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Preface

Running and optimizing transportation systems give rise to very complex and large-scale
optimization problems requiring innovative solution techniques and ideas from mathematical
optimization, theoretical computer science, and operations research. Since 2000, the series of
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS)
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 19th ATMOS symposium (ATMOS’19) was held in connection with ALGO’19
and hosted by Technische Universität München in Munich, Germany, on September 12-13,
2019. Topics of interest were all optimization problems for passenger and freight transport,
including, but not limited to, demand forecasting, models for user behavior, design of pricing
systems, infrastructure planning, multi-modal transport optimization, mobile applications for
transport, congestion modelling and reduction, line planning, timetable generation, routing
and platform assignment, vehicle scheduling, route planning, crew and duty scheduling,
rostering, delay management, routing in road networks, and traffic guidance. Of particular
interest were papers applying and advancing techniques like graph and network algorithms,
combinatorial optimization, mathematical programming, approximation algorithms, methods
for the integration of planning stages, stochastic and robust optimization, online and real-time
algorithms, algorithmic game theory, heuristics for real-world instances, and simulation tools.

All submissions were reviewed by at least two referees and most of them by three members
of the program committee, and judged on originality, technical quality, and relevance to the
topics of the symposium. Based on the reviews, the program committee selected fourteen
submissions to be presented at the symposium, which are collected in this volume. Together,
they quite impressively demonstrate the range of applicability of algorithmic optimization
to transportation problems in a wide sense. In addition, Dorothea Wagner kindly agreed
to complement the program with an invited talk on Traffic Assignment in Transportation
Networks.

Based on the program committee’s reviews, Lehilton L. C. Pedrosa, Greis Yvet Oropeza
Quesquén and Rafael Schouery won the Best Paper Award of ATMOS’19 with their paper
An Asymptotically Optimal Approximation Algorithm for the Travelling Car Renter Problem.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS’19, all the authors who submitted
papers, Dorothea Wagner for accepting our invitation to present an invited talk, the members
of the Program Committee and the additional reviewers for their valuable work in selecting
the papers appearing in this volume, and the local organizers for hosting the symposium as
part of ALGO’19. We also acknowledge the use of the EasyChair system for the great help
in managing the submission and review processes, and Schloss Dagstuhl for publishing the
proceedings of ATMOS’19 in its OASIcs series.

August 2019

Valentina Cacchiani
Alberto Marchetti-Spaccamela
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Abstract

For providing railway services the company’s railway rolling stock is one if not the most important
ingredient. It decides about the number of passenger or cargo trips the company can offer, about
the quality a passenger experiences the train ride and it is often related to the image of the company
itself. Thus, it is highly desired to have the available rolling stock in the best shape possible.
Moreover, in many countries, as Germany where our industrial partner DB Fernverkehr AG (DBF) is
located, laws enforce regular vehicle inspections to ensure the safety of the passengers. This leads to
rolling stock optimization problems with complex rules for vehicle maintenance. This problem is well
studied in the literature for example see [8, 9], or [5] for applications including vehicle maintenance.
The contribution of this paper is a new algorithmic approach to solve the Rolling Stock Rotation
Problem for the ICE high speed train fleet of DBF with included vehicle maintenance. It is based
on a relaxation of a mixed integer linear programming model with an iterative cut generation to
enforce the feasibility of a solution of the relaxation in the solution space of the original problem.
The resulting mixed integer linear programming model is based on a hypergraph approach presented
in [3]. The new approach is tested on real world instances modeling different scenarios for the ICE
high speed train network in Germany and compared to the approaches of [10] that are in operation
at DB Fernverkehr AG. The approach shows a significant reduction of the run time to produce
solutions with comparable or even better objective function values.
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1:2 A Cut Separation Approach for the RSRP

1 Introduction

In a liberalized market companies that offer products or services have to compete with
competitors for market shares. In an increasing number of countries the railway sector is
one of these markets and becomes liberalized more and more. Thus railway companies have
to face the challenging problem to offer the best product possible, i.e., punctual, reliable,
fast, and comfortable train rides for a reasonable price requiring being as cost efficient as
possible. This leads to a wide variety of closely connected optimization problems. Typically
these problems differ in the grade of detail and scope of the planning horizon for which
decisions have to be made or optimized. One of these problems is the Rolling Stock Rotation
Problem (RSRP) where the offered passenger trips of the timetable have to be covered by a
set of available rolling stock vehicles in a most cost efficient way. This assignment has to be
made with respect to a lot of operational requirements, i.e., the assigned vehicle should not
exceed the platform length along a trip’s path, electrical powered vehicles require electrified
tracks, or the assigned number of coaches should match the expected number of passengers.
Although the railway market is liberalized and open for competitors there are many laws
the companies have to comply with. Some of them rule mandatory maintenance checks
the rolling stock fleets have to pass to be able to transport passengers. A regular vehicle
maintenance scheme has also direct and indirect effects on the value of the train journey a
customer perceives. They result in a more reliable level of services and in a better shape of
the vehicles which is directly recognized by the passengers and linked to the company’s image.
In Germany, at DB Fernverkehr AG (DBF) our industrial partner, exists a complex schedule
of increasing maintenance schedules beginning with short checks of parts of the vehicle and
ending in a more or less complete reassembly of the vehicle. Thus, integrating maintenance
constraints in the rolling stock rotation problem is a natural choice. The main contribution
of this paper is a novel solution approach to the rolling stock rotation problem with vehicle
maintenance that differs from the one currently in operation at DBF. It relies completely on
infeasible path cuts to take care of maintenance constraints instead of modelling a linked
resource flow as it is done in the current approach at DBF. Adding these resource constraints
to the arc based RSRP model used at DBF results in a significant increase of problem
complexity and run time thus sophisticated algorithms that reduce that increase are very
welcome at DBF. Another advantage of the new approach is that it produces several rather
different incumbent solutions that are close to optimality which is a feature that planners
like. The drawback of this feature and a disadvantage of the approach is that there is more a
step wise than a monotone improvement of the solution quality during the solution process.

Rolling stock rotation problems were studied extensively under different names, in various
level of detail, and with varying focus in literature the last decades. Since the focus of this
paper is on vehicle maintenance we restrict the literature review to papers that consider
vehicle maintenance rules to some extend. One of the earliest works that apply to this
was done by [5] where locomotives and cars were assigned to passenger trains for scenarios
of VIA Rail in Canada. Cyclic timetables were covered with detailed schedules. Vehicle
maintenance was considered by a time discretization approach to schedule the maintenance
service stops. In [8, 9] the authors proposed solution approaches to re-optimize vehicle
schedules for so called urgent trains that require maintenance services within the next 1
to 3 days. Mixed integer programming models based on multi commodity flows are used
to tackle the problems for real world scenarios of the Dutch railway operator NS Reizigers.
A heuristic solution approach based on an integer linear programming formulation for the
Rolling Stock Rotation Problem with integrated optimization of seat capacity of the assigned
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vehicle configurations is presented in [4]. Maintenance rules were added in a mileage based
fashion and the approach is evaluated on scenarios of a regional train operator from Italy.
The authors of [6] report a significant reduction of deadheading trips, respectively empty
train runs, for their solutions computed by a mixed integer linear program using a commercial
MILP-solver to find maintenance feasible Hamiltonian cycles in cyclic network wide instances
of Trenitalia. The same approach was later used by [13] to compute maintenance feasible
rosters for a case study in Japan. In [11] a nice overview of the research done in this field is
presented. Moreover the authors describe heuristic solution approaches to solve the RSRP
with integrated optimization of seat capacity for the DSB S-tog network in Copenhagen.
Compared to the operated rolling stock schedules the heuristically constructed solutions
were proven to be economically more attractive. A solution approach for a re-scheduling
version of the RSRP is presented in [12]. After a disruption has happened re-optimized
vehicle schedules have to be computed that have to consider maintenance appointments of
the effected trains to be feasible. The authors evaluate their mixed integer programming
formulation on instances of the Netherlands Railways. A path based branch-and-price
algorithm to solve a re-scheduling variant of the RSRP is presented in [7]. In this approach
maintenance constraints could be applied naturally to the vehicles due to the model’s path
based structure. The algorithm is designed for applications at on DSB S-tog network in
Copenhagen. All this shows that algorithmic approaches to solve rolling stock scheduling
problems with maintenance rules for real world applications is a growing area of interest for
the scientific community as well as for the railway industry.

The paper is organized as follows, we define the Rolling Stock Rotation Problem with
vehicle maintenance the way it is addressed in this paper in Section 2. This is followed by
a solution approach for this problem based on an iterative cut separation procedure using
infeasible path constraints in Section 3.2. We evaluate the performance of the presented
approach in Section 4 with a comparison to the actual solution approach that is in operation
at DBF. Finally, we conclude our results in Section 5.

2 Problem Definition

In this section we consider the Rolling Stock Rotation Problem as it is modeled in [3] and
refer to the paper for additional technical details. In the following we shortly recapitulate
the main modeling ideas.

Let T be the set of all passenger trips of a given timetable and V be a set of nodes
representing departure and arrival events of dedicated vehicles operating passenger trips of
T . Trips that could be operated with two or more vehicles have the appropriate number
of arrival and departure nodes. Let further A ⊆ V × V be a set of directed standard arcs,
and H ⊆ 2A a set of hyperarcs. Thus, a hyperarc h ∈ H is a set of standard arcs and
includes always an equal number of tail and head nodes, i.e., arrival and departure nodes.
A hyperarc h ∈ H covers t ∈ T if each standard arc a ∈ h represents an arc between
departure and arrival of t. Each of the standard arcs a represents an individual vehicle that
is required to operate t as part of the chosen vehicle configuration the hyperarc models.
We define the set of all hyperarcs that cover t ∈ T by H(t) ⊆ H. By defining hyperarcs
appropriately, vehicle composition rules and regularity aspects can be directly handled by
the model. In more detail for a single trip there are multiple different hyperarcs to chose
from with different operational costs, i.e., for a trip that could be operated with one or two
vehicles there exist hyperarcs that contain one, respectively, two directed arcs and thus a
larger cost coefficient if two arcs, respectively, vehicles are involved. Moreover there are

ATMOS 2019



1:4 A Cut Separation Approach for the RSRP

Figure 1 An example of hyperarcs to model two trips and maintenance services between them.

hyperarcs between two trips containing more than one directed arc if the vehicle composition
does not change between the two trips. If the time between two trips is large enough to
couple or decouple vehicles there are hyperarcs to model this as well. At DBF regularity
is an important aspect during optimization so there are additional hyperarcs that contain
hyperarcs that model exactly the same trip that is operated on multiple days of the week
with exactly the same vehicle configuration. This regularity hyperarc is slightly cheaper than
choosing the individual hyperarcs. Hyperarcs that contain arrival and departure nodes of
different trips are used to model deadhead trips between the operation of two trips. With
this construction it is possible to set up a cost function c : H 7→ Q+ for the hyperarcs that
includes a wide spectrum of different operational costs that have to be addressed by the
model, i.e., costs for energy consumption, vehicle usage, coupling and combining of train
units, short turn penalties, or even artificial cost for modelling regular vehicle movements.
The RSRP hypergraph is denoted by G = (V,A,H). We define sets of hyperarcs coming into
and going out of v ∈ V in the RSRP hypergraph G as H(v)- := {h ∈ H | ∃ a ∈ h : a = (u, v)}
and H(v)+ := {h ∈ H | ∃ a ∈ h : a = (v, w)}, respectively. One major challenge in rolling
stock planning and optimization is vehicle maintenance. At DB Fernverkehr AG there are
several different maintenance rules for the different ICE high speed train fleets that all
have to be considered. In this paper we focus on maintenance rules that are based on the
accumulated kilometers a vehicle is operated between two maintenance services. We denote
the upper bound on the total mileage between two maintenance services by R. Maintenance
services could only be performed at special maintenance locations m ∈M . The kilometers a
vehicle is moved during an operation modelled by a chosen hyperarc is given by a function
r : H 7→ [0, R]. By |h| the number of standard arcs a ∈ h required to model h is defined.
Thus |h| · r(h) gives the aggregated kilometers of all vehicles modelled by h. This includes
necessary deadhead trips to reach maintenance facilities or turn around trips to change the
orientation of the vehicle. To model maintenance services in the RSRP hypergraph additional
maintenance service hyperarcs were defined for each pair of trips if it is possible to visit a
maintenance facility and perform a service between the operation of the two trips. The cost
for the additional deadhead trip and the cost for the maintenance service is added to the
cost of the hyperarc. In this sense, a cycle in G is called maintenance feasible, if and only if
the accumulated kilometers of all trips and deadhead trips along the sub-paths between each
two hyperarcs with a maintenance service of a cycle is smaller or equal than R.
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In Figure 1 two trips are shown that could be operated by either one or two (red) vehicles.
Thus, there is a red node for each arrival and departure event of a single vehicle. These are
connected by either a single arc hyperarc or a double arc hyperarc to model the operation
with one, respectively, two vehicles. Between the two trips there are hyperarcs that model
maintenance events. These are marked by the wrench symbol containing single or double
vehicle configurations. Additionally there are single arc hyperarcs to model single vehicle
transitions between the two trips. The double arc hyperarc models a transition without
changing the vehicle configuration.

I Definition 1. Let G be a graph based hypergraph, c its associated cost function, and r
a maintenance resource function with its upper bound R. The Rolling Stock Rotation
Problem (RSRP) is to find a cost minimal, maintenance feasible set of hyperarcs Hx ⊆ H

such that Hx is a set of cycles that covers all trips t ∈ T by a hyperarc h ∈ Hx.

3 Solution Approaches to the RSRP

In the following section, we show how the RSRP is modelled and solved in the current
application of RotOR, which is the optimization software used at DBF. After that the new
approach, which is also implemented in RotOR, using infeasible path constraints in order to
iteratively separate maintenance infeasible sub-paths, is presented.

3.1 Resource Flow Based Solution Approach
The current solution approach to the RSRP implemented in RotOR solves a mixed integer
programming formulation of a hyperflow model with linked resource flow to model the vehicle
maintenances. All details and sophisticated algorithms to solve this model can be found
in [3, 10]. Using a binary decision variable xh for each hyperarc and continuous variables wa
for the linked resource flow, the resource flow based MILP-formulation of the RSRP can be
stated follows:

min
∑
h∈H

chxh, (Flow)

s.t.
∑

h∈H(t)

xh = 1 ∀t ∈ T, (1)

∑
h∈H(v)-

xh =
∑

h∈H(v)+

xh ∀ v ∈ V, (2)

wa ≤
∑

h∈H(a)

Rxh ∀a ∈ A, (3)

∑
a∈A(v)+

wa −
∑

a∈A(v)-

wa =
∑

h∈H(v)+

r(h)xh ∀v ∈ V, (4)

∑
a∈A(m)+

wa =
∑

h∈H(m)+

r(h)xh ∀m ∈M, (5)

wa ∈ [0, R] ⊂ Q+ ∀a ∈ A, (6)
xh ∈ {0, 1} ∀h ∈ H. (7)

The objective function of (Flow) minimizes the sum of the operational cost of all chosen
hyperarcs. This includes all cost for operating a trip, deadhead trips, performing maintenances,
and costs to penalize irregularities. The first constraints (1) ensure the covering of each
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1:6 A Cut Separation Approach for the RSRP

trip. Equations (2) take care about the (hyper)flow conservation. The following four sets
of constraints deal with the vehicle maintenance. First, the maintenance variables w were
coupled to the hyperarc variables allowing only those to be used for which a hyperarc was
chosen. Followed by equations (4) which ensure the correct summation of the maintenance
resource consumption. The constraints (5) state the possibility to reset the resource flow
at maintenance service locations. Finally, the variable domains are given by (6) and (7).
The presence of the constraints (3)-(6) makes the model way more difficult to solve as it
implicitly implies a tracing of each individual vehicle while the other parts of the model
can be seen as a vehicle type or fleet based formulation. This is one of the reasons to be
interested in novel powerful algorithmic approaches to solve these kinds of problems.

3.2 Infeasible Path Cut Separation Approach
Besides the mentioned reason for a different approach to tackle the RSRP with included vehicle
maintenance, the fact that maintenance service locations are often closely located to overnight
parking depots is another one. This fact leads to the situation that solutions of the RSRP
without consideration of the maintenance are often trivially maintenance feasible, respectively
could be easily made maintenance feasible by replacing overnight parking hyperarcs with
maintenance hyperarcs. Therefore we developed a new integer programming model that
replaces the continuous resource flow by a rough bound on the overall resource consumption
and a set of infeasible path constraints to forbid maintenance infeasible sub-paths in the
chosen cycles. This class of cuts is well known and studied in the (asymmetric) travelling
salesman community as for example in [1]. However, we are not aware of any publication
applying this technique to rolling stock scheduling. Thus, the following integer program
relies completely on the binary variables for choosing hyperarcs to be part of the solution.
To set up the model, we define by P the set of all maintenance infeasible sub-paths in the
underlying directed graph D = (V,A) of the hypergraph G.

min
∑
h∈H

chxh, (Cut)

s.t.
∑

h∈H(t)

xh = 1 ∀t ∈ T, (8)

∑
h∈H(v)-

xh =
∑

h∈H(v)+

xh ∀ v ∈ V, (9)

∑
h∈H\M

|h| r(h)xh ≤
∑
h∈M

|h|Rxh, (10)

∑
h∈Pi

xh ≤ |Pi| − 1 ∀Pi ∈ P, (11)

xh ∈ {0, 1} ∀h ∈ H. (12)

The objective function of (Cut) and the constraints (8), (9), and (12) are completely
identical to the ones in the (Flow) formulation and model all technical aspects of the
problem with the exception of the vehicle maintenance rules. These rules are implied by the
other two sets of constraints. The first set (10) forces the solution to contain a sufficient
number of maintenance service hyperarcs. Utilizing that the total resource consumption
of the vehicles, i.e., the left hand side of constraints (10), is bounded from above by the
number of maintenance arcs chosen times the product of the upper bound of the resource
consumption and the number of maintained vehicles modelled by the chosen hyperarc. The
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obvious argument for this becomes clear if we divide (10) by R. Note that the total resource
consumption of the vehicles is not fixed a priori due to deadhead trips. The second set (11)
then forbids to include maintenance infeasible sub-paths into the cycles of hyperarcs of the
solution.

Trivially, one critical aspect of this model formulation is that it might contain an
exponential number of infeasible path constraints (11). Therefore we solve this model
by adding the infeasible path cuts dynamically to the model during the solution process.
Nevertheless, it is easy to see that for the formulation containing all infeasible path constraints
the following lemma holds.

I Lemma 2. Let XFlow, XCut be the sets of all integer feasible solutions of Cut, respectively
Flow restricted to the x variables. It holds

conv(XFlow) = conv(XCut).

3.2.1 Dynamic Infeasible Path Constraint Separation
As mentioned before, the idea behind the algorithm is to generate the infeasible path
constraints 11, respectively to separate maintenance infeasible solutions of the Cut approach
dynamically. Algorithm 1 provides the respective pseudo code. It works as follow: The
algorithm starts with a solution Hx of the Cut formulation, without any infeasible path
constraint so far, computed by a commercial mixed integer solver with a limit on the optimal
IP tolerance of ε2 . We denote the problem CutP with P := ∅ in the following as maintenance
relaxation of the original problem. It gives the algorithm a feasible solution to the RSRP
without considering the maintenance constraints and therefore a valid lower bound on the
objective function (trivially, since each maintenance feasible solution is still contained in the
solution space). After that, the cycles of the directed arcs contained in the chosen hyperarc
variables were constructed. By tracking each cycle once, beginning at an arbitrarily chosen
maintenance arc, the algorithm checks the maintenance feasibility of the solution by summing
up the resource consumption along the cycle resetting it every time a maintenance arc is
passed. If the sum of the aggregated mileage of the arcs exceeds the upper bound R of the
resource, the chosen cycle is proven to be infeasible and a valid infeasible (sub-)path constraint
is generated automatically by the set of hyperarcs passed since the last maintenance arc, i.e.,
including the arc itself. We denote this set by Pi ⊆ H. In a maintenance feasible solution it
is not possible to chose all |Pi| hyperarcs from this set. The algorithm collects all of these
constraints, denoted by P̂ that could be generated from Hx. If no infeasible path constraint
is generated, the solution is maintenance feasible and optimal since the objective function
value equals the lower bound of the maintenance relaxation. In the opposite case where
Hx was proven to be maintenance infeasible a neighborhood search is applied to substitute
hyperarcs of the solution with their counterparts that include additional maintenance services
to construct a maintenance feasible solution Ĥx. Therefore we define two hyperarcs to
be maintenance equivalent by the definition given in 3. In a nutshell, two hyperarcs are
maintenance equivalent, denoted by h ' g, if they model the same hyperarc with and without
performing a maintenance service in between. With this definition we can set up the so
called Maintenance Assignment Model (MAM) as shown in MAM. This model is then solved
by a commercial mixed integer solver. If it is feasible the algorithm constructs a solution Ĥx

that is feasible to CutP and Cut as well. This solution is then checked whether its quality
in sense of the gap between its objective function value and the best known lower bound is
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small enough, i.e., smaller than ε. If this is the case the algorithm terminates returning Ĥx

as found solution. Otherwise CutP , respectively P is updated by P = P ∪ P̂ . The algorithm
then restarts the path separation loop by solving CutP until a fixed number of iterations are
passed or a sufficiently good solution was found.

1 Input : Hypergraph G, resource function r : H 7→ Q, resource limit R

2 Output : Maintenance feasible solution x ⊆ H
3 {
4 x := ∅
5 i := 0; P := ∅
6 do
7 {
8 Hx := MILPSolve (CutP );
9 P̂ := generateInfeasiblePathCuts (Hx );

10 P := P ∪ P̂ ; % update infeasible path cut set
11 if(P̂ = ∅ or Hx = ∅)
12 {
13 return Hx % maintenance feasible and optimal or infeasible
14 }
15 else
16 {
17 Ĥx := solveMAM (Hx );
18 if(Ĥx 6= ∅)
19 {
20 % Solution Ĥx is a maintenance feasible solution for Cut

21 x := Ĥx

22 }
23 }
24 i+ +;
25 }
26 while( c(x)−c(Hx)

c(Hx) < ε or i < I )
27
28 return x

29 }

Algorithm 1 Infeasible Path Constraint Separation Algorithm.

3.2.2 The Maintenance Assignment Model

To perform the neighborhood search for a maintenance infeasible solution Hx of the CutP
model in the cut separation loop, the mixed integer programming model defined in MAM is
solved. To set up the model, we formally define the maintenance equivalence relation for two
hyperarcs as follows.

I Definition 3. Two hyperarcs h, g ∈ G are maintenance equivalent (h ' g) if and only
if A(h) = A(g).

The MAM-model contains a binary decision variable xh for each hyperarc h ∈ H that
is either included (h ∈ Hx) or maintenance equivalent to a hyperarc included in the actual
solution (h ' g ∈ Hx). It also contains a continuous resource flow variable wv ∈ [0, R] for
each node of V that is part of a chosen hyperarc h ∈ Hx.
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min
∑

h'hx∈Hx

chxh, (MAM)

s.t. :
∑
h'hx

xh = 1 ∀hx ∈ Hh, (13)

wa +
∑
h'hx

r(h)xh ≤ wb ∀ (a, b) ∈ hx, hx ∈ Hx, (14)

xh ∈ {0, 1} ∀h ∈ Hx, (15)
wa ∈ [0, R] ∀ (a, b) ∈ h, h ∈ Hx. (16)

The objective function of (MAM) minimizes the sum of the operational cost of all chosen
hyperarcs in exactly the same way it is done in (Flow) or (Cut). The constraints (13)
define that either a hyperarc that does or does not perform a maintenance service for
each arc contained in a cycle of the solution Hx is chosen. If a hyperarc that contains a
maintenance service is chosen, the respective constraint (14) ensures that the associated
values for the w values are reset. In the opposite case they ensure the correct propagation of
the resource consumption values to the next w-variables along the cycle. The last two sets
of constraints (15) and (16) define the variable domains. We remark that solutions of this
model may contain an increased number of maintenance arcs than the original solution Hx.
But, if the model is feasible the computed solution is maintenance feasible and therefore a
feasible solution for Cut. For our practical instances these models are very small and easy to
solve by a commercial state of the art mixed integer solver.

4 Computational Results

This section presents the computational results for the presented solution approaches on a
set of real world instances of DB Fernverkehr AG. These instances contain different scenarios
for rolling stock rotation problems for the ICE high speed train vehicles operated by DBF.
They differ in the number of contained timetable trips, operated fleets, and characteristics of
the maintenance rules. All instances contain between 200 and 400 timetabled trips and a
maximum of two coupled vehicles to operate a trip. All computations were performed on
an Intel® Xeon(R) E3-1245 v5 @ 3.50GHz CPU with eight cores and Gurobi 8.1 as LP and
sub-MILP solver.

Table 1 compares the solution process of the LP-relaxation of Flow and Cut, both
implemented in RotOR. The LP-relaxation is solved with an algorithm called Coarse-2-Fine
Column Generation which is described in detail in [2, 10] and out of scope of the paper
to be explained in detail here. At this stage the only difference between the two solution
approaches is the set of constraints that is given to the solver, i.e, the LP model formulation
of (Cut) with no infeasible path cuts respectively the LP model formulation of (Flow). The
first column of Table 1 identifies the instance while the second column shows the total number
of hyperarcs required to model the instance. The following two blocks of three columns each
headlined with Cut, respectively Flow show the solution characteristics of the associated
approach. In detail, Obj. columns show the objective function values of the two approaches
(times a factor of 10−z, z ∈ N), CPU columns give the total computation time of each
approach in seconds, and the columns headlined with Columns mark the number of generated
columns, respectively variables required to solve the LP-relaxation. The Cut approach shows
a significant speed up and a lower number of generated columns for each of the instances,
but for the price of a slightly weaker LP-bound.
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Table 1 Computational results for the LP-relaxation of Cut and Flow.

Cut Flow
Id |H| Obj. CPU(s) Columns Obj. CPU(s) Columns

1 229292 7062 5 16683 7064 16 30487
2 116206 6598 7 10881 6600 14 19496
3 1813512 7853 15 56118 7779 55 109303
4 1686124 8170 20 61276 8164 52 82726
5 275356 9340 8 16301 9288 13 21959
6 275356 8886 6 15009 8793 12 22359
7 363132 8976 9 18898 8994 13 25052
8 1452528 9011 30 76346 9007 47 80599
9 471056 10907 11 20883 10868 43 42830
10 471056 11229 15 23027 11216 40 40297
11 229634 7181 13 19829 7181 19 30109
12 226340 7204 6 14661 7212 17 31758
13 229634 7120 7 19501 7104 18 32360
14 226340 7044 5 16631 6977 18 33647

Table 2 Computational results for Cut, Flow solved with RotOR, and Flow solved with Gurobi.

Cut RotOR Gurobi
Id |H| Obj. CPU(s) Obj. CPU(s) Obj. CPU(s)

1 229292 7087 301 7105 45 7090 48
2 116206 6622 6 6619 1 6610 17
3 1813512 7879 22 7937 190 7866 84
4 1686124 8220 78 8230 181 8221 352
5 275356 9405 9 9439 146 9401 18
6 275356 8961 17 8981 199 8939 195
7 363132 9079 19 9055 122 9048 145
8 1452528 9068 292 9091 255 9038 3390
9 471056 11099 23 11006 210 10977 327
10 471056 11350 102 11388 50 11336 47
11 229634 7182 7 7182 20 7182 20
12 226340 7212 6 7212 20 7212 18
13 229634 7183 40 7146 112 7147 26
14 226340 7081 16 7059 72 7116 46∑

939 1635 4734
geometric mean 27.68 81.9 77.5
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In the following three different solution approaches to compute an integer solution for
the RSRP were compared. The first approach is the Infeasible Path Constraint Separation
Algorithm described in Section 3.2.1. The second one is the currently used algorithm in
RotOR at DBF which is explained in detail in [2, 10]. In a nutshell, this algorithm makes
use of a heuristic start solution and sophisticated problem specific branching rules fixing
different types of variables at different times of the solution process to solve the remaining
sub-MILPs by Gurobi. The third approach is the default version of Gurobi to solve the
Flow-MILP-formulation. The three different approaches to solve the integer formulation
of Cut or Flow were restricted to the variables generated during the column generation
process. The numbers of generated variables are shown in Table 1. The RotOR and the
Gurobi approach solve exactly the same MIP model containing the variables generated for
the Flow model.

Table 2 shows the characteristics of the solutions computed by the three different ap-
proaches. The first column identifies the instance while the second column shows the total
number of hyperarcs required to model the instance. The next two columns show the
objective function values and computation times for each instance using the Infeasible Path
Constraint Separation Approach, followed by the same values ordered in two columns for
RotOR’s solution approach. Finally the objective function values and computation times of
the default version of Gurobi are shown in the last two columns. For all solution approaches
a limit of 1% on the gap between the best known upper and lower bounds was applied.
All objective function values are shown times a factor of 10−z, z ∈ N. The values for the
objective function values of all three approaches show that each of them is able to find
solutions within the desired bounds. Although, struggeling on two instances the Infeasible
Path Constraint Separation Algorithm shows promising run times for the set of instances,
especially for the largest instances 3, 4 and 8. The two instances 1 and 13 are instances with
a rather small upper bound on the maintenance resource which leads to an increased number
of maintenances in the final IP-solution compared to the LP-relaxation.

5 Conclusion

In this paper we presented an optimization algorithm based on infeasible path constraints
to deal with the Rolling Stock Rotation Problem with integrated vehicle maintenance. The
algorithm is capable to deal with practical sized real world instances. It shows promising
results in terms of solution quality and computation time. For future research it might be
interesting to generate a set of cuts in beforehand of the solution process or to couple cut
generation to certain aspects of the different maintenance rules.
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Abstract
In the planning process of public transportation companies, designing the timetable is among the
core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event
Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables.

We are considering algorithms for computing good solutions and dual bounds for the very basic
PESP with no additional extra features as add-ons. The first of these algorithms generalizes several
primal heuristics that have been proposed, such as single-node cuts and the modulo network simplex
algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that
allows to generalize several previous heuristics. In particular, when no more improving delay cut
can be found, we already know that the other heuristics could not improve either. This heuristic
already had been proven to be useful in computational experiments [1], and we locate it in the more
general concept of what we denote T -partitions.

With the second of these algorithms we propose to turn a strategy, that has been discussed in
the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we
develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier
subproblems such that the information loss along their cutset edges is as small as possible.

We are aware that there may be PESP instances that do not fit well the separator setting.
Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good
primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator
approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual
bounds than purely applying this state-of-the-art solver in the very same time.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Ap-
plied computing → Transportation; Mathematics of computing → Discrete optimization; Mathemat-
ics of computing → Integer programming

Keywords and phrases Periodic Event Scheduling Problem, Periodic Timetabling, Graph Partition-
ing, Graph Separators, Balanced Cuts

Digital Object Identifier 10.4230/OASIcs.ATMOS.2019.2

Funding Niels Lindner : Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany´s Excellence Strategy – The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689).

Acknowledgements The authors want to thank Ralf Borndörfer for fruitful conversations.

1 Introduction

Traditionally, the planning process for public transportation companies is among the classical
application areas of mathematical optimization. A very prominent general such success story
had been established at Dutch railways [11]. At the borderline between service design and
resource planning, timetabling is kind of in a central position of the entire planning process.
This is one motivation why in the recent past there have been considered many “add-ons” to
timetabling, e.g.,
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integrating decisions of line planning, sometimes even network design,
considering the passengers’ route choice as a function of the actual timetable,
designing timetables that admit for efficient vehicle schedules and occasionally even crew
schedules,
computing delay-resistant timetables.

Nevertheless, most of these considered extensions share one limiting factor: computing
efficient timetables in a core subroutine, at least.

Regarding timetables, there are several concepts around which design principles the
timetable should follow, e.g., periodicity and symmetry [14]. In this paper, we are considering
periodic timetables, i.e., those, in which the trips of the same line and into the same direction
follow each other in a fixed time interval, which we denote the period time, or, the cycle
time. In particular in Europe, these timetables are widely in use both for railways and for
urban public transport.

To model periodic timetables, the Periodic Event Scheduling Problem, which had been
formulated by Serafini and Ukovich [27] (see Section 2), can be considered as state-of-the-
art. Notice that there are also further applications of PESP beyond periodic timetabling,
such as traffic light signalling. Solution methods for PESP include (mixed) integer linear
programming, constraint programming, satisfiability algorithms, as well as a couple of
heuristics.

The contribution of this paper is to provide two new heuristics for computing good primal
solutions for PESP instances relatively fast. On the one hand, the second heuristic does not
fit for every PESP instance. On the other hand, if it fits, sometimes it can even be used to
identify good dual bounds, too.

Interestingly, whereas several recent improvements to MIP performance touched on cycles
within the graph model (in particular trying to improve the generally relatively weak dual
bounds), both of our two heuristics deal with complementary structures, namely cutsets of a
graph, in the second heuristic within the particular framework of so-called graph separators.

In Section 3, we invite the reader to think of PESP in terms of T -partitions. In particular,
we introduce what we call delay cuts and these generalize the setting of several primal
heuristics that had been considered earlier (e.g. single-node-cuts, modulo network simplex
algorithm). By computing an optimal delay cut using a tailored MIP, we know that this
locally optimal solution in particular is locally optimal for the other heuristics, too.

In Section 4, we propose a method to overcome some degeneracy that can sometimes be
observed in a heuristic that had been dealt with in [23]. This heuristic starts, in a bottom-up
manner, with optimum timetables for each line separately. Next, one combines (matches)
those two clusters, between which in total find the largest weights and adjust the two separate
timetables by shifting them against each other in order to synchronize the two line-clusters
as good as possible. Here, sometimes it can be observed that from the moment on that one
cluster becomes relatively large compared to the other clusters (still consisting of just one
single directed line, in the extreme case), the heuristic degenerates simply to add – linearly –
one line at a time.

This is why we are proposing to turn this procedure upside-down. At the very top level
of the PESP constraint graph, we compute a separator in order to divide the instance into
two essentially balanced subproblems. The two resulting PESP instances are then ideally
much easier to solve to optimality. Keeping their relative structure within each of them,
finally combine them to a timetable for the entire network by shifting them in a best possible
way against each other. Right as in the previous approach in [23], the separator must not
contain any arc that imposes a true restriction, e.g., of technical nature. Moreover, among
the “free arcs”, we seek for a set of arcs (and their weights) between the two subproblems
that is as small as possible, in order to loose only few information.
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In Section 5, we report some computational results. We start by applying the separator
heuristic from Section 4. For the subproblems, we apply the concurrent solver that has been
presented recently in [1], and in which the MIP-based delay cut heuristic from Section 3 is
implemented among other algorithms. In these experiments, it can be observed that in the
result of some separation strategies, the two separated subproblems indeed can be solved with
smaller average slack than the time-equivalent benchmark solution for the original complete
problem. Unfortunately, at least on the instances that we are considereing, this lead that is
attained within the two subproblems turns out not to be enough to compensate the worse
quality that finally appears on the arcs of the cutset that link the two subproblems when
simply shifting the two pre-computed solutions of the two subproblems against each other.

2 Periodic Event Scheduling

The Periodic Event Scheduling Problem (PESP) is a mathematical optimization problem
formulated by Serafini and Ukovich [27] that lies at the heart of periodic timetabling in
public transport. The input for PESP consists of the following:

A directed graph G with vertex set V and arc set A,
a period time T ∈ N,
lower and upper bounds `, u ∈ ZA≥0 with ` ≤ u,
weights w ∈ ZA≥0.

We will only consider integer bounds and weights in this paper. A periodic timetable is a
vector π ∈ {0, 1, . . . , T − 1}V . Any periodic timetable defines a periodic slack y ∈ ZA≥0 by

yij := [πj − πi − `ij ]T for all ij ∈ A,

where [·]T denotes the modulo T operator taking values in [0, T ). A periodic timetable π
and its associated periodic slack y are called feasible if y ≤ u− ` holds.

In the setting of periodic timetabling for public transport, think of a period time of, say,
T = 60 minutes. The events correspond to either the set of arrivals or departures of trips of a
certain line into a particular direction. A timetable π then assigns points in time within the
period time T to each of these events. Finally, the arcs measure time distances between two
adjacent events, and thus model time durations for trips, stops, headways, and many more.

Given an input as above, the Periodic Event Scheduling Problem is now to find a feasible
periodic timetable π, in an optimization version we may in addition seek for a periodic
timetable minimizing the weighted slack

∑
ij∈A wijyij .

The PESP has a natural formulation as a mixed integer linear program, namely

Minimize wty

s.t. y = Btπ − `+ pT

0 ≤ π ≤ T − 1,
0 ≤ y ≤ u− `,

p ∈ ZA.

Here, Bt denotes the transpose of the incidence matrix B of the directed graph G. Since B
and hence Bt are totally unimodular [26, Example 19.2], we can w.l.o.g. relax π and y to be
continuous variables.

Hence, a standard approach to solving PESP instances is to apply branch-and-cut pro-
cedures, as invoked by mixed integer programming solvers. To this end, several formulations
and cutting planes have been presented [15, 17, 18, 19, 22]. Another solution strategy is to
employ Boolean satisfiability methods [7, 6].
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Exploiting the polyhedral structure of the problem, the modulo network simplex algorithm
[20] is a rather fast local improving heuristic. Several methods for escaping local optima
have been suggested [5]. We will unite these methods to a more global heuristic approach
in Section 3.

Since the structure of public transportation networks is usually derived from lines, in the
case when only few technical constraints have to be obeyed, a bottom-up matching approach
has been introduced in [23, 12]. The idea is to cluster lines according to the importance of
the transfers between them, increasing the number of lines as the matching heuristic proceeds.
Doing so, it could happen that one cluster of lines is getting bigger and bigger and then, in
fact, clustering only consists of a linear sequence in which the lines are added to the growing
instance. In Section 4, in order to get several bigger subproblems that contain “most” of
the information of the entire instance, we turn this approach upside-down: We develop a
top-down divide-and-conquer strategy for PESP, i.e., we try to split the set of all lines into
two parts of roughly the same size such that only a small amount of all transfers occurs
between the parts. The idea is that on the intersection relatively few information is lost,
whereas the practical tractability of the two subproblems improves significantly.

3 T -Partitions

In this section, we will present a view on periodic timetabling from the standpoint of cuts
and partitions in graphs. Establishing a correspondence between periodic timetables and
T -partitions, we translate several PESP strategies into the language of partitions. Finally, we
present an improving heuristic for PESP in terms of maximum cuts, which subsumes several
known local solving approaches in a single optimization problem. We identify the so-called
delay cuts, as they have been already part of the computational framework presented in [1],
as a useful device within the new concept of T -partitions.

3.1 Timetables and Partitions
Let (G,T, `, u, w) be a PESP instance. Then any periodic timetable π naturally partitions
the vertex set V of G into T sets, namely {i ∈ V | πi = d} for d = 0, 1, . . . , T − 1.

I Definition 1. A T -partition of a PESP instance with vertex set V and period time T is a
T -tuple V = (V0, V1, . . . , VT−1) of pairwise disjoint subsets of V such that

⋃T−1
d=0 Vd = V .

Note that the members of a T -partition might be empty. Clearly, there is a one-to-one
correspondence between periodic timetables and T -partitions, identifying the sets in the
T -partition of V with the preimages of the periodic timetable, when interpreted as a map
V → {0, . . . , T − 1}.

