenced by E, except that
a new main identifier referenced by I is assignec instead of copy-

ing the original identifier.

Exit-value: The identifier assigned to the copy.

Replace an element.

Name: REPLACE-ELEMIN'r(E, I)