As periodic timetables can be thought of as maps taking values in the residue class group
(Z/TZ,+), there is a natural addition of timetables by componentwise addition modulo T .
If π, π′ are periodic timetables, we interpret π′ as T -partition and obtain the sum as follows:

I Definition 2. Given a periodic timetable π and a T -partition V = (V0, . . . VT−1), define
the periodic timetable πV via

πVv := [πv + d]T , v ∈ Vd, d = 0, . . . , T − 1.

We will now use T -partitions for optimizing a PESP instance. Let π∗ be a timetable
with minimum weighted slack. Given an initial timetable π, we can find π∗ by looking for a
T -partition V with πV = π∗. In terms of periodic slacks on the arc set A, we have:
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I Lemma 3. Let π be a periodic timetable and let V be a T -partition. If y and yV are the
periodic slacks associated to π and πV , respectively, then

yVij = [yij − d+ e]T , ij ∈ A ∩ (Vd × Ve), d, e = 0, . . . , T − 1.

Note that since V is a partition, this fixes yVij for every arc ij ∈ A.

Proof. Plugging in the definitions,

yVij = [πVj − πVi + `ij ]T = [πj + e− (πi + d)− `ij ]T = [yij − d+ e]T . J

I Definition 4. Given a periodic timetable π on a PESP instance, the improvement of a
T -partition V is

ι(π,V) :=
T−1∑
d=0

T−1∑
e=0

∑
ij∈A∩(Vd×Ve)

wij (yij − [yij − d+ e]T ) .

The Maximally Improving T -Partition problem is to find for a given timetable π a
T -partition V such that ι(π,V) is maximum and yV ≤ u− `, i.e., feasible.

I Theorem 5. If π is a periodic timetable for a PESP instance I, then V solves Maximally
Improving T -Partition for π if and only if πV is an optimal solution to I.

Proof. This follows directly from Lemma 3 and the definition of Maximally Improving
T -Partition. J

3.2 Delay Cuts
Assuming that an initial solution is available, so far we only have transformed PESP into the
equivalent Maximally Improving T -Partition problem. We will now focus on special
classes of T -partitions to demonstrate the strength of this transformation. Again, we consider
a PESP instance (G = (V,A), T, `, u, w).

I Definition 6. Let S ⊆ V and d ∈ {1, . . . , T − 1}. The T -partition (V0, . . . , VT−1) with

Ve :=


S if e = d,

V \ S if e = 0,
∅ otherwise,

e = 0, . . . , T − 1,

is called a delay cut (see [1]) with delay d and will simply be denoted by ∆(S, d). The
restriction of Maximally Improving T -Partition to delay cuts is called the Maximally
Improving Delay Cut problem.

Intuitively, a delay cut ∆(S, d) delays – or shifts – all events in S by d. Delay cuts have
been called multi-node cuts in [5], where the authors provide a way to escape from local
optima produced by the modulo network simplex algorithm.

Starting with an initial timetable, an optimal timetable can be reached by decom-
posing a maximally improving T -partition (V0, V1, . . . , VT−1) into the T − 1 delay cuts
∆(V1, 1), . . . ,∆(VT−1, T − 1). From the perspective of T -partitions, delay cuts are hence
natural building blocks. However, delay cuts themselves comprise several strategies:

ATMOS 2019



2:6 New Perspectives on PESP: T -Partitions and Separators

0 7 9 5

8496

[7, 7]

[7, 7]

[6, 6]

[6, 6]

[3, 12]

[2, 11]

[2, 11] [2, 11]

[2, 11]

[3, 12]
+3

Figure 1 Fundamental delay cut: In this PESP instance with T = 10 and w ≡ 1, delaying the
two vertices at the right lower corner by 3 produces a better (in fact, optimal) timetable: The overall
slack is reduced from 7 to 4. This corresponds to the fundamental cut of the green spanning tree
when removing the red arc. The modulo network simplex inner loop replaces the red arc with the
blue arc at its lower bound.

1. Modulo network simplex moves (“inner loop”) [20]: The key insight behind the modulo
network simplex method is that there is always an optimal PESP solution coming from a
spanning tree structure: There is a spanning tree (or forest if the graph is not weakly
connected) such that all tree arcs have either slack 0 or u − `. Starting from such a
spanning tree structure, the algorithm tries to find a better solution by exchanging a tree
arc with a co-tree arc, see also [13]. The delay cut then corresponds to the fundamental cut
of the tree arc, the delay depends on the co-tree arc and whether the latter is considered
with slack 0 or u− `. An example is depicted in Figure 1.

2. Single-node cuts (“outer loop”) [20], or local improvements [21]: These cuts are simply
delay cuts ∆(S, d) with |S| = 1.

3. Waiting edge cuts [5]: If a vehicle dwells at a station where it is not terminating, then
the dwell time is usually small. In particular, the difference u− ` is close to 0 and hence
it seems reasonable to keep arrival and departure closely together and not to separate
them by a cut. Waiting edge cuts are thus delay cuts ∆(S, d) with S consisting of the
two vertices of an arc with small span u− `.

Since all these strategies rely on finding only a specific type of cut, solving Maximally
Improving Delay Cut – searching the whole cut space – generalizes the above methods: If
there is no improving delay cut, then also none of the approaches will be able to help. As the
paper [5] only provided a randomized greedy procedure, we turn Maximally Improving
Delay Cut into a genuine optimization problem.

I Lemma 7. Let π be a periodic timetable. The improvement of a delay cut ∆(S, d) is

ι(π,∆(S, d)) =
∑

ij∈δ+(S)

wij(yij − [yij − d]T ) +
∑

ij∈δ−(S)

wij(yij − [yij + d]T ),

where δ+(S) and δ−(S) denote the sets of arcs leaving and entering S, respectively.

Proof. This is a simple computation from the definitions of delay cuts and the improvement
of a T -partition. J

For a fixed delay d, we can transform Maximally Improving Delay Cut into a
standard Maximum Cut problem:
1. Construct the directed graph G with vertex set V := V and arc set A := A∪{ji | ij ∈ A},

i.e., we add reverse copys of each arc if the reverse arc is not already present.
2. Initialize c := 0 ∈ ZA.
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3. For each arc ij ∈ A, set

cij :=
{
cij + wij(yij − [yij − d]T ) if [yij − d]T ≤ uij − `ij ,
−∞ otherwise.

and

cji :=
{
cji + wij(yij − [yij + d]T ) if [yij + d]T ≤ uij − `ij ,
−∞ otherwise.

4. Find the cut S in G such that c(δ+(S)) is maximum.

Note that since y is given and d is fixed, this is indeed a Maximum Cut problem with
linear objective. As c does attain both positive and negative values, we are not able to
transform our problem to a standard polynomial-time solvable Minimum Cut problem.

Although Maximum Cut is NP-hard in general [9], our problem is still easy enough to
be solved on reasonably large instances within a few minutes by a MIP solver, using, e.g.,
the formulation presented in Appendix A. An implementation of this program invoking the
solver SCIP has been included into the concurrent PESP solver presented in [1], where it
proved to be successful especially when faster heuristics already got stuck in local optima.

4 Graph Separators

This section introduces a novel divide-and-conquer approach to PESP. The core idea is to
split the graph into two balanced parts, on the one hand losing as little information as
possible, and on the other hand obtaining subproblems which are (much) easier to solve than
the entire instance, see [25] for a recent application of this concept in the context of road
networks, and references therein. We can then solve the PESP restricted to each half and
combine the two solutions to a solution on the original instance. In order to avoid feasibility
issues, we restrict ourselves to cut the original network at free arcs, i.e., arcs whose slack is
allowed to take arbitrary values between 0 and T − 1. More formally, we want to find:

I Definition 8. Let (G,T, `, u, w) be a PESP instance, G = (V,A). Further let ν : 2V → R≥0
be a measure on V , and let α ≥ 1 be an imbalance parameter. A (ν, α)-separator is a subset
S ⊆ V such that

δ(S) consists only of free arcs, i.e., ij ∈ A with uij − `ij ≥ T − 1,
w(δ(S)) is minimum,
ν(V \ S) ≤ ν(S) ≤ α · ν(V \ S).

Here, δ(S) denotes the set of arcs in G with exactly one endpoint in S.

We will focus on the following two measures: At first, we consider balancing the number
of vertices, i.e., ν(X) := |X| for X ⊆ V . Secondly, being a common indicator of the difficulty
of a PESP instance, we will try to balance the cyclomatic number, i.e., the dimension of the
cycle space of the graph, which equals |A| − |V |+ 1 in the case of a connected graph. Of
course, one could think of several more balancing criteria.

Since we are only allowed to cut through free arcs, our first step in creating a separator
is to contract all non-free arcs. Note that these particular contractions are different from the
commonly known PESP contractions which yield a simplified, but equivalent instance [4].
Doing so results in a multigraph, which can be resolved to a simple graph by adding up the
weights of parallel arcs. The problem also permits to consider the underlying undirected
graph. However, we need to keep track of the contracted vertices and the multiplicity of the
arcs in order to calculate the correct measure ν, which lives on the uncontracted graph.
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The structurally simplest PESP instances coming from public transit essentially contain
two kinds of arcs: Line activities refer to driving a vehicle of a line between stations or
dwelling in a station, and these activities come with only small allowed slack. Transfer
activities are usually unconstrained in terms of slack, since one cannot expect all transfers in
a network to be short, and restricting too many transfers might turn the problem infeasible.
The weight on an arc is an estimate for the number of passengers using it. Recall from [16]
that using PESP one is able to model a variety of other features from practice.

In this interpretation, the contraction process hence contracts all lines to single vertices.
A separator then tries to divide the set of lines into two balanced parts such that the number
of transferring passengers between the two parts is minimum.

We finally want to remark that finding separators is an NP-hard optimization problem in
general [3]. However, it is possible to compute separators of good quality in a reasonable
amount of time, and the literature is rich [2, 8, 10, 24].

4.1 Vertex-balanced Separators
By the above contraction process, finding a (ν, α)-separator balancing the number of vertices
can be reduced to the following problem:

I Problem 9. Let (N,E) be an undirected graph with vertex multiplicities m ∈ NN and
edge weights w ∈ ZE≥0. For a given imbalance α ≥ 1, find a subset S ⊆ N such that

w(δ(S)) is minimum,
m(N \ S) ≤ m(S) ≤ α ·m(N \ S).

I Lemma 10. Let n :=
∑
i∈N mi. Problem 9 is solved by the mixed integer linear program

Minimize
∑
ij∈E

wijxij

s.t. xij ≥ zi − zj , ij ∈ E,
xij ≥ zj − zi, ij ∈ E,∑

i∈N
mizi ≥

n

2 ,∑
i∈N

mizi ≤
α · n
1 + α

,

xij ∈ [0, 1], ij ∈ E,
zi ∈ {0, 1}, i ∈ N.

Proof. See Appendix B. J

4.2 Cycle-balanced Separators
We will now focus on balancing the cyclomatic number µ of the parts of a PESP instance
(G,T, `, u, w). For a subset X ⊆ V , we will approximate the cyclomatic number by µ(X) :=
|A(G[X])| − |X|+ 1, where A[G(X)] denotes the set of arcs of the subgraph of G induced by
X. This is the exact cyclomatic number if G[X] is connected, and underestimates the true
quantity by the number of connected components minus one otherwise.

Since contracting arcs does not change the difference between number of arcs and vertices,
we do not need to remember the number of contracted vertices for computing µ. However,
collapsing parallel arcs to a simple arc decreases the cyclomatic number, so that we keep
track of the multiplicity of edges.
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We hence consider the following problem:

I Problem 11. Let (N,E) be an undirected graph with edge multiplicities m ∈ NE and
edge weights w ∈ ZN≥0. For a given imbalance α ≥ 1, find a subset S ⊆ N such that

w(δ(S)) is minimum,
µ(N \ S) ≤ µ(S) ≤ α · µ(N \ S).

I Lemma 12. Problem 11 can be solved by the mixed integer linear program

Minimize
∑
ij∈E

wij(1− `ij − rij)

s.t. `ij ≥ zi + zj − 1, ij ∈ E,
`ij ≤ zi, ij ∈ E,
`ij ≤ zj , ij ∈ E,
rij ≥ 1− zi − zj , ij ∈ E,
rij ≤ 1− zi, ij ∈ E,
rij ≤ 1− zj , ij ∈ E,

µ` =
∑
ij∈E

`ij −
∑
i∈N

zi + 1,

µr =
∑
ij∈E

rij −
∑
i∈N

(1− zi) + 1,

µ` ≥ µr,
µ` ≤ α · µr,
`ij ∈ [0, 1], ij ∈ E,
rij ∈ [0, 1], ij ∈ E,
zi ∈ {0, 1}, i ∈ N.

Proof. See Appendix B. J

4.3 Combining Partial Solutions
Going back to PESP instances, it is clear that restricting a feasible periodic timetable
to a subgraph results in a feasible periodic timetable, and the slack cannot increase. We
summarize the converse for (ν, α)-separators: Let S be a (ν, α)-separator for a PESP instance
I = (G = (V,A), T, `, u, w). Let I`, Ir, Im be the restrictions of I to the subgraphs induced
by S, V \ S and the shores of the cut induced by S, respectively (“left”, “right”, “middle”).

I Theorem 13. Let S be a (ν, α)-separator, producing instances I`, Ir, Im as above. Let
π`, πr be feasible periodic timetables for I`, Ir, respectively.
(1) The timetable π defined by

πi :=
{
π`i if i ∈ S,
πri if i ∈ V \ S

is feasible.
(2) Moreover, if y`, yr, y are the periodic slacks associated to π`, πr, π, respectively, then

wty = wty` + wtym + wtyr,

where ym is the slack w.r.t. π of the arcs in Im.
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(3) If opt(J) denotes the minimum weighted slack of a PESP instance J , then

opt(Ir) + opt(Im) + opt(I`) ≤ opt(I) ≤ opt(I`) + opt(Ir) +W · (T − 1),

where W stands for the weight of the cut, i.e., sum of the weights of all arcs in Im.

Proof. Since a (ν, α)-separator cuts only through free arcs, (1) and (2) are clear. Since the
optimal solution to I is feasible for the three parts I`, Im, Ir, we obtain the left inequality.
As we can combine optimal solutions to I` and Ir by (1) to a feasible solution to I, and the
weighted slack increases at most by W · (T − 1) by (2), this shows the right inequality. J

Therefore, these separators produce as well primal and dual bounds for PESP instances.
We will demonstrate the use of separators on large-scale timetabling instances in the next
section.

5 Experiments

5.1 Set-up
We use the library PESPlib1 as a benchmarking set. The library contains 20 hard timetabling
instances, none of which is solved to proven optimality yet. The separator strategy does not
seem to be suitable for the four bus timetabling instances: When removing all free arcs, the
remaining network decomposes in only 2 (BL4) or 3 (BL1-BL3) components that cannot be
separated further. In other words, there are only very few possible cuts. As a consequence,
only the railway instances RxLy remain, which all show a similar structure, and this is why
we will focus on the easiest instance R1L1 and the hardest instance R4L4.

At first, we compute vertex-balanced separators, choosing imbalance parameters α ∈
{1.05, 1.1, 1.2, 1.5}. To this end, we use the fast graph partitioning software METIS [10]
to generate an initial solution and apply the MIP solver Gurobi 8.12 to the program of
Lemma 10 for 20 minutes. Secondly, we determine cycle-balanced separators with the same
imbalance parameters as in the vertex case. Since METIS cannot handle the cycle balance
constraints and its solutions usually violate it, we use only Gurobi on the MIP of Lemma 12
for 20 minutes. Of course, for both types of separators, we contract all non-free arcs in
advance, and interpret the found separator on the original network again.

Having found a separator, we solve both parts with the concurrent PESP solver from [1],
which integrates mixed integer programming, modulo network simplex and the Maximally
Improving Delay Cut heuristic from Section 3. This solver computed the currently best
bounds for all PESPlib instances, improving 10 former primal bounds in as little as 20 minutes
using 7 parallel threads. We compare these results with our separator procedure by running
each part for 10 minutes with the same number of threads. In particular, the computation
time on the original instance equals the sum of running times of the two parts. The reason
for the small running time limit is based on the good quality of the solutions produced by
the concurrent solver, and the emipirical observation that only minor improvements occur
after the first 20 minutes [1]. Afterwards, we combine the timetables of both parts in an
optimal way, i.e., we iterately shift the timetable of one of the parts by 0, 1, . . . , T − 1 and
choose the best combination.

1 https://num.math.uni-goettingen.de/~m.goerigk/pesplib
2 Gurobi Optimization LLC, https://www.gurobi.com

https://num.math.uni-goettingen.de/~m.goerigk/pesplib
https://www.gurobi.com
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On the dual side, we compute dual bounds for each of the parts by running the concurrent
solver for 10 minutes on 7 threads in pure MIP best bound mode with user cuts. We compare
this with a 20-minutes run on the original instance with the same parameters.

In all PESP computations, CPLEX 12.83 serves as underlying MIP solver. The experiments
were carried out on an Intel Xeon E3-1270 v6 CPU at 3.8 GHz with 32 GB RAM. For an
analysis of the impact of delay cuts, we refer to [1].

5.2 Separator Statistics
Vertex-balanced separators

In every case, Gurobi could improve the initial vertex-balanced separator found by METIS.
For R1L1, the vertex separators are all optimal with respect to the given imbalance, whereas
optimality gaps are around 70% for R4L4. In contrast to standard minimum cuts, the
smaller part sometimes consists of several connected components, which is due to the balance
constraint. However, this is no issue for solving PESP. Despite having almost equal number of
vertices, especially the cyclomatic number and the weights turn out to be heavily imbalanced.
The smallest cuts accumulate only 19% (R1L1) resp. 24% (R4L4) of the free weight of
the original instance. Table 1 resp. Table 3 contain detailed statistics about the computed
separators.

Cycle-balanced separators

As no fast initial solution is available, and the program from Lemma 12 is more difficult than
in the vertex case, the best optimality gaps that we can achieve after 20 minutes are 26%
(R1L1) resp. 86% (R4L4). The cuts are always heavier than in the vertex case, although the
difference is much smaller for the large instance R4L4. On the plus side, the solutions are
much better balanced with respect to other parameters such as number of vertices, number
of arcs and the free weight.

5.3 Objective Values
R1L1

For the original instance R1L1, the concurrent PESP solver was able to compute a periodic
timetable with weighted slack 30 861 021 (see Table 2 for details) within 20 minutes. We
typically lose a weighted slack between 10 and 18 million in the cut, so there is little space
for improvement on the two parts (left and right, see rows “cut” in column “primal objective
value” in Table 2). Indeed, the timetable that is computed on the full instance is superior to
all combined ones. The best combined timetable has weighted slack 34 669 413, coming from
a cycle-balanced separator with imbalance parameter α = 1.2. We note that the average
weighted slack on the free arcs (in particular within the cut) – which have the largest impact
on the primal objective value – is significantly higher on the combined timetables than on
the original. In particular, along the free arcs within the cut, average slack values of almost
50% of the period time have to be accepted, whereas in those parts for which the concurrent
solver computed the timetables (original, left, right), less than 25% of the period time can
be achieved as average slack.

3 IBM ILOG CPLEX Optimization Studio, https://www.ibm.com/analytics/cplex-optimizer
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The best dual bound computed from the sum of the two parts is 15 211 531, compared to
16 868 573. Again, the weight of the cut is the biggest hindrance, although optimality gaps
are reasonably small on the parts. Due to the structure of the instance, assigning a slack of
0 to all free arcs in the cut is feasible, and we do not get any valuable lower bound from the
“middle” part.

R4L4

Compared to an original primal bound of 40 706 349 after 20 minutes, we achieve 41 230 436
by a vertex-balanced separator with imbalance α = 1.2 (see Table 4). However, all combined
dual bounds (best: 11 428 968) are better than the original one (10 968 394). Thus it seems
that the separator approach performs better on this larger instance. This is also due to the
fact that the cuts comprise less weighted slack compared to R4L4. The good dual bound
gives hope that separators might benefit to compute better lower bounds for PESP instances,
which as to our experience is currently among the biggest obstacles in solving the PESPlib
instances to optimality.

6 Conclusions

By considering T -partitions and introducing delay cuts for the PESP, we proposed a framework
that generalizes several primal heuristics that had been known previously. In [1] the use of
these cuts is already reported to contribute to the best known solutions for several instances
of the PESPlib.

Regarding the separator heuristic, which can be regarded as an the entry point for a
divide-and-conquer approach, so far, based on our first tuning of the computation of the
separators, it is not able to come up with any better primal solutions for the instances of the
PESPlib.

Nevertheless, we would not be surprised, if in the following settings the separator heuristic,
too, could provide some added value:

In contrast to the entire instance, the two resulting subproblems can be solved optimally.
Apply the separation heuristic not only on one stage, but in a recursive, true divide-and-
conquer mode.
Yet, be aware that along the edges of each separator – although being of minimal weight –
we most often observed a relatively poor quality in the final solution (almost 50% of the
period time).
We believe that diving deeper into good algorithms for graph partitioning, e.g., by using
better methods or simply more running time for the mixed integer programs, could
overcome the difficulty that the separators are still too heavy to provide a trade-off for
improving primal and dual objectives.
Add some kind of post-processing “around” the separator: Instead of only shifting the
fixed solutions of the two subproblems as a whole against each other, just keep fixed the
slack values of those edges within them which are not incident with the separator. Then,
optimize over those timetables in which the vertices that are endpoints of an edge of the
separator can be shifted relative to the subproblem that they are actually belonging to.
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A Maximum Cut MIP Formulation

I Lemma 14. Let G = (V ,A) and c be as constructed in Section 3.2. A cut S in G

maximizing c(δ+(S)) is computed by the following mixed integer linear program:

Maximize
∑
ij∈A

cijxij

s.t. xij ≤ zi, ij ∈ A,
xij ≤ 1− zj , ij ∈ A,
xij ≥ zi − zj , ij ∈ A : cij < 0,

0 ≤ xij ≤ 1, ij ∈ A,
zi ∈ {0, 1}, i ∈ V .

Here, the variables zi with zi = 1 will define the set S.

Proof. Let (x∗, z∗) be an optimal solution to the above program. Set S := {i ∈ V | z∗i = 1}.
If x∗ij = 1 for an arc ij ∈ A, then z∗i = 1 and z∗j = 0. On the other hand, z∗i = 1 and z∗j = 0
imply x∗ij ≥ 1 by the third constraint for arcs with negative cij and by maximization for
cij ≥ 0. i.e., S is a cut maximizing c(δ+(S)) =

∑
ij∈A cijx

∗
ij . Conversely, a maximum cut S∗

produces a feasible solution to the mixed integer program of the same cost. J

B Proofs of Separator MIP Formulations

Proof of Lemma 10. The constraints for the minimum cut are straightforward: A vertex
i lies in S iff zi = 1 and an edge ij lies in δ(S) iff xij = 1. We just prove the balance
constraints. In order to break symmetry, we can assume m(S) ≥ m(N)/2 = n/2, as m(S) is
larger than m(N \ S). Moreover, the condition m(S) ≤ α ·m(N \ S) directly translates to∑

i∈N
mizi ≤ α

∑
i∈N

mi(1− zi),

which is equivalent to

(1 + α)
∑
i∈N

mizi ≤ αn. J
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Proof of Lemma 12. We have zi = 1 iff i ∈ S, `ij = 1 iff ij has both endpoints in S (` for
“left”) and rij = 1 iff ij has no endpoint in S (r for “right”). The balance constraints are
straightforward. J

C Tables

Table 1 R1L1 separator statistics: The first column contains the type of the separator, the
imbalance α ∈ {1.05, 1.1, 1.2, 1.5} and the optimality gap. Further columns: n – number of vertices,
m – number of arcs, µ – cyclomatic number, w – weight, wfree – weight of all free arcs, w · (u− `) –
maximum possible weighted slack. Rows: original – R1L1 instance as in PESPlib, contracted – after
contraction of non-free arcs, left/right – parts of the separator, cut – subgraph induced by the arcs
connecting left and right.

R1L1 part n m µ w wfree w · (u− `)

original 3 664 6 385 2 722 47 172 734 2 057 406 239 600 328
contracted 106 2 230

vertex left 1 876 2 927 1 052 33 725 970 1 481 768 170 793 125
1.05 right 1 788 2 058 273 12 925 650 54 524 38 061 477
0.0% cut 1 045 1 400 516 521 114 521 114 30 745 726

vertex left 1 918 2 990 1 073 34 412 455 1 503 621 173 692 394
1.1 right 1 746 2 004 261 12 255 217 48 723 36 109 276
0.0% cut 1 055 1 391 499 505 062 505 062 29 798 658

vertex left 1 996 3 205 1 210 34 847 351 1 541 460 176 996 909
1.2 right 1 668 1 870 205 11 852 913 43 476 34 727 689
0.0% cut 1 012 1 310 459 472 470 472 470 27 875 730

vertex left 2 198 3 609 1 412 37 061 606 1 637 281 188 155 216
1.5 right 1 466 1 598 136 9 719 139 28 136 28 317 761
0.0% cut 969 1 178 366 391 989 391 989 23 127 351

cycle left 1 700 2 429 730 28 474 222 1 123 356 136 712 178
1.05 right 1 964 2 663 700 18 025 146 260 684 63 159 556
33.5% cut 949 1 293 491 673 366 673 366 39 728 594

cycle left 1 676 2 406 731 28 180 248 1 120 386 135 658 006
1.1 right 1 988 2 718 731 18 312 779 257 313 63 839 609
34.2% cut 967 1 261 447 679 707 679 707 40 102 713

cycle left 1 754 2 535 782 29 076 540 1 163 077 140 590 992
1.2 right 1 910 2 562 653 17 441 343 239 478 60 373 127
36.3% cut 979 1 288 466 654 851 654 851 38 636 209

cycle left 1 926 2 807 882 30 359 130 1 202 889 146 190 635
1.5 right 1 738 2 327 590 16 188 820 229 733 56 547 437
26.2% cut 955 1 251 447 624 784 624 784 36 862 256
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Table 2 R1L1 objective values: Primal obj value – weighted slack of best found timetable, free %
– contribution of free arcs to weighted slack, dual obj value – best lower bound, gap % – optimality
gap. Rows: left, right, cut – as in Table 1, combined – optimal combination of partial timetables
(primal) resp. sum of lower bounds (dual). The optimality gaps in the row combined are measured
w.r.t. the best primal objective value, i.e., of the original instance.

primal average weighted slack dual

R1L1 part obj value free % total free non-free obj value gap %

original 30 861 021 87.68% 0.65 13.15 0.08 16 868 573 45.34%

vertex left 24 894 427 88.26% 0.74 14.83 0.09 13 949 001 43.97%
1.05 right 409 562 100.00% 0.03 7.51 0.00 358 120 12.56%

cut 14 322 886 100.00% 27.49 27.49 – 0 –
combined 39 626 875 92.62% 0.84 17.84 0.06 14 307 121 53.64%

vertex left 23 376 399 87.01% 0.68 13.53 0.09 14 106 622 39.65%
1.1 right 340 302 100.00% 0.03 6.98 0.00 295 224 13.25%

cut 13 885 806 100.00% 27.49 27.49 – 0 –
combined 37 602 507 91.92% 0.80 16.80 0.07 14 401 846 53.33%

vertex left 22 842 193 86.11% 0.66 12.76 0.10 14 327 640 37.28%
1.2 right 297 141 100.00% 0.03 6.83 0.00 256 629 13.63%

cut 12 879 922 100.00% 27.26 27.26 – 0 –
combined 36 019 256 91.19% 0.76 15.97 0.07 14 584 269 52.74%

vertex left 24 857 603 86.79% 0.67 13.18 0.09 15 068 169 39.38%
1.5 right 149 989 100.00% 0.02 5.33 0.00 143 362 4.42%

cut 10 258 139 100.00% 26.17 26.17 – 0 –
combined 35 265 731 90.69% 0.75 15.55 0.07 15 211 531 50.71%

cycle left 16 382 907 85.07% 0.58 12.41 0.09 10 189 253 37.81%
1.05 right 3 193 192 89.61% 0.18 10.98 0.02 2 608 782 18.30%

cut 18 264 680 100.00% 27.12 27.12 – 0 –
combined 37 840 779 92.66% 0.80 17.04 0.06 12 798 035 58.53%

cycle left 3 288 791 91.72% 0.18 11.72 0.02 2 482 699 24.51%
1.1 right 14 370 669 84.62% 0.51 10.85 0.08 10 110 491 29.64%

cut 18 033 828 100.00% 26.53 26.53 – 0 –
combined 35 693 288 93.04% 0.76 16.14 0.06 12 593 190 59.19%

cycle left 15 029 848 86.12% 0.52 11.13 0.07 10 518 964 30.01%
1.2 right 2 985 689 89.43% 0.17 11.15 0.02 2 341 735 21.57%

cut 16 653 876 100.00% 25.43 25.43 – 0 –
combined 34 669 413 93.07% 0.73 15.68 0.05 12 860 699 58.33%

cycle left 15 523 603 84.57% 0.51 10.91 0.08 10 809 272 30.37%
1.5 right 2 862 115 90.82% 0.18 11.31 0.02 2 218 792 22.48%

cut 16 932 910 100.00% 27.10 27.10 – 0 –
combined 35 318 628 92.47% 0.75 15.87 0.06 13 028 064 57.78%
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Table 3 R4L4 separator statistics: See Table 1 for a legend.

R4L4 part n m µ w wfree w · (u− `)

original 8 384 17 754 9 371 65 495 305 2 219 558 297 194 946
contracted 265 8 257

vertex left 4 286 8 190 3 905 35 754 908 1 013 074 151 098 512
1.05 right 4 098 6 453 2 356 29 169 656 635 743 112 422 715
70.5% cut 1 915 3 111 1 424 570 741 570 741 33 673 719

vertex left 4 386 8 402 4 017 36 179 480 1 032 288 153 439 283
1.1 right 3 998 6 261 2 264 28 748 028 619 473 110 255 640
72.4% cut 1 891 3 091 1 419 567 797 567 797 33 500 023

vertex left 4 572 8 766 4 195 37 645 797 1 076 741 159 615 340
1.2 right 3 812 5 849 2 038 27 282 163 575 472 104 106 251
75.1% cut 1 939 3 139 1 424 567 345 567 345 33 473 355

vertex left 5 030 9 878 4 849 41 451 476 1 252 913 180 683 746
1.5 right 3 354 4 991 1 640 23 501 054 423 870 84 487 475
73.2% cut 1 826 2 885 1 273 542 775 542 775 32 023 725

cycle left 4 086 7 093 3 008 33 052 401 863 684 133 516 192
1.05 right 4 298 7 204 2 907 31 792 978 705 948 125 333 120
86.0% cut 2 097 3 457 1 596 649 926 649 926 38 345 634

cycle left 4 796 7 941 3 146 34 722 846 824 356 138 016 435
1.1 right 3 588 6 566 2 979 30 170 267 793 010 123 649 183
84.1% cut 1 898 3 247 1 560 602 192 602 192 35 529 328

cycle left 4 918 8 268 3 351 36 200 384 879 816 144 508 303
1.2 right 3 466 6 265 2 800 28 684 198 729 019 116 653 986
84.8% cut 1 863 3 221 1 574 610 723 610 723 36 032 657

cycle left 5 098 8 891 3 794 38 255 730 951 766 154 792 427
1.5 right 3 286 5 819 2 534 26 665 459 693 676 108 529 675
87.3% cut 1 756 3 044 1 490 574 116 574 116 33 872 844
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Table 4 R4L4 objective values: See Table 2 for a legend.

primal average weighted slack dual

R4L4 part obj value free % total free non-free obj value gap %

original 40 706 349 94.69% 0.62 17.37 0.03 10 968 394 73.05%

vertex left 15 887 937 94.18% 0.44 14.77 0.03 6 074 517 61.77%
1.05 right 10 180 187 95.79% 0.35 15.34 0.02 5 248 237 48.45%

cut 15 936 993 100.00% 27.92 27.92 – 0 –
combined 42 005 117 96.78% 0.64 18.32 0.02 11 322 754 72.18%

vertex left 16 630 820 94.15% 0.46 15.17 0.03 6 025 103 63.77%
1.1 right 9 608 412 93.71% 0.33 14.53 0.02 5 141 257 46.49%

cut 15 855 247 100.00% 27.92 27.92 – 0 –
combined 42 094 479 96.25% 0.64 18.25 0.02 11 166 360 72.57%

vertex left 16 923 159 94.45% 0.45 14.85 0.03 6 153 882 63.64%
1.2 right 8 133 392 89.08% 0.30 12.59 0.03 4 994 591 38.59%

cut 16 173 885 100.00% 28.51 28.51 – 0 –
combined 41 230 436 95.57% 0.63 17.75 0.03 11 148 473 72.61%

vertex left 20 449 436 90.50% 0.49 14.77 0.05 6 441 593 68.50%
1.5 right 6 120 307 92.89% 0.26 13.41 0.02 3 880 625 36.59%

cut 15 245 750 100.00% 28.09 28.09 – 0 –
combined 41 815 493 94.31% 0.64 17.77 0.04 10 322 218 74.64%

cycle left 12 822 538 93.21% 0.39 13.84 0.03 5 948 343 53.61%
1.05 right 11 145 363 94.12% 0.35 14.86 0.02 5 480 625 50.83%

cut 18 328 779 100.00% 28.20 28.20 – 0 –
combined 42 296 680 96.39% 0.65 18.37 0.02 11 428 968 71.92%

cycle left 13 982 046 95.43% 0.40 16.19 0.02 5 736 502 58.97%
1.1 right 11 580 126 89.07% 0.38 13.01 0.04 5 460 355 52.85%

cut 16 928 374 100.00% 28.11 28.11 – 0 –
combined 42 490 546 95.52% 0.65 18.29 0.03 11 196 857 72.49%

cycle left 14 648 967 94.74% 0.40 15.77 0.02 5 823 535 60.25%
1.2 right 10 313 092 86.04% 0.36 12.17 0.05 5 307 285 48.54%

cut 17 130 851 100.00% 28.05 28.05 – 0 –
combined 42 092 910 94.75% 0.64 17.97 0.03 11 130 820 72.66%

cycle left 16 400 078 95.60% 0.43 16.47 0.02 6 183 490 62.30%
1.5 right 9 274 273 85.59% 0.35 11.44 0.05 5 051 562 45.53%

cut 15 985 667 100.00% 27.84 27.84 – 0 –
combined 41 660 018 95.06% 0.64 17.84 0.03 11 235 052 72.40%
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Abstract
Sorting with stacks is a collection of problems that deal with sorting a sequence of numbers by
pushing and popping the numbers to and from a given set of stacks. Multiple concrete decision or
optimization questions are formed by restricting the access to the stacks. The motivation comes,
e.g., from shunting train wagons in shunting yards, shunting trams in depots, or in stacking cargo
containers on cargo ships or storage yards in transshipment terminals.

We consider the problem of sorting a permutation of n integers 1, 2, . . . , n using k ≥ 2 stacks. In
this problem, elements from the input sequence are pushed one-by-one (in the order of the elements
in the sequence) to one of the k stacks. At any time, an element from a stack can be popped and
pushed to another stack; such an operation is called a shuffle. Also, at any time, an element can be
popped from a stack and placed to the output sequence. We can only place the elements to the
output in the increasing order of their value such that at the end the output is the ordered sequence
of the elements. The problem asks to minimize the number of shuffles in the process.

It is known that for k ≥ 4, the problem is NP-hard, and that there is no approximation algorithm
unless P=NP. For k ≥ 3, it is known that at most O(n logn) shuffles are needed for any input
sequence. For the case when k = 2, there exist input sequences that require Ω(n2−ε) shuffles,
for any ε > 0. Nothing substantially more is known for the case of k = 2. In this paper, we
study the following variant of the problem with k = 2 stacks: no shuffle and no placement to the
output sequence can happen before every element is in one of the two stacks. We show that our
problem can be seen as the MinUnCut problem by providing a polynomial-time reduction, and thus
we show that there exists a randomized O(

√
logn)-approximation algorithm and a deterministic

O(logn)-approximation algorithm for our problem.
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1 Introduction

In computer science, a stack is a fundamental list-based data structure. Stacks allow item
insertions and removals at one end of the list, known as the last-in, first-out (LIFO) principle.
For stacks, insertions and removals are, respectively, called push and pop operations. A queue
is another fundamental list-based data structure. Item insertions and removals happen at
opposite ends in a queue, and this operation modus is known as the first-in, first-out (FIFO)
principle.

Besides being a fundamental data structure in computer science, both stacks and queues
model a wide range of applications in the real world, and in logistics and production planning
in particular. An example is reordering of train wagons on a shunting yard, which can be
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seen as sorting (reordering) with stacks (rail tracks). Typically, a set of n wagons, each
having a unique identifier, need to be coupled to form a train that visits several customers
along a fixed route. For every visit, the wagons determined for the respective customer need
to be at the very end of the train, so that the wagons can be decoupled from the train and
left at the customer. Thus, the n wagons need to be ordered according to a specific order
(given by the order of the customers along the fixed route). The ordering of the wagons
happens at a railway switching network, commonly known as a shunting yard, switch yard,
marshalling yard, or classification yard. Typically, there are several so-called classification
tracks, which can be accessed from only one end. The wagons can be pushed from a main
track over a network of switches to any of the classification tracks. Subsequently, some of
the wagons from a classification track can be pulled back to the main track, and the process
can be repeated. Because the tracks can only be accessed from one end, the tracks can be
modeled as stacks.

Inspired by such real-world scenarios, Knuth initiated the study of the problem of deciding
what input sequences π = (π1, . . . , πn) – permutations of the integers 1, 2, . . . , n – are sortable
by a single stack or a queue [14]. In his setting, the elements of the input sequence are
accessed sequentially (from π1 to πn), and are placed to the stack. At any time, either an
element from the input sequence is pushed to the stack, or an element from a stack is popped,
and then placed to the output sequence. The goal is to provide a sorted sequence at the
output. In this setting, some sequences cannot be sorted, and the main focus of Knuth’s
work was to characterize input sequences that can be sorted. Knuth also touched upon the
question of using more than one stack and especially the question of the number of stacks
that are needed to sort any input sequence [15].

Subsequently, Even and Itai [6] and Tarjan [21] picked-up from Knuth and studied how
to sort an input sequence using several stacks or queues. Tarjan introduced and studied a
general model for sorting that contains several stacks and queues [21]. In the model, the
stacks and queues are connected by an underlying directed graph that additionally contains
the input node s and the output node t, such that s contains the input sequence and t

contains the output sequence. Initially, s contains a permutation π = (π1, . . . , πn) of the first
n integers, and t contains an empty sequence. Vertex s has no incoming edge, and vertex t
has no outgoing edge. At any time, an element (an integer) can be taken from any vertex u
(obeying the access rules of the underlying data structure – a stack or a queue), moved along
any outgoing edge (u, v) of the graph, and stored to the data structure at v. In this context,
the elements from s are obtained in the order π1, π2, . . . , πn. The goal is to decide whether
the input sequence can be sorted, i.e., whether there is a sequence of moves of the elements
along the edges such that the elements arrive at t in the order 1, 2, . . . , n. This is not always
possible, and the posed question initiated the study of permutation classes, see, e. g. [4].
Much of the work along these questions have focused on structural results, characterizing
and counting permutations that are sortable by a given acyclic network of stacks and queues.

However, as Tarjan observes, whenever the underlying graph contains a cycle (and the
cycle is reachable from s, and vertex t is reachable from the cycle), any input permutation
can be sorted. Thus, for the question “what permutations are sortable?”, such underlying
graphs are trivial and thus not considered in the research along the question.

Optimization Variant

Much later, the observation of Tarjan was picked up, and two related optimization questions
were asked for underlying graphs containing cycles [7, 17]: “How many moves do we need
to sort a given input sequence?” and “What is the complexity of sorting with a minimum
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number of moves?”. These questions have mainly been studied in the setting where the
underlying graph is a complete graph, with the exception of the vertices s and t, which only
have outgoing and incoming edges, respectively.

Felsner and Pergel show that for k ≥ 3 stacks, any input sequence can be sorted with
O(n logk−1 n) many moves [7]. This is asymptotically tight, as the worst-case inputs require
at least n

2 logk n − Θ(1) moves [7]. This is in strong contrast to the case when k = 2, as
for this case, Felsner and Pergel show that for any ε > 0 there exists an input sequence
which needs Ω(n2−ε) many moves. Interestingly, their example is also valid if we restrict
the movements such that no move to t can be made before all elements from s are in one of
the stacks. This restriction is called a midnight constraint, as it mimics the situation when
trams need to be parked in a depot (tracks in the depot are the stacs in our model) at the
end of the day, and can leave the depot only in the morning.

König and Lübbecke study the optimization version of the sorting problem [17]. Naturally,
in any solution to the sorting problem, every item needs to move along an arc from s

exactly once, and along an arc to t exactly once, so König and Lübbecke study the following
optimization problem: sort the input sequence by a minimum number of shuffles, where
a shuffle is a move along an arc that is not incident to s and also not incident to t. For
this problem, a ρ-approximation algorithm, for ρ > 1, is a polynomial-time algorithm that
sorts any input sequence π using at most ρ ·OPT(π) many shuffles, where OPT(π) is the
minimum number of shuffles needed to sort the sequence π. König and Lübbecke show
that it is NP-hard to approximate the minimum number of shuffles within O(n1−ε), for any
non-trivial,1 even constant, k ≥ 4. Their work is based on the work of Evan and Itai [6], and
the relation of the problem of deciding whether a proper k-coloring of a given circle graph
exists to the problem of deciding whether the input permutation can be sorted with k-stacks
without shuffles. The former problem has been shown NP-complete for k ≥ 4 by Unger [23].

We note that since for k ≥ 4 deciding whether one can sort with zero shuffles is NP-hard,
it follows that, for k ≥ 4, there is no approximation algorithm for the problem of minimizing
the number of shuffles, unless P=NP.

Optimization with Midnight Constraint

We further note that the optimization problem with k ≥ 4 stacks remains NP-hard also for
the midnight-constraint, since the midnight constraint can be imposed by appending the
integer 0 to the input permutation π of integers 1, 2, . . . , n, and considering the new problem
on the resulting permutation π′ of integers 0, 1, . . . , n without midnight constraint. Since the
smallest integer 0 comes at the end of the input sequence π′, no move to t can happen before
0 is moved from s, and thus before all elements of π′ are in one of the k stacks. However,
the problem of deciding whether one can sort with zero shuffles becomes polynomial-time
solvable for any k in the case of midnight constraint, since this problem is equivalent to the
k-coloring of permutation graphs [6], which can be solved in polynomial time. Hence, the
inapproximability result for the general case (i.e., no midnight constraint) and k ≥ 4 does
not carry over to the case with the midnight constraint.

Since for k ≥ 3, at most O(n logk n) shuffles are needed [7], it follows that there exists a
O(n logk n)-approximation algorithm for the minimization problem with midnight constraint
and k ≥ 3. For k = 2 and midnight constraint, no non-trivial approximation algorithm is
known. (It is easy to see that for k = 2, no more than O(n2) shuffles is needed, which gives
a trivial O(n2)-approximation algorithm.)

1 E.g., k = n is trivial, as every item can be placed on a unique stack, and thus no shuffle is required.
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The complexity of the minimization problem for k = 2 and k = 3, however, is an open
problem also for the optimization problem with the midnight constraint. Both Felsner and
Pergel [7] and König and Lübbecke [17] asked, as an open problem, whether the sorting
problem with midnight constraint is computationally easier. (There is a light evidence that
the problem with the midnight constraint might be easier: recall that deciding whether
one can sort with zero shuffles is NP-hard for k ≥ 4 in general, but becomes solvable in
polynomial-time for the midnight constraint.)

Our Contribution

In this paper, we address the open problems for the case with k = 2 stacks and make a
progress for a special case of the midnight constraint. We study the minimization problem
with the strong midnight-constraint, which we define as the midnight constraint, with an
additional constraint where no shuffles are allowed before all items are moved away from s.

We show that the problem of minimizing the number of shuffles with the strong midnight-
constraint can be seen (by a certain polynomial-time reduction) as the MinUnCut problem on
certain graphs, and thus inherits the same approximation-algorithm guarantees. In particular,
as a corollary, we show that there exists a randomized O(

√
logn)-approximation algorithm,

and a deterministic O(logn)-approximation algorithm for the minimization problem with
k = 2 stacks and with the strong midnight-constraint.

The result thus substantially improves upon the trivial O(n2)-approximation algorithm
for k = 2. We note that the O(n logn)-approximation algorithm for k ≥ 3 and for the
midnight constraint carries over also to the case with the strong midnight-constraint. Our
result thus gives, for the variant with the strong midnight-constraint, a better approximation
algorithm for the case k = 2 than for the case k ≥ 3.

Additionally, we show that in the setting with the strong midnight-constraint and k = 2
there exists an input sequence for which every algorithms needs Ω(n2) shuffles. This improves
upon the lower bound of Ω(n2−ε) shuffles that holds for any ε > 0, and was shown by Felsner
and Pergl for the (normal) midnight constraint and k = 2, and that also applies to the setting
with the strong midnight constraint [7].

We note that relating the number of shuffles to the number of edges that need to be
deleted such that some auxiliary graph becomes bipartite (as is the case of the MinUnCut
problem) is not new. Motivated by the result of Evan and Itai [6] which states that one can
sort with zero shuffles using k stacks if and only if there exists a k-coloring of the underlying
circle graph, König and Lübbecke consider the question whether the number of shuffles is
equal to the number of monochromatic edges in a k-coloring of the underlying circle graph,
and provided an example demonstrating that this is not case [17]. In our work, we use a
different auxiliary graph than the circle graph.

1.1 Further Related Work to Stack Sorting
Albeit Tarjan defined the problem of sorting with a network of stacks and queues for any
underlying graph [21], mainly the following two graph classes have been studied: (i) a directed
path from s to t; this case is also referred to as sorting with stacks/queues in series, and (ii)
graphs where every node other than s and t is connected only to s (in the direction from s)
and to t (in the direction to t); this setting is also known as sorting with stacks/queues in
parallel. Observe that the question “can we sort the input sequence with zero shuffles” where
the underlying graph induced by the stacks is a complete graph is equivalent to the setting
with stacks in parallel. Even and Itai study the setting with stacks in parallel and with
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queues in parallel [6]. Besides the general setting, Even and Itai also study the variant where
no movement to t can precede any movement from s. In their setting, this is equivalent to
both the strong midnight-constraint and the midnight constraint.

As mentioned before, much of the previous work focused on structural results concerning
permutations that can be sorted by stacks/queues in series/parallel. Bóna surveys much of
the progress made till about 2003 [4]. Among the newer research that is of algorithmic flavor
is the study by Smith that compares two greedy algorithms for sorting with stacks in series
[20], the paper by Pierrot and Rossin that shows that deciding whether a given permutation
is sortable by two stacks in series in polynomial-time solvable [18], and the paper by Biedl
et al. [2] which studies the question of how the number of stacks influences the number of
shuffles needed to sort any input sequence.

1.2 Related Work in the Application Domain
Over the years, optimization theory literature has mentioned numerous problems related to
sorting with stacks. A few examples are: assigning trains, trams or buses to positions in a
depot [3, 11, 9]; storing integrated steel slabs in order of processing [16]; sorting car bodies
for paint processing [12]; and storage yard operations in container terminals [5, 22]. Each
of these problems require items to be placed on stacks such that they can be retrieved in a
desired order with minimum effort or shuffles. In practice it is not uncommon that additional
constraints exist such as stack height or item placement.

2 The Setting and Preliminaries

We study the RestrictedBi-StackSorting problem, which is defined as follows, and
illustrated in Figure 1. We are given a directed graph G = (V,E) on four vertices and
an input sequence π, which is a permutation of the numbers 1, ..., n. Each number in the
permutation is also called an element of π. Vertex set V represents the four possible locations
for items π1, ..., πn, which are a source vertex s, two stack vertices v1 and v2, and a target
vertex t. The two stacks v1 and v2 exhibit the LIFO behavior. Edge set E consists of directed
edges (i, j) to represent actions that move the first available item from vertex i to vertex j.
These actions are push, represented by edge (s, v1) and by edge (s, v2), shuffle, represented
by edge (v1, v2) and by edge (v2, v1), and pop, represented by edge (v1, t) and edge (v2, t).
There are no other edges in E. Items (π1, ..., πn) arrive sequentially from s and may only
traverse edges in E along the direction of the edge. The problem asks to move the elements
in π from s to t such that at any time, only one item traverses along an edge, the items at v1
and v2 respect the LIFO behavior, the items leave s in the given order by π, and the items
arrive at t in increasing order of value. Furthermore, we require that while there are items
in s, no shuffle and no pop appears. We call this the strong midnight-constraint. The goal
of RestrictedBi-StackSorting is to minimize the number of shuffles along the process.
The number of made shuffles by an algorithm is called the shuffle count (of the algorithm).

2.1 Useful State Representation
At any time of the sorting procedure, the state is fully determined by the remaining elements
in s, and by the content of the two stacks in vertices v1 and v2. We now describe an
alternative description of a state, which is the crucial element in showing our main result.

We view any sorting procedure as an iterative process, which at any time step k = 1, 2, . . . ,
moves an element along an edge of G. A state Sk at time step k describes the situation
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π = (π1, ..., πn)

s

v1 v2

t

(1, ..., n)

Pu
sh

Push

Pop Po
p

Shuffle

Figure 1 Illustration of the underlying graph for sorting with two (fully connected) stacks.

π6 π7 π8sk =

v1,1

v1,2

v1

v2,1

v2,2

v2,3

v2

v1,1 v1,2 v2,3 v2,2 v2,1

v1 v2

pk

lk =

Figure 2 Creating state representation Sk = (sk, lk, pk).

after the k-th move. State Sk is a tuple (sk, lk, pk), where sk is the remaining input at
vertex s, lk is a list (array) that is the union of the two stacks, and pk is a pointer to the
list lk, called shuffler indexer, which specifies the tops of the two stacks in the list lk. To
create list lk, we concatenate the stacks v1 = (v1,1, ..., v1,|v1|) and v2 = (v2,1, ..., v2,|v2|) as list
lk = (v1,1, ..., v1,|v1|, v2,|v2|, ..., v2,1), such that vi,1 is the bottom-most item of stack vi and
vi,|vi| is the top-most item of stack vi. Alternatively, lk = v1v

R
2 , where vR

2 is the reverse of
v2. Finally, we set shuffler indexer pk at location pk = |v1|, representing the top of both
of our stacks. Figure 2 depicts our alternative state representation for RestrictedBi-
StackSorting. Figure 3 provides an example of how our state representation transitions
during a push, a pop, and a shuffle action. State S0 describes the situation before any move
is made, and thus S0 = (π, (), 0), where () denotes the empty list.

2.2 Relation of State with Shuffle Count
Recall that RestrictedBi-StackSorting requires that all elements are first pushed from
s before any shuffle or pop operation can happen. Observe that after all n elements are
pushed from s, the shuffle count is determined: The first element that needs to be popped
is 1. For this, all elements that are above element 1 need to be shuffled to the other stack.
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1s =

4
v1
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(s, v1)

∅s =

4
1

v1

2
3

v2

4 1 3 2
p = 2
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Figure 3 State transitions when applying a push, pop, and shuffle action.

After that, 1 can be popped, and the same procedure continues with element 2: all elements
that are above 2 in the same stack need to be shuffled, and then element 2 can be popped.
After that, the same procedure continues with elements 3, 4, . . . , n.

Using our alternative state representation, we can determine the shuffle count from the
list ln of state Sn, i.e., the state after all n elements have been pushed from s, as follows: We
place an auxiliary value 0 at the position pn in list ln. Then, observe that to pop element 1,
we need to shuffle all elements that appear in ln between element 0 and element 1. Similarly,
after we have popped element i ≥ 1, we need to shuffle all elements that are the elements
that lie in ln between i and i+ 1 and that are larger than i+ 1. This follows because: (i)
when element i is popped to t, it is on top of a stack, and to pop the next element i + 1,
elements that lie above i+ 1 need to be shuffled, and these lie between i and i+ 1 in ln; (ii)
any element in ln that is smaller than i+ 1 has been popped to t and thus does not need to
be shuffled.

Let sc(i, i+ 1) denote the number of elements that lie in ln between elements i and i+ 1,
and that are larger than i+ 1. We have thus showed the following.

I Lemma 1. The shuffle count is equal to
∑n−1

i=0 sc(i, i+ 1).

2.3 Worst-Case Number of Shuffles
We now show that the worst-case number of shuffles for RestrictedBi-StackSorting
is Ω(n2). For the strong midnight-constraint, this further strengthens the lower bound of
Ω(n2−ε), for any constant ε > 0, of Felsner and Pergel [7], which also holds for the (normal)
midnight constraint.

I Theorem 2. There exists an input sequence π for RestrictedBi-StackSorting for
which every algorithm has a shuffle count of Ω(n2).

Proof. Consider the input sequence π? = (2, 4, 6, ..., n, n− 1, n− 3, ..., 5, 3, 1) for any even
n. Notice that π? consists of two sub-sequences: π?

1, n
2
of all even values and π?

n
2 +1,n of all

odd values.
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After π?
1, n

2
is pushed to the stacks, one of the stacks will contain the majority of the items

of π?
1, n

2
, and thus at least n

4 many items. Without loss of generality, assume that stack v1
contains at least n

4 items from π?
1, n

2
.

Observe that every item in v1 needs to be popped in the order from bottom to top. Also,
observe that for every even value e that we pop from v1, we then need to pop the odd value
e + 1 from π?

n
2 +1,n. Now, regardless of how the items in π?

n
2 +1,n have been pushed to the

stacks, for every bottom value e of v1, we need to shuffle at least the remaining even values
on stack v1 in order to pop value e+ 1. Given that we have at least n

4 even values on stack v1,
we see that the shuffle count is at least

∑ n
4
i=1( n

4 − i) = n2−4n
32 = Ω(n2). Thus, any algorithm

for RestrictedBi-StackSorting uses at least Ω(n2) shuffles. J

3 Relation to MinUnCut

We will now show that RestrictedBi-StackSorting can be seen as MinUnCut. The
problem MinUnCut is given by an undirected graph H = (VH , EH), and asks for a partition
(S, T ) of the vertices in VH such that the number of edges with endpoints from the same
part is minimized. The problem is the complement of the more famous MaxCut problem,
that asks for (S, T ) such that the number of edges in the cut, i.e., edges with one endpoint
in S and one endpoint in T , is maximized. It can be easily seen that an optimum solution
to MaxCut is also an optimum solution to MinUnCut. MaxCut was among the first
computational problems shown to be NP-complete [13].

The two problems differ with respect to approximability. While for MaxCut there exists
a ρ-approximation algorithm where ρ is roughly 0.878 [10], the best approximation algorithm
for MinUnCut is a randomized O(

√
logn)-approximation algorithm by Agarwal et al. [1]

and a deterministic O(logn)-approximation algorithm by Garg et al. [8].
Our main technical result is stated in the following theorem.

I Theorem 3. We can reduce any input instance of RestrictedBi-StackSorting to an
instance of MinUnCut in polynomial time, such that the number of edges with endpoints
in the same part of a solution (S, T ) in the created instance of MinUnCut is at most the
shuffle count of a corresponding solution to the instance of RestrictedBi-StackSorting,
and the corresponding solution to RestrictedBi-StackSorting can be computed in poly-
nomial time.

Proof. We create graph H = (VH , EH) for MinUnCut as follows. We put all vertices
1, 2 . . . , n to VH , corresponding to the elements (integers) in π. Placing vertex i to S will
correspond to pushing the element i to stack v1, and placing vertex i to T will correspond to
pushing the element i to stack v2.

Recall that before any shuffle, we need to push all elements from s to the stacks. This
will lead to the state Sn = (sn = ∅, ln, pn). Referring to Lemma 1, and especially to the
count sc(i, i+ 1) for i = 0, 1, . . . , n− 1, we want to create edges between vertices in H that
express the shuffles in sc(i, i+ 1).

Recall that sc(i, i+ 1) is the number of elements between i and i+ 1 in list ln that are
larger than i + 1. Let x be any element that is larger than i + 1. Let us investigate the
positions of the elements x, i, and i+ 1 as they appear in the permutation π, and how these
positions influence sc(i, i+ 1). First, observe that whenever x appears before i and i+ 1
in π, then for any state ln, x will never be between i and i + 1, and thus x will never be
counted in sc(i, i+ 1). In this case, we do not create any edge between x and i nor any edge
between x and i+ 1 in graph H (as there should be no cost in the MinUnCut problem).
Second, assume now that x appears between elements i and i+ 1 in the input permutation
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π. In this case, either element i appears before x, or element i + 1 appears before x in π.
Among i and i + 1, let z be the element that appears before x in π. Observe now that x
appears between i and i + 1 in ln (and thus contributes one to sc(i, i + 1)), if and only if
x is placed on the same stack as z. Thus, in this case, we create an edge between z and x
to account for the cost of one in every solution that places z and x to the same part in a
partition (S, T ). Third, assume now that x appears after both elements i and i+ 1 in the
input sequence π. Observe now that x appears between i and i+ 1 in the list ln if and only
if i and i+ 1 are placed on two different stacks. For this reason, in this case, we create an
auxiliary vertex v(x, i, i+ 1) and connect it to vertex i and to vertex i+ 1 (and to no other
vertex). Observe now that whenever vertices i and i+ 1 are placed such that one is in part
S and one is in part T , it does not matter to which part we place vertex v(x, i, i+ 1): any
placement will incur cost exactly one, which exactly corresponds for x appearing between i
and i + 1 in the list ln (and thus corresponds for one count in sc(i, i + 1)). Also, observe
that whenever i and i+ 1 are placed to the same stack, there is no shuffle of x encountered
in the cost sc(i, i + 1), and this can be reflected by placing the vertex v(x, i, i + 1) to the
opposite part in which vertices i and i+ 1 are, which leads to zero count for MinUnCut.

Now, to finish the proof, consider an instance of RestrictedBi-StackSorting and
the corresponding graph H created by the reduction above. Consider a solution (S, T ) to
MinUnCut given by instance H. If in the solution there are vertices i, i+ 1, and v(x, i, i+ 1)
placed in the same part, we modify the solution by moving v(x, i, i+ 1) to the other part.
This decreases the cost of the solution for MinUnCut by two, and only affects the two
edges incident to v(x, i, i+ 1). We repeat this process until no such three vertices i, i+ 1,
and v(x, i, i+ 1) can be found. This takes at most O(n2) many steps (one for every value
i and every value x > i), and results in a new solution (S′, T ′) to MinUnCut of cost not
larger than the original solution (S, T ) to MinUnCut. We can create a solution to the
RestrictedBi-StackSorting as follows: push element i to stack v1 if and only if i is in
S′ (and otherwise, when i is in T ′, push it to stack v2). Observe now that every edge in
the new solution (S′, T ′) that has both endpoints in the same part corresponds to exactly
one shuffle in the corresponding solution to RestrictedBi-StackSorting, and thus the
number of shuffles in the created solution for RestrictedBi-StackSorting is the cost of
the solution (S′, T ′) for MinUnCut. J

The construction from the proof is illustrated in Figure 4. The existence of approximation
algorithms for RestrictedBi-StackSorting with the claimed approximation ratios now
comes as a direct corollary.

I Corollary 4. There exists a randomized O(
√
logn)-approximation algorithm for the prob-

lem RestrictedBi-StackSorting. There exists a deterministic O(logn)-approximation
algorithm for the problem RestrictedBi-StackSorting.

3.1 Beyond Two Stacks

It is a natural question to try to adapt our approach also to the cases k ≥ 3. However, this
is not possible (in a direct way). Our approach crucially depends on the alternative state
representation introduced in Section 2.2 and on its relation to the shuffle count as expressed
by Lemma 1. In our alternative state representation, we heavily used the fact that two stacks
after step k can be merged into a linear list lk. For three or more stacks, it is not clear how
such a list could be created. Clearly, it is one of the interesting open problems to provide
better approximation algorithms for the case k = 3.
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Figure 4 Graph H for the input π = (2, 4, 3, 6, 1, 8, 7, 5). The circles denote the vertices of the
permutation, the squares denote the auxiliary vertices v(∗, i, i+ 1), and the edge labels denote the
multiplicity of the edges between the vertices. The white vertices are in part S and grey vertices are
in part T . Such a partition induces an uncut of size 5, and thus a solution to the sorting problem
with 5 shuffles. This is optimum for this permutation.

3.2 Shuffling Before Midnight

Clearly, for k = 2, one can use our alternative state representation not also for the strong
midnight-constraint, but also for the (normal) midnight constraint, where one can shuffle even
if not all elements are pushed from s to the two stacks. For the strong midnight-constraint,
the first n moves are only pushes from s, which results in some state Sn, which then uniquely
induces what the algorithm does and the shuffle count the algorithm requires. In some sense,
for the strong midnight-constraint, the only decisions to be made are to which stack shall we
push element i, i = π1, π2, . . . , πn. These decisions can be reflected by the auxiliary graph
H that we create in the proof of Theorem 3. However, if we allow to shuffle before all n
elements are pushed from s to the stacks, it is not clear how to create an auxiliary graph H
which would reflect (via the MinUnCut problem) the shuffle count for this case. In some
sense, allowing shuffles before all elements from s are pushed would move the position of
the shuffler index while the push operations are made, possibly changing the shuffle count
impact of past and future push operations. To reflect this in H, it seems that we would need
to update, add, and remove labeled edges in graph H. It is not clear that we can create H
that would reflect such a dynamic behavior. A more extensive discussion on this topic can
be found in the Master thesis of Pont [19]. We leave it a prominent open problem to settle
the complexity of the sorting problem with k = 2 stacks and midnight constraint.

4 Conclusions

Motivated by the open problem of addressing the complexity of minimizing the shuffles
when sorting with two stacks with or without the midnight constraint, we introduced the
restricted midnight-constraint and studied the resulting RestrictedBi-Stack Sorting
problem. We showed that our problem is closely related to the MinUnCut problem. This
shows that the problem admits non-trivial approximation algorithms, which is in strong
contrast to known approximability and inapproximability results to the other variants of the
optimization problems that have been considered so far.

There are several open problems left by our paper. One of the most important ones is to
settle whether the problem is NP-hard. Beyond the topic of this paper, i.e., sorting with two
stacks with the strong midnight-constraint, one of the most interesting open problems is to
investigate whether non-trivial approximation algorithms exist for the general, unrestricted
case of k = 2 stacks.
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Abstract
We present robust, adaptive routing policies for time-varying networks (temporal graphs) in the
presence of random edge-failures. Such a policy answers the following question: How can a traveler
navigate a time-varying network where edges fail randomly in order to maximize the traveler’s
preference with respect to the arrival time? Our routing policy is computable in near-linear time in
the number of edges in the network (for the case when the edges fail independently of each other).

Using our robust routing policy, we show how to travel in a public transit network where the
vehicles experience delays. To validate our approach, we present experiments using real-world delay
data from the public transit network of the city of Zurich. Our experiments show that we obtain
significantly improved outcomes compared to a purely schedule-based policy: The traveler is on time
5-11 percentage points more often for most destinations and 20-40 percentage points more often
for certain remote destinations. Our implementation shows that the approach is fast enough for
real-time usage. It computes a policy for 1-hour long journeys in around 0.1 seconds.
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functions on the arrival times.

Inherently time-dependent networks can be well-represented by temporal graphs [12, 1, 10],
which model time explicitly: every edge is only available at certain points in time (consider
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Figure 1 Every edge in a temporal graph can
only be traversed at a certain availability time.
In the example, there is an edge from vertex b

to vertex d at availability time 2.
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Figure 2 A strictly time-respecting path
has increasing edge availability times. The bold
path is the only strictly time-respecting path
from a to c and has arrival time 3.

A core characteristic of traveling inside a public transit network is the possibility of
missing a transfer connection. This can occur because of delays of a vehicle or even because
the connecting vehicle leaves too early. When a connection breaks, the traveler needs to
change their route during the journey. Therefore, small delays of a vehicle can cause larger
delays for a traveler’s journey.

This motivates adding random edge failures to a temporal graph, and thus obtaining
a faulty temporal graph. For this setting, we show how to provide optimal robust routing
policies for any efficiently computable utility function in near-linear time in the size of the
temporal graph. In this paper, we show how public transit networks can be modeled as faulty
temporal graphs and we give an algorithm for robust routing in public transit networks. We
validate our robust routing policies by using real-world public transportation data. Note that
our focus is not on catastrophic network failures due to accidents or other highly disruptive
events, but on failures due to everyday delays caused for example by traffic congestion. In
principle, our approach could also be applied to other time-varying and failure-prone networks
such as ad-hoc or mobile phone networks.

1.1 Preliminaries
Temporal Graphs

To represent a network where edges can only be taken at a certain moment in time, we can
use a temporal graph [12, 1, 10, 20, 8]. Formally, a temporal graph G = (V,E, T ) has vertices
V and temporal edges E, where E is a multiset of directed edges on V . Each temporal edge
e = (u, v) has a nonnegative integer availability time T (e). The semantic of the temporal
graph is that at time T (e), the edge e = (u, v) can be used to go from vertex u to vertex
v (see Figure 1). Note that there can be multiple temporal edges going from u to v. The
number of edges that are incident to a vertex v is the degree deg(v) of v.

Note that in a variant of temporal graphs (so-called interval graphs [10]) every edge is
available during an interval of time. This is not appropriate for our purposes, as in our main
application (for public transport), connections are only available at discrete points in time.

A strictly time-respecting path p = e1, . . . , ek in a temporal graph (V,E, T ) is a path
in the graph (V,E) where the edges have increasing availability times (according to T ).
That is, if two edges ei and ei+1 follow each other in the strictly time-respecting path p,
then T (ei) < T (ei+1) (see Figure 2). We call the availability time of the last edge ek in a
time-respecting path p the arrival time of the path p.
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Faulty Temporal Graphs

When the connections of a network change probabilistically over time, we can model this
using a temporal graph with edges that fail at random. Formally, we augment the definition
of a temporal graph with a failure distribution F over the edges.

A faulty temporal graph G = (V,E, T, F ) has vertices V , directed edges from a multiset
E, discrete nonnegative edge availability times T : E 7→ N, and a failure distribution F . The
number of vertices is n = |V | and the (maximum) number of edges in the faulty temporal
graph is m = |E|. A faulty temporal graph defines a random variable whose outcomes are
temporal graphs with vertices V , edges that are a subset of E, and with availability times
given by T . Specifically, for an edge e ∈ E we say it is potentially available at the fixed
availability time T (e). The edge fails with probability pe and F (e) is the indicator random
variable for the event that edge e fails. If not stated otherwise, we assume that the edges
fail independently of each other. This assumption is relaxed in Section 2.3, where the edge
distributions follow a kind of Markovian assumption.

Robust Adaptive Routing

In the robust adaptive routing problem, a traveler in a faulty temporal graph starts out at a
designated starting vertex at time 0. Whenever the traveler arrives at a vertex i at a time t,
the traveler picks a temporal edge e = (i, j) with availability time T (e) larger than t. At
that time T (e), the traveler tries to go across this edge. If the edge does not fail, the traveler
succeeds and arrives at the endpoint j of that edge at time T (e). If the edge fails, the traveler
remains at vertex i and must pick a new edge to take with availability time larger than T (e).
Note that this means that the traveler traverses a strictly time-respecting path in the faulty
temporal graph using only edges that did not fail. The goal of the traveler is to maximize
the expectation of a computable utility function of the time at which a destination vertex is
reached. For example, they might want to arrive at a destination vertex before the deadline
x with the largest possible probability. Then, the utility is 1 if the traveler arrives on time
and 0 otherwise.

The algorithmic question that solves the robust adaptive routing problem is to preprocess
the faulty temporal graph such that we can quickly answer the following routing query:

“When arriving at vertex i at time t, where should the traveler go next?”

A set of answers to these routing queries is called a routing policy. We are interested in
optimal routing policies in the sense that they maximize the expected utility of the traveler.

If desired for a certain application, a routing policy could also be used to generate a
temporal path a-priori (such a path represents the journey in case no connection breaks and
can be thought of as an optimistic preview). This path would be followed until one of the
edges fails. In this event, the policy would be queried again to compute a new path.

We continue with a more formal statement of the routing problem. We are given a
faulty temporal graph G = (V,E, T, F ) and a set of destination vertices S ⊆ V . A policy
P maps every (non-destination) vertex i ∈ V − S and every time t to an edge e′ = (i, j)
with larger availability time T (e′) > t, or to a special symbol ⊥ in case no edge e′ = (i, j)
with availability time larger than t exists. The semantics of the policy are such that if the
traveler is at vertex i at time t, they choose the edge e = P (i, t) to traverse next according
to the policy. If the edge e = (i, j) does not fail, the traveler goes to the other endpoint j of
e at time T (e) and continues to choose an edge from there. Otherwise, the traveler stays
at vertex i but the time also changes to T (e). The traveler stops as soon as they reach a
destination vertex or once the policy returns ⊥, which means that the traveler is stuck.
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We formalize the preference of the traveler with respect to the arrival time in a utility
function. Such a utility function Ui(t) maps every vertex i ∈ S and every time t to a
real-valued utility, where higher values correspond to a higher preference of the traveler. This
terminology highlights the relation to Stochastic Optimal Control [2], where an agent tries
to make decisions that optimize their expected utility. The idea is that if we arrive at vertex
i through an edge e with availability time t = T (e), the utility for the traveler is Ui(t). For
example, to maximize the on-time arrival probability, the utility is 1 if the traveler arrives at
a destination vertex before a given deadline and 0 otherwise. If the traveler ever gets stuck,
the utility obtains a smallest possible value that we denote by U0. For example, if the utility
corresponds to the probability to arrive at a destination on time, then U0 = 0.

The utility of a policy P starting from starting vertex i and starting time t is the value of
the utility function at the vertex and time where the traveler stops. Note that the utility of
a policy is a random variable. We consider the expected utility of the policy P , where the
expectation is over the random failures of the edges of the faulty temporal graph.

1.2 Related Work
There is a vast variety of approaches to path finding problems in stochastic networks. We
can categorize approaches based on the following criteria:

A-priori or Adaptive. Does the traveler decide upfront which way to go (a-priori) [7,
15, 17] or can they change the route along the way (adaptive)?
Time-dependent or Time-independent. Does the network change with time (time-
dependent) or not (time-independent)? In a time-dependent network, the time it takes to
go between two vertices changes depending on the time the traveler attempts to do so.
An extreme case is when certain links are only available at discrete points in time.
Scoring Criterion. How are different outcomes scored for the traveler? For example,
does the traveler of the stochastic network want to maximize the on time arrival probability
(SOTA) or does the traveler want to obtain a least expected arrival time (LET). Note that
a utility function is not the only way to score a path. Alternatives include approaches
which search for paths that are pareto-optimal with respect to multiple criteria [5, 16].
Runtime. Is the solution obtained in polynomial time, pseudo-polynomial time (i.e. it
depends on the number of time steps in the problem), or super-polynomial time?

Adaptive and Time-Independent

There are two motivations to take an adaptive approach as opposed to an a-priori approach.
First, a-priori probabilistic path problems have only been solved in polynomial time for
special cases (like for affine and exponential utility functions [15]) and hence it is pragmatic
to take a different approach. Second, the outcome for the traveler can be improved if “live”
information can be incorporated into the decision making process.

Fan and Nie [6] show termination for an algorithm to solve the adaptive SOTA problem
(in the continuous time domain). They propose a set of (integral) equations which are solved
iteratively, starting out with a trivial approximation, then using the approximation of the
last iteration to compute the next iteration of the utility functions. Although they show
convergence of the approximation to the true value, the algorithm can take an exponential
number of iterations.

Samarayake et al. [19] observe that there is a minimum time that it takes to traverse
an edge. They obtain pseudo-polynomial runtime (in the number of such traversals that
can occur within the time-budget). Instead of computing the utility functions iteratively,
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they construct parts of the functions one after the other. They discretize the problem by
dividing the time-domain into y evenly sized pieces (y is a parameter such that the pieces
are smaller than the minimum time it takes to traverse an edge). On this discretized version,
they obtain a runtime of a O(my2), where m is the number of edges.

Because the SOTA utility functions are not of some nice form that can be integrated
efficiently, the surveyed approaches all eventually discretize the time-domain. Samarayake
et al. use evenly spaced time-intervals and do not provide bounds on the approximation
quality as a function of the number of time-interval. This downside is addressed by Hoy
and Nikolova [11], who give a polynomial-time approximation scheme for the SOTA and
LET problem on acyclic directed graphs that obtains an additive error of 1/ε in O(mn2/ε2)
time. Similar to our approach, they can handle general scoring functions that depend on the
arrival time of the traveler.

Adaptive and Time-Dependent SOTA

Transit networks consisting of trains and buses are different from street networks because
vehicles that connect physical locations in a transit network are only available at a specific
point in time (before the vehicle leaves a station), whereas streets remain available most of
the time (although delays and infrequent disruptions are possible). In particular, missed
transfer connections between distinct vehicles can play a crucial role in transit networks.

Keyhani et al. [13] looks at estimating the reliability of transfers and fixed (a-priori) paths
in a train network. Keyhani [14] deepens this work on the reliability of train transfers and
connections. They present an adaptive approach to solving SOTA in a similar transit network
problem setting as ours. However, they allow the traveler to change the route depending on
the arrival time at every vertex. This requires a model of the arrival-time distributions and
leads their algorithms to have pseudo-polynomial runtime in the size of the support of the
arrival-time distributions. Another difference to our work is that Keyhani does not represent
the schedule as a temporal graph, but use their own problem-specific model.

Adaptive and Time-Dependent LET

In the bus network problem [3], the traveler decides whether to take a bus whenever it arrives.
The traveler has access to the statistics of the bus arrivals, but they do not know exactly
when a bus will actually arrive, until it arrives. The goal is to reduce the expected time that
a policy takes to move a traveler from the start station to the destination station.

Boyan and Mitzenmacher [3] present results for the case when the buses arrive independ-
ently of each other and satisfy additional conditions (in particular they can be distributed
according to exponential, uniform, or normal distributions). They generalized a previous
more limited result by Datar and Ranade [4]. In order to compute a policy minimizing the
expected travel time in polynomial time, they need to be able to compute the expected
arrival time of a bus given that it has not arrived yet. However, exact computation of these
expectations involves a convolution that can take polynomial time in the number of time
steps considered and it is not shown how an approximate solution to the expectations impacts
the accuracy of the result.

In contrast to our problem setting, the traveler in the bus network problem can change
their decision whenever a bus arrives (whereas Keyhani [14] and in our model we only allow a
decision when the traveler arrives at a station or a connection breaks). On the other hand, in
our model we allow more general delay distributions and our runtime is strongly polynomial.
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1.3 Our Contribution
We obtain a near-linear runtime for computing an optimal robust adaptive routing policy in
a faulty temporal graph. For a faulty temporal graph with m edges that fail independently
of each other, computing an optimal routing policy takes O(m logm) time. We need O(m)
space to store the policy and take O(logm) time per query. We allow any utility function
that can be evaluated in O(logm) time.

When the edge failure probability depends on the last edge the traveler attempted to
traverse, we compute an optimal routing policy in O(m logm+

∑
i∈V deg2(i)) time.

As an application of our model, we represent traveling inside a public transit network
that is subject to delays as robust adaptive routing in a faulty temporal graph. We transform
a timetable with N entries where at most d vehicles run through any station into a faulty
temporal graph with O(Nd) edges. This gives O(Nd logN) time to compute a robust
routing policy for a transit network with independent delays. We evaluate our routing policy
using real-world transit network delay data from the public transit network of the city of
Zurich. We compare our approach to a traveler that travels to arrive as early as possible
using only the schedule provided by the city of Zurich and to a traveler that has perfect
knowledge of all future delays. Our evaluation shows that our model is accurate in predicting
the probability of being on time and our routing policy provides (in less than 0.1 seconds)
significant improvements over an approach that neglects delays.

2 Robust Adaptive Routing

The efficiency and generality of our approach is enabled by two observations. First, the
problem has an acyclic nature, since the traveler navigates strictly time-respecting paths.
Hence, a dynamic programming formulation emerges. This initial dynamic program (presented
in Section 2.1) is, however, too slow because it depends on the largest availability time.
Second, only certain points in time matter (those where there is an edge with that availability
time). This leads to an improved dynamic program (described in Section 2.2) that achieves
near-linear runtime.

2.1 Pseudo-Polynomial Time Algorithm
We start out with a basic dynamic program to compute a routing policy for any faulty
temporal graph (with independent edge failures).

For every vertex i ∈ V and every time t ∈ N, we denote the computed expected utility
starting from vertex i at time t with ui(t). The basic idea is to find a recursion for ui(t),
parameterized by the current vertex i and the current time t. Since the traveler traverses a
strictly time-respecting temporal path, the traversed edges have increasing availability time.
Therefore, the subproblems overlap in an acyclic way and this gives a dynamic program.

Let us start with the base cases. If the vertex i is a destination vertex, the expected
utility ui(t) coincides with the value of the utility function, hence we set ui(t) = Ui(t).

Next, we recursively describe the best decision to take being in vertex i at time t.
Intuitively, the idea is to try every incident outgoing edge and then take the best such edge.
For this, we need to compute the expected utility given that we take a particular edge. For
each such edge e with an availability time T (e) larger than the current time t, we condition
on the event that the edge e fails. Using the law of total expectation, we relate the expected
utility at time t to an expected utility at some time larger than t. If an edge e = (i, j) fails,
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the traveler stays at vertex i and the (conditional) expected utility is ui(T (e)). Otherwise,
the traveler reaches vertex j and the (conditional) expected utility is uj(T (e)). We can
express this in the following recursive formula (for any vertex i that is not a destination):

ui(t) = max
e=(i,j)∈E

T (e)>t

(
(1− pe) · uj

(
T (e)

)
+ pe · ui

(
T (e)

))
.

For any time t and vertex i, the expected utility ui(t) at vertex i and time t only depends
on values uj(t′) with t′ > t. Hence, we can process the expected utilities ui(t) in order of
decreasing time t. When the traveler is at some vertex i at some time t, the routing policy is
to take the edge e = (i, j) which obtains the maximum value in the expression for ui(t) (take
any edge if several edges are tied for the same value). If there is no edge e with T (e) > t,
then ui(t) = U0. In that case, the traveler is stuck and cannot reach a destination at all (i.e.,
the policy returns ⊥). See Appendix A.1 for an inductive correctness proof of the algorithm.

Let x be the largest availability time that occurs in T , then the runtime of this approach
is O(m x). Initializing the base cases takes time O(x+ n). Afterwards, each of the vertices
needs to compute at most x different values (the utility for all times larger than x is trivially
U0 and does not need to be computed). To compute the value for a particular vertex and
time, we need to look up an already computed value for each of the neighbors. Thus, a
vertex i with degree deg(i) takes O(deg(i) x) time to find its best decision. The runtime is
thus O(

∑
i∈V deg(i) x) = O(m x). As we explicitly store the result to all routing queries,

the routing policy uses O(n x) space and each routing query takes O(1) time.

2.2 Near-Linear Time Algorithm

The problem with the basic dynamic program is that its runtime and space depends on the
largest availability time x. This value is not polynomial in the input size and so the basic
dynamic program runs in pseudo-polynomial time. In practice, this means that increasing
the time-resolution of the data (say from measuring in minutes to seconds) also increases the
runtime of the algorithm proportionally. We now show how to reduce the runtime of the
basic algorithm by improving the order in which we evaluate the recursion and by leaving
out redundant points in time. The new algorithm runs in near-linear time.

Observe that only those times are relevant for the traveler where there is some incident
edge. More precisely, if there is no edge leaving vertex i inside some time interval t1, . . . , t2,
then the expected utility for vertex i is the same for all those times. This is because when
the traveler is at vertex i, the traveler cannot take any new decision in that time range and
the traveler does not learn any new information. It thus suffices to compute the expected
utility for t2. We store the computed utilities sorted by increasing times for each vertex. To
query the expected utility at a certain time, we do a binary search for the next largest time
that has a computed value.

A closer look at the recursive equation reveals that the expected utility for vertex i and
time t is the maximum of the expected utility at time t + 1 and the maximum possible
expected utility given that we take an edge leaving at time t+ 1. We therefore process the
edges in decreasing order of availability times. For each edge e = (i, j), we compute the
best possible expected utility u(e) given that the traveler plans to take this edge e using
the expression

u(e) = (1− pe) · uj

(
T (e)

)
+ pe · ui

(
T (e)

)
.
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After processing all edges at time t+ 1, we update all adjacent vertices. For each vertex i
that has some edge leaving at time t+ 1, we set

ui(t) = max


 max

e=(i,j)∈E
T (e)=t+1

u(e)

 , ui(t+ 1)

 .

If the maximum expected utility is obtained by taking some edge e at time t+ 1, this
edge is chosen for time t. Otherwise, the same edge is chosen as for time t+ 1. Recall that we
do not explicitly store the choices and utilities for all times and vertices, but only remember
decisions for vertices and times, where the vertex has an outgoing edge.

I Theorem 1. Computing an optimal routing policy in a faulty temporal graph with inde-
pendent edge failures takes O(m logm) time. The policy uses O(m) space and a routing query
takes O(logm) time.

Proof. Sorting the edges takes O(m logm) time. Then, each edge e is processed once to
compute u(e), which uses two already computed utilities. Looking up those utilities takes
O(logm) time (by using a binary search for the successor). Updating a vertex at a certain
time takes time proportional to the number of edges at that time, so O(1) per edge. Inserting
a new expected utility value into the sorted array takes O(1) amortized time by using
standard array doubling (store the array in decreasing order of time so that inserting a new
expected utility always occurs at the end of the array). J

2.3 Last-Edge Markovian Failures
So far, we assumed the edges to fail completely independently of each other and independently
of time. We can also consider the situation when the probability for an edge to fail depends
on the last edge the traveler planned to take (they either attempted to traverse this edge
and failed or succeeded to traverse this edge). By replacing our independence assumption by
a Markovian independence assumption given the last edge the traveler attempted to take,
we obtain Last-Edge-Markovian failures. As detailed in Appendix B, we can modify our
dynamic program to obtain the following result:

I Theorem 2. Computing an optimal routing policy in a faulty temporal graph with Last-Edge-
Markovian failures takes O(m logm+

∑
i∈V deg2(i)) time. The policy uses O(

∑
i∈V deg(i))

space and a routing query takes O(1) time.

3 Applications in Public Transit Networks

Traveling in a public transit network in the presence of delays can be modeled as robust
adaptive routing in a faulty temporal graph, as we show in this section. In a public transit
network, there are several lines of buses, trains, trams, and other vehicles. Each of those
lines connects a series of stations in a predetermined order. Along each line, vehicles run
according to a schedule which prescribes when a vehicle is supposed to arrive and to leave a
station. The schedule contains N tuples that contain the line of the vehicle, the departure
time, departure station, arrival time, and arrival station.

We assume that the traveler leaves the start station sstart at the starting time and wants
to arrive at the destination station sdest while maximizing their preference with respect to
the arrival time: this preference is expressed as a utility function u(t) of the arrival time
and the goal is to maximize the expected value of this utility function (the expected utility).
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At every station, the traveler can get off the current vehicle and attempt to transfer onto
another vehicle (which succeeds if the latter vehicle departs after the arrival time of the
current one plus the time it takes to transfer between the two vehicles).

Our model restricts traveling to routes that are feasible according to the schedule. This is
somewhat pessimistic in that certain connections infeasible in the schedule could be feasible
in practice due to delays and early arrivals. However, we argue that being slightly pessimistic
is compatible with our goal of giving robust routes. Moreover, recommending such infeasible
routes might be counter-intuitive to users of a transit system.

3.1 Public Transit Network Model
Temporal Graph Model

We map the transit network onto a temporal graph G = (V,E, T, F ). Note that our model is
related to the time-expanded-graph model in [18], where each edge has a weight instead of
an availability time. Without modeling failure probabilities, the latter model can be used to
compute a route which minimizes the earliest arrival time.

To construct the temporal graph, we first add the vertices and edges that correspond to
a single-hop ride with a vehicle. Say that, according to the schedule, some vehicle of line l
leaves station s at time t and arrives at station s′ at time t′ . Then, there is a departure vertex
(dep, l, s, t) and an arrival vertex (arr, l, s′, t′) connected by a temporal edge with availability
time t′. Next, we add the connections that correspond either to transfers or to staying in a
vehicle. In particular, there is an edge connecting every arrival vertex (arr, l, s′, t′) to every
departure vertex (dep, l′, s′, t′′) at the same station s′ with larger departure time than arrival
time (t′′ > t′). Finally, there is a special extra vertex start. The start vertex is connected
to every departure vertex (dep, l, sstart, t) at the start station sstart with a temporal edge at
time t − 1 equal to the starting time minus 1. This shifting by one is necessary since the
traveler traverses strictly time-respecting paths.

The temporal graph has n = 2N + 1 vertices (recall that N is the size of the schedule).
Because of the transfer edges, the number of edges of the constructed graph depends on the
largest number of vehicles that pass through a station. Let d be this maximum number of
vehicles per station. Then, the temporal graph contains m = O(Nd) edges.

Every arrival vertex (arr, l, sdest, t) at the destination station sdest is a destination vertex.
The utility at such a destination vertex (arr, l, sdest, t) should correspond to an estimate of the
expected utility when using the vehicle v that arrives at that vertex. Given a list of observed
arrival times t1, . . . , tk for vehicle v at station sdest, compute Usdest =

(∑k
i Usdest(ti)

)
/k, the

average value of the utility function for those arrival times (Justification in Appendix A.2).
We now describe how to set the edge failure probabilities based on the probability that

vehicles are delayed. For simplicity, we assume that neither edges corresponding to traveling
(these go from a departure vertex to an arrival vertex) nor edges that correspond to staying
inside a vehicle can fail. This means that only transfer edges, which go from an arrival vertex
of some line l to a departure vertex of some other line l′ can fail completely. Intuitively, the
probability for this edge to fail is the probability that we are too late to catch the connection.
We are given samples for the arrival time of a vehicle a, departure time of vehicle b, and
transfer time between the two platforms. Then, the failure probability for the transfer edge
assuming independent vehicle travel is estimated as the fraction of samples where the transfer
is infeasible (i.e. the arrival time plus transfer time is larger than the departure time).

Note that we do not require to model the actual delay of vehicles (which can be time-
dependent and congestion-dependent [9]), since we are only interested in the probability to
miss a connection.
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Computation of the Policy

We can apply our policy construction algorithm from Section 2.2 to our model of a transit
network. We call such a policy a robust transit network routing policy and we obtain the
following bounds, which follow from Theorem 1 since the number of edges is in O(Nd):

I Corollary 3. For a schedule of size N where at most d vehicles run through any sta-
tion, computing a robust transit network routing policy with independent edge failures takes
O(Nd logN) time and uses O(Nd) space.

3.2 Experimental Methodology

We evaluate our algorithm by applying it to the public transportation network of the city of
Zurich (ZVV network). We investigate the performance of our routing policy on real transit
network delay data for the year 2018. Throughout all experiments, we consider a traveler
who wants to arrive at a given destination station at a given (hard) arrival deadline time x,
within some time budget b (i.e., the traveler starts the journey at time x− b in some station).
We considered three main questions for our study:
1. Quality of the solution. How well does the computed policy compare to a deterministic

schedule-based policy and how much room for improvement is there compared to an oracle
policy with perfect knowledge of the future?

2. Model error. How well do the predicted utilities (according to the policy) match the
simulated utilities when following the policy? The model error evaluates the underlying
model assumptions empirically (e.g., that edges fail independently).

3. Runtime. How does the time to compute a policy scale with the time budget b?
We evaluated these questions for time budgets between 10 and 60 minutes in 10-minute
increments. For our policies, we train an edge failure model that uses the last two weeks of
delay data before the first evaluated day.

Evaluation Approach

We evaluate the performance of the candidate policies for 38 destinations (and for each
destination for every possible departure station) and 13 random destination deadlines between
7am and 6pm.

For the evaluation, we first compute the frequency (during a 1 month period) with which
we can reach a given destination from a given source station at a given time using a given
candidate policy (and we repeat this for every such set of parameters). Then, we compute
the desired quantity (either an error value or some difference in utility) by averaging over
all source stations for the given destination. For the error metrics we take the average over
those source stations which reach the destination with nonzero probability (using the oracle
policy). Note that for the other source stations the error metric is trivially 0.

In Figures 3 – 6 we use box plots to show the results, where the dot indicates the median
of the values, the boxes indicate the lower and upper quartile, and the whiskers indicate
minima and maxima. Note that each plot summarizes data for different destination stations
and deadlines (and thus the variation is not due to probabilistic reasons only, but mainly due
to differences depending on the destination stations). See Appendix C for a more detailed
description of our experimental setup.
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Figure 3 Average improvement over the
schedule-based policy, plotted by time budget.
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Figure 4 Average potential for improvement
of our policy with respect to the oracle policy,
by time budget.

3.3 Results

Quality of the Solution

Figure 3 shows that the largest improvement (with respect to the schedule-based policy)
occurs for time budgets of 30 and 40 minutes, where it is 7− 11 percentage points depending
on the destination station and deadline. This makes sense, as for too short time budgets
there are few possible routes and there is not much to improve, while for very long time
budgets, the choices matter less as the traveler has enough slack time for delays. For the
longer configurations the median improvement is around 5 percentage points. For the very
short configurations (i.e., 10 minutes) the median improvement is only slight with 1 − 2
percentage points. Note that there are several destination stations where our improvement
over the deterministic policy is especially high (i.e., 10-40 percentage points). These are the
stations reachable by a single bus, where delays have a larger impact. Figure 4 shows that
the maximum potential for improvement over our policy lies between 2 and 8 percentage
points, where our policy is closer to optimal for longer time budgets. In conclusion, we see
significant improvements for the vast majority of configurations. Improvements are on the
order of improving the probability to be on time by around 5− 11 percentage points.

Model Accuracy

Figure 5 shows that the mean model error is small (less than 5 percentage points for all time
budgets). With increasing time budget, the mean error decreases slightly. Note that the
mean error is negative for most of the cases, which means that the simulated utility from the
policy is better than the expected utility from the model. Since the mean model error is
relatively small, this shows that in practice, the assumption that the edges fail independently
of each other does not significantly impact the applicability of the approach.

Note that the obtained error is nontrivial, as, interestingly, using 5 months old delay
data would yield a median error of 25 percentage points (and provide no improvement w.r.t.
the schedule-based policy): Our approach is able to capture seasonal variations in delay
distributions.
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Runtime

As seen in Figure 6, the median runtime is around 0.02 seconds for the 30 minutes time budget
and around 0.105 seconds for the 60 minutes time budget. As the time budget b increases,
we expect the runtime to grow slightly faster than proportional to b2. This is because the
number of possible transfers (and hence the size of the graph) increases quadratically with
the time budget. The observed runtimes roughly follow the predicted trend.

4 Conclusion

We showed an approach to robust adaptive routing in time-dependent networks that both
is tractable (computable in near-linear time in the size of the network) and yields useful
improvements in practice over a purely schedule-based routing despite our simplifying
assumptions (as exemplified by our analysis of travel inside a public transit network).

One next step could be to try variations on how to train the edge probabilities. It would
be interesting to investigate other types of dependencies between the edge failure distributions
and how they affect the quality of the solution.

We saw that the age of the training data affects the results. In principle, one could alter
the model every day and always use the most up-to date delay data (say over the last one
or two weeks) instead of changing the model every month as we did in our experiments.
Another extension would be to include other forms of travel, for example travel by foot. This
would not require a fundamental change in the model, but just a way to estimate travel
durations for these trips.

In terms of theory, it would be interesting to know how the error in approximating the
edge failure probabilities affects the error in the quality of the solution.

Future work could also include looking at applications of our approach for routing in
ephemeral or ad-hoc communication networks. In that context, a distributed computation of
the policy might be interesting.
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A Correctness Proofs

We show that the computed policies indeed achieve the largest possible utility. Moreover,
to justify our transit network model, we slightly generalize our notion of utility functions
to probabilistic utility functions. Then, we show that computing an optimal policy with
respect to the expectation of this probabilistic utility suffices to obtain an optimal policy
with respect to the probabilistic utility function.

We denote the expectation of a random variable X as E[X], denote its conditional
expectation given another random variable Y with E[X|Y ], and denote the probability of an
event E with P[E].

A.1 Deterministic Utility Functions

We show that the algorithm presented in Section 2.1 computes an optimal policy. The
algorithm in Section 2.2 is equivalent, as already argued therein.

I Theorem 4. The algorithm from Section 2.1 computes a policy that obtains the largest
possible expected utility for all start vertexes and start times.

Proof. The proof is by strong induction with decreasing time. The basic idea is that a policy
with largest expected utility starting from vertex i at time t must try to use some edge e
leaving i at time larger than t and use a policy that maximizes the expected utility for each
of the two possible outcomes (edge e fails or does not fail).

Let u?
i (t) be the largest possible expected utility of any policy starting at vertex i at time

t. That is, u?
i (t) gives the true optimal utility, whereas ui(t) is the computed utility. The

proof consists of showing the two are equal.
For any time t, the induction hypothesis H(t) is that for all times t′ > t and all vertexes i,

we have that ui(t′) = u?
i (t′). Assume that H(t) holds for some t > 0. We show that H(t− 1)

holds. Consider some vertex i. If i is a destination vertex, then ui(t) = Ui(t) = u?
i (t) holds

by construction. By H(t), then ui(t′) = Ui(t′) = u?
i (t′) holds for any t′ > t.

Next, consider the case where i is not a destination vertex. If there is no edge leaving
vertex i at a time larger than t, then ui(t) = U0 = u?

i (t), as there is no way to reach the
destination. Otherwise, the following equation is used to compute ui(t):

https://doi.org/10.1007/978-3-319-38851-9_16
https://doi.org/10.1007/978-3-319-38851-9_16
https://doi.org/10.1016/j.trc.2011.05.009
https://doi.org/10.1016/j.trc.2011.05.009
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ui(t) = max
e=(i,j)∈E

T (e)>t

(
(1− pe) · uj

(
T (e)

)
+ pe · ui

(
T (e)

))
.

By induction hypothesis, all the utilities appearing on the right-hand side correspond to
the largest possible expected utilities:

ui(t) = max
e=(i,j)∈E

T (e)>t

(
(1− pe) · u?

j

(
T (e)

)
+ pe · u?

i

(
T (e)

))
.

Let Pe be the policy that uses edge e first and continues using the optimal policy after
that. Let U(Pe) be its utility starting from vertex i at time t. Then, we can see that:

ui(t) = max
e=(i,j)∈E

T (e)>t

(
P[F (e) = 1] ·E[U(Pe) | F (e) = 1]

+ P[F (e) = 0] ·E[U(Pe) | F (e) = 0]
)

= max
e=(i,j)∈E

T (e)>t

E[U(Pe)]

= u?
i (t) ,

where the last step follows because among all possible policies Pe we choose the one with
largest expected utility. Finally, note that H(t) implies that ui(t′) = Ui(t′) = u?

i (t′) holds
for any t′ > t. J

A.2 Probabilistic Utility Functions
Recall that in our application to public transit networks in Section 3.1, we set the utility at a
destination vertex to the average utility for the observed arrival times. We proceed to justify
this as a way to compute optimal policies with respect to probabilistic utility functions.

For each destination vertex i, we introduce a random variable Ui that gives a utility
distribution at the destination vertex i (given that we arrive at vertex i). In order to be
able to define the expected value of a policy with respect to such utilities, we require that
these random variables have finite expectation. Moreover, we assume that each random
variable Ui is independent of the edge failure variables F . As before, we require that there is
a smallest (deterministic) utility U0 with the property that if the traveler gets stuck at a
non-destination vertex j, their utility is always Uj = U0.

The expected utility of a policy with start vertex i and start time t is now the expected
value of the utility function at the vertex where the traveler stops. Here, the expectation is
both over the random edge failures and the outcome of the utility functions.

We prove that if we replace the probabilistic utility functions with their expectations and
compute a policy with maximum value with respect to these deterministic utilities, we obtain
a policy with maximum expected utility with respect to the probabilistic utilities.

I Lemma 5. For every destination vertex i, set the utility Ui(t) to the expected value E[Ui],
(for all t). Let P be a policy with maximum expected utility with respect to Ui(t). Then, P is
a policy with maximum expected utility with respect to the probabilistic utilities Ui.
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Proof. Let the start vertex j and start time t be arbitrary.
Let P ′ be some policy, let U(P ′) be its utility with respect to the probabilistic utilities,

and let U(P ′) be its utility with respect to the deterministic utilities E[Ui]. The goal is to
show that E[U(P ′)] = E[U(P ′)]. Let Stop(P ′) be the random variable that denotes the
vertex where the traveler stops. By conditional expectation, we have that

E[U(P ′)] =
∑
i∈V

E[U(P ′) | Stop(P ′) = i] ·P[Stop(P ′) = i]

=
∑
i∈V

E[Ui | Stop(P ′) = i] ·P[Stop(P ′) = i]

=
∑
i∈V

E[Ui] ·P[Stop(P ′) = i]

=
∑
i∈V

E[U(P ′) | Stop(P ′) = i] ·P[Stop(P ′) = i]

= E[U(P ′)] .

where we can leave out conditioning on Stop(P ′) because the utilities Ui do not depend
on the edge failures (which are the only thing that affects where the traveler stops). We
can see that a policy P ′ that maximizes the expected utility E[U(P ′)] with respect to the
deterministic utilities also maximizes the expected utility E[U(P ′)] with respect to the
probabilistic utilities. J

B Last-Edge Markovian Failures

To compute an optimal policy for the case of Last-Edge-Markovian edge failures, we condition
the expected utility equations on the last edge that the traveler planned to take. Since we are
in a temporal graph, this implicitly also encodes the time at which the last edge was taken.
Notice that a decision only needs to happen at the times when there is an incident edge.

Note that the traveler is always aware of the last edge they planned to take when the
next decision needs to be taken. It would not yield any benefits for the traveler to condition
on an event the traveler cannot observe (as they could not gather the necessary information
to decide which case to use). If more global information was available, one could also
condition on the complete past at the cost of an explosion in runtime (the state space grows
exponentially with the number of past edges considered).

Proof (of Theorem 2). Let us describe the new dynamic program to compute an optimal
robust routing policy in a faulty network with Last-Edge-Markovian edge failures. The
approach is very similar to before, except that now we have different probabilities and we
cannot apply the optimization that reduced the computation time to O(1) per utility value.

The starting vertex receives a special dummy loop edge (at the starting time 0) so that
all equations have the same form. For each vertex i and each incident edge ẽ = (k, i) or
(i, k), we define the expected utility ui(ẽ) as the largest possible expected utility that can be
obtained starting from vertex i, given that ẽ is the last edge which the traveler planned to
take. Furthermore, we denote by pe|ẽ the probability that e fails conditioned on ẽ.

The base cases are as follows. The expected utility ui(ẽ) for the case where i is a
destination vertex i is initialized as Ui(T (ẽ)). In any case, the expected utility ui(ẽ) is U0

for every vertex i where there is no edge e that leaves after ẽ arrives.
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For all other cases, the expected utility equation is (by conditional expectation):

ui(ẽ) = max
e=(i,j)∈E
T (e)>T (ẽ)

(
(1− pe|ẽ) · uj

(
T (e)

)
+ pe|ẽ · ui

(
T (e)

) )
.

We evaluate the dynamic program in decreasing order of the edge availability times. This
works because the expected utility of an edge ẽ only depends on the utilities of edges e that
have strictly larger availability times, i.e., T (e) > T (ẽ).

Each vertex i has deg(i) entries that need to be computed. Each such entry depends
on O(deg(i)) other values. Hence, the runtime is O(m logm +

∑
i∈V deg2(i)). Note that

O(
∑

i∈V deg2(i)) = O(mmaxi deg(i)) = O(m2). J

C Experimental Setup

C.1 Data
We use the publicly available data set “Fahrzeiten 2018 der VBZ im SOLL-IST-Vergleich”1
from the VBZ (which is available via Open Data Zurich). It includes the actual (i.e. measured)
departure and arrival times for all buses and trams in the Zurich transit network. The data
also includes the scheduled times for those events. All times are reported in seconds (although
the measured accuracy may vary and is not specifically documented). Initial testing revealed
that a very small number (around 3− 8 per day) of departure/arrival pairs are erroneous
such that the departure time is larger than the arrival time. We ignore these clearly incorrect
data points in our study.

C.2 Algorithms
All evaluated approaches follow the basic idea of modeling the problem as a temporal graph
and computing a policy (in the sense of Section 2) that maximizes the utility given some
edge failure probabilities. For training our probabilistic policy, we use the delay data over the
last two weeks before the first evaluated week.

We compare our algorithm to the deterministic policy that follows the schedule to find a
journey with the earliest arrival time. This is equivalent to computing a policy using our
algorithm by setting the failure probabilities based on the schedule times and using a utility
that is zero minus the arrival time.

Moreover, we compare our algorithm to the oracle policy which has perfect knowledge of
which connections break and which do not. This means that the failure probabilities are set
based on the actual arrival and departure times. Note that the oracle policy will never miss
a connection and always arrives on time if that is possible at all.

C.3 Evaluation
We evaluated the performance of the candidate policies for 38 destinations (and for each
destination for every possible departure station). The stations are spread throughout the
city and are of varying size. Some are exclusively tram or bus stations, others run both. The
sample includes very centrally located stations and also more remote stations that often are
terminal stations.

1 https://data.stadt-zuerich.ch/dataset/vbz_fahrzeiten_ogd_2018, on 11.04.2019

ATMOS 2019

https://data.stadt-zuerich.ch/dataset/vbz_fahrzeiten_ogd_2018


4:18 Routing in Stochastic Public Transit Networks

For each destination station, we evaluated the policies during three 1-month evaluation
periods in the year 2018 (namely in February, May, and November). All three periods have
the same schedule. During this initial evaluation we focussed on 30 and 40 minute time
budgets. As the experiments did not show any qualitative differences between the three
time-periods, our final reporting focuses on the period in May (but reports on a larger variety
of time budgets, where we found larger differences).

During the implementation and pre-evaluation, we used only 18 of the evaluated destina-
tions and older data from the years 2015 and 2016. This helped us to avoid over-fitting our
implementation to the evaluation periods and chosen destination stations.

In each evaluation period, we considered the average performance of the policies over
the weekdays. For each configuration (which is given by an evaluation day, arrival deadline,
time budget, and destination station), we simulate travel using the candidate policies. In the
simulation, the feasibility of every transfer is determined based on the actual travel data for
that day. The time for a transfer is assumed to be fixed and known. When a transfer fails,
the policy is queried for a connection with time larger than the schedule time of the missed
connection.

Finally, we measured the runtime on the Euler compute cluster using nodes equipped
with Intel Xeon E5-2680 v3 processors (a 2.5 Ghz, 12-core processor with 30 MB last-level
cache). Our computations required at most 4 GB of RAM.
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Abstract
The network capacity expansion problem is a key network optimization problem practitioners regularly
face. There is an uncertainty associated with the future traffic demand, which we address using a
scenario-based robust optimization approach. In most literature on network design, the costs are
assumed to be linear functions of the added capacity, which is not true in practice. To address this,
two non-linear cost functions are investigated: (i) a linear cost with a fixed charge that is triggered
if any arc capacity is modified, and (ii) its generalization to piecewise-linear costs. The resulting
mixed-integer programming model is developed with the objective of minimizing the costs.

Numerical experiments were carried out for networks taken from the SNDlib database. We
show that networks of realistic sizes can be designed using non-linear cost functions on a standard
computer in a practical amount of time within negligible suboptimality. Although solution times
increase in comparison to a linear-cost or to a non-robust model, we find solutions to be beneficial
in practice. We further illustrate that including additional scenarios follows the law of diminishing
returns, indicating that little is gained by considering more than a handful of scenarios. Finally,
we show that the results of a robust optimization model compare favourably to the traditional
deterministic model optimized for the best-case, expected, or worst-case traffic demand, suggesting
that it should be used whenever computationally feasible.
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1 Introduction

Network design and capacity planning has always been of strategic importance in most
organization. This implies that it needs to be decided far ahead of time based on the
estimation of future traffic demand. Projection for future traffic is usually done using traffic
measurements and population statistics in combination with other marketing data. This
often results in a large discrepancy between planned and actual carried traffic volume and
distribution.
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To provide a more detailed motivation and positioning of our paper, we focus on the
telecommunications field (other network design applications, such as line planning for public
transport, are also well within the scope of this work). Here, this discrepancy could be as
large as 10% according to [3]. Hence, the re-forecasting and re-planning becomes a continuous
exercise using traffic measurements and traffic optimization tools, which are often based on
deterministic concepts assuming the traffic demand is estimated without error.

The demand for capacity in mobile wireless networks has seen an ever-growing trend
in the last couple of decades and growth rate is expected to be even higher going into the
future. This explosion in demand for data is coming at a lower cost rate. This means that in
order to provide an acceptable quality of service, capacity will need to be regularly extended
with optimal investment in capital expenditure. This balancing act of traffic volume, quality
of service and capital expenditure has made network capacity expansion a key strategic
function resulting in high global telecoms investment. Similar capacity expansion challenges
are present to network designers and operators in other types of networks as well, such as
transport networks. The network capacity expansion problem can hence be considered one of
the key network optimization problems practitioners are expected to regularly face in present
and future.

To have a network that is robust against uncertain estimated traffic demand, this
uncertainty needs to be factored in already during the planning and design process, which
we address using a scenario-based robust optimization approach. This methodology is geared
towards producing results that are insensitive to the uncertain demand, by solving the problem
using two separate stages. In the first stage, we determine the capacity expansion, and in
the second stage, demand scenarios are realized. The resulting mixed-integer programming
model is developed with the objective of minimizing costs.

In most literature on network design, costs are assumed to be linear functions of the
added capacity, which is not true in practice. Real-world costs typically follow a volume
discount regime which is reflected by a non-linear function and can be attributed to bulk buy.
To address this, two non-linear cost functions are investigated in this paper: (i) a linear cost
with a fixed charge that is triggered if any arc capacity is modified, and (ii) its generalization
that is piecewise-linear in added capacity.

To the best of our knowledge, this is the first paper that includes non-linear cost
functions in the robust network capacity planning problem. This extension leads to a more
computationally-demanding model than the one with linear cost. The contributions of our
paper are as follows: We show that networks of realistic sizes can be designed using non-linear
cost functions in a practical amount of time within negligible suboptimality. We present
the benefits of considering a robust optimization model (even with two scenarios) instead
of the traditional deterministic model, and present the benefits of considering non-linear
costs instead of the usual linear costs. It is illustrated that including additional scenarios
approximately follows the law of diminishing returns, indicating that little is gained by
considering more than a handful of scenarios. Finally, we show that the results of a robust
optimization model compare favourably to the traditional deterministic model optimized
for the best-case, expected, or worst-case traffic demand, suggesting that it should be used
whenever computationally feasible.

The rest of this paper is organized as follows. Section 2 presents a literature review of
related research. In Section 3, we then introduce the problem description of robust network
capacity expansion and mathematical models. Experimental results using networks from
the SNDLib (see [21]) are discussed in Section 4. Finally, Section 5 concludes our work and
points out future research directions.
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2 Literature Review

2.1 Robust Optimization in Network Design
In robust optimization, we assume that all possible data scenarios are given in form of
an uncertainty set. For general surveys, we refer, e.g., to [13, 14]. The classic approach
aims at finding a solution that is feasible for all scenarios from the uncertainty set, while
optimizing a worst-case performance. This approach is relaxed through two-stage robust
optimization, where not all decisions need to be taken in advance, see [6]. Instead, one
distinguishes between “here and now” decisions that need to be fixed in advance, and “wait
and see” variables that are determined once a scenario has been revealed. Two-stage robust
optimization problems are also known as adjustable robust counterparts.

Adjustable robust optimization has been applied to wireless telecommunication services
in the area of network design and expansion. This helps to model decisions that are delayed
in time, e.g., traffic needs to be routed only once the demand scenario is known. Three
closely related problems are the radio network design problem, the radio network loading
problem and the virtual private network problem [17].

In telecoms, the long term strategic network planning can be viewed as the first stage “here
and now” decision making, while the traffic redistribution that occurs after the realisation of
the traffic demand pattern would be the second stage “wait and see” adjustment decision.
Unrestricted second stage recourse in robust network design is called dynamic routing, see [7].
Most applications of adjustable robust optimization have focused on approximations that
put a restriction on the recourse.

A special type of recourse restriction based on a specific type of uncertainty model (Hose
model) has been proposed independently by [11] and [12] for an asynchronous transfer mode
and broadband traffic network. They also introduced the concept of static routing, which [5]
applied under their generalized polyhedral uncertainty model using a column and constraint
generation algorithm. [20] investigated network capacity expansion under demand and cost
uncertainty and recently, [23] used a cutting plane algorithm while taking into consideration
the outsourcing costs for unmet demand. Some papers use an affine decision rule to restrict
the recourse decisions, thus creating a tractable robust counterpart. [22] introduced affine
routing in their robust network capacity planning model, while [24] and [3] used polyhedral
uncertainty sets. On the other hand, [2] study the problem in detail by exploiting the
underlying network structure.

2.2 Related Work on Non-linear Cost Functions
In general, routing costs, transportation costs or capacity costs can be a non-linear functions
of traffic flows. In the following, we review literature on fixed-charge costs and piecewise-
linear costs.

2.2.1 Fixed-Charge Cost Models
In a network with fixed-charge costs, an initial outlay cost is incurred to make an arc available.
In this setting, one needs to pay a fixed initial cost in addition to the arc expansion cost.
The fixed costs could be the installation costs, cabinet outlay costs, additional energy or
utility costs and line replacement costs. Applications are found in wide areas of network
design problems and not limited to energy networks, transportation and communication. A
survey is provided by [16] that demonstrate many applications in logistics, transportation
and communications. The fixed-charge cost network design problem (FCND) has been found
to be NP-hard, see [16, 19].

ATMOS 2019
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Literature on the FCND has concentrated on solution algorithms for the different model
variants. [8] addressed the multi-commodity capacitated FCND using a cutting plane
algorithm with an improvement on the mixed-integer programming (MIP) formulation. [9]
presented a detailed survey on the use of Benders decomposition to solving a wide range
of FCND’s which includes two facility networks. This can be viewed as a two-commodity
network with a variant that introduces a quality of service measure. In [1], a heuristic
approach for separating and adding violated partition inequalities was implemented. [26]
solved a FCND using a variant of Benders decomposition which they referred to as the
Bender-and-cut technique. The closest work to our model is [18]. Here, they formulate
a robust network design problem with both transportation cost and demand uncertainty.
Investment in arc capacity is modeled as a binary decision (i.e., expansion or no expansion).
The model is approximated using an affine decision rule.

2.2.2 Piecewise-Linear Cost Models

The piecewise-linear cost model (PLC) can be used to model costs with economies of scale.
In general, optimization problems involving PLC arise in domains including transportation,
communications networks, large scale integrated circuits, supply chain management and
logistics planning. They are usually modeled as MIPs, see [25]. The problem has been proven
to be NP-hard for general concave cost objective functions, see [15].

As is the case for fixed-charge costs, most literature in this domain tends to focus on
solution algorithms, see [10]. A continuous relaxation technique for solving network design
with piecewise-linear costs was presented by [19]. [15] noted that exact techniques based
on dynamic programming and branch and bound are only efficient for specific subclasses
of the problem. A number of MIP model formulations exist for piecewise-linear functions.
The names for these were unified in [27], which also provides a performance comparison. In
terms of execution speed, they recommended the use of Multiple Choice Model (MCM) by
[4] or the Incremental approach for a small number of segments.

3 Problem Formulation

We consider a multi-commodity network design problem where capacities are to be added on
top of existing ones on a subset of arcs, with the aim of minimizing the total cost involved
and so that routing of traffic for the different commodities over the arcs subject to design and
network constraints is possible. We call this problem the Robust Network Capacity Expansion
Problem (RNCEP). We first introduce the basic problem version with linear costs, before
introducing two non-linear cost extensions.

3.1 RNCEP with Linear Costs

A communications network topology can be represented by a directed connected graph
G = (V,A). Each of the arcs a ∈ A has an original capacity ua. The original capacity
on each arc a can be expanded at a cost ca per each additional unit of capacity. A set of
commodities K represents potential traffic demands. A commodity k ∈ K corresponds to
node pair (sk, tk) ∈ V ×V and a demand dk ≥ 0 for traffic from sk to tk. The actual demand
values are considered to be uncertain and depend on random scenarios ξ ∈ Ξ. We assume a
finite set Ξ = {ξ1, . . . , ξN} of possible demand scenarios and write dk(ξ) for the demand of
pair (sk, tk) in scenario ξ.
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The robust network capacity expansion problem is to find a minimum-cost installation of
additional capacities while satisfying all traffic demands dk(ξ) for all k ∈ K and all ξ ∈ Ξ. In
this respect, RNCEP is a two-stage robust program. The additional capacity we install on
arc a ∈ A is denoted by xa and is a first stage decision variable, which has to be fixed before
observing a demand realization ξ ∈ Ξ. Once the demand scenario ξ becomes known, traffic
is routed through a multi-commodity flow with variables fka (ξ).

Let δ+(v) and δ−(v) denote the sets of outgoing and incoming arcs at node v ∈ V,
respectively. The problem can now be formulated as the following linear program.

min
∑
a∈A

caxa (1)

s.t.
∑

a∈δ−(v)

fka (ξ)−
∑

a∈δ+(v)

fka (ξ) =


−dk(ξ) if v = sk

dk(ξ) if v = tk

0 otherwise
∀v ∈ V, k ∈ K, ξ ∈ Ξ (2)

∑
k∈K

fka (ξ) ≤ ua + xa ∀ξ ∈ Ξ, a ∈ A (3)

fka (ξ) ≥ 0 ∀k ∈ K, ξ ∈ Ξ, a ∈ A (4)
xa ≥ 0 ∀a ∈ A (5)

Objective function (1) is to minimize the total cost of capacity expansion subject to flow
conservation constraint (2), while constraint (3) imposes that the amount of flow does not
exceed the sum of existing and added arc capacity.

3.2 RNCEP with Fixed-Charge Costs
We now introduce an extension of the previous model, where a fixed charge occurs if the
capacity of an arc is modified. To this end, let pa be this fixed charge associated with arc
a ∈ A.

We introduce a new variable ha ∈ {0, 1} to denote if the capacity of arc a is modified.
The RNCEP with fixed-charge costs can then be formulated as the following mixed-integer
program:

min
∑
a∈A

(caxa + hapa) (6)

s.t. xa ≤Maha ∀a ∈ A (7)
ha ∈ {0, 1} ∀a ∈ A (8)
Constraints (2)− (5) (9)

Here, Ma for all a are constants that are sufficiently large not to restrict the solution. For
instance, taking any Ma ≥ maxξ∈Ξ

∑
k∈K d

k(ξ) for all a is valid.

3.3 RNCEP with Piecewise-Linear Cost
We further extend the RNCEP by introducing a piecewise-linear cost function. To this end,
we apply the multiple choice model (MCM) as mentioned in the literature review. We assume
that for every arc, there are up to S segments with different slopes in the cost function. Let
us write S = {1, . . . , S}. For every arc a and segment s, let bsa denote the load breakpoint,
with an additionally defined b0a := 0. Let csa denote the cost slope of segment s, and psa its
y-intercept.
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In addition to the variables of RNCEP, we introduce two new sets of auxiliary variables.
Variables hsa are binary variables that select the cost segment where the added capacity
xa falls in. Variables xsa denote the amount of capacity that is added within each cost
segment. This gives the following mixed-integer programming formulation for the RNCEP
with piecewise-linear costs:

min
∑
s∈S

∑
a∈A

(csaxsa + hsap
s
a) (10)

s.t. xa =
∑
s∈S

xsa ∀a ∈ A (11)

bs−1
a hsa ≤ xsa ≤ bsahsa ∀a ∈ A, s ∈ S (12)∑
s∈S

hsa ≤ 1 ∀a ∈ A (13)

xa ≤Ma

∑
s∈S

hsa ∀a ∈ A (14)

xsa ≥ 0 ∀a ∈ A, s ∈ S (15)
hsa ∈ {0, 1} ∀a ∈ A, s ∈ S (16)
Constraints (2)− (5) (17)

4 Experimental Study

We implemented the fixed-charge cost model and the piecewise-linear cost model using
instances from the SNDLib library by [21]. Network parameters characteristics on the four
considered networks from SNDLib are presented in Table 1.

Table 1 Network parameters characteristics (rounded to integers).

Network Janos26 Janos39 Sun27 Node39

|V| 26 39 27 39
|A| 84 122 102 172
|K| 650 1,482 67 1,471
dk (mean±SD) 123±198 69±243 28±16 5±2
ua (mean±SD) 64±0 1,008±0 40±0 160±0
ca (mean±SD) 468±225 313±162 19±10 23±11

Models were implemented using Julia and Gurobi version 7.5 on a Lenovo desktop machine
with 8 GB RAM and Intel Core i5-6500 CPU at 2.50Ghz on 4 Cores. We used a time limit
of 4000s for each problem instance and optimality is achieved once the optimality gap is
below 0.01%.

4.1 Experimental Setup
Both the fixed-charge cost and the piecewise-linear cost models were implemented with
one scenario (single-scenario) and with two scenarios (double-scenario). The base demand
scenario was provided from the SNDLib library, which we randomly modified to generate
additional demand scenarios. The amount of modification is controlled by a parameter
λ, the maximum deviation of modified demand from the base demand. The parameter λ
is chosen to be a fraction of the mean base demand d̂; we consider λ = round(0.3d̂) and
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Table 2 Experimental setup for generating 120 problem instances for each network.

Parameters # options Options

Number of scenarios 2 1 (single) / 2 (double)
Scenario variability λ 2 0.3d̂ / 0.6d̂
Fixed-charge factor P 3 0 / 10 / 100
Number of runs 10 —

Table 3 Proportion of instances not solved to optimality within the time limit (rounded to one
decimal).

Network Janos26 Janos39 Sun27 Node39

Total 0.0% 24.2% 35.0% 66.7%

P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 12.5% 100.0%
P = 100 0.0% 72.5% 92.5% 100.0%

Single-scenario 0.0% 15.0% 28.3% 66.7%
Double-scenario 0.0% 33.3% 41.7% 66.7%

λ = 2 · round(0.3d̂), corresponding to small uncertainty and large uncertainty, respectively.
The value is then used as a bound for uniformly generating the modified demands around
the base demand of every arc.

We summarize the experimental setup in Table 2. For each of the four networks, we
consider the single-scenario and the double-scenario case, as well as small and large uncertainty.
Additionally, for fixed-cost models we use three different fixed-charge factors P . These are
used to calculate the fixed charges pa of arc a by setting pa = Pca. With P = 0, we recover
the basic linear cost model without fixed charge. All networks and parameter settings are
run 10 times to reduce variability in the results. In total, this gives 4 · 2 · 2 · 3 · 10 = 480
optimization problem instances that need to be solved for the fixed charge case. For the
piecewise-linear case, we follow the same setup with 4 · 2 · 2 · 10 = 160 instances. Each arc
has three cost segments where the cost of each segment is calculated as ratio of the nominal
arc cost. This gives segment costs as csa = ca · rs where r ∈ {1.00, 0.90, 0.75}.

4.2 Results for RNCEP with Fixed-Charge Cost
4.2.1 Single- and Double-Scenario Results
Table 3 summarizes the results of the 480 problem instances, reporting the proportion
of instances that were not solved to optimality within the time limit. We can see the
optimization performance of problem instances in total, for different values of P , and for
different number of scenarios. This performance measure gives a high-level summary of the
hardness of particular instances. We can conclude that the instances become harder to solve
as P increases, or as the number of scenarios increases.

Other performance metrics are presented in more detail in Table 4 and Table 5, where
each cell gives an average and standard deviation from a sample of 20 problem instances.
Optimality gap refers to the sub-optimality estimated and reported by Gurobi using the
built-in procedure for lower-bounding the objective. Solution time is the time reported by
Gurobi, capped by the time limit. Capacity added is the overall network capacity added on
top of the original capacity (which can be calculated as |A|ua from Table 1).
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Table 4 Single-scenario results (rounded to one decimal).

Janos26 Janos39 Sun27 Node39

Optimality gap P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 0.0% 7.7 ±2.9%
P = 100 0.0% 0.3 ±0.6% 5.0 ±2.8% 51.9 ±4.8%

Solution time P = 0 6.5 ±0.5 156.9 ±17.0 0.3 ±0.1 536.4 ±82.2
P = 10 7.4 ±0.6 227.1 ±86.0 201.7 ±201.4 4,000.1 ±0.0
P = 100 10.8 ±2.1 3,120.9 ±1,088.0 3,694.8 ±815.9 4,000.1 ±0.1

Capacity added P = 0 268,698 ±23,970 331,864 ±57,041 3,043 ±271 1,194 ±357
P = 10 270,931 ±23,195 329,330 ±54,751 2,925 ±412 1,204 ±281
P = 100 275,409 ±23,476 321,808 ±53,261 3,652 ±447 1,167 ±357

Table 5 Double-scenario results (rounded to one decimal).

Janos26 Janos39 Sun27 Node39

Optimality gap P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 0.1 ±0.2% 11.0 ±1.8%
P = 100 0.0% 1.3 ±0.5% 10.8 ±1.4% 57.1 ±3.3%

Solution time P = 0 88.4 ±25.1 1,285.6 ±349.5 1.2 ±0.2 2,256.6 ±317.9
P = 10 92.2 ±21.0 2,373.9 ±770.5 1,729.0 ±1,418.2 4,000.2 ±0.1
P = 100 189.0 ±57.7 4,000.3 ±0.2 4,000.1 ±0.1 4,000.2 ±0.1

Capacity added P = 0 278,358 ±8,988 363,225 ±26,348 4,399 ±304 1,185 ±154
P = 10 278,031 ±7,857 367,324 ±18,522 4,635 ±329 1,286 ±254
P = 100 282,467 ±9,830 368,547 ±19,887 5,668 ±503 1,236 ±254

Interestingly, network Sun27 shows large variability in solution time, for both single-
scenario and double-scenario settings. While with P = 0 it is the quickest to solve out of
all networks, for larger values of P it is roughly similar to Janos39, despite dealing with a
smaller number of commodities. On the other hand, solution time of Janos26 is affected very
little by different values of P .

Comparing the solution time reported in Table 4 and Table 5, the double-scenario model,
as expected, takes longer to solve to optimality as the goal here is to factor in robustness into
the solution. On average, this double-scenario model resulted in 7.39% additional capacity
across the networks for instances that were solved to optimality. The average increase in
solution time across the instances that were solved to optimality is 828.24%.

We also note that capacity added is highly network dependent. The capacities of Janos26
and Janos39 are expanded dramatically due to the high variability in the demand, which for
some commodities significantly exceeds the original capacity (see Table 1). On the other
hand, the demands in Sun27 and Node39 are small compared to the original capacity, so the
capacity added is relatively small.

Not reported elsewhere is the effect of scenario variability λ: the solution time becomes
smaller if the uncertainty is larger, i.e., on the average for all the networks and parameter
settings, the 0.6d̂ variability results in lower solution times than for the 0.3d̂ variability.
This was also found to be the trend when looking at single networks. This is summarized
in Table 6.
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Overall, it is possible to solve most of the problem instances to optimality within the
time limit, and even most of those not solved to optimality report very small optimality gap.
The only settings that would significantly benefit from an increased time limit are Sun27 at
P = 100 and Node39 at P = 10 and P = 100.

4.2.2 Effect of Number of Scenarios
While the previous discussion focused only on single- and double-scenario instances, it is
also of interest to understand how an increased number of scenarios affects the performance
measures. Considering more scenarios is expected to lead to a solution which in practical
terms guarantees the network ability to accommodate a higher level of demand variation
and provides additional capacity.

To illustrate that, we tested network Janos26 with fixed charge P = 10. We started
with a single-scenario instance, where the base scenario considered reflects the expected
demand (this is the original demand from SNDLib). We then generated and gradually added
additional scenarios by randomly perturbating all the demands of the base scenario within
±λ, in the large uncertainty setting.

For comparison, we also considered the optimistic instance, which is a single-scenario
instance in which the demand is generated by subtracting λ from the expected demand on
every arc. This instance expands the capacity of the network to satisfy only the smallest
demand scenario, and would be almost surely unable to satisfy the realized demand. Finally,
we considered the pessimistic instance, which is a single-scenario instance in which the
demand is generated by adding λ to the expected demand on every arc. This instance
expands the capacity of the network to satisfy all the possible demand scenarios.

The results are presented in Table 7. These results are representative; similar results
were obtained when we replicated the experiment with other randomly generated scenarios.
The key observations are as follows: By gradually expanding the set of scenarios, the cost
(our minimization objective) non-decreases; the added capacity follows a similar trend, but
is not necessarily monotone (cf. 8 vs 9 scenarios); the solution time (reported in seconds
and as a multiple of the expected scenario instance) increases exponentially; expansion
by adding more scenarios approximately follows the law of diminishing returns in both
the cost and added capacity: the increase is highest when expanding from 1 (expected)
scenario to 2 scenarios (which includes the expected scenario and one randomly generated),
with only a minor increase when considering more than 3 scenarios, indicating the value of
considering a robust optimization approach even with few scenarios; the increase in both the
cost and added capacity is dramatic (36.9%) when expanding from 1 (expected) scenario to 2
scenarios (which includes the expected scenario and one randomly generated), indicating that
optimizing the network based on the expected scenario (i.e. on point forecasts) only may be an
inappropriate approach, leading to a large amount of unsatisfied realized demand; optimizing
the network for the pessimistic scenario is very expensive (the increase in both the cost and
added capacity is about 115% compared to the expected scenario), indicating the value of

Table 6 Effect of higher λ on solution time.

Solution Time Single Scenario Double Scenario

λ = 0.3d̂ 527.31 3,010.85
λ = 0.6d̂ 346.62 2,299.23
% Improvement 34.3% 23.6%
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Table 7 Results on Janos26 with fixed-charge cost (P = 10) for different numbers of scenarios.

# Scenarios Cost ∆Cost Added ∆Added Time ∝Time
(in 103) Capacity Capacity (sec.)

1 (optimistic) 83,001 -10.9% 192,610 -9.2% 8 1x

1 (expected) 93,116 — 212,104 — 8 —
2 127,484 36.9% 292,893 38.1% 59 8x
3 129,804 39.4% 298,131 40.6% 376 50x
4 130,265 39.9% 300,426 41.6% 768 102x
5 130,272 39.9% 300,492 41.7% 1,080 143x
6 130,462 40.1% 300,913 41.9% 3,124 413x
7 130,753 40.4% 301,598 42.2% 2,488 329x
8 131,206 40.9% 301,936 42.4% 4,456 589x
9 131,255 41.0% 301,715 42.2% 8,869 1173x

1 (pessimistic) 200,593 115.4% 456,182 115.1% 8 1x

Table 8 Solution results for piecewise-linear cost.

Single-Scenario Sun27 Janos26 Janos39 Node39

Optimality Gap 0.00% 2.90% 10.43% 22.43%
Solution time 653.67 ±640.84 4000.22 ±0.11 4000.22 ±0.06 4000.16 ±0.04
Capacity Added 2,863 ±539 276,172 ±26,036 335,258 ±58,895 1,472 ±574

Double-Scenario

Optimality Gap 1.43% 6.73% 37.44% 77.99%
Solution time 4000.04 ±0.01 4000.21 ±0.23 4000.10 ±0.03 4000.12 ±0.04
Capacity Added 4,380 ±278 296,354 ±11,398 472,889 ±110,491 4,117 ±2,601

considering a robust optimization approach even with few scenarios; optimizing the network
for the optimistic scenario leads to savings (the decrease in both the cost and added capacity
is about 10% compared to the expected scenario), but may not be acceptable in practice if
the consequences of having practically no satisfied realized demand are non-negligible.

These results provide an indication of the ability of our model to become more robust
by including more demand scenarios. We note that Gurobi was able to deal with up to
approximately 200 scenarios for this network without giving an out-of-memory error, however,
it would be unlikely to compute a close-to-optimal solution in a reasonable amount of time.

4.3 Results for RNCEP with Piecewise-Linear Costs
Next we consider the robust network capacity expansion problem with piecewise-linear costs.
Overall, 12.5% of all problem instances were solved to optimality within the time limit, 77.5%
returned a non-optimal solution, and 10% were timed out already during the root relaxation.
None of the double-scenario problem instances reached optimality within the time limit. Only
one of the networks, Sun27, reached optimality and this was for all the problem instances
in the single-scenario case. Two networks, Janos39 and Node39, had instances timing out
under the root relaxation phase.
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Figure 1 Optimality gap for piecewise-linear cost.

Table 8 presents more detailed results of this model for each network. The optimality gap
is further illustrated in Figure 1, indicating that the optimality gap may be acceptable because
of small values and small variability for Sun27 and Janos26 in the single-scenario setting
and for Sun27 in the double-scenario setting. Better solutions can of course be achieved by
increasing the time limit, which would be recommendable in the remaining settings.

The optimality gap provides insight into the increased difficulty of solving these problem
instances, which also translates into longer solution time. It takes at least 512% more time to
solve the double-scenario models compared to the single-scenario using Sun27 network, which
is the easiest setting considering its very low optimality gap of 1.43% for the double-scenario
instances. A further analysis was performed on the solution time using the paired sample
t-Test which indicates no significant difference between solution time returned by 0.3d̂ and
0.6d̂ with a t-statistic of −0.2047 and a p-value 0.8423.

5 Conclusions

In this paper, a robust approach to network capacity expansion with non-linear cost func-
tions was investigated. We developed robust models with fixed-charge costs and with
piecewise-linear costs. They were implemented on four networks taken from the SNDlib,
[21], with results compared to using linear costs. In the experimental setup, a number of
possible parameter configurations was considered, including different demand variability and
fixed-charges.

When further increasing the number of scenarios, we found that results follow a law of
diminishing returns. While objective values and added capacity change little beyond five
scenarios, computation times increase considerably. This is an indicator that already few
scenarios suffice to find solutions that are robust against uncertainty in demand. The next
pursuit will be to further improve the solution time for these models testing a path-based
flow formulation and by developing specialized algorithms based on column generation and
Benders decomposition.
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Abstract
Delay management is concerned with making decisions if a train should wait for passengers from
delayed trains or if it should depart on time. Models for delay management exist and can be adapted
to capacities of stations, capacities of tracks, or respect vehicle and driver schedules, passengers’
routes and further constraints. Nevertheless, what has been neglected so far, is that a train cannot
depart as planned if passengers from another train trickle in one after another such that the doors
of the departing train cannot close. This effect is often observed in real-world, but has not yet been
taken into account in delay management.

We show the impact of this “trickle-in” effect to departure delays of trains under different
conditions. We then modify existing delay management models to take the trickle-in effect into
account. This can be done by forbidding certain intervals for departure. We present an integer
programming formulation with these additional constraints resulting in a generalization of classic
delay management models. We analyze the resulting model and identify parameters with which it
can be best approximated by the classical delay management problem.

Experimentally, we show that the trickle-in effect has a high impact on the overall delay of public
transport systems. We discuss the impact of the trickle-in effect on the objective function value and
on the computation time of the delay management problem. We also analyze the trickle-in effect for
timetables which have been derived without taking this particular behavioral pattern of passengers
into account.
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1 Introduction

Delays constitute a major source of uncertainty when operating a railway or bus system. If
a train is delayed, many rescheduling decisions have to be made, disturbing the nominal
schedule of a public transport system. The question, whether an otherwise punctual train
should wait for a delayed feeder train in order to allow transferring passengers to reach their
connections, is known as delay management problem and has been studied extensively in the
literature. The first papers dealing with this kind of question date back to [21, 23]. Integer
programming models have been developed in [22, 5]. In order to make them more realistic,
capacities along tracks have been included in [18], capacities at stations have been included
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in [7] and passenger re-routing has been studied in [9, 20, 17]. Rescheduling of timetables,
rolling stock and crew is studied in [8]. For all these cases algorithms have been developed,
see [10] for a recent survey on the state of the art.

Delay management aims at minimizing passengers’ delays by taking dependencies between
delays into account (see [4]). Delays propagate along driving activities, i.e., if a train departs
with some delay, then it also arrives at its next station with some delay – reduced by buffer
time possibly included in the timetable. Delays also propagate along waiting activities in
stations: If a train arrives at a station with some delay, it will probably also depart with some
delay which again might have been reduced by buffer time. Finally, delays can propagate
along changing activities as well. This is the case if a dispatcher decides that a connection
from one train to another train should be maintained. Then the outgoing train will receive
some delay by waiting for the delayed feeder train.

Nevertheless, there is an effect that has been neglected in the literature so far: A dispatcher
may decide that a train should depart on time, but it may not be possible for the train to
do so. To illustrate this issue, suppose a delayed train A arrives at a station and some of
its passengers want to transfer at this station to another train B. The delay management
problem requires a decision, whether train B should depart on time or wait for the passengers
from train A.

If train B is supposed to depart before train A has arrived, the delay management models
work correctly. In this case, no delay propagates from train A to train B.
If train B is supposed to wait long enough, the delay management models also work
correctly and the delay propagates along the changing activity to the departure of train B.
If, however, train B is supposed to depart shortly after train A has arrived without
waiting for the passengers from train A, then the models fail. This is the case because
normal delay management models assume that there is one common time that passengers
need for walking from train A’s platform to train B’s platform. Instead, there may be
quick and slow passengers. If the fastest passenger reaches train B before its departure,
she can board. While getting onto train B, another fast passenger might arrive and while
he boards, the next one will arrive, and so forth. In this way, all passengers might enter
the train in a continuous stream preventing the train doors to close. Train B hence has
to wait until finally even the slowest passengers from train A arrive and board train B.
This effect has been simulated in [1] where it is called trickle-in effect.
The same effect may also prolong the waiting time of train B in the case that B is
supposed to wait for the passengers of train A since it may take longer to allow all
passengers to trickle in than the lower bounds on the changing times suggest.

Note that the trickle-in effect is not only triggered by passengers not moving with the same
speed, but also by the fact that passengers are not able to unboard train A instantaneously.
Most readers will have experienced the situation of standing in a train corridor while waiting
a decent amount of time for the passengers in front of them to unboard. This can result in a
different transfer time of two passengers, even though they are able to walk with similar speed.

As a consequence, there exists a time interval in which train B is not able to depart,
namely between the arrival of the fastest passenger and the arrival of the slowest passenger
(assuming that there is no gap in speed of the passengers big enough to allow the doors of
train B to close). We will call this interval trickling interval.

[1] show that the trickle-in effect, which can also be observed in many real-world situations,
is in fact relevant. Our experiments (see Section 5) show that delay management decisions,
which are optimal in the sense of classical delay management models, often schedule trains
to depart in the “forbidden” trickling interval. If, for example, the trickling interval is (2, 5)
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minutes and if all changing activities are distributed uniformly in [2, 62) minutes (assuming
a time period of 60 minutes), we can expect about 5% of all train departures to lie in the
trickling interval. These departures are most likely not realizable and will cause additional
delays. Hence, it is necessary to add this additional constraint to delay management models
which is exactly what we do in this paper. We show how such an additional constraint can
be included in classical delay management models, subsequently analyze the mathematical
relation between the classical model and the one with the additional constraints, and finally
show in experiments that delay management strategies change if the trickle-in effect is
considered. We believe that by adding this detail we take a further step in bringing delay
management models closer to practice.

The remainder of the paper is structured as follows. In Section 2 we recap the classical
model for delay management. Section 3 models the trickle-in effect by introducing an
additional constraint to the classical delay management model. We investigate theoretical
consequences when adding the trickle-in effect to the classical delay management model in
Section 4. Section 5 studies its practical effects in an experimental study on close-to-real-
world data from LinTim [11, 19]. Integrating the trickle-in effect in models for (periodic)
timetabling is identified as an extension and briefly discussed in Section 6, where we also
conclude the contributions, discuss limitations of our work as well as venues of future research.

2 The Classical Delay Management Model

The delay management problem is defined as follows: Given an event-activity network, a
timetable and some source delays, decide which connections should be maintained and which
should be dropped such that the average delay of all passengers at their final destinations is
minimal. The delay management problem was first introduced in [21], a recent overview is
given in [10].

We hence have to first introduce the concept of event-activity networks (see [14] for its
application in timetabling and [22] for its application in delay management). An event-
activity network is a directed graph N = (E ,A), where E consists of arrival and departure
events Earr and Edep, respectively. A timetable π ∈ N|E| assigns each event i ∈ E to a time
πi ∈ N. If a delay occurs, the given timetable π has to be updated to a so-called disposition
timetable x ∈ N|E|. To represent the constraints that have to be satisfied by a (disposition)
timetable, we need the following types of activities, A = Adrive ∪ Await ∪ Achange. Each of
them is assigned to a minimal duration La > 0. The meaning of these activities is given as
follows (see also Figure 1).

Driving activities Adrive ⊂ Edep×Earr model the driving of a train between two consecutive
stations, i.e. a driving activity connects a departure event of some train with its next
arrival event. The duration La > 0 of a driving activity a = (i, j) represents the minimal
necessary driving time between the departure event i and the arrival event j. Note that
turnaround edges may be handled in the same way as driving activities.
Waiting activities (also called dwelling activities) Await ⊂ Earr × Edep represent the time
period in which a train is waiting at a station to let passengers get on or off; a waiting
activity hence connects an arrival event of some train with its next departure event. Its
duration La > 0 describes the minimal time required to allow boarding and unboarding;
sometimes it also includes exchanging train crews or other actions.
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Figure 1 An event-activity network with three trains and four stations. The solid (black) arcs
represent driving and waiting activities of the trains. The dashed (blue) arcs represent changing
activities which are possible between Train 2 and Train 3 at Station 3 and between Train 1 and
Train 2 at Station 2.

If two events i, j ∈ E are connected by an activity (i, j) ∈ Adrive ∪ Await, then event i has to
be performed before event j can take place. In particular, the disposition timetable x has
to satisfy

xj − xi ≥ La

for all a = (i, j) ∈ Adrive ∪ Await.
Changing activities Achange ⊂ Earr × Edep allow passengers to transfer from an incoming
train to an outgoing train. Hence, a changing activity connects an arrival event of some
train at some station with a departure event of another train at the same station. The
lower bound La > 0 refers to the minimum time a passenger needs to transfer between
both trains. In order to solve the delay management problem we have to decide for each
changing activity if it should be kept or if it can be deleted. In case that a changing
activity a = (i, j) is kept, the disposition timetable x must satisfy xj − xi ≥ La. If
the changing activity is deleted, the outgoing train can depart without waiting for the
incoming train and this inequality does not need to be satisfied anymore.

We remark that other types of activities such as headway activities or turnaround activities
may be added, see [10] for the respective models. Notwithstanding that, in this work we
focus on the classical model.

To formulate an integer programming model of the delay management problem, we next
have to formally introduce the delays. We assume that a set of unexpected source delays
is known, e.g., caused by signaling problems, construction work, accidents, or bad weather
conditions. These source delays cause secondary delays, e.g., for the same train at subsequent
stations or for other trains that wait for the delayed train. In our work we allow two types
of source delays: The first type is a delay di ∈ N at an event i ∈ E (e.g., staff coming too
late to their duty) referring to a fixed point of time. In this case, xi ≥ πi + di is required.
The second type of source delay is a delay da which increases the duration of an activity
a = (i, j) ∈ Adrive ∪ Await, e.g., an increase of traveling time between two stations due to
construction work. Such a delay da has to be added to the minimal duration La of activity
a. If an event or an activity has no source delay, we assume di = 0 or da = 0, respectively, to
simplify the notation.

In the objective function we evaluate the disposition timetable from the passengers’ point
of view. To this end, let wi be the number of passengers unboarding the train at event
i ∈ E (thus, wi = 0 for all i ∈ Edep) and wa be the number of passengers who want to use
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a changing activity a ∈ Achange. We assume wa > 0 for all a ∈ Achange – otherwise, the
changing activity could be removed from the network, since nobody uses it. We further
assume that all lines have a common period T , i.e., every line is served by a train every T
minutes. Note that this assumption can be relaxed by introducing periods Ta for all changing
activities a ∈ Achange.

We can now state the integer programming formulation for the basic version of the delay
management problem. To model the wait-depart decisions, i.e., whether some train should
wait for some other train at a station or not, we introduce binary variables

za =
{

0 if changing activity a is maintained
1 otherwise

for all changing activities a ∈ Achange. The integer programming formulation then reads as
follows:

min
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT (DM)

s.t. xi ≥ πi + di ∀i ∈ E (1)
xj − xi ≥ La + da ∀a = (i, j) ∈ Adrive ∪ Await (2)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Achange (3)
xi ∈ N ∀i ∈ E
za ∈ {0, 1} ∀a ∈ Achange

where M is a fixed constant. The meaning of the objective function and of the constraints
is explained next.

The first term of the objective function minimizes the sum of all delays of all events. If
all connections were maintained, this would be the sum of delays for all passenger at their
final destination. The second term adds the weighted sum of all missed connections with a
penalty of one time period T (or Ta if we drop the assumption of a common period of all
lines) a passenger has to wait for the next train of the same line. The objective function is
hence an approximation of the sum of all delays over all passengers. It has been shown in
[22] that it is not an approximation, but exactly computes the sum of all passengers’ delays
if the so-called never-meet property holds.

Constraints (1) and (2) ensure that the delay is passed on correctly along driving and
waiting activities. (3) does the same for maintained changing activities (i.e. if za = 0). If,
however, za = 1, constraints (3) get redundant if M is chosen big enough. If no capacity
constraints are considered and da = 0 for all a ∈ A, [22] shows that choosing M as the
largest source delay maxi∈E di is sufficient. Solution methods for (DM) mainly rely on integer
programming, see [10] and references therein.

3 Modeling the Trickle-in Effect

In this section we adapt the classical delay management model (DM) by taking the following
two phenomena into account:
1. Passengers do not change with the same speed. There may be fast and slow passengers

and a decision for keeping a changing activity means practically that the train waits for
all (even for the slowest) passengers.

2. Due to the trickle-in effect, trains are not able to depart while passengers are still boarding.
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The first point is modeled by using a time interval (Lmin
a , Lmax

a ) instead of a fixed time
La to describe the duration of the changing activities. We hence replace La in constraints
(3) by Lmax

a . The second point implies that a train can either depart before the fastest
passenger has arrived or after the slowest one has boarded, i.e., it cannot depart in the interval
(xi + Lmin

a , xi + Lmax
a ). This restriction is modeled by adding new constraints as follows.

I Lemma 1. Let a = (i, j) ∈ Achange. There exists za ∈ {0, 1} such that

Mza + xj − xi ≥ Lmax
a (4)

M(za − 1) + xj − xi ≤ Lmin
a (5)

are both satisfied if and only if

xj 6∈ (xi + Lmin
a , xi + Lmax

a ). (6)

Proof. Let (4) and (5) hold for some za ∈ {0, 1}. If za = 0, (4) reduces to xj ≥ xi + Lmax
a .

On the other hand, if za = 1 then (5) reduces to xj ≤ xi + Lmin
a . In both cases, xj 6∈

(xi + Lmin
a , xi + Lmax

a ).

Vice versa, let xj 6∈ (xi + Lmin
a , xi + Lmax

a ). If xj ≤ xi + Lmin
a we choose za = 1 to see

that both, (4) and (5) hold. On the other hand, if xj ≥ xi + Lmax
a then za = 0 guarantees

that (4) and (5) are satisfied. J

The proof of Lemma 1 specifies two possible cases for a dispatcher:
The changing activity is maintained (za = 0) if and only if the train departs after the
last passengers have boarded xj ≥ xi + Lmax

a .
The changing activity is dropped (za = 1) if and only if the train departs before the first
passengers have boarded xj ≤ xi + Lmin

a .

The resulting model (DM-trick) is hence given as

min
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT (DM-trick)

s.t. xi ≥ πi + di ∀i ∈ E (7)
xj − xi ≥ La + da ∀a = (i, j) ∈ Adrive ∪ Await (8)

Mza + xj − xi ≥ Lmax
a ∀a = (i, j) ∈ Achange (9)

M(za − 1) + xj − xi ≤ Lmin
a ∀a = (i, j) ∈ Achange (10)

xi ∈ N ∀i ∈ E
za ∈ {0, 1} ∀a ∈ Achange

We remark that (DM-trick) contains (DM) as a special case by setting Lmax
a := La and

Lmin
a := La − 1 for all a ∈ A, i.e., it is a proper extension of the classical delay management

model: Constraint (10) may not be contained as an explicit constraint in (DM), but is
implicitly contained. This is the case because for every transfer a = (i, j) ∈ A that is missed
(za = 1) it needs to hold that xj −xi ≤ La− 1 since otherwise there would have been enough
time to connect event i with event j and due to the objective function za would have been
set to 0.

Trickle-in constraints can also be combined with all other extensions known for delay
management, i.e., it is possible to consider headway constraints as in [18], station capacity
constraints as in [7], or passenger routing constraints as in [9]. For the sake of simplicity we
compare (DM) and (DM-trick) in their basic versions as given above.
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4 Analyzing the New Model

As already mentioned in Section 2, for the classical delay management problem it suffices
to choose M as large as the largest source delay D := maxi∈E di if all da = 0. This does
not hold any more for (DM-trick), but still the size of M can be bounded. To this end, we
need the following two lemmas, both dealing with the original timetable πi, i ∈ E . For this
chapter, we assume that the original timetable π is feasible, i.e., that

πj − πi ∈ [La, Ua] ∀a = (i, j) ∈ Adrive ∪ Await, (11)

for all driving and waiting activities. For the changing activities we assume that the trickling
constraints (6) applied to the original timetable π

πj 6∈ (πi + Lmin
a , πi + Lmax

a ) ∀a = (i, j) ∈ Achange (12)

are satisfied, i.e., either nobody can change or everybody can. However, changing activities
are the ones that allow passengers to change, so the case πj − πi ≤ Lmin

a cannot hold. We
hence may assume that

πj − πi ∈ [Lmax
a , T + Lmin

a ] ∀a = (i, j) ∈ Achange (13)

where the upper bound T +Lmin
a holds since every line runs at least once per time period T .

In order to simplify the notation, we will sometimes use the delay yi of an event i ∈ E in
its disposition timetable, which is defined as

yi := xi − πi.

I Lemma 2. Let πi, i ∈ E be a feasible timetable. If all da = 0, then there exists an optimal
solution with yj ≤ D for all a = (i, j) ∈ A.

Proof. The proof works by induction. Since the event-activity network does not contain any
directed cycles, we can sort the events i ∈ E topologically. Let i1, . . . , i|E| be the resulting
order. Then the delay yi1 of the first event i1 is given by di1 ≤ D. Now take any other event
j and consider all of its incoming activities (i, j) ∈ A. We now estimate how large the delay
of event j can be. Note that there exists an optimal solution in which no disposition time
can be reduced (i.e., which does not contain any unnecessary delays). This means one of the
inequality constraints (7), (8), (9) is sharp.

If (7) is sharp we get xj = πj + dj , hence yj = xj − πj = dj ≤ D.
If (8) is sharp for (i, j) ∈ A we have that xj = xi + La, i.e., the delay of event j can be
computed as

yj = xj − πj = La + xi − πj

= La + yi + πi − πj︸ ︷︷ ︸
≤−La

≤ yi ≤ D by induction hypothesis
where we have used feasibility of the timetable, see (11) and that event i is topologically
smaller than event j.
If (9) is sharp for (i, j) ∈ A we analogously have that xj = xi + Lmax

a , i.e., the delay of
event j can be computed as

yj = xj − πj = Lmax
a + xi − πj

= Lmax
a + yi + πi − πj︸ ︷︷ ︸

≤−Lmax
a

≤ yi ≤ D by induction hypothesis
where we have used the second feasibility constraint for the timetable, see (13) and again
that event i is topologically smaller than event j. J
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Under the same conditions as in the above lemma we can hence estimate the size of big M ,
which is a bit larger than in (DM) but still of moderate size.

I Lemma 3. If da = 0 for all a ∈ A, then M = T + D is large enough to correctly solve
Model (DM-trick).

Proof. We have to find M that satisfies the following two conditions:
1. Constraint (4) should get redundant if za = 1, i.e., for an optimal solution we require

that M ≥ Lmax
a + xi − xj . We hence look for an upper bound of the right hand side:

Lmax
a + xi − xj = Lmax

a + πi + yi − πj − yj

= Lmax
a + πi − πj︸ ︷︷ ︸

≤−Lmax
a

+ yi︸︷︷︸
≤D

−yj︸︷︷︸
≤0

≤ D,

where we again used feasibility of the timetable, see (13).
2. Constraint (5) should get redundant if za = 0, i.e., for an optimal solution we require

that M ≥ xj − xi − Lmin
a . We again need an upper bound of the right hand side:

xj − xi − Lmin
a = πj + yj − πi − yi − Lmin

a

= πj − πi︸ ︷︷ ︸
≤T +Lmin

a

+ yj︸︷︷︸
≤D

−yi︸︷︷︸
≤0

−Lmin
a ≤ T +D,

this time using the upper bound in (13).
We conclude that M = D + T suffices for both constraints (4) and (5). J

In the case of da > 0, delays can increase for single trains and have to be bounded. This
can theoretically be done by summing up all delays da or (better) by finding a longest path
P in the event-activity network with respect to the weights da, see [18].

Let us now consider the case that the timetable is feasible according to its traditional
definition without the trickle-in effect, i.e., it satisfies πj − πi ∈ [La, T + La − 1] instead
of (13) for some La < Lmax

a . Then the trickle-in effect may generate delays.
Let us illustrate this on a small example: Given a timetable π that schedules train A to

arrive at 10:00 and train B to depart at 10:02 and given a trickling interval of (1, 3) minutes,
then the trickle-in effect is observable. The first passengers only need a little bit more than
one minute to catch the train, but then a continuous stream of passengers boards the train
leading to a delayed departure of train j at 10:03, i.e., to a delay of one minute. Thus, there
may occur delays due to the trickle-in effect without the existence of any source delays.

However, even in this situation we can use (DM-trick) to find optimal wait-depart decisions
dealing with both, source delays and delays occurring due to trickling constraints, and even
in this situation we can bound M . To this end, assume a changing activity a = (i, j) from
event i to event j for which we have La < πj−πi < Lmax

a . Then the transfer of all passengers
may take longer than the timetable allows. Hence, the trickle-in effect leads to a new type of
“source delay” on this changing activity, namely a delay of Lmax

a − (πj − πi). In order to find
a bound for M we hence need to search for a longest path P ′ with respect to the weights

w′a :=
{

max(0, da) if a ∈ Await ∪ Adrive
max(0, da, L

max
a − (πj − πi)) if a = (i, j) ∈ Achange

and add its length to M .
Hence, we receive a bound of

M = D + T + length(P ′)

in this case. The computational experiments show that M = D + T + length(P ′) is of
reasonable size and hence a sufficient upper bound for M .
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We now analyze the new model (DM-trick) with respect to the intervals [Lmin
a , Lmax

a ] for
the changing activities. Varying both, the lower and the upper bound on the duration of the
changing activities gives the following result.

I Lemma 4. Let Ia(k) = [Lmin
a (k), Lmax

a (k)] for all a ∈ Achange be a sequence of nested
intervals with

Lmin
a (1) ≤ Lmin

a (2) ≤ · · · ≤ La and La ≤ · · · ≤ Lmax
a (2) ≤ Lmax

a (1)

and let z∗(k) be the optimal objective function value for (DM-trick) with respect to the interval
Ia(k) and z∗ be the optimal objective function value of (DM). Then

z∗(1) ≥ z∗(2) ≥ · · · ≥ z∗.

Proof. Since Ia(k + 1) ⊆ Ia(k) for all a ∈ Achange, (DM-trick) with respect to the intervals
I(k + 1) is a relaxation of (DM-trick) with respect to the intervals I(k) and the result
follows. J

As a consequence, (DM) is a relaxation of (DM-trick) whenever the changing times La

in the classical model (DM) satisfy La ∈ [Lmin
a , Lmax

a ] for all a ∈ Achange. Hence, solving
(DM) gives a lower bound on (DM-trick). In the experiments in Section 5 we compare the
gap between this lower bound and the real solution. The best approximation of (DM-trick)
by (DM) is given if we set La := Lmax

a for all a ∈ Achange, i.e., making sure that also the
slow passengers are able to board their next train. This is shown in the next Lemma.

I Lemma 5. Let [Lmin
a , Lmax

a ] for all a ∈ Achange be the given data for (DM-trick). Let
z∗(La) be the optimal objective function value for (DM) with data La for all a ∈ Achange.
Then an optimal solution to

max{z∗(La) : La ∈ [Lmin
a , Lmax

a ] for all a ∈ Achange}

is provided by setting La = Lmax
a for all a ∈ Achange, i.e., the best lower bound obtainable

from the classical model (DM) is provided by setting La := Lmax
a for all a ∈ A.

Proof. From Lemma 4 we already know that all La ∈ [Lmin
a , Lmax

a ] provide lower bounds.
We hence have to show that the largest of them is obtained by setting La := Lmax

a for all
a ∈ A. To this end, let L′a ≤ Lmax

a for all a ∈ A. Let (x, z) be a solution of (DM) with
respect to Lmax

a . It hence satisfies (3) with Lmax
a on the right hand side and hence also with

L′a ≤ Lmax
a on the right hand side. Hence, (x, z) is also feasible for (DM) with respect to L′a.

We conclude that (DM) with respect to L′a is a relaxation of (DM) with respect to Lmax
a ,

and hence

z∗(L′a) ≤ z∗(Lmax
a ). J

The computational results underline that using (DM) as a relaxation for (DM-trick) impose
a good trade-off between computation time and (DM)’s quality as a lower bound.

5 Experiments

In this section we investigate the effects of the trickle-in effect computationally. To this
end, we implemented (DM-trick) in LinTim, an open source software framework for public
transport optimization, see [19, 11]. We focus on solving the bahn dataset, consisting of 250
nodes and 326 edges, modeling the German ICE network, see Figure 3 in the appendix.

ATMOS 2019
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For quickly determining the timetable we use the MATCH heuristic as described in [16]
since it is faster than the modulo simplex [12, 15] or integer programming approaches [13].
We roll out the periodic timetable for 4 hours and receive an aperiodic event-activity-network
with around 20000 events and 40000 activities. For generating delays we use a LinTim
procedure which is parameterized to choose 1000 activities and to generate source delays
uniformly distributed between 1 and 900 seconds for each of the chosen activities. In order
to calculate a sufficiently big M as described in Section 4, we calculate length(P ) = 3500
seconds and D = 0 (because we generate source delays only on activities) and T was chosen
to be 3600 seconds, leading to a choice of M = 7100. We implemented (DM-trick) using
Gurobi 8.0 with a relative optimality gap of 1% and run the experiments on a compute server
with 12 cores of Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz and 78 GB RAM.

In our first experiment we compare different trickling intervals with the lower bound
Lmin

a ranging from 60 to 180 seconds and Lmax
a ranging from 180 to 300 seconds. The default

minimum changing time La is assumed to be 180 seconds. The objective values, given in
passengers times seconds, for solving (DM-trick) with these different intervals are depicted
in Figure 2a.

(a) objective values in passengers × seconds. (b) runtimes in seconds.

Figure 2 (DM-trick) for different trickling intervals (Lmin
a , Lmax

a ) in seconds.

We see that the instance with the smallest trickling interval ([180, 180] seconds) has the
lowest objective value of about 2.9·109, whereas the instance with the largest trickling interval
([60, 300] seconds) has the largest objective value (3.3 ·109). This is consistent with the theory
since small trickling intervals are a relaxation of larger trickling intervals, see Lemma 4. A
higher objective value is equivalent to higher passenger delays in the event-activity-network
which makes sense as a larger trickling interval potentially leads to longer waiting times for
trains. In general, one can observe that a larger interval correlates with a higher objective
value, and furthermore that a change in Lmax

a has a higher impact on the objective value
than a change in Lmin

a .
Figure 2b now depicts the runtimes for different choices of the trickling interval.
Interestingly, also the instance with the smallest trickling interval has the lowest runtime

and the instance with the largest trickling interval has the highest runtime. Also for the other
instances the runtimes correlate primarily with the size of the trickling interval (although
not as smoothly as the objective value) and a change in the upper bound Lmax

a has again a
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higher impact on the runtime than a change in Lmin
a . The correlation between size of the

trickling interval and runtime can be explained by the nature of integer programming. If the
size of the “forbidden” trickling interval is increased, we get a weaker linear relaxation of the
integer problem and hence need longer to solve it, e.g., via branch-and-bound.

The next experiment investigates the difference between a disposition timetable found by
(DM) and a disposition timetable that respects the trickle-in effect. To this end, Figure 4 (in
the appendix) depicts the number of changing activities of a disposition timetable from (DM)
(with La = 180 seconds) that lie in the trickling interval. Hence, Figure 4 illustrates the
difference between a disposition timetable found by solving (DM) and disposition timetables
found by solving (DM-trick) for different trickling intervals. As can be seen in the figure,
there exist up to 1194 infeasible change activities for a disposition timetable from (DM).
In other words, if a disposition timetable from (DM) is found, it can be the case that 1194
changing activities (or about 6% of all changing activities) cause new delays due to the
neglection of the trickle-in effect.

Furthermore, we investigate the results of Lemma 5, i.e., that solving (DM) with La :=
Lmax

a yields the best approximation to (DM-trick).
One can see in Figure 5 (in the appendix) that the objective value indeed increases

when La increases, culminating in a gap of only 3% if La is chosen to be Lmax
a . Hence, we

get a reasonably good approximation of (DM-trick) by only solving an instance of (DM).
Furthermore, it should be noted that solving (DM) takes only around 1 second, whereas
solving (DM-trick) with trickling interval [60, 300] seconds took around 77 seconds to solve.
Hence, we indeed get a decent trade-off between computation time and solution quality.

Finally, we investigate the difference between the disposition timetables from (DM) and
(DM-trick) (with a trickling interval of [60, 300] seconds). We observe that the solution
from (DM) schedules trains such that 566 connections are missed, whereas in the solution of
(DM-trick) there are 684 missed connections. Interestingly, 513 of the missed connections
coincide such that in this case considering the trickling effect yields to a change in 224
wait-depart-decisions. Thus, not only the objective values of the two models (DM) and
(DM-trick) varies, but also the structure of the resulting delay management strategy.

As a final note, we also run the model (DM-trick) for the case if no source delays exist
and received an objective value of around 5 · 108. This is roughly 15% of the objective value
we encountered while working with the aforementioned 1000 source delays. Put differently,
in this instance up to 15% of the delays might not be caused by source delays, but by
the mere structure of the underlying periodic timetable and the trickle-in effect. Hence,
the trickle-in effect has high relevance beyond delay management and should already be
considered when planning a periodic timetable (which is not the case when using, e.g.,
MATCH for timetabling).

6 Conclusion and Suggestions for Further Research

In this paper we introduced the trickle-in effect, an observation on passenger behavior at
train stations that highly influences delays in public transport. We introduced models for
incorporating the trickle-in effect into standard delay management models and also showed
how it already influences the periodic timetabling problem. We investigated mathematical
properties of the resulting model and showed how (DM-trick) can be approximated best using
the classical delay management problem. This allows to use approaches for classical delay

ATMOS 2019



6:12 The Trickle-In Effect: Modeling Passenger Behavior in Delay Management

management (such as [3, 17, 8, 6]) for heuristically solving (DM-trick). The computational
experiments underlined our hypothesis that the trickle-in effect has a high impact on delay
management: Here, the objective value of (DM-trick) exceeds the objective value of (DM)
up to 15%. Finally, since the computation times for (DM-trick) rise significantly, we still can
get a decent approximation of (DM-trick) by solving a modified version of (DM).

Further research includes simulation approaches to better understand the behaviour of the
passengers and to derive practically relevant trickling intervals. To this end, an agent-based
simulation as in [2] is currently developed. We are also interested in adding the trickling
constraints to more sophisticated delay management models including passengers’ routing
and capacity constraints.

Finally, there is another line of research, namely adding trickling constraints to the
timetabling problem. In Section 4 we have already seen that considering the trickle-in effect
in a timetable that is not feasible with respect to (13) might cause source delays. The
experiments justify this theoretical observation: a timetable might get significant delays
just because of the trickle-in effect, i.e., even if no other source delays occur. We hence
suggest to consider the trickle-in effect already in the timetabling phase. This means to
add constraints of type (12) in timetabling such that either all passengers or none of the
passengers can make a transfer. Hence, πj − πi ∈ [Lmax

a , T + Lmin
a ] needs to be respected for

all changing activities (i, j) and even more general for all activities (i, j) from an arrival event
of an incoming train to a departure event of (another) outgoing train. These constraints
can be transferred also to periodic timetabling and considered as additional constraints in
the periodic event scheduling problem (PESP). The analysis of them (runtime, impact on
resulting timetable) are an interesting topic for future research which seems to be challenging
and highly relevant from a practical point of view.
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A Figures

Figure 3 bahn dataset.

Figure 4 number of infeasible changing activities for a timetable from (DM)
for different trickling intervals.
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Figure 5 objective values for (DM) for different La.
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Abstract
Due to the significant growth in passenger numbers, higher vehicle load factors and crowding become
more and more of an issue in public transport. For safety reasons and because of an unsatisfactory
discomfort, standing of passengers is rather limited in high-speed long-distance trains. In case
of delays and (partially) cancelled trains, many passengers have to be rerouted. State-of-the-art
rerouting merely focuses on minimizing delay at the destination of affected passengers but neglects
limited vehicle capacities and crowding. Not considering capacities allows using highly efficient
shortest path algorithms like RAPTOR or the connection scan algorithm (CSA).

In this paper, we study the more complicated scenario where passengers compete for scarce
capacities. This can be modeled as a piece-wise linear, convex cost multi-source multi-commodity
unsplittable flow problem where each passenger group which has to be rerouted corresponds to a
commodity. We compare a path-based integer linear programming (ILP) model with a heuristic
greedy approach. In experiments with instances from German long-distance train traffic, we quantify
the importance of considering vehicle capacities in case of train cancellations. We observe a tradeoff:
The ILP approach slightly outperforms the greedy approach and both are much better than capacity
unaware rerouting in quality, while the greedy algorithm runs more than three times faster.
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1 Introduction

Recent years have shown significant growth in passenger numbers on public transport services
in many countries. Due to political efforts to increase utilization of public transport in
support of sustainability goals, further growth is to be expected. While congestion in metro
systems of mega-cities during peak hours has been recognized as a challenge for many years,
awareness of increased in-vehicle density as a problem also for the management of passenger
flows in long-distance trains started only recently.

© Matthias Müller-Hannemann, Ralf Rückert, and Sebastian S. Schmidt;
licensed under Creative Commons License CC-BY

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019).
Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela; Article No. 7; pp. 7:1–7:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6976-0006
mailto:muellerh@informatik.uni-halle.de
mailto:ralf.rueckert@informatik.uni-halle.de
https://orcid.org/0000-0003-4878-2809
mailto:sebastian.schmidt@informatik.uni-halle.de
https://doi.org/10.4230/OASIcs.ATMOS.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


7:2 Vehicle Capacity-Aware Rerouting

In this paper, we combine delay and disruption management with scarce vehicle capacities.
In large and complex public transportation systems delays as well as disruptions occur
frequently. Typical reasons are technical defects, construction work, bad weather conditions,
exceptionally many passengers, accidents, and the like. As a consequence, passengers miss
planned transfers which results in a significant delay at their destinations, in considerable
dissatisfaction, and ultimately in economic loss for the railway company. In delay management,
train dispatchers have to decide which trains shall wait for delayed incoming trains in order to
maintain connections for passengers. Such problems are challenging for several reasons: One
has to deal with large-scale networks subject to dynamically changing, partially incomplete
and imprecise information about current delays and their propagation, and solutions are
required in almost real-time. In an on-going joint research project with Deutsche Bahn, we
are working on the development of a decision support system for dispatchers which shall
help to find optimal waiting decisions from a passenger’s point of view. A key assumption is
that detailed information about passenger flows is available, that is, for each passenger the
planned route is known. Such passenger flows can be based on sold tickets or statistically
validated demand models. In our long-term project, we have built a prototype for an
optimized passenger-friendly disposition system, named PANDA [16, 19]. The acronym
PANDA abbreviates Passenger-Aware Novel Dispatching Assistance. It is designed to provide
train dispatchers with detailed real-time information about the current passenger flow and the
multi-dimensional impact of waiting decisions in case of train delays and cancellations. If trains
are cancelled or connections cannot be maintained, passengers have to be rerouted. State-of-
the-art solutions determine new routes for passengers that are optimized subject to earliest
arrival at the planned destination with few transfers as a secondary criterion. Technically,
this requires the efficient solution of large-scale multi-criteria shortest path problems in
suitably designed event-activity networks. Recent progress in shortest path algorithms for
such applications allows to solve such problems in a few milliseconds per instance, for example
by using RAPTOR [5] or the connection scan algorithm (CSA) [6, 7]. Capacity constraints,
however, are widely neglected in previous work. Considering the available free capacity
to avoid overcrowded trains leads to several, more challenging combinatorial optimization
problems. With respect to capacities, we may distinguish between hard and soft capacities.
For each vehicle, there is a designated number of available seats. This gives a soft capacity
beyond which it becomes more and more uncomfortable to travel. At a certain threshold, the
hard capacity, a vehicle becomes so crowded that it is not allowed to run anymore for security
reasons.1 Key drivers for crowding discomfort of passengers are dissatisfaction with standing
and not being seated, fewer opportunities to make use of the time during the journey, and
the physical closeness of other travellers per se [13].

Goals and contribution. The main use case and focus of this work are cancelled or par-
tially cancelled trains where many (up to several hundred) passengers have to be rerouted
simultaneously. A second use case are passengers with missed connections due to wait-depart
decisions in delay management. For the most important train connections, also large numbers
of passengers are affected by a single decision.

A crucial issue concerns the model how passengers behave. If we assume that passengers
behave selfishly and inform themselves individually and independently about alternative
routes, we have only limited capabilities to avoid overcrowded trains. All we can do in such a

1 According to Richard Lutz, Chief Executive Officer (CEO) of Deutsche Bahn, overfull long-distance
trains of Deutsche Bahn have to be stopped and evacuated half a dozen times a week (Handelsblatt of
April 19, 2018).
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scenario is to only recommend trains which have enough free capacity and to put preference
on connections with lower seat occupation. To support such a goal, one can still solve shortest
path problems. In an attempt to avoid violations of hard capacities, we can simply forbid
all arcs in the event-activity model which would lead to overfull vehicles. Moreover, the
objective function can be modified so that it prefers trains with larger free capacity.

Different optimization problems arise if we take the perspective of a recommending
system which tries to achieve a system optimum, that is, a solution which minimizes the
overall inconvenience for all affected passengers. Inconvenience can be expressed in several
ways, the simplest version being the total delay at the destination, summed up over all
passengers. Overcrowding of trains can be penalized with the help of convex cost functions.
For such scenarios, we have to solve some large-scale integral minimum cost multi-commodity
flow problems, where each group of passengers sharing the same origin and destination
corresponds to some commodity. Since passengers groups want to travel together, we have
to consider versions of unsplittable flow problems. Such problems are well-known to be
NP-hard optimization problems. The most common approach to solve them is integer
linear programming (ILP) with a path-based formulation and column generation. While the
underlying network is fairly large, the number of commodities to be considered is typically of
moderate size. Moreover, for each commodity, there is only a limited number of “reasonable”
alternative paths to which one can heuristically restrict the search. We follow this general
approach, and in addition, we will also consider a fast greedy rerouting scheme. With this
work we want to tackle the following research questions:
1. How relevant is crowding-aware rerouting in long-distance trains already today? How

much more important will it be with rising numbers of passengers?
2. Comparing a capacity-aware greedy rerouting with a minimum cost multi-commodity

flow model, how much do we lose in quality if we use a greedy algorithm?
3. Can we solve the instances of unsplittable flow problems fast enough in practice?

Due to our cooperation with DB Fernverkehr, we concentrate on long-distance trains.
Our main results are as follows. First, we observe that ignoring vehicle capacities would
guide many passengers into overfull trains. This effect will become more severe with rising
passenger numbers. Conversely, with our models we can reduce passenger inconvenience to a
large amount. Second, the ILP solution is slightly better in quality than the greedy approach,
but the greedy approach is about three times as fast. Third, while the ILP problems can be
solved very easily within milliseconds, the required computation of alternative paths turns
out to be the bottleneck. Severe cases of train cancellations with several hundred passenger
groups require on average less than 85 seconds of computation time for our ILP approach.

Related work. Delay management has been studied very intensively in the literature, see
the recent survey [10]. Based on event-activity networks most of these approaches model
delay management by integer linear programming (ILP) and consider offline versions of the
problem, where all delays are known before the optimization process starts [21, 22]. First
approaches considered simplified versions and assumed that passengers who miss a connection
wait for the next connection on the same line. Integrated passenger rerouting has been
considered by [9, 10, 20]. The integration of passenger rerouting into an ILP formulation leads
to a considerable blow-up, making these formulations very large. With today’s techniques
for integer programming, the handling of several hundred thousands of passenger routes
seems to be impossible in an online setting. Dollevoet and Huisman [8] propose several fast
heuristics and introduce an iterative ILP approach which comes close to the exact solution
but is significantly faster. However, it remains open whether their iterative ILP approach
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scales well to large-scale networks. All previous delay management models have in common
that they do not consider vehicle capacities and crowding. Models and algorithms for efficient
passenger routing in public transport (timetable information) have intensively been discussed
in the literature, see for example the surveys by Müller-Hannemann et al. [17] and the more
recent one on efficient shortest path algorithms by Bast et al. [4]. Among the many recent
approaches for shortest path computation in public transportation networks, most relevant
for this work are those which are well suited to a dynamic online scenario. As they require
no heavy preprocessing, the above-mentioned approaches RAPTOR [5] and an extension of
CSA [6, 7] serve very well for minimizing earliest arrival time and the number of transfers.
RAPTOR can be extended to determine the Pareto set of optimal solutions for additional
criteria, for example reliability and ticket price (McRaptor). Discomfort of crowding as an
additional criterion has to the best of our knowledge not been considered in a multi-criteria
setting. There has been, however, related work, in load balancing of passenger flows. For
example, Huang et al. [14] study route guidance for passengers as a means to reduce in-vehicle
congestion. The problem of finding alternative routes has found quite some attention before.
One possibility is to search for the top k shortest paths. Since event-activity networks are
directed acyclic graphs, these paths can be found and output by Eppstein’s algorithm in
O(n logn+m+ kn) time in networks with n vertices and m arcs [11]. As the top k shortest
paths may be too similar, several attempts have been done to find sets of paths with limited
overlap. One such approach is first to compute a large set of candidate paths and then to
filter candidates with respect to some similarity measure, for example [1].

Multi-commodity flows and unsplittable flow problems have been extensively studied
in the literature [2, 23]. In general, they are strongly NP-hard since many combinatorial
problems, including disjoint paths, can be reduced to it. Classical applications of unsplittable
flow problems include, for example, bandwidth packing problems in telecommunication
networks or express package delivery problems in logistics [3]. For solving large-scale
instances of unsplittable flow problems, path-based formulations have advantages over arc-
based formulations [3]. Since the number of paths grows exponentially with the size of
the graph, exact solutions usually require column generation. Barnhart et al. [3] provide
seminal work on column generation and branch-and-price-and-cut algorithms for unsplittable
flows. Fortz et al. [12] discuss models for piecewise linear cost versions of the unsplittable
multi-commodity flow problem. Wang [23] provides a recent survey on solution methods for
multi-commodity network flow problems.

Overview. The remainder of this paper is organized as follows. In Section 2, we present our
multi-commodity flow model. We start with general considerations and model assumptions.
Afterwards, we develop and explain step-by-step the underlying event-activity network,
our modelling of capacities and cost functions, and the resulting integer programming
formulation. Then, we present a fast greedy heuristic and, finally, we describe our approach
for the computation of candidates for alternative paths. Our computational study with many
instances from Deutsche Bahn is reported in Section 3. Finally, we summarize and conclude
with future work.

2 Multi-Commodity Flow Model

In this section, we develop our approach for the simultaneous rerouting of passengers with
respect to limited vehicle capacities.
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2.1 Basic considerations and assumptions
Our model is based on the following considerations and assumptions:

In case of a disruption, our task is to find valid alternative routes for all affected passengers
whose planned connection becomes invalid. If we cannot find an “acceptable” alternative
(say, with at most two hours of delay at the destination), this imposes a high cost for
compensation.
Only directly affected passengers are rerouted. We assume that all others who are not
forced to change plans keep their planned route. In some cases, delayed trains may offer
new opportunities for passengers to optimize their routes, but this issue is ignored in our
model.
Groups of passengers have planned to travel together (for instance, couples, families,
school classes). They certainly have to stay together also in their new route. This implies
that we have to consider unsplittable flow models. Moreover, many passengers share the
same origin and destination even if they are personally unrelated. They may be treated
as a group since recommending different alternatives to them might be hard to explain
and communicate without personalized route guidance.
Rerouting of passengers comes with several disadvantages. Passengers may lose their
seat reservation and have to enter more crowded trains. The valuation of discomfort
is very subjective and varies widely between passengers. It depends individually on
personal circumstances (like age and healthiness), the reason for traveling, and several
other factors [15]. Nevertheless, to keep the model simple enough, we use the same general
utility functions for all passengers.
For simplicity, we do not make a distinction between first and second class travelers.
Train tickets are often bound to a specific connection for which they are booked. In case
of disruption, we assume that passengers may choose any train and any connection (no
restrictions due to ticket regulations apply).
We restrict the set of eligible alternative paths to “reasonable” ones: i.e. we consider only
paths where passengers arrive at their final destination at most 120 minutes after the
earliest feasible arrival time. We also exclude paths with too many train changes, and
the upper limit is at most six transfers.
Train cancellations or missed transfers only become known at short notice, at a certain
event-specific release time. Since passengers can react only after they become aware of a
need to find an alternative route, we require that replanning can alter the original route
only after this release time. Several cases are possible:
1. The passenger has not yet started traveling. In this case, we assume that the passenger

arrives at the station where the original route would have started more or less just
in time for the planned train. Thus, an alternative route may not start earlier and
should begin at the same station (although an initial footpath is allowed).

2. The passenger is already traveling. Then, based on the current location (in some
specific train or at a station) and time, an alternative connection must be compatible
with the initial part of the original route.

Event-activity network

The given train schedule and the set of passenger routes can be modeled with the help of
a so-called event-activity network (EAN) N = (V,A), a directed acyclic graph with vertex
set V and arc set A. The vertices of the network correspond to the set of all arrival and
departure events of the given schedule. Arcs of the network model order relations between
events. We distinguish between different types of arcs (“activities”):
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driving arcs, modeling the driving of a specific train from one stop to its very next stop,
dwelling arcs, modeling a train standing at a platform and allowing passengers to deboard
or board the train, and
transfer arcs, modeling the possibility for passengers to switch between two trains at the
same or nearby stations.

Passenger routes correspond to paths in N from a departure event to some arrival event.
Let K be the set of passenger groups which have to be rerouted due to a train cancellation
or broken transfer. For k ∈ K, denote by dk the size of group k. Denote by tk the intended
destination, i.e. the final station of the planned route. Likewise, denote by sk the origin
(“source”) of this group with respect to the time of replanning. The origin is the first station
of the planned route if the journey has not yet started. Otherwise, it denotes the station
where the group is currently waiting or the very next station at which they will arrive with
their current train.

We extend the event-activity network N by adding a source and a target “event” for each
passenger group k ∈ K. Each source sk is connected to all departure events at the same
station which can be reached by the group. If footpaths to nearby stations exist, we also
connect sk to the reachable departure events at these stations. At the target station, we
connect all arrival events with tk. In summary, we seek for each group a path which starts at
source sk and and ends at target tk. For instances with very high load and in particular for
large groups of passengers, no feasible capacity-respecting path may exist. To make sure,
that every instance has a feasible solution, we add for each pair (sk, tk) some direct “no-route”
arc of infinite capacity but very high costs, so that such arcs are only chosen if no other path
is available.

Capacities and cost functions

With every arc a which corresponds to a driving or dwelling activity of a train, we can
associate a nominal seat capacity cap(a). Recall that we do not distinguish between first
and second class seats for simplicity. The hard capacity for such an arc is set as β · cap(a)
where β ≥ 1 is a parameter specifying the maximal overload acceptable for security reasons.
For high-speed trains, choosing β = 1.2 may be a reasonable choice (and is used in our
experiments).

For rerouting, we have to consider the free capacity which remains if we subtract the
number of those passengers which are not affected by rerouting. Thus, if load(a) denotes the
current number of passengers on arc a, we obtain an upper bound ua = max{0, β · cap(a)−
load(a)}. (Arcs of overloaded segments with ua = 0 are excluded from the model.) All arcs
in A not corresponding to driving or dwelling activities of trains have unlimited capacity.

For arc a ∈ A, let Ca(xa) be a piece-wise linear convex cost function. For simplicity in
notation, we assume that each cost function has exactly b linear segments, but we allow
empty segments to model cost functions with fewer breakpoints. With 0 = u0

a ≤ u1
a ≤ u2

a ≤
· · · ≤ ub

a = ua we denote the breakpoints of the function. The cost varies linearly in the
interval [ui−1

a , ui
a] with slope ci

a. Slopes are strictly increasing, i.e. c1
a < c2

a < · · · < cb
a (unless

they are +∞).
As a cost function, we use a kind of generalized or perceived travel time which penalizes

transfers and crowding discomfort. For the latter, we use the time-multiplier method [18].
The cost function’s basic unit is travel time in minutes. Traveling, dwelling and transfer arcs
each have a certain duration dur(a). Train changes are penalized with α extra minutes per
transfer. Traveling in the train (i.e. being on traveling or dwelling arcs) is penalized with
respect to the load. For the segment of the piecewise linear cost function, we have penalty
factors γ1 < γ2 < · · · < γb. Cost parameters are set as follows.
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For traveling and dwelling arcs we set:

c1
a = (1 + γ1) · dur(a), c2

a = (1 + γ2) · dur(a), . . . , cb
a = (1 + γb) · dur(a).

Transfer arcs are uncapacitated and have only a single finite cost segment, thus we set

c1
a = dur(a) + α, c2

a = +∞, . . . , cb
a = +∞.

“No-route arcs” have very high costs, say c1
a = 10000, c2

a = +∞, . . . , cb
a = +∞.

All remaining arcs have zero costs.

2.2 Integer linear programming formulation
We are now ready to formulate the unsplittable flow problem as an integer linear program.
Denote by P (k) be the set of all paths from sk to tk from which the group has to select
exactly one. We use binary decision variables yk

p where yk
p = 1 if group k selects path

p ∈ P (k), and yk
p = 0 otherwise. Let δp

a be an arc-path indicator variable that equals 1 if arc
a is contained in path p. For arc a ∈ A, let xk

a be the size of the flow on arc a of commodity k,
and xa =

∑
k∈K xk

a be the total flow on this arc.
A classical transformation of piecewise convex flows to standard flow with linear costs is

to replace each arc a by a set of b parallel arcs [2]. The idea is to decompose the flow xa into
flows on the segments between neighboring breakpoints of the cost function. Define

f i
a =


0 if xa ≤ ui−1

a

xa − ui−1
a if ui−1

a < xa ≤ ui
a

ui
a − ui−1

a if xa ≥ ui
a.

This implies xa =
∑b

i=1 f
i
a and Ca(xa) =

∑b
i=1 c

i
af

i
a. The path flow formulation is then:

min
∑
a∈A

b∑
i=1

ci
af

i
a (1)

subject to ∑
p∈P (k)

yk
p = 1 for all k ∈ K (2)

∑
k∈K

∑
p∈P (k)

dky
k
pδ

p
a =

b∑
i=1

f i
a for all a ∈ A (3)

f i
a ≤ ui

a for all a ∈ A and all i = 1, 2, . . . , b (4)
f i

a ≥ 0 for all a ∈ A and all i = 1, 2, . . . , b (5)
yk

p ∈ {0, 1} for all k ∈ K and all p ∈ P (k) (6)

Equations (2) ensure that exactly one path has to be chosen for each commodity. Equa-
tions (3) express that the total flow xa =

∑b
i=1 f

i
a on arc a equals the sum of chosen paths

using this arc, weighted by the demands dk of the commodities. Capacity constraints of
all flow segments are given by Inequalities (4), while non-negativity of all flow variables
is provided by Inequalities (5). The integrality of all flow variables f i

a is implied by the
integrality of the left-hand-side of Equations (3) and the strict increase in slope values ci

a.
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2.3 A fast greedy heuristic
The exact solution of the unsplittable flow problem is NP-hard, although the instances arising
in our applications seem to be quite well solvable by state-of-the-art ILP solvers (see our
experiments below). However, it requires the computation of many alternative paths in a
first step which is computationally expensive.

Therefore, we suggest a simple, but fast greedy heuristic: process the passenger groups
one after another (in some random order). For each group k ∈ K, compute the shortest
alternative path with respect to the perceived travel time, subject to current free capacities.
Assign the passengers of this group to the new route, update the capacities, and continue
with the next group.

2.4 Path set computation
The set of all s-t–paths can be exponentially large. However, only a small number of them
is sufficiently attractive for passengers so that they are actually used. Therefore, instead
of working with the full set of paths P (k) for each commodity, we heuristically restrict the
search to a carefully selected small set of paths.

To this end, we first compute the Pareto set of shortest paths with respect to three
criteria travel time, number of transfers, and some measure of inconvenience. We propose
two variants:
1. PARETO1: we use the same perceived travel time function as inconvenience measure as

in the greedy approach.
2. PARETO2: we consider a measure which focuses on load. The load of an arc with

capacity restrictions (a capacitated arc) is defined with the same cost parameters as in
the ILP. The load of a path is then defined as the sum of loads on its capacitated arcs.

In PARETO1, the first and third criteria are highly correlated, resulting in relatively
small path sets. In contrast, the travel time and load are much less correlated (although the
load costs of an arc also depend on its duration), leading to slightly larger Pareto sets. To
increase the likelihood of finding feasible paths, we finally add the path set of the greedy
approach. As mentioned above, the Pareto sets are pruned in both variants such that only
paths with at most six transfers and at most two hours of extra delay are maintained. All
other paths are considered as unacceptable.

3 Experiments

In this section, we report our findings with experiments on many large-scale test instances.

3.1 Test instances, implementation details, and experimental setup
Test instances

Our experiments are based on the timetable of Germany in 2019. For each day, passenger
flow data for travelers using long-distance trains are provided by Deutsche Bahn. They are
based on sold tickets until the day before and an estimation of short-term ticket buyers.
Our capacity data is restricted to that of long-distance trains, for other trains we assume
infinite capacity. We selected five test days in April 2019, in the week from Monday 22 to
Friday 26. For the runtime measurements we only used the Friday. The average number of
passengers in our passenger flow data is about 410,000 passengers (minimum 280,000 and
maximum 540,000). In order to create meaningful and relatively hard test instances, we
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Figure 2 Vehicle load over time of long-
distance trains in Germany.

concentrate on train cancellations with many affected passengers and groups which have to
be rerouted. To this end, we randomly selected a subset of trains with the property that
their passenger load reaches at least 65% of its capacity. Each train cancellation is studied
in isolation as an independent test instance. Overall, we have a test set composed of 653
train cancellations. Figure 1 shows the distribution of the number of affected passengers and
groups per instance. The average number of affected groups is 351.4, the average number of
affected passengers is 922.84.

Specific cost functions and parameters

The following parameter settings are used in all experiments. In our basic model, we use
only three different segments for capacitated arcs. Recall that the hard limit ua is chosen
with respect to β = 1.2, i.e. 120% of the nominal vehicle capacity. The interval from 0 to
the hard upper limit ua is divided as follows:
1. The train is currently occupied by at most 65% of its capacity. We set u1

a = 65/120 · ua.
This is considered as a non-crowding scenario and imposes no crowding penalties, i.e.
γ1 = 0.

2. The current load is between 65% and 100% capacity. Every passenger finds a seat, but
with limited choice. We set u2

a = 100/120 · ua. Here we impose a crowding penalty of
γ2 = .2, i.e. we impose .2 extra minutes per minute of travel time.

3. The available capacity is exceeded, some passengers have to stand. The penalty for
standing is γ3 = 1, i.e. one extra minute per minute of travel time.

Experimental setup

Our code has been written in C++, it is compiled with gcc 8.3 and run under Arch Linux
x86_64 with packages from Mai 2019. All runs are executed on a four core plus hyper-
threading Intel(R) Xeon(R) CPU E3-1231 v3 @ 3.40GHz machine. Shortest path problems
in the event-activity network are computed by an implementation of RAPTOR. ILPs are
solved with Gurobi Optimizer 8.12.

2 http://www.gurobi.com

ATMOS 2019
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Figure 3 The number of passengers ending
up without a valid route. For NOCAP, we
have to distinguish passengers with no route,
and others with a route which violates hard
capacities (last column, right scale).
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We compare the following four approaches:

1. NOCAP: this refers to the approach of capacity-unaware rerouting. Passengers are
simply rerouted to a path with earliest arrival time at their destination. Capacity
constraints may be violated.

2. GREEDY: passenger groups are rerouted greedily as described in Section 2.3.

3. ILP1: this refers to the ILP model where the path set is chosen as PARETO1.

4. ILP2: the same ILP model is used but the path set is chosen as PARETO2.

3.2 Experimental Results

Question 1: How relevant is the consideration of scarce vehicle capacities in
rerouting?

Considering the initial load (before rerouting) of long-distance trains, the average vehicle
load of 44.71% (within the interval from 6am to 10pm) may falsely suggest that there is
probably no severe problem with scarce capacities. However, if we look more carefully into
the distribution we observe that the average load changes considerably during the course of
the day, see Figure 2. Many of the most crowded trains run in the afternoon hours and close
to their maximum seat capacity.

The problem with scarce capacities becomes apparent when we evaluate the traditional
capacity-unaware rerouting scheme. Figure 3 shows the number of passengers for which
we cannot find a (valid) route. For capacity-unaware rerouting (NOCAP), we have a few
cases without any route (column 4), and many more cases, about 15% of all passengers, with
an alternative route violating hard train capacities (column 5). In other words, that many
affected passengers will by routed into some overfull train whenever capacities are ignored!
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Question 2: How large is the improvement for passengers if we apply
capacity-aware routing?

With the capacity-respecting variants, we can strongly reduce the number of passengers
without a valid route, see again Figure 3. For less than 0.01% of the passengers no valid
route exists (for all four algorithmic variants). Such cases occur for some rare connections
without a feasible alternative within the next 24 hours.

We also evaluated the improvement in inconvenience costs over the NOCAP baseline
version. Concentrating only on the subset of cases where all variants find valid routes for
all passenger groups, we see that GREEDY reduces the total inconvenience costs by more
than 10.5% in comparison with NOCAP. Even better mean improvements of about 11% and
11.5% over the baseline NOCAP are obtained with ILP1 and ILP2, respectively, see Figure 4.

The better average quality of ILP2 over ILP1 can be partially explained by the underlying
path sets. As Figure 5 shows, the mean size of the PARETO1 path set is smaller than
PARETO2, thus leading to fewer rerouting options within ILP1 in comparison with ILP2.
Even better solutions can be expected if we further increase the path sets.

Question 3: What happens if passenger numbers increase by 20%?

To answer this question, we take the original passenger flows and scale them up by 20%.
Figure 6 shows that the ILP2 solution is continuing to outperform the NOCAP solution
on average by 15.0%. The change in total discomfort by passengers, however, is significant.
Adding 20% more passengers increases the discomfort experienced in the NOCAP strategy
by 9% while the ILP2 model does only produce 5% more discomfort for the same passengers.
Thus, we conclude that capacity-aware routing will become more important with rising
passenger numbers.

ATMOS 2019
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Figure 7 Runtime distributions of single runs of RAPTOR (left) and for whole trains (right) for
the four different variants NOCAP, GREEDY, PARETO1, and PARETO2.

Question 4: How efficient are the proposed approaches?

Let us start with some good news: When the underlying path sets are generated, it turns
out that solving the ILP resulting instances is very easy for state-of-the-art solver gurobi,
since all of them can be solved in few milliseconds.

The expensive part, however, is the computation of candidate paths for all passenger
groups. Figure 7 shows runtime distributions as violin plots for single runs of RAPTOR
for the four different variants NOCAP, GREEDY, PARETO1 and PARETO2. The mean
runtimes are 42ms for NOCAP, 53ms for GREEDY, 166ms for PARETO1, and 228ms for
PARETO2. The mean runtime to compute the path sets for all affected groups of a train
cancellation is 19s for NOCAP, 20s for GREEDY, 62s for PARETO1 and 85s for PARETO2.
We consider such runtimes as feasible for practical use. Improvements of running times are
possible by further fine-tuning our implementations.

4 Conclusions and Future Work

In this paper we study the impact of limited vehicle capacities on the rerouting of passengers
in case of train cancellations. We propose a convex cost unsplittable flow formulation. First
experiments with restricted path sets already show significant improvements over previous,
capacity unaware approaches.

In the present work, we solve the unsplittable flow problems with respect to a carefully
selected fixed choice of paths. This could be extended by column generation (which amounts
to solving a single-criterion shortest path problem for each commodity). The computational
bottleneck is the efficient computation of path sets. With respect to our implementation
there is certainly room for further improvement for the multi-criteria versions of RAPTOR.
While the set of greedy paths has to be computed sequentially, the path set for passenger
groups in the multi-criteria setting are independent and can be easily parallized.

We plan to extend our work in several ways. A first natural extension is to study different
convex cost functions. Since our focus has been on the most extreme cases (up to several
hundred affected passenger groups), a second extension concerns evaluations of real train
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cancellations and wait-depart decisions, and similar use cases. Third, we are interested in
the price of restricting to unsplittable flows. By how much can we improve solutions if we
allow splitting of groups? We could either consider the linear programming relaxation of our
ILP models as a lower bound or a closely related classical multi-commodity flow formulation.
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Abstract
We study the Flight Planning Problem for a single aircraft, where we look for a minimum cost
path in the airway network, a directed graph. Arc evaluation, such as weather computation, is
computationally expensive due to non-linear functions, but required for exactness. We propose
several pruning methods to thin out the search space for Dijkstra’s algorithm before the query
commences. We do so by using innate problem characteristics such as an aircraft’s tank capacity,
lower and upper bounds on the total costs, and in particular, we present a method to reduce the
search space even in the presence of regional crossing costs.

We test all pruning methods on real-world instances, and show that incorporating crossing costs
into the pruning process can reduce the number of nodes by 90% in our setting.
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1 Introduction

With a looming climate change and an ever more connected world, it is imperative that
aircraft routes are planned as efficient and efficiently as possible. Contrary to popular belief,
aircraft cannot fly directly between their origin and destination airports, but have to adhere
to the Airway Network, a directed graph. The nodes of the graph are called waypoints,
whereas the arcs are called (airway) segments. For vertical separation, aircraft are stacked
on 43 flight levels, which are mostly spaced 1 000 ft apart.

Airlines plan a flight by computing an optimal route according to their preferences, which
may include minimum fuel, minimum time, minimum cost (e.g., in USD), or a combination
thereof. Furthermore, one has to consider various overflight charges for countries, weight
dependent fuel consumption functions and weather-dependent arc lengths. Due to the
weather being time-dependent, this introduces an implicit time-dependency into the problem.
On top, some air navigation service providers publish restrictions to prevent congestion, such
as EUROCONTROL’s Route Availability Document[12].

The Flight Planning Problem as we will discuss it is the problem of finding a minimum
cost (in USD) trajectory given an origin and a destination airport, a departure time and a
weather forecast, an aircraft and its consumption functions, and overflight charges for each
country. Note that we take the airline’s point of view, and only consider one aircraft at a
time. A general introduction to this problem can for instance be found in [18]. We will in

© Adam Schienle, Pedro Maristany, and Marco Blanco;
licensed under Creative Commons License CC-BY

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019).
Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela; Article No. 8; pp. 8:1–8:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:schienle@zib.de
mailto:maristany@zib.de
mailto:marco.blanco-sandoval@lhsystems.com
https://doi.org/10.4230/OASIcs.ATMOS.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 Pruning Search Spaces

the course of this paper disregard restrictions imposed by air navigation service providers
(ANSPs), as they can usually only be enforced on a given route. In particular, the Flight
Planning Problem as we see it is a base problem which may have to be solved a number of
times in order to obtain a valid flight plan.

In practice, a flight plan is compiled a few hours before the aircraft takes off. It is then
filed with ANSPs such as EUROCONTROL, who either accept or reject it. If rejected, it
must be recomputed to comply with additional restrictions; if accepted, however, it must be
flown as is, which requires the flight plan to be optimal – and discourages approximative
algorithms. Since flight plans may have to be recomputed following a rejection by ANSPs,
and since the base problem may have to be re-solved in order to obtain a solution which
satisfies restrictions, it is necessary that the base problem can be solved fast.

In this paper, we aim to reduce the a priori search space before the query commences.
To do so, we use a combination of upper and lower bounds in order to remove nodes from
the graph which provably cannot lie on an optimal path. Since many countries (especially
in Europe) allow more and more direct connections (so-called Free Route Areas) between
any two nodes within their boundaries, the underlying graph tends to become denser in the
future, which negatively affects runtimes.

1.1 Literature and Related Work
Reliant on a directed graph, the Flight Planning Problem shares similarities with the (Time-
Dependent) Shortest Path Problem on road networks. The best-known algorithm to solve
the non time-dependent version is Dijkstra’s Algorithm[8], which can be extended for the
time-dependent setting, see [10]. However, the time-dependent version of Dijkstra’s Algorithm
is only guaranteed to find an optimal solution if the FIFO property is satisfied; we say that
a function f : A× R+

0 satisfies the FIFO property, if

τ < τ ′ ⇒ f(a, τ) ≤ f(a, τ ′) + (τ ′ − τ).

This property basically states that overtaking is not possible by waiting at nodes. Many
speedup techniques for Dijkstra’s Algorithm exist for both the static and the time-dependent
version; [1] provides a good overview. While some such as A*[16] use potential functions to
guide the query at runtime, the methods which are most effective on road networks require
one or more preprocessing step. Contraction Hierarchies [15] (CHs) and its time-dependent
sibling Time-Dependent Contraction Hierarchies [2] (TCHs) assign ranks to the nodes, and
look for a shortest path through an in- and then decreasing sequence of nodes.

In [6], the authors show that TCHs do not perform as effectively on the airway network
graph as on road networks, being dominated both in preprocessing and in query times by A*.
The authors also introduce a novel technique for underestimating traversal times in the flight
planning problem. However, they do not consider overflight charges, which are a central
component of this paper.

Jensen et al. introduce a geometric algorithm to solve the Free Flight Problem [17]. They
partition any free flight airspace into rectangles of equal, constant wind. While similar to
Dijkstra’s algorithm, their method sorts nodes based not on their costs, but on the costs
of their cheapest successor, and lets nodes compete among each other for their successors,
thus achieving a speedup over Dijkstra’s Algorithm or A*. One has to note, however, that
their approach assumes airspace users can choose their waypoints freely. On the other hand,
we will assume that all waypoints and segments are defined, and that one is not allowed to
fly via self-defined waypoints. This represents the current point of view as expressed by air
navigation service providers such as EUROCONTROL [11].
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In terms of overflight charges or crossing costs, relatively little research has been conducted.
Most notably, Blanco et al. define and analyse the Shortest Path Problem with Crossing
Costs in [7], and solve a special case to optimality. In [5], the authors furthermore propose a
cost projection onto the arcs. Dreves and Gerdts [9] give an example on how to solve the
problem using optimal control, albeit in a bounded region in Europe. None of the works
cited deal with overflight charges considers the influence of weather. Both [6] and [5] only
run queries on one layer of the airway network, whereas we use the full (3D) graph for our
computations.

We seek to cut nodes with several different methods from the a-priori search space,
pruning all those nodes which provably cannot lie on an optimal path. A similar technique is
used in other applications of shortest path problems, e.g. in Electric Vehicle Routing [4], or
in the algorithm Approximated Time-Dependent Contraction Hierarchies [3].

Crossing costs pose a particular problem, in that they do not always correlate to the arcs
or nodes on the path, but rather depend on geometric information given by entry and exit
points for the given regions. While all of the presented pruning methods bear similarities to
A*, to the best of our knowledge, there is no known underestimator for regional crossing
costs of this particular type.

In section 2, we develop the theory on how to prune nodes prior to the query. Section 3
shows how to model the Free Flight Problem as a Time-Dependent Shortest Path Problem
with Crossing Costs. We develop several different pruning methods for the Free Flight
Problem in section 4, and show the results of real-world test cases in section 5.

2 Pruning Search Spaces in the Time-Dependent Shortest Path
Problem

In this section, we consider the Time-Dependent Shortest Path Problem (tdspp) defined as
follows: We are given a graph G = (V,A) together with a travel time function T : A×R+

0 →
R+

0 , which maps an arc a and the time τ at which it is entered to the travel time T (a, τ)
needed to traverse a. This function T will be one constituent of the total cost. For a path
P = (v0, . . . , vn) between two nodes v0, vn and a departure time τ0, we define the travel time
for P as

T (P, τ0) :=
n−1∑
i=0

T
(
(vi, vi+1), τi

)
,

where τi+1 = τi + T
(
(vi, vi+1), τi

)
for every i ∈ {0, . . . , n− 1}. We further impose that two

nodes s, t ∈ V exist, and seek to find the shortest path from s to t with respect to T , starting
at time τ0.

In [6], the authors show that in flight planning, A* outperforms even the most promising
speedup technique to Dijkstra’s Algorithm, Time-Dependent Contraction Hierarchies[2].
Since our pruning techniques in section 4 are similar to A*, we limit ourselves to the
discussion of pruning the search space for Dijkstra’s algorithm.

In this section, we concentrate on how to prune the search space for Dijkstra’s algorithm
before the query begins. To this end, we use both lower bounds on the arc costs as well as
an upper bound on the route costs. Usually, computing an upper bound on the route costs
is easy by just computing any feasible solution.

Let P ∗ be a minimum cost path s-t path starting at τ0, and c∗ := c(P ∗) its cost. We
assume that we are given an upper bound c on c∗, e.g., through a previously computed
feasible solution.

ATMOS 2019
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I Theorem 1. Assume we are given a tdspp as defined above, and an upper bound c on the
costs for a shortest path between s and t. Let cts : V → R+

0 be a function which underestimates
the costs for a shortest s-t-path via v. Any node v ∈ V which violates the pruning inequality

cts(v) ≤ c

cannot lie on an optimal path.

Proof. Let P ∗ be an optimal path, and assume that v ∈ P ∗ violates the pruning inequality,
so there exists a shortest s-t-path Pv via v such that c(Pv) > c. Then we find

c∗ = c(P ∗) ≥ c(Pv) > c,

contradicting the assumption that P ∗ was optimal to begin with. J

I Remark 2. In practice, we obtain a function cts(v) as required in the above theorem by
computing a lower bound function c : A→ R+

0 such that

c(a) ≤ c(a, τ) ∀τ ∈ R+
0 .

This approach is common for shortest path problems (e.g. for A* or ALT, see [1]), and is
also used in [6]. We write G := (G, c), and run a one-to-all Dijkstra from s and an all-to-one
Dijkstra to t on G. Note that G carries static arc costs, hence we can grow the Dijkstra trees
in O(|A|+ |V | log |V |).

If any node v ∈ V is not contained in either of the two trees, it cannot be reached from s,
or cannot reach t. In both cases, it can safely be eliminated, as it cannot lie on any optimal
path. If a node v ∈ V is not contained in both the forward and the backward tree, we will
assume its respective costs to be ∞.

Theorem 1 states that any path whose lower-bound costs are already higher than a
pre-computed upper bound cannot be optimal. Note that this mimics the A* algorithm[16].
The key difference is that by using Theorem 1, nodes which cannot lie on an optimal path are
eliminated a priori, rather than being discarded during the search. This means that it is a
little weaker than A*: for any node v ∈ V , the latter adds an estimate of the remaining costs
from v to t to the actual costs c(P vs ) from s to v, and sorts the node in the heap accordingly.
Contrastingly, when applying Theorem 1, one adds two cost estimates and compares them
to an upper bound. Unless the estimate is perfect, this leads to a gap between c(P vs ) and
c(P vs ). However, in practice it might be easier to compute an underestimation for the costs
of a complete path, rather than just parts of it. Also, a pre-pruned search space can be
advantageous for search algorithms which do not maintain a heap structure; e.g., by sorting
the graph’s nodes in topological order and run a search algorithm exploring the resulting
node groups in their respective order.
I Remark 3. The applicability of Theorem 1 is dependent on both the quality of the lower
bound as well as the quality of the upper bound solution. Clearly, lowering the upper bound
will result in more nodes being eliminated, as will raising the lower bound.

As shown by Fredman et al.[14], the runtime for the static Dijkstra’s Algorithm is
O(|A| + |V | log |V |) when a Fibonacci heap is used to store the unprocessed labels. The
dynamic, i.e., time-dependent case with FIFO travel time functions can be solved using
almost the same version of the algorithm [10]. The only difference is the evaluation of the arcs’
cost: in the static case it can be in constant time but in the dynamic case the complexity of
the evaluation depends on the shape of the functions [13]. This is why, even in the FIFO case,
it is not guaranteed that the tdspp is polynomially solvable and this is also the motivation
for a restriction of the search space before the query commences.
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3 Modelling the Free Flight Problem

We model the Free Flight Problem as a Time-Dependent Shortest Path Problem with
Crossing Costs, or t-sproc for short. As the name suggests, we introduce crossings costs
to the Time-Dependent Shortest Path Problem to account for overflight charges. We proceed
as follows:

We consider the airway network as directed graph G = (V,A), and origin and destination
airport as distinct nodes s and t in V . Each flight starts at a departure time τ0 ∈ R+

0 . In
our application, the cost functions comprises three components, to wit, the fuel costs, the
time costs, and overflight costs. Fuel costs are defined by what an aircraft burns en route,
while overflight costs are charges raised by countries’ air navigation service providers. Time
costs, on the other hand, comprise leasing costs, crew costs, and maintenance costs, and can
in our case be considered a linear function of the time en route. Hence, we can think of time
costs as being charged per arc, and introduce the time cost function

ct : A× R+
0 → R+

0

(a, τ) 7→ α · T (a, τ).

Fuel costs depend linearly on how much fuel an aircraft burns en route. The fuel burn is
directly proportional to the distance relative to the surrounding air mass, or air distance. As
in [17, 6], we assume that an aircraft flies with constant speed, which in turn renders the air
distance proportional to the time en route. Therefore, we can again think of fuel costs as
being charged per arc, and write

cf : A× R+
0 → R+

0

(a, τ) 7→ β · T (a, τ).

Both fuel and time costs naturally depend on the travel time, which in turn is weather-
dependent. We use the same travel time functions as given [6], assuming that weather is
given for a discrete point set ∆ ⊂ R+

0 in time over a long enough interval to cover all flight
durations. Usually, the break points are three hours apart; for any τ /∈ ∆, we interpolate the
closest two weather data objects to obtain a wind vector w(a, τ) for an arc a ∈ A. It can be
decomposed into its cross wind component wc(a, τ) perpendicular to the direction of flight,
and a track wind component wt(a, τ) parallel to it. Together with the constant air speed,
this leads to the travel time (c.f. [6, 17])

T (a, τ) = `(a)√
v2 − w2

c (a, τ) + wt(a, τ)
,

with `(a) denoting the length over ground of the arc a ∈ A. In particular, our travel time is
a non-linear function in prevailing the wind conditions.

Since both fuel and time costs are defined arc wise, we aggregate both functions into a
single arc-based and time-dependent cost function cA : A× R+

0 → R+
0 , defined as

cA : A× R+
0 → R+

0

(a, τ) 7→ cf (a, τ) + ct(a, τ).
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For the definition of crossing costs for regions, we will closely follow the notation presented
by Blanco et al. in [7]. We write δ+(v) for out-arcs and δ−(v) for in-arcs of the node v,
and define δ(v) := δ+(v) t δ−(v). We assume that the arcs are partitioned into a set R
of k regions

A = R1 tR2 t . . . tRk,

and we call v ∈ V an inner node of Ri if a ∈ Ri for all a ∈ δ(v). Stretching notational
limits, we will also write v ∈ Ri for an inner node v of Ri.

If, conversely, a /∈ Ri for all a ∈ δ(v), we call v an outer node. All nodes which are
neither inner nor outer nodes are called boundary nodes, and we write v ∈ ∂R. We count
airport nodes as boundary nodes. We emphasise that regions must not overlap arc-wise, yet
they may share a common boundary. Without loss of generality, arcs do not cross more
than one region: if an arc a ∈ A did, we could subdivide it and insert a new boundary node
at the border.

Write t(P ), h(P ) for the first (or tail) and last (or head) node of a path P , and let SR(P )
denote the set of arc-maximal sub-paths of P in a region R ∈ R. Then, for a sub-path
p ∈ SR(P ), its tail t(p) and head h(p) are both elements of ∂R. We will denote the union of
all boundary nodes by

B := {b ∈ V : b ∈ ∂R for some R ∈ R} ∪ {v ∈ V : v is an airport}

=
⋃
R∈R

∂R ∪ {v ∈ V : v is an airport}.

Assume a metric d : V × V → R+
0 . In our application, the natural metric arising from

embedding G = (V,A) on a spherical earth model is the great circle distance (gcd). We
write Pts for the set of all s-t paths. For a non-decreasing function fR : R+

0 → R+
0 we can

now define the crossing costs cRo : Pts → R+
0 for a region R and an s-t-path P as

cRo (P ) :=


fR

 ∑
p∈SR(P )

d
(
t(p), h(p)

) if R ∩ P 6= ∅,

0 if R ∩ P = ∅.

Note that these costs do not rely on the time τ0 at all. We can now define the Time-Dependent
Shortest Path Problem with Crossing Costs (for short: t-sproc) as follows:

Input: A directed graph G = (V,A), nodes s, t ∈ V , a departure time τ0 ∈ R+
0 , an

arc-based cost function cA : A × R+
0 → R+

0 , and a crossing cost function co : Pts → R+
0 as

defined above.
Objective: Find an s-t-path P starting at τ0 which minimises

c(P, τ0) :=
n−1∑
i=0

cA
(
(vi, vi+1), τi

)
+
∑
R∈R

cRo (P ). (1)

I Remark 4. t-sproc is an extension of tdspp. Clearly, the first sum constitutes the
time-dependency, whereas the second one accounts for the crossing costs. Especially, if
cRo (·) ≡ 0, we re-obtain the tdspp. Also, note that while the crossing costs co are not
time-dependent, they are not defined per arc. This obvious difference to tdspp poses an
additional challenge.
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We have shown in [19] that under certain conditions, the wind functions in our application
satisfy the FIFO property; we will for the remainder of this paper presuppose the FIFO
property for cA. Blanco et al. developed the Two-Layer-Dijkstra algorithm in [7], which
solves the shortest path problem with crossing costs to optimality in polynomial time.

We also observe that Theorem 1 requires an underestimation function for all nodes v ∈ V .
Since we cannot even evaluate the crossing costs for non-boundary nodes v ∈ V \ B, we
cannot apply Theorem 1 to t-sproc directly. However, since overflight charges are always
non-negative, we can underestimate the function co by zero.

4 Preprocessing in Practice

In order to have as low runtimes as possible, we aim to prune the a-priori search space for the
Flight Planning Problem. Regardless of which pruning algorithm we choose, the objective
function will always be given by (1).

4.1 Dead-End elimination
We can pre-eliminate any nodes which either cannot reach t or cannot be reached from s. This
can be done in O(|V |+ |A|), as it suffices to run one forward breadth-first search from s and
one backward breadth-first search from t. This pruning method is plainly graph-theoretical,
and removes cul-de-sac nodes from the graph. We will compare all other pruning methods to
this baseline both in terms of runtime and in terms of nodes in the search space.

4.2 The Tank-Capacity Pruning
This pruning method is the most intuitive one. Aircraft clearly cannot burn more fuel than
they can carry with them; since fuel burn is proportional to the flight time, this means that
there is an inherent maximum flight time for aircraft based on their tank capacity. Let Φ
denote the maximum fuel which the aircraft can carry, and ϕts(v) the fuel consumption on a
shortest path from s to t via v.

To underestimate ϕts(v) for a node v ∈ V , we use the Super-Optimal Wind as introduced
by Blanco et al. in [6]. The Super-Optimal Wind for an arc a ∈ A is an artificial wind
vector which never underestimates the travel time for an arc a ∈ A arising out of an actual
wind conditions. Given a ∈ A, it is obtained by separately minimising the cross wind and
maximising the track wind, leading to the artificial wind vector

w(a) = (wc(a), wt(a)),

where wc(a) := minτ∈R+
0
|wc(a, τ)| and wt(a) := maxτ∈R+

0
wt(a, τ). Note that one can obtain

better lower bounds by computing the Super-Optimal Wind wi(a) per τi, τi+1 ∈ ∆. For a full
discussion of the topic, we point the reader to [6]. As stated in the same work, Super-Optimal
Wind can be pre-computed independent of the instance in a few seconds for all arcs a ∈ A.

We create a lower-bound graph (G, l), by computing the Super-Optimal Wind vector
for each arc a ∈ A. This wind corresponds to a minimum air distance li(a) for each arc
a ∈ A and a given wind prognosis time τi ∈ ∆. Given an upper bound on the travel time
(e.g., through a previously computed solution), we can determine τk0 , τkj ∈ ∆ such that the
entire flight is in [τk0 , τkj

]. Hence, setting

l(a) := min
i∈{k0,...,kj}

li(a)
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provides an effective lower bound on the air distance for the entire flight. We then run a
one-to-all-Dijkstra from s and an all-to-one-Dijkstra to t on (G, l). Then, for any node v ∈ V ,
we obtain the minimum distance lts(v) from s to t via v by setting

lts(v) := l(s, v) + l(v, t),

where l(u,w) denotes the length of a shortest path from u to w in G, with respect to l. This
value is a lower bound on the wind-corrected distance between s and t. We convert lts(v) to
fuel consumption by assuming an optimal flight profile on the given air distance, to obtain a
lower bound ϕt

s
(v) on the fuel consumption via v. Whenever ϕt

s
(v) exceeds the tank capacity

Φ, we can eliminate v from the search space. Note that while this is similar to Theorem 1,
we do not rely on a precomputed upper bound; rather, the tank capacity is implicit in the
input data. Since all arc costs are static, we can compute this lower bound for every node in
O(|A|+ |V | log |V |).

4.3 Fuel and Time Pruning
Since both fuel and time costs are defined arc-wise, it makes sense to use both to create an
arc-based underestimation – we will in this subsection underestimate crossing costs by zero.

Underestimations for time costs are easier to obtain than for fuel costs. We again make
use of the Super-Optimal Wind: by employing the same strategy as above, we can obtain
a lower bound T ts(v) on the travel time between s and t via any node v. As it turns out,
both computations can be done in a single step by using that air distance and travel time
are proportional via the constant air speed. Since we assume time costs ct(P ) for a path P
to be a linear function in the travel time, they are very easy to underestimate: in fact, the
costs for the underestimated travel time are a good underestimation of the actual time costs.
We define

ct(v) := ct
(
T (s, v) + T (v, t)

)
Hence, given an upper bound solution with cost c, the pruning inequality given in Theorem
1 evaluates to

cf (v) + ct(v) =: cA(v) ≤ c, (2)

and we can eliminate any node v ∈ V which violates it. This is essentially the application of
Theorem 1 to the time-dependent part of t-sproc, with crossing costs underestimated by
the constant zero function. As in the tank capacity case, all data is static. In particular, we
can compute this lower bound at the cost of Dijkstras, namely in O(|A|+ |V | log |V |).

4.4 Pruning Crossing Costs
The problem with the method presented in the previous section is that although we use
the upper bound cost comprising crossing costs, we only sensibly underestimate the fuel
and time components (i.e., the time-dependent part of t-sproc). The crossing costs are
underestimated by zero. While still a valid underestimation, overflight charges may account
for up to one fifth of the total route costs, depending on the aircraft type. This already
justifies the incorporation of these charges into our underestimation.

Overflight charges were already investigated in [5], where the authors project crossing
costs for regions on the arcs using a heuristic which works very well in practice, but cannot
guarantee an underestimation. Instead, we are going to pursue an exact solution. In [7],
Blanco et al. introduce a macro graph which they use to keep track of the overflight costs. We
will mimic this construction, and use the macro graph to underestimate the overflight costs.
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So far, all cost components could be computed as a sum of individual arc costs. Recall
that as per the definition, crossing costs are not defined per arc, but are only given at the
boundaries of regions. Hence, sensible pruning can only occur at these boundaries. The idea
is to eliminate as many boundary nodes as possible, and then prune the search space further
by running an additional fuel/time pruning on the reduced search space.

Since crossing costs are not time-dependent, we can precompute a lower bound on them
by constructing a new graph M = (V ′, A′). We define this macro graph M as in [7]:

V ′ := {v ∈ V : v ∈ ∂R ∩ ∂R′ for some R,R′ ∈ R} ∪ {v ∈ V : v is an airport},

i.e., the new nodes are all boundary nodes of the regions. We also count airport nodes as
boundary nodes, to allow for crossing costs for flights beginning or ending in the interior of
a region. While instead of all airports it would suffice to only add s and t (as done in [7]),
our more general definition has the advantage of being independent of the instance. We can
hence reuse the same graph structure for all flight instances.1 We then set

A′ := {a = (u, v) ∈ 2V
′
: ∃P = (u, n1, . . . , nk−1, v) such that u, v, ni ∈ R ∀i}.

In other words, we insert an arc between two boundary nodes of R whenever there is a
path connecting them which is entirely contained in R. We then endow M with the (not
time-dependent) metric function d as defined in section 3. The macro graph for a set of
airspaces is depicted in Figure 1.
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N
N

N

N

N

N

N

N
N
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N
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4
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Figure 1 Macro graph with two airports in the gray regions.

Note that for all boundary nodes b ∈ B, the value

co(b) := co(s, b) + co(b, t)

is not only a lower bound on the crossing costs, but the actual crossing costs co(b) via b. In
particular, by running a one-to-all Dijkstra from s and an all-to-one Dijkstra to t, we can
obtain the actual crossing costs from s to t via each b ∈ B. By construction, |A′| ∈ O(|V ′|2),
which means that running the Dijkstra algorithms takes at most O(|V ′|2).

We observe that a route which minimises the crossing costs need not be optimal in
terms of the total costs – the minimum crossing costs c∗o between s and t are always a lower
bound on the actual crossing costs co(P ) for any s-t-path P . This means that we can safely
underestimate the crossing costs by c∗o instead of zero, without losing optimality in the
ensuing query – thus raising the lower bound by a significant amount. This leads to the
following procedure:

1 While our definition is very similar to the one in [7], the authors use it to solve the shortest path problem
with crossing costs to optimality, whereas we use it to prune the search space.
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1. Deactivate all boundary nodes b ∈ B for which c < cA(b) + co(b). Just as for bidirectional
Dijkstra[1], observe that whenever the fringes of both the one-to-all tree and the all-to-one
tree meet at a node b, we obtain a candidate co(b) for the minimum overflight costs
between s and t. The total minimum overflight costs

c∗o = min
b∈B

co(b)

are therefore a natural byproduct of this step.
2. Lower c to c′ := c − c∗o (this is equivalent to raising the lower bound by c∗o).
3. Run fuel/time pruning on the reduced search space with the upper bound c′.

Through this procedure, we use the influence of overflight charges twice: first in actively
removing boundary nodes, second by lowering the upper bound for the ensuing fuel/time
pruning.

4.5 Pruning in Practice
The airway network is designed as a directed graph on the Earth’s surface and the flight
levels can be thought of as distinct, interconnected layers of this graph. To quicken the
preprocessing step, we only consider the base layer of the airway network: we set an arc’s
underestimated length to the minimum lower bound length over all flight levels on which the
arc is defined. This may weaken the effect of the pruning algorithms, but does not affect
correctness. We use this procedure in our computations.

5 Computational Results

Both the Airway Network and the instance data were provided by Lufthansa Systems. The
graph consists of 109 314 nodes and 838 114 arcs per level, on 43 such flight levels. The
instance set consists of the 7 735 most often flown international connections, based on week
21 of 2014.2 We limit ourselves to international relations only, since for some countries such
as the US, overflight charges do not apply for domestic flights.

All considered flights connect cities which are at least 1 000 km apart on the great circle
between the two cities; due to the structure of the Airway Network, instances with airports
closer to each other do not benefit much from nuances in pruning algorithms.

We implemented all algorithms explained in Section 4 in C++ within our flight planning
tool. We compiled the code with GCC, and all our tests were carried out on machines with
132GB of RAM, and an Intel(R) Xeon(R) CPU E5-2690 v4 processor with 2.60GHz and
35.8MB of cache. Queries were run in single-thread mode.

We will measure the quality of the pruning methods by comparing runtimes and the
number of active nodes before pruning to afterwards both absolutely and relative to dead-end
elimination, which will act as our baseline. A higher number always indicates a more effective
method. The advantage of counting active nodes is that the speedup is purely algorithm-
but not implementation-dependent. For a fixed instance, we will keep the same upper bound
solution for each underestimator for all pruning algorithms. The names for the different
pruning methods found in this section are listed in Table 1.

2 single trip – only one direction is represented in the instance set.
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Table 1 Pruning methods.

dead end dead end elimination
tank cap tank capacity pruning
fuel time fuel/time pruning

fuel time ofc fuel/time/overflight costs pruning

We investigate three different scenarios: we use two different weather prognoses, six
months apart (wth-16 and wth-17), and in a third case investigate the situation where there
is no wind at all. This gcd case highlights the potential for fuel time ofc pruning while
eliminating unpredictable effects introduced by the wind. The absolute runtimes for each
scenario, averaged over all 7 735 connections, are presented in Table 2.

Table 2 Average Query Times per Weather.

dead end tank cap fuel time fuel time ofc

Weather runtime
(s)

nodes
(#)

runtime
(s)

nodes
(#)

runtime
(s)

nodes
(#)

runtime
(s)

nodes
(#)

wth-16 44.01 31 115 33.70 9 213 15.05 4 125 10.38 3 042
wth-17 44.61 31 120 33.61 9 151 14.89 4 057 10.11 2 963
gcd 17.42 31 123 12.81 8 673 5.50 3 541 3.41 2 391

Recall that we investigate the base problem in flight planning, that of finding a 3D
trajectory. Note, too, that we may have to recompute a solution given new restrictions
imposed by ANSPs. With this in mind, it is imperative that each instance can be computed
as fast as possible. To this end, we compare the query time of Dijkstra’s Algorithm after
applying tank cap, fuel time, and fuel time ofc pruning to the query time after using
only dead end. For each of the more than 7 000 flights, the speedup is recorded both
absolutely and relatively, averaged over the instances, and then summarised for the current
weather situation. Note that this approach is possible since our runtimes are in the order of
seconds rather than milliseconds, which yields comparatively stable runtime measurements.
The previous table already indicates the results, but we also visualise them in Figure 2.
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Figure 2 Absolute runtime reduction (left) and averaged relative speedup per instance (right),
visualised per test set.
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One can see that tank cap pruning yields a speedup factor close to 1.3, fuel time
pruning a factor of almost 4, and fuel time ofc pruning a relative speedup of just under 7
for the weather-dependent instance sets.

To highlight the quality of the respective pruning algorithms, we also recorded the absolute
and relative reduction of nodes in the search space, which is only dependent on the pruning
method but not on its implementation. The results are presented in Table 3. Recall that
even though our computations took place in the full 3D setting, our pruning methods work
on the projection of the graph onto a 2D layer. Hence, it makes sense measure the reduction
of the search space in terms of deactivated 2D nodes.

Table 3 Average 2D Search Space Reduction Per Instance.

tank cap fuel time fuel time ofc
Weather absolute % absolute % absolute %
wth-16 21 900 70.84 26 988 87.40 28 071 90.94
wth-17 21 969 71.03 27 063 87.60 28 157 91.18
gcd 22 448 72.45 27 581 89.11 28 731 92.85

As one would expect, fuel time ofc pruning is the most effective method. Applying
fuel time ofc pruning to the search space yields a reduction of more than 90% of the
active nodes. This reduction is also visible in terms of the average query time speedup, which
is even ≈ 1.72 times better than with the second best method, fuel time pruning. While
the tank cap pruning is not quite as effective as the other methods, its inherent advantage
is that it does not rely on an upper bound solution. Indeed, the upper bound is given by
the input in terms of the aircraft’s tank capacity, which renders it a computationally light
alternative – or a fallback method in case one cannot find a reasonable upper bound solution.

It becomes apparent that all pruning methods are more effective in the gcd case than
with weather. This is logical since this case can be thought of as zero wind, whose Super-
Optimal Wind underestimation is perfect – thus tightening the bounds on both fuel and
time underestimation. Consequently, the influence of including the overflight fees in the
estimation become more apparent. Therefore, it is also not surprising that fuel time ofc
pruning in the gcd case is the most effective of all methods, since it deals with the tightest
lower and upper bounds possible.

6 Conclusion

We have investigated the Flight Planning Problem in more detail than what was covered
before. To speed up the query, we have developed and presented three different pruning
methods for an a priori search space reduction. In particular, we presented a way to
incorporate crossing costs in the underestimation, thus tightening the lower bounds on the
optimal costs for the Flight Planning Problem.

We showed both theoretically and computationally that each of the methods is effective.
Clearly, including crossing costs in the underestimation yields a noticeable reduction of both
the search space and the ensuing query time. While all pruning methods bear similarities
to A*, to the best of our knowledge, there is no known underestimator for this particular
problem. This is partly due to the fact that A* requires that one define a potential function
at each node. Contrastingly, we use a two-stage pruning process to first eliminate boundary
nodes and then deactivate inner nodes.

The added benefit of a priori search space reduction is that it can be used with non-heap-
based algorithms, such as topological sorting, too.
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Abstract
We aim at exploiting parallelism in shared-memory multiprocessing systems, in order to speed up the
execution time with as small redundancy in work as possible, for an elementary task that comes up
frequently as a subroutine in the daily maintenance of large-scale time-dependent graphs representing
real-world relationships or technological networks: the many-to-all time-dependent shortest paths
(MATDSP) problem. MATDSP requires the computation of one time-dependent shortest-path tree
(TDSPT) per origin-vertex and departure-time, from an arbitrary collection of pairs of origins and
departure-times, towards all reachable destinations in the graph.

Our goal is to explore the potential and highlight the limitations of amorphous data parallelism,
when dealing with MATDSP in multicore computing environments with a given amount of processing
elements and a shared memory to exploit. Apart from speeding-up execution time, consumption
of resources (and energy) is also critical. Therefore, we aim at limiting the work overhead for
solving a MATDSP instance, as measured by the overall number of arc relaxations in shortest-path
computations, while trying to minimize the overall execution time. Towards this direction, we
provide several algorithmic engineering interventions for solving MATDSP concerning: (i) the
compact representation of the instance; (ii) the choice and the improvement of the time-dependent
single-source shortest path algorithm that is used as a subroutine; (iii) the way according to which
the overall work is allocated to the processing elements; (iv) the adoption of the amorphous data
parallelism rationale, in order to avoid costly synchronization among the processing elements while
doing their own part of the work.

Our experimental evaluations, both on real-world and on synthetic benchmark instances of time-
dependent road networks, provide insight how one should organize heavy MATDSP computations,
depending on the application scenario. This insight is in some cases rather unexpected. For instance,
it is not always the case that pure data parallelism (among otherwise totally independent processors)
is the best choice for minimizing execution times. In certain cases it may be worthwhile to limit
the level of data parallelism in favor of algorithmic parallelism, in order to achieve more efficient
MATDSP computations.
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1 Introduction

Recent advances on hardware and algorithms for mining and analyzing a large data corpus,
have unveiled an entire novel era of Algorithmic Data Science, which is perceived as the
new revolution in Computer Science. Apart from the computational efficiency of executing
elementary tasks, possibly numerous times and on huge data sets, another crucial aspect
is the consumption of resources for these computations. For example, despite the huge
improvements of Natural Language Processing via the exploitation of Artificial Intelligence
and Machine Learning, there are some serious concerns about the environmental impact
of these improvements: As demonstrated in [22], training a single AI model for NLP
corresponds to the emissions of carbon of five cars in their entire lifetimes, including their
own production phases.

The emphasis of the present work is on exploiting parallelism for speeding up cautiously
(i.e., as work-efficiently as possible) the execution-time of an elementary but demanding task:
computing earliest-arrival-times and/or the corresponding paths, from each of a collection
of pairs of origins and departure-times, towards all reachable destinations, in large-scale
graphs with time-dependent arc-traversal-time functions. Such instances represent real-world
networks like road network infrastructures, social/friendship/collaboration networks, power
grids, etc. This task, called the Many-To-All Time-Dependent Shortest Path (MATDSP)
problem, appears quite often as a typical subroutine in the daily maintenance of such graphs,
e.g., for the creation of metric related metadata.

Our motivation comes from the need for fast MATDSP computations when dealing
with travel-time, landmark-based, oracles for large-scale road networks with time-dependent
arc-traversal-time functions. A typical travel-time oracle preprocesses the instance as effi-
ciently as possible, in order to create a carefully designed data structure (called travel-time
summaries) of subquadratic space requirements. This data structure will then be exploited by
a query algorithm which responds to arbitrary earliest-arrival-time queries in time sublinear
in the size of the instance, and with provable approximation guarantees about the quality
of the chosen path. During the preprocessing phase of such an oracle (e.g., of CFLAT [11]
which is to date the most efficient travel-time oracle), MATDSP is repeatedly used while pre-
computing approximate earliest-arrival-time functions, from selected origins (the landmarks)
and for carefully selected departure-times, towards all reachable destinations. The MATDSP-
algorithm for CFLAT in [11] was based on a priori splitting the overall workload of landmarks
among the available processing elements, i.e., a static, work-sharing approach. Consequently,
each processing element would employ a time-dependent shortest path subroutine to execute
its own part of the job.

An algorithm for MATDSP would need as a subroutine an algorithm for the Time-
Dependent Shortest Path (TDSP) problem of computing a time-dependent shortest-path tree
from a given origin and departure-time towards all reachable destinations. Two classical
algorithms for TDSP, at least when the instance obeys the celebrated FIFO property for the
arc-traversal-times, are:

https://doi.org/10.4230/OASIcs.ATMOS.2019.9
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the time-dependent variant (TDD) [8] of Dijkstra’s (DIJ) algorithm [7], and
the time-dependent variant (TDBF) [18] of the Bellman-Ford (BF) algorithm [4, 10].

The main difference of the time-dependent variants TDD and TDBF from DIJ and BF,
respectively, concern the relaxations of arcs which can only occur as the result of an evaluation
of an arc’s traversal-time function at a given departure-time from its tail that is depicted
by its current label. For the time-independent case (static arc-costs), several variants and
hybrids of the classical DIJ and BF algorithms have appeared in the literature. Especially
for DIJ, numerous priority queues have been also considered, e.g. see [12] and references
therein. We proceed with an analogous experiment for TDD, on real-world time-dependent
road network instances.

Our first contribution is an experimental evaluation of our own implementations of the
TDD algorithm with (i) binary-heap (TDDbh), (ii) implicit-priority heap (TDDph) and (iii)
sequence heap (TDDsh) in real-world road-network instances. Our experiments demonstrate
that TDDsh is superior to both TDDbh and TDDph, at least for workloads coming from
real-world road networks.

A notable hybrid of DIJ and BF is the Delta-Stepping (DS) algorithm [14], which connects
smoothly these two extremes. Ideally, one would like to trade-off as smoothly as possible the
(optimal) work of the essentially sequential DIJ algorithm, with the optimal completion time
of the fully parallelizable BF algorithm. This is exactly what DS is doing, by organizing
the arc relaxation requests to be served in a more loose partial order than that of DIJ, but
certainly in a more structured way than BF which considers all the arc relaxation requests
in an arbitrary order (which is exactly its main advantage with respect to parallelization).
We adapt the DS algorithm to work for FIFO-abiding TDSP instances.

Our second contribution is the first (to our knowledge) implementation and experimental
evaluation of a time-dependent variant (TDDS) of the DS algorithm. The experimental
evaluation demonstrates that TDDS is more efficient than TDDsh, at least for road network
instances.

When trying to exploit parallelism for MATDSP, there are several aspects one should
take into account. The challenge is, given a small number P of parallel computing nodes, to
achieve as much speedup as possible (ideally up to P times) in execution-time, compared to
the most efficient sequential execution-time as a subroutine, consuming as small overhead in
work as possible. Although many papers in the literature deal with speeding up many-to-all
shortest path computations in time-independent instances, most of them exploit either
massively-parallel architectures or GPU-computing (e.g., [6, 5]) to speedup the wallclock
execution time, regardless of the work efficiency. On the other hand, our own approach tries
to achieve as much speedup as possible, for a given amount of P = 24 threads at our disposal,
approaching the optimum speedup of 24 as much as possible, and also with a small overhead
in the overall work as measured by the number of arc-relaxation requests (the elementary
operations in label-setting/correcting algorithms for shortest paths).

A parallel MATDSP algorithm must make two crucial strategic decisions: (i) allocate
the overall work to the processing elements either statically (i.e., at the beginning of the
computation) at the cost of possibly unbalanced portions of work, or dynamically (i.e., at
runtime) at the cost of centrally controlling the pending work to be allocated; (ii) either to
abide with the partial ordering of the arc-relaxation requests (as the sequential variants of
TDD and TDDS would do), or else allow for cautious violations of these orderings, as is done
according to the amorphous-data-parallelism (ADP) rationale [19].

Our third contribution is the consideration of the ADP rationale in the parallel imple-
mentations of both the TDDS algorithm for MATDSP, and the entire preprocessing phase of
the CFLAT oracle.
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Our parallel implementation of TDDS was based on the ADP implementation of DS in the
Galois system [2, 16, 17], which was for time-independent shortest-path tree computations.
We also applied the ADP and dynamic work allocation rationales to the preprocessing phase
(and the query algorithm) of the CFLAT oracle, leading to a new, more efficient version
which we call the OFLAT oracle. The workload in the preprocessing phase is always allocated
dynamically (i.e., at runtime), both to processes (for landmarks) and threads (for chunks of
arc-relaxation requests); as for the ADP rationale, it is adopted for the entire preprocessing
phase, not just for the parallel implementation of TDDS. Moreover, we used static allocation
of equal work shares for generic MATDSP instances, but fully dynamic allocation of work for
the preprocesing phase of the OFLAT oracle since the exact work load cannot be accurately
predicted in this latter case.

For our experimental evaluations we used two real-world road networks, plus one synthetic
benchmark instance, with arc-traversal-time functions to determine the time-dependent cost
of traversing each arc in the network at a particular time of the day. The real-world instances
represent the metropolitan area of Berlin (BER) and the German road network (GER),
respectively. The synthetic instance represents the road network of Europe (EUR). The
graphs are assumed to be fixed, in the sense that the input data does not change. We have
experimentally evaluated the performances of the following MATDSP solvers:

The sequential MATDSP solvers with TDDbh, TDDph, TDDsh as TDSP subroutines: It
turns out that, at least for random workload instances in road networks, TDDsh is the
most time-efficient subroutine for a work-optimal sequential MATDSP solver.
The sequential MATDSP solvers with TDDsh and TDDS as TDSP subroutines: TDDS
is already more time-efficient than TDDsh, achieving speedups ranging from 1.036 for
BER, 1.042 for GER, and 1.092 for EUR.
A parallel MATDSP solver based on the ADP rationale, that employs P/Q independent
processes (i.e., executables), each running an ADP variant of TDDS with Q threads,
called TDDS(Q), as a subroutine. Each process gets a priori (i.e., statically) its own
share of the the workload: the achieved speedups range from 18.86 for BER, 18.73 for
GER and 16.56 for EUR, compared to our best sequential MATDSP solver using the
TDDS(1) subroutine.

Our experimental evaluation for the preprocessing phase of OFLAT demonstrates that it
actually pays off to combine data-parallelism with task-parallelism. For example, compared
to the pure data-parallelism used in the original CFLAT oracle, the use of P/Q independent
processes, each with its own dynamically allocated load share to serve with Q threads, we
achieved (for appropriate choices of Q) further speedups in preprocessing by 1.46 times in
BER, 1.38 times in GER and 1.49 times in EUR.

As for our trave-ltime query algorithm, OFCA, it is worth mentioning that parallelism
only pays off for very large instances. For example, in the EUR instance OFCA achieves
less than half the query time of CFCA [11], although it is still inferior to the query time of
KaTCH [3], essentially due to space limitations. On the other hand, for the instances of
BER and GER, OFCA is much faster than both CFCA and KaTCH.

2 Preliminaries and Notation

Let G = (V,E) be a directed graph representing a road network. Such a graph is typ-
ically sparse (in particular, with constant maximum degree) and non-planar. ∀uv ∈ E,
D[uv] : [0, T ) 7→ R≥ 0 is a continuous, piecewise-linear (pwl) function providing the arc-
traversal-times from the tail u to the head v, for departure times from a given period
[0, T ). It is assumed that this function has minimum slope greater than −1, so as to
abide with the strict FIFO (a.k.a. non-overtaking) property of road networks. ∀uv ∈ E,
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∀tu ∈ [0, T ), Arr[uv](tu) = tu + D[uv](tu) is the corresponding function providing arc-
arrival-times at the head v, for different departure-times from u. Let Pu,v denote all
the (u, v)-paths in G. ∀π = 〈x0x1, x1x2, . . . , xk−1xk〉 ∈ Pu,v, ∀tu ∈ [0, T ), Arr[π](tu) =
Arr[xk−1xk]( · · · Arr[x0x1](tu) · · · ) is the function of path-arrival-times from the ori-
gin u = x0 to the destination v = xk, when traveling via the (u, v)-path π. D[π](tu) =
Arr[π](tu) − tu is the corresponding function of path-travel-times between u and v via π.
∀tu ∈ [0, T ), Arr[u, v](tu) = minπ∈Pu,v

{ Arr[π](tu) } is the function of earliest-arrival-times,
from the origin u to the destination v. D[u, v](tu) = Arr[u, v](tu) − tu is the correspond-
ing function of minimum-travel-times from u to v, not necessarily always via the same
(u, v)-path. ∀ε > 0, the function ∆[u, v] s.t. D[u, v](tu) ≤ ∆[u, v](tu) ≤ (1 + ε) ·D[u, v](tu)
∀tu ∈ [0, T ), is a (1 + ε) upper-approximation of D[u, v]. Analogously, the function ∆[u, v] s.t.
D[u, v](tu)/(1 + ε) ≤ ∆[u, v](tu) ≤ D[u, v](tu) ∀tu ∈ [0, T ), is a (1 + ε) lower-approximation
to D[u, v]. For sake of succinctness in their representations, both ∆[u, v] and ∆[u, v] are also
required to be continuous and pwl functions.

3 Algorithm-Engineering Interventions

In this section we provide a detailed overview of the main algorithmic-engineering interventions
in order to exploit parallelism towards speeding up the execution times of either generic
MATDSP computations, or the preprocessing phase (and secondarily the query algorithm)
of the CFLAT oracle, without causing too much additional computational effort. We start
with the presentation of the interventions concerning our first application scenario for generic
MATDSP computations in time-dependent road networks. We then explain some additional
interventions which are necessary for the work-efficient parallelization of the preprocessing
phase in the CFLAT oracle. In particular, as we shall explain later, we had to redesign
entirely the preprocessing phase, not just the MATDSP subroutine, in order to abide with
the rationales of dynamic work allocation and amorphous-data-parallelism.

3.1 Algorithm-Engineering Interventions for Generic MATDSP
Computations

In order to provide a time- and work-efficient parallel algorithm for generic MATDSP
computations, we proceeded with the following algorithmic-engineering interventions:

3.1.1 Graph Representation
We reconsidered the representation of the time-dependent graph instances. Rather than
using the graph type of PGL [13], a quite robust data type that was used in CFLAT’s
implementation, which aims to support dynamic updates of the graph structure, we adopted
here its static version (with no empty slots), which coincides with the FORWARD-STAR
graph data type [1]. The reason for this decision was that during the preprocessing phase of
the oracle, the underlying road network infrastructure does not undergo any alteration. This
change had a noticeable improvement on the memory consumption and the cache hit rate.

3.1.2 Optimizing the implementation of TDD
It is well-known that the (theoretically optimal) Fibonacci heap is not the best choice for
an implementation of DIJ (or any of its variants), due to both the complications in its own
implementation, and the fact that other priority queues (e.g., implicit binary heaps) are
known to perform better in practice. Indeed, there have been numerous discussions on the
choice of an efficient priority queue for DIJ (e.g. see [12] and references therein).
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We departed from the standard implementation of TDD with an implicit binary heap
(TDDbh), and tested also its execution time with the implicit pairing heap1 (TDDph variant)
and Sander’s implementation [20] of the sequence heap2 (TDDsh variant). Our experiments
demonstrated that, at least for time-dependent road-network workloads, it definitely pays off
to adopt TDDsh as a work-optimal TDSP subroutine.

3.1.3 Alternative (sequential) TDSP Algorithms
We considered the substitution of TDD with the, quite efficient in practice, (sequential)
TDDS algorithm, as a TDSP subroutine of our sequential MATDSP algorithm. As already
mentioned, TDDS is a controllable label-correcting algorithm that allows the relaxation
of arcs in a more loose order than that of TDD. The nice thing about TDDS is that it
uses a bucket-based structure for the pending arc relaxations, without enforcing too much
additional work for determining their total order because of its label-correcting nature within
each bucket. Our experimental evaluation demonstrated a clear advantage of the (sequential)
TDDS algorithm over the best implementation of TDD, which is TDDsh.

From now on, for sake of comparison, we use our most efficient implementation of a
sequential MATDSP algorithm, which uses TDDS as a TDSP subroutine. All speedups due
to parallelism are compared to the performance of this sequential MATDSP algorithm. As
for the work overheads, these are compared to the optimal work of the sequential MATDSP
algorithm with TDDsh as a subroutine.

3.1.4 Synchronous vs. Asynchronous Parallelism
A major burden in shared-memory environments is that one may have to periodically execute
costly barrier-synchronization (SYNC) operations among the threads, when the parallelism
is not only on data but also within the tasks. The parallel variants (with Q threads) of
label-correcting algorithms for TDSP, e.g., TDBF(Q) and TDDS(Q), have a significant
advantage: When an arc is tentatively relaxed, although it is not yet one of the arcs that
TDD would choose next for relaxation, this (possibly redundant) tentative work cannot harm
the correctness of the TDSP computation. Of course, the overall work is also a commodity
that needs to be consumed with caution, especially when one is provided with a rather limited
number of computational resources. In order to avoid as much as possible the need for SYNC
operations, but without suffering too many unnecessary computations as in TDBF(Q), we
adopt the rationale of amorphous-data-parallelism (ADP) [19] for our parallel implementation
TDDS(Q) of TDDS. ADP lets each thread within a parallel algorithm, like TDBF(Q) or
TDDS(Q), proceed with its own (eagerly allocated to it) computations independently of the
other threads. The only indirect SYNC is done via the common pool of pending work, which
is centrally handled in the shared memory of the system. TDBF(Q) would create a single
pool of arc-relaxation requests, and each idle processor would then request to be allocated
chunks of requests from this pool. TDDS(Q), on the other hand, organizes these pending
arc-relaxation requests in buckets of different sizes (representing travel-time distances of the
arcs’ tails from the origin), so that arcs which emerge from vertices belonging to buckets
closer to the origin, are relaxed before arcs which emanate from vertices in buckets that are
further away. Nevertheless, SYNC operations are limited on the threads’ time-dependent

1 Source code: https://code.google.com/archive/p/priority-queue-testing/.
2 Source code: http://algo2.iti.kit.edu/sanders/programs/spq/.
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SPT3 frontiers. Each thread runs at its own speed and simply adopts this partial order for
the arcs which are allocated to it. The only care that is taken is that every idle thread always
pops from the shared memory a chunk of pending arc-relaxation requests for arcs whose tails
belong to the first (in order) non-empty shared bucket.

3.1.5 Data vs. Task Parallelism

When a single process (i.e., executable) uses all the available threads (i.e., Q = P ) for
conducting a parallel computation, a major bottleneck is the shared-memory that is used by
all of them. The more threads an algorithm has at its disposal for a parallel computation, the
more likely it becomes to have conflicts in shared-memory access, e.g., due to false sharing
and collisions in atomic-write operations. To tackle this difficulty, one could use P/Q > 1
processes, each with its own dedicated fraction of the shared-memory and Q threads at its
disposal, leading to less bottleneck while accessing the shared-memory (which is fragmented
among the processes). An extreme point (corresponding to pure data-parallelism) would
be to have P independent processes, each running with a single thread at its disposal. For
Q > 1 threads per process (and thus, less than P independent processes), there is some
sort of blending between (i) data-parallelism among the processes which statically (for
MATDSP) or dynamically (for CFLAT) share the overall workload, and (ii) task-parallelism
within each process since an ADP implementation , TDDS(Q), of the TDDS algorithm as a
TDSP algorithm.

On the contrary, for the CFLAT preprocessing scenario, even the allocation of work
among the processes will be done dynamically, as it will be explained later.

We have experimented the hybrid approach between pure data-parallelism (Q = 1)
and task-parallelism (Q > 1), for both for generic MATDSP computations, and for the
preprocessing phase of CFLAT. In both cases we observed that it pays off to use more
processes each with fewer threads, rather than a single process with all the available threads
at its disposal.

3.2 Further Algorithm-Engineering Interventions for CFLAT

In this subsection we reconsider the parallelization of the preprocessing phase in the CFLAT
oracle[11]. Our goal is to create an ADP-compliant variant of it, which also handles the
allocation of work in a dynamic way. This variant is called OFLAT. Consequently, we
also considered the exploitation of our parallel TDSP subroutine TDDS(Q) for the query
algorithm of the oracle, called OFCA.

We focus on the main building block of CFLAT’s preprocessing phase, which is the
approximation algorithm CTRAP in CFLAT to preprocess travel-time functions from selected
landmark-vertices towards all reachable destinations from them in the network. We proceed
with the presentation of a novel approximation algorithm, called OTRAP, which adopts
both the dynamic task-allocation and the ADP rationales in its implementation. Moreover,
a different methodology is considered for creating upper-approximating functions between
consecutive samples of the unknown travel-time functions.

3 In this work, when referring to an SPT we mean to say a time-dependent shortest SPT.
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3.2.1 OTRAP: ADP Approximation Algorithm For Travel-Time
Summaries

The goal of OTRAP is to compute continuous, piecewise-linear functions ∆[`, v] : [0, T ) 7→
R≥ 0 which are upper-approximations of an unknown minimum-travel-time function D[`, v]
from a given landmark (the origin) to each reachable destination v ∈ V . D[`, v] can be
efficiently sampled at specific departure-time points (breakpoints). We target for a sampling
procedure that will produce a reasonable amount of breakpoints per approximating function,
compared to any other upper-approximation that respects a required approximation guarantee
of 1 + ε, or equivalently, a relative error of at most ε. Towards this direction, OTRAP mimics
the steps of CTRAP, but with some notable differences. In particular, given a targeted
relative error of ε > 0, the algorithm starts from ts = 0 and time-horizon tf = T , and
keeps sampling properly selected departure-times tnext ∈ [ts, tf ) from `, until we can be
sure that the already constructed upper-approximating travel-time functions from ` provide
approximation guarantees no more than 1 + ε. The resulting oracle, which bases its own
preproccesing on the OTRAP algorithm, is called OFLAT.

We proceed with a more detailed presentation of OTRAP, which is the most notable
difference between OFLAT and CFLAT. OTRAP starts with the computation of an SPT
T f` from `, under the free-flow metric according to which each arc uv ∈ E has weight
w[uv] = mint∈[0,T ){ D[uv](t) }. Assume inductively that we have already determined the
required samples of departure-times and have constructed the corresponding time-dependent
SPTs, by calling a TDSP algorithm from our origin `, up to a last sample ts ∈ [0, T ). Assume
also that tf ∈ (ts, T ] is the current time-horizon of interest to our approximation (initially we
set ts = 0 and tf = T ). We have to decide whether to consider a new sample of departure-time
from ` within (ts, tf ). For this, exactly as in CTRAP, we need two approximating functions
of D[`, v] (per destination v) within [ts, tf ), a lower-approximating function ∆[`, v] and an
upper-approximating function ∆[`, v].

We begin with the construction of the upper-approximating functions. We first traverse
all the tree arcs of the time-dependent SPT T`(ts), in BFS order, so as to compute per
arc uv ∈ T`(ts) an upper-bounding function A[πv](t) of the path-arrival-time function at
v, Arr[πv](t), where πv is the unique (`, v)-path in T`(ts). This is done in two steps: We
construct, as a function composition, the function Â[πv](t) = A[πu](t) +D[uv](A[πu](t)) =
Arr[uv](A[πu](t)) of the already known (via the BFS visit order of the tree arcs on T`(ts))
upper-bounding function A[πu](t), starting from A[πl](t) = A[πl](t) = t, and the actual
arc-arrival-time function Arr[uv](t). The function ∆̂[πv](t) = Â[πv](t)−t is already an upper-
approximation of D[`, v] within [ts, tf ), but with possibly too many breakpoints. We thus
construct an upper-bounding function ∆[πv](t) of ∆̂[πv](t), within the considered departure-
times subinterval [ts, tf ), which only imposes at most 4 breakpoints, the two extreme points
and at most two intermediate breakpoints. In particular, ∆[πv](t) has a trapezoidal shape,
as the lower-envelope of three lines: The constant line, parallel to the departure-times axis,
that is tangent to the maximum point of D̂[πv](t) within [ts, tf ). Let tm ∈ (v) be the
corresponding departure-time for this maximum value of D̂[πv]. We construct two more
lines: The first line passes via the point ( ts, ∆̂[πv](ts) ) and is an upper-bounding tangent
line to the left part of ∆̂[πv](t), i.e., for the subinterval [ts, tm(v)]. The second line passes
via the point ( tf , ∆̂[πv](tf ) ) and is also an upper-bounding tangent line, to the right part
of ∆̂[πv](t) this time, i.e., for the subinterval [tm(v), tf ). The required upper-approximating
function ∆[πv](t), with the (at most) 4 breakpoints, is the lower-envelope of these three lines
(cf. the solid-orange pwl function in Figure 1).
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As for the lower-approximating functions ∆[`, v] within [ts, tf ), these are constructed
a bit differently from CTRAP: We consider a single line passing by ( ts, D[πv](ts) ) and
decreasing at slope −Λmin = −1 (i.e., the smallest possible slope, given the FIFO property
for travel-time functions), and the constant line representing the free-flow distance w[πv]
from ` to v. Then, ∆[`, v] is the upper-envelope of these two lines (cf. the solid-green pwl
function in Figure 1).

Figure 1 The construction of the upper- and lower-approximating functions by OTRAP. Solid
lines represent the pwl approximations. The upper-approximating function ∆̂[πv] is defined as
the composition of the (already constructed, due to BFS order) function ∆[πu] and the exact
arc-traversal-time function D[uv]. The relative error at time t ∈ [ts, tf ) is defined as follows:
RelError[v](t) = ( ∆[πv](t)−∆[`, v](t) ) / ∆[`, v](t). The failure-time for v is: tfail[v] = inf{t >
ts : RelError[v](t) > ε}.

Given the two approximating functions per destination v ∈ V , OTRAP’s next step is
to determine the earliest departure time tfail[v] > ts at which these two functions induce
a relative error larger than ε. The next departure-time sample tnext is then equal to the
minimum failure-time, tnext = minv∈V { tfail[v] }, among all reachable destinations from
`. OTRAP then moves ts to tnext, updates the time-horizon tf appropriately (see next
subsection), and repeats until no destination has failure time within [0, T ).

In order to have fast access to the value of tnext, the OTRAP algorithm maintains a
vector failBucket of failure-time slots, with index 1, 2, . . . , T . Each destination v ∈ V

is then assigned to the bucket i = btfail[v]c. The earliest failure time is determined by
the smallest index of a non-empty bucket. Moreover, for each sampled departure-time,
rather than constructing a complete SPT, we only target at some active destinations whose
current failure times (and possibly also the ones after the computation of the new SPT)
are more likely to affect the determination of the next sampling point. In particular, if
inext is the next non-empty bucket, the vertices having the current earliest failure times
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tfail[v] ∈ [inext, inext + 1) are marked as active destinations. The next sampling needs to
be done at tnext = minv∈failBucket[inext]{tfail[v]}, constructing the next time-dependent
SPT from (`, tnext) until all active destinations are settled. Their settlement signifies an
early-stopping condition for the TDSP algorithm (see Figure 2).

Let Dmax be the maximum travel-time of these active destinations in the new tree. Some
additional vertices, having failure-time less than ζ + tnext < T , and travel-time less than
γ ·Dmax, for a given parameter γ ≥ 1, are also marked as active destinations (red nodes in
Figure 2). The inclusion of those “nearby” destinations reduces OTRAP’s computational cost,
because it is most likely that those destinations are going to take part in the following sampling
steps. The execution of the TDSP algorithm from (`, tnext) then resumes, and continues
until all these additional active destinations also become settled. The new subinterval of
departure times to consider will be [ ts := tnext, tf := min{tnext + δ · Dmax, T} ), where
δ ≥ 1 determines the width of the departure-times domain for the upper-approximating
path-travel-time functions. The parameters γ and ζ adjust the depth of the shortest path
tree that is required to be built, whereas δ adjusts the width of the departure-times interval,
for the the upper-bounding functions. The algorithm terminates when all the destinations
from ` have failure-times beyond T .

Figure 2 The SPT sampling is done at the earliest failure-time point, among the vertices’ failure-
times along their paths from ` in T`(ts), in order to preserve the upper approximation guarantee.
Red nodes denote vertices with earlier failure-time, which require an earlier sampling. Orange nodes
denote vertices that have later failure-times, and thus require a sampling at a later step. Green
nodes denote vertices that have achieved the required upper-approximation of the min-travel-time
function over T and thus they don’t need further sampling.

As for the space requirements, OTRAP follows the same lossless compression scheme
for the output data as in the case of CTRAP, with an additional procedure on the storage
of predecessor-vertices’ IDs: In place of each predecessor-vertex ID, we choose to store the
position-index of the corresponding arc in the vertex’s list of incoming arcs. Moreover, the
predecessor-arcs indices are stored in bit-field arrays, thus further reducing the required
number of bytes.

3.2.1.1 Dynamic Scheduling of Work

Due to the label-setting nature of TDDS(Q), and the the early termination of the sampling
procedure when computing the upper-approximating functions ∆[`, v](t), the actual work
that corresponds to serving each of the landmarks during the preprocessing phase is not
known a priori. For this reason, we chose to dynamically allocate work during runtime of
OTRAP. We consider two different approaches towards this direction:
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Exploitation of joint data- and task-parallelism: We consider a number P/Q of independ-
ent processes (executables), each running on its own copy of the input. Each process
claims pending (i.e., not yet assigned to other processes) landmarks dynamically, ex-
ploiting system routines for handling file descriptors: Each preprocessed information
on behalf of a particular landmark has to eventually be stored in a file by the process
handling it. Therefore, when a process becomes idle it claims a new landmark by first
checking whether this file already exists. If not, it opens it and locks it for exclusive-write
access. In order to avoid claiming already served landmarks, each process considers the
landmarks in its own random order. Each process employs Q threads for serving the
landmarks assigned to it, independently of the other processes.
Dynamic allocation of work: Within each process (with Q threads at its disposal), every
landmark is assigned dynamically to a unique thread that becomes idle, so that the overall
work load is shared among the available threads as evenly as possible. In particular, each
thread that becomes idle requests for an available landmark (i.e., not yet being assigned
to another thread), and then calls OTRAP to preprocess it. Except for the indirect
synchronization via the allocation of pending landmarks to idle threads, each thread’s
work is done independently of the other threads. The TDSP subroutine employed by
OTRAP is the time-dependent and amorphous-data-parallel variant TDDS(Q) of the DS
algorithm. OTRAP also makes a breadth-first-search (BFS) traversal of the arcs in the
produced SPT, in ADP fashion. An amorphous-data-parallel variant BFS(Q) of a BFS
traversal was implemented, which starts from the landmark ` at which the current SPT is
routed. The traversal of all the destination vertices in the same BFS level can clearly be
done independently and in parallel, offering an equivalent result as in the sequential BFS
traversal. Even destinations at different levels can be processed independently of each
other, provided that all their ancestors in the BFS tree have already been processed. This
is exactly what is exploited by our ADP implementation BFS(Q) of BFS: Each thread is
allowed to move deeper in the tree, so long as it is assured that all the predecessor have
already been traversed.

3.2.1.2 Other improvements w.r.t. OTRAP

The OTRAP approximation algorithm achieves even better execution times when we apply
the following classical optimizations for shortest-path computations:

Vertex reordering: Similar to well-known observations concerning performance enhance-
ments of DIJ [6, 21], we reorder the vertices of the graph so that neighboring vertices
are actually located in adjacent memory blocks. This way, the Cache misses are reduced
and the execution times are further decreased. For this re-ordering we used a variant of
the depth first search (DFS) traversal of the graph: in each step we visit and insert into
a LIFO queue all the adjacent vertices from the current vertex just popped out of the
queue. That is, we adopt a traversal of vertices moving as much as possible in-depth first,
and following a local-breadth scan (i.e., among sibling vertices) only when further depth
is not possible for the moment. This order achieves a significant reduction on the Cache
misses of both DIJ and DS(Q).
Cache-friendly and compact data allocation: We order all the required variables (e.g.,
distances, predecessors, and sample containers) of both the OFCA (query) and OTRAP
(preprocessing) algorithms for each vertex and arc, in order to enforce a contiguous
memory allocation and thus reduce as much as possible the Cache misses whenever the
algorithm needs to access the memory.
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3.2.2 OFCA: The ADP query algorithm of OFLAT
The query algorithm OFCA of OFLAT is quite similar to the query algorithm CFCA of
CFLAT, essentially following three main steps: In Step 1, a small time-dependent SPT ball is
grown from the query’s origin pair (o, to), until a given number of N ∈ {1, 2, 4, 6} landmarks
are settled. In step 2, starting from the query’s destination d, we recursively move backwards
towards the origin o, following the preprocessed tree arcs in all the time-dependent trees
routed at these settled landmarks, until some of the settled vertices from step 1 is reached.
Step 3, finally, runs a TDSP subroutine in the subgraph induced by the arcs that have been
marked in Step 2, in order to determine the best time-dependent od-path in this subgraph.

The difference between CFCA and OFCA lies only in Steps 1 and 3, and has to do
with the choice of the TDSP subroutine. CFCA always uses the time-dependent variant of
TDDbh, whereas OFCA considers either TDDsh or TDDS(Q), depending on the size of the
network, which determines whether it really pays off to parallelize the query algorithm.

4 Experiments

4.1 Experimental Setup
All our algorithms were implemented in C++ (GNU GCC version 5.4.0) and Ubuntu Linux
(16.04 LTS). All our experiments were conducted on a dual 6-core Intel Xeon CPU E5-2643v3
3.40GHz machine, with 128GB of RAM and 20MB SmartCache and 2 hardware threads per
core. We used all 24 threads for the parallelization of both the MATDSP computation and
the preprocessing phase of the CFLAT oracle.

Two real-world instances (BER,GER) and one synthetic instance (EUR) of road networks
are used in our experiments, which have been provided to us for scientific purposes and are
typical benchmarks for time-dependent speedup techniques. The instance of Berlin, kindly
provided by TomTom in the frame of common R&D projects, describes the arc-travel-time
functions taken from historical data of a typical working day (Tuesday). The instance of
Germany, kindly provided by PTV AG in the frame of common R&D projects, describes
a typical working day (TUE-WED-THU). The instance of Europe is based on the (static)
road network instance of Western Europe provided in the 9th DIMACS challenge, which was
equipped with synthetically generated travel-time functions [15]. Table 1 summarizes the
description of the three benchmark instances:

Table 1 Statistics of the benchmark instances.

Instance #vertices #arcs
BER 473.253 1.126.468
GER 4.692.091 10.805.429
EUR 18.010.173 42.188.664

4.2 Testing TDD with different priority queues in MATDSP Instances
It was common knowledge for many years that implicit binary heaps are quite efficient, and
definitely more efficient than the theoretically optimal Fibonacci heaps for implementing DIJ.
Nevertheless, recent studies have argued about the superiority of other heap variants, such as
the implicit pairing heaps and the sequence heaps. For a comprehensive comparison of (static)
DIJ’s performance on various workloads, when using different priority queue implementations,
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the reader is referred to the excellent survey [12]. In our own experiment, we tested TDD’s
performance w.r.t. three different priority queues, for randomly created generic MATDSP
workloads that emerge in large-scale road networks. In particular, we have experimentally
tested generic MTDASP computations, with the following variants of TDD:

TDDbh, which is equipped with our own implementation of an implicit binary heap;
TDDph, which uses an implicit pairing heap [9], as provided by [12]; and
TDDsh, which uses Sanders’ implementation of a sequence heap [20].

We have always activated the DFS ordering of the vertices and the Cache-friendliness
optimizations (cf. Section 3). We tested the construction of complete SPTsfrom randomly
selected (origin,departure-time) pairs. The reported times are average times among inde-
pendent random selections of (origin,departure-time) pairs. The sequence heap appears to
have a clear advantage. Table 2 presents the results of our experimentation.

Table 2 TDD’s implementation with different (implicit) priority queues: TDDbh for binary heap,
TDDph for pairing heap, and TDDsh for sequence heap with fixed weight range (i.e., travel-times
diameter) precomputed. Three MATDSP instances were created, with 1000 random queries for
BER and GER, and with 100 random queries for EUR. For each query a complete time-dependent
SPT was constructed. Only one thread was used for each of these experiments. In all cases the
Cache-Friendliness and DFS ordering optimizations were used.

4.3 Comparing Sequential and Parallel TDSP Subroutines in MATDSP
Instances

Already for workloads on time-independent large-scale instances it was evident that the DS
algorithm is in practice more efficient than DIJ. We conducted an analogous experiment for
the time-dependent variants of the two alrogithms, when used as subroutines of a sequential
MATDSP solver.

As it is shown in the first two rows of Table 3, TDDS(1) is a more efficient algorithm
compared to our best implementation TDDsh of the time-dependent Dijkstra’s algorithm
with a sequence heap. The speedups of TDDS(1) over TDDsh ranges from 1.0363 for BER,
to 1.042 for GER and 1.092 for EUR (these times are the inverses of the reported values the
the last three columns of Row 1, in Table 3).

From now on we consider the execution-times reported in Row 2 of Table 3 as our baseline
sequential performance, for comparison with the performances of the parallel MATDSP
solvers that will be presented shortly. As demonstrated in Row 3 of Table 3, for the small BER
instance the fastest MATDSP algorithm uses 24 parallel processes, each using a single thread
for running its own TDDsh computations. On the other hand, Row 6 shows demonstrates
that for the larger instanecs of GER and EUR the best MATDSP algorithm uses only
4 processes, each employing 6 threads for calling TDDS(6). I.e., it actually pays off to
combine data-parallelism, e.g. statically splitting the workload among the 4 processes) with
task-parallelism, e.g. using 6 threads for the execution of the ADP implementation TDDS(6).
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Table 3 Comparing execution times of generic MATDSP instances. Rows 1 and 2 concern
sequential MATDSP algorithms (i.e., running on a single thread), which use TDDsh and TDDS as
their TDSP subroutines, respectively. The times reported in Row 2 are used as the ground-truth
for comparing the parallel algorithms’ speedups over our best sequential MATDSP solver. Row 3
presents our fastest parallel MATDSP algorithm for BER, which employs 24 independent processes
with a single thread. Row 6 and presents our fastest parallel MATDSP algorithm for BER, which
employs 4 independent processes with 6 threads per process, for the instances of GER and EUR.

The observed speedups of our parallel MATDSP algorithms compared to our best sequential
MATDSP algorithm, are 18.86 times for BER, 18.73 times for GER, and 16.558 times for
EUR. It is reminded that for these generic MATDSP instances the workload is statically split
among the different processes. It is also noted that the parallel implementation TDDS(Q)
(for Q > 1) abides with the ADP rationale.

4.4 Sensitivity of TDDS(Q) to the choice of chunk sizes in MATDSP
Instances

Since the ADP implementation of TDDS(Q) is dependent on the sizes of the chunks (with
pending relaxation requests) that we consider, we conducted MATDSP experiments consisting
of 1, 000 randomly chosen (origin,departure-time) pairs, each of which is allocated to one
of the P/Q processes (different executables) for construction of a complete time-dependent
SPT. These processes get statically their own shares of work (i.e., (Q/P ) · 1000 pairs each).

Each process then employs the ADP implementation TDDS(Q) to serve its own workload
sequentially. The allocation of chunks of arc-relaxation requests to the Q threads of the
process is done dynamically this time: each thread that becomes idle claims the next available
chunk of pending requests. Figure 3 shows the results of this experiment in BER and GER
instances. In both cases the chunk size achieving the optimal execution time is decreasing
with the number of processes that we use. This makes sense, since the more threads a process
has at its disposal, the smaller chunks it should use in order to avoid having idle threads with
no task to be allocated to them. It is evident also that the larger the instance, the larger the
chunk size that we should use for TDDS(Q). It is finally noted that there is no significant
variation of the overall work to be done (measured by the number of arc relaxations), as a
function of the chunk size.

4.5 Data-Parallelism vs. Task-Parallelism in MATDSP Instances
Our next experiment was to determine the trade-off between pure data parallelism (that is
exploited by 24 processes each running TDDsh), and algorithmic parallelism which is also
exploited when using TDDS(Q): the work is (statically) among P/Q processes, each of them
employs TDDS(Q) for serving its own work load, with the chunks-load again dynamically
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Figure 3 Experimenting with chunk sizes of TDDS(Q) when constructing 1000 random SPTs.

allocated to the Q threads within DS(Q). We have run an experiment of 1, 000 random SPT
queries in BER, and 1, 000 random SPT queries in GER. Our first observation is that the
best execution times for MATDSP with TDDS(Q) is indeed when Q > 1, in both cases.
This implies that it pays off, at least for generic MATDSP instances, with TDDS(Q) as a
subroutine, to mix data parallelism (i.e., how the queries are split among the processes) with
algorithmic parallelism where each of the queries is handled by TDDS(Q). For the BER
instance the best choice is to use 12 processes with 2 threads each, whereas for GER the best
choice is to use only 4 processes with 6 threads each. When compared with the pure data-
parallelism of 24 processes each using TDDsh (recall that TDDsh is superior to TDDS(1)),
although this latter scenario is preferable for BER (the speedup of 12×TDDS(2) processes
is less than 1), it is inferior to the scenario 4×TDDS(6) in the case of GER, achieving a
speedup of more than 1.268. At the same time, the work overhead of both 12xTDDS(2) in
BER and 4xTDDS(6) in GER over 24xTDDsh(1)’s optimal work, as measured by the total
number of arc-relaxation requests, is at most 1.08.

Table 4 Comparison of using TDDsh or TDDS(Q), during the execution of a MATDSP task.

4.6 Effect of ADP Rationale in OFLAT
The effect of the ADP rationale was assessed with respect to the OFLAT oracle. In particular,
we executed the preprocessing phase using our improved OTRAP approximation technique,
both with one OTRAP process running 24 threads, each executing TDDsh (for which no
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Table 5 Comparison of preprocessing times of OFLAT, when using the amorphous-data-parallel
implementation of OTRAP with: (i) the time-dependent DIJsh, and (ii) time-dependent DS(Q).

ADP is needed since each thread executes its own part), and with (P/Q) OTRAP processes,
each running the ADP variant TDDS(Q) as a TDSP subroutine. In the latter case, it is noted
once more that, apart from TDDS(Q) which was already implemented according to the ADP
rationale, the entire preprocessing phase had to be redesigned and implemented under this
rationale as well. We conducted measurements for the construction of preprocessed landmark
information for BER, GER and EUR. Table 5 presents all these measurements. It is clear
that even for the smaller BER instance, the task-parallelism of the ADP implementation
TDDS(Q) pays off, compared to TDDsh, leading to speedups of 1.46 for BER, 1.38 for GER
and 1.49 for EUR.

Table 6 presents a final experiment which demonstrates the efficiency of the query
performance of OFCA, compared to those of CFLAT’s CFCA algorithm and the KaTCH
speedup technique, in the GER and EUR instances. BER instance is omitted simply because
already CFCA was superior to KaTCH for this instance [11].

We have tried both TDDsh and TDDS(Q) as TDSP subroutines for the first step of
the query algorithm, and it became evident that GER is still small for parallelism to be
useful. Indeed, the OFCA’s query performance was optimized with TDDsh. For EUR,
on the other hand, even the query performance becomes non-negligible and parallelism of
TDDS(Q) in OFLAT again pays off, compared to TDDsh of CFLAT. Compared to the query
performance of KaTCH, OFCA is faster for the GER instance, but still slower for the EUR
instance. Nevertheless, it is clearly faster than CFCA of CFLAT (even with the improved
TDDsh variant).

5 Conclusions and Future Work

In this work we have attempted to explore the potential but also highlight the limitations of
amorphous-data-parallelism and dynamic allocation of work, in generic MATDSP instances
as well as in the CFLAT oracle.

Our findings demonstrate the significance of carefully using the available resources
(hardware threads of the multicore environment) in order to achieve remarkable speedups
with relatively small work overheads. For example, for generic MATDSP instances we have
shown that the speedups of our parallel implementations range from 16.558 up to 18.860
in our experiments, compared to our most efficient sequential MATDSP solver 1xTDDS(1).
At the same time, the workload overhead against the work-optimal (but not as efficient)
sequential solver 1xTDDsh(1), is at most by no more than 1.08 times in the BER and
GER instances.
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Table 6 Comparison of query response times among CFLAT, OFLAT and KaTCH, in GER and
EUR instances. All reported times are average times of 50, 000 independent trials.

We have also seen the effectiveness of the ADP rationale for the parallelization of the
CFLAT oracle. The improvement in both the preprocessing phase and the query performance
of the OFLAT oracle, over CFLAT, is significant.

Even when compared to the prevailing speedup technique for TDSP, KaTCH, the OFCA
query algorithm is quite competitive: Its query-time is already better than that of KaTCH
in GER, but still inferior in EUR, mainly due to space limitations for the EUR instance
in the preprocessing phase. We are currently in the process of further improving the space
requirements of OFLAT’s preprocessing, so that more landmarks are affordable for the EUR
instance. This way, OFCA will become even faster for instances in the size of EUR.
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Abstract
A highly successful approach to route planning in networks (particularly road networks) is to identify
a hierarchy in the network that allows faster queries after some preprocessing that basically inserts
additional “shortcut”-edges into a graph. In the past there has been a succession of techniques
that infer a more and more fine grained hierarchy enabling increasingly more efficient queries. This
appeared to culminate in contraction hierarchies that assign one hierarchy level to each vertex.

In this paper we show how to identify an even more fine grained hierarchy that assigns one
level to each edge of the network. Our findings indicate that this can lead to considerably smaller
search spaces in terms of visited edges. Currently, this rarely implies improved query times so that
it remains an open question whether edge hierarchies can lead to consistently improved performance.
However, we believe that the technique as such is a noteworthy enrichment of the portfolio of
available techniques that might prove useful in the future.
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1 Introduction

Computing shortest, fastest, or otherwise optimal routes in networks is a fundamental
problem needed to be solved in many applications. For road networks alone there are
multiple important applications, e.g., car navigation, traffic simulation, planning in logistics,
etc. An important approach to fast route planning is to preprocess the network in such a
way that subsequent queries are accelerated. In this paper we focus on point-to-point queries
in road networks but note that other types of queries or networks might also be supported in
a way analogous to previous applications of contraction hierarchies [12, 3].

A particularly successful class of preprocessing techniques for road networks is to exploit
hierarchy in the network. An informal way to describe this is, that “usually”, the farther away
we are from source or destination, the more important are the roads we use. Hierarchical route
planning techniques had a history in becoming more aggressive in exploiting the hierarchy
resulting in smaller and smaller search spaces. This began with early heuristics based on road
categories [15, 16] and later used exact techniques that insert shortcut edges. Shortcuts encode
that certain subpaths are important and, together with an appropriate query algorithm,
ensure that optimal paths can be found using hierarchical routing techniques. Such techniques
include overlay graphs [22, 7], reach based routing [14], highway hierarchies [20] and highway
node routing [21] – so far culminating in contraction hierarchies (CHs) [11, 12, 9].
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10:2 More Hierarchy in Route Planning Using Edge Hierarchies

CHs order the vertices of the network by importance, i.e., we conceptually have n levels of
hierarchy in a network with n vertices. By inserting appropriate shortcuts, CHs ensure that
there exists an up-down path between any pair of vertices that is a shortest path. An up-down
path progresses from the source vertex to more important vertices and then descends to less
important vertices until reaching the destination. CHs are widely used since they are simple,
allow fast preprocessing using little space and lead to very small search space.

In this paper we introduce edge hierarchies (EHs) as an even more fine grained way to
define hierarchy in the network. EHs order edges rather than vertices by importance. They
keep the concept of up-down paths resulting in a very simple query algorithm. Intuitively,
this should further reduce search spaces. EHs – in contrast to CHs – only have to explore
edges out of a vertex v that are more important than the edge leading to v in the current
query. Also note that EHs are very close to the informal definition of hierarchical routing
that we gave above.

After introducing basic terms and techniques in Section 2 and discussing further related
work in Section 3, we describe EHs in detail in Section 4. While the basic query algorithm
is simple by design, a preprocessing algorithm finding the “right” shortcuts turns out to
be much more complicated. We also discuss some basic techniques for pruning the query
search space.

In Section 5 we perform an experimental evaluation using large real world road networks
and different cost functions. It turns out that EHs relax significantly less edges than CHs in
particular for cost functions that are known to be difficult for CHs – with distance as the
main optimization criterion and/or explicit modeling of turn penalties. Unfortunately, the
overall query time is usually slightly worse than CHs and preprocessing time is considerably
larger. Overall, EHs are thus an intriguing concept with considerable potential but they
need further research to find out whether they will eventually be useful in some applications.
In Section 6 we discuss possible research in this direction.

2 Preliminaries

In this paper, we consider directed and weighted graphs G = (V,E,w), where V is a set of
vertices, E ⊆ V × V a set of edges connecting vertices and w : E → R+

0 a non-negative edge
weight function. A path is a sequence of vertices (v0, . . . , vn) such that (vi, vi+1) ∈ E for
0 ≤ i < n. The length of a path is the sum of its edge weights. The length of a shortest
path with source vertex s and target vertex t is also called the distance between s and t,
or dist(s, t).

The classical algorithm for finding shortest paths is Dijkstra’s algorithm [10]. It maintains
a distance label (dist) for each vertex and repeatedly settles the vertex u with the currently
smallest distance label among all unsettled vertices. It then relaxes all outgoing edges (u, v)
by setting dist(v)← min (dist(v),dist(u) + w(u, v)). In the bidirectional version of Dijkstra’s
algorithm, the forward search from s is complemented by a backward search from t that only
considers incoming edges of the settled vertices.

A shortcut is an edge whose length corresponds to the length of some nontrivial path
in the graph. For example, for edges e1 = (u, v) and e2 = (v, w), a shortcut es = (u,w)
with w(es) = w(e1) + w(e2) can be added to the graph. Note that adding shortcuts does
not change the distance for any pair of vertices in the graph. Also, by storing skipped
vertices, we can recursively unpack shortcuts, e.g., by replacing es with e1 and e2 to find the
corresponding path that only uses original (non-shortcut) edges.
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Contraction Hierarchies [11, 12, 9] use shortcuts to build a hierarchy where every vertex
is on its own level. Vertices are repeatedly removed from the graph in order of a measure of
importance. If for any pair of incoming and outgoing neighbors u,w the removed vertex v is
on the only shortest path (u, v, w), then a shortcut (u,w) is added. Whether this shortcut
is necessary is determined by a so-called witness search that runs a shortest path search
starting at u on the overlay graph. The overlay graph consists of all vertices not yet removed
and all edges incident to these vertices. The witness search can be restricted to stop after
settling a small amount of vertices. This might add unnecessary shortcuts but does not affect
correctness, while having the potential to speed up the algorithm. Vertex importance is
usually determined by a combination of different measures. Metrics successfully implemented
in previous work (and used in the implementation we compare against in our evaluation)
are the amount of shortcuts added when a vertex were removed next, the number of hops
represented by these shortcuts and an additional level metric that helps removing vertices
uniformly throughout the graph. These numbers have in common that they only change
when a neighbor of a vertex is removed from the graph. The algorithm therefore maintains
all vertices in a priority queue with their importance as key. When a vertex is removed, the
importance of its neighbors are updated. The query algorithm is a bidirectional Dijkstra
search that only relaxes edges that connect a vertex to a more (less) important vertex in the
forward (backward) search. Due to this, edges only need to be stored at the end point that
is removed first.

3 More Related Work

There has been a lot of work on route planning. Refer to [3] for a recent overview. Here
we only give selected references to place EHs into the big picture. Besides hierarchical
route planning techniques there are also techniques which direct the shortest path search
towards the goal (e.g., landmarks [13], precomputed cluster distances [18], arc flags [19]). On
road networks goal directed techniques are usually inferior to hierarchical ones since they
need considerably more query or preprocessing time. However, combining goal directed and
hierarchical route planning is a useful approach [13, 6]. We expect that this is also possible
for EHs using the same techniques as used before. Other techniques allow very fast queries
by building shortest paths directly from two (hub labeling [1]) or three (transit node routing
[4, 2]) precomputed shortcuts without requiring a graph search. However, these methods
require considerably more space than EHs.

4 Edge Hierarchies

The main idea of EHs is to provide a precomputed data structure that allows queries similar
to those of CHs: All shortest paths can be found by a bidirectional Dijkstra search that only
searches “upwards”. In contrast to CHs, which build a hierarchy of vertices, EHs build a
hierarchy of edges. Let r(u, v) denote the rank assigned to the edge (u, v). Then, paths found
by an EH query have the form (s = v0, . . . , vm, . . . , vn = t) with r(vi−1, vi) ≤ r(vi, vi+1) for
0 < i ≤ m and r(vi−1, vi) ≥ r(vi, vi+1) for m < i < n (allowing s = m or t = m). In line
with the terminology from CHs, we call such paths up-down paths.

The EH query is a modified version of the bidirectional variant of Dijkstra’s algorithm:
In addition to the distance label dist, we maintain a rank label r at every node, set to 0 for s
and t. When settling a vertex u, only edges with r(u, v) ≥ r(u) are relaxed. Whenever dist(v)
is updated while relaxing an edge (u, v), r(v) is set to r(u, v). For a stopping condition, the

ATMOS 2019
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Figure 1 Search space of an EH Query. Blue edges are in the search space of the forward search,
orange edges are in the search space of the backward search. Boxed numbers are edge ranks, unboxed
numbers are edge weights.

Algorithm 1 BuildEdgeHierarchy.

currentRank ← 0;
while Unranked edges remain do

Pick unranked edge (u, v);
r(u, v)← currentRank++;
for all unranked edges (u′, u) do

for all unranked edges (v, v′) do
if dist(u′, v′) = w(u′, u) + w(u, v) + w(v, v′) then

Add shortcut (u′, v) or (u, v′); // Or adjust weight + unset rank
end

end
end

end

algorithm maintains an upper bound d for dist(s, t) (initially ∞) which is updated whenever
a vertex is settled that has already been settled from the other direction. No edges leaving
vertices with dist(v) > d are relaxed. Figure 1 illustrates the search space of an Edge
Hierarchy Query. Note how the edges ranked 2 and 3 are not in the search space of the
backward search, even though their target vertex is settled.

Algorithm 1 shows an algorithm template for constructing an EH. Initially, all edges are
unranked (which we will treat as rank ∞). In iteration i, we pick an unranked edge (u, v)
and set its rank to i . We then iterate over all unranked edges (u′, u) and (v, v′) and test
whether (u′, u, v, v′) is a shortest path. If yes, we add either (u′, v) or (u, v′) as a shortcut.
If either of these two edges already exists, we instead adjust its weight and reset its rank to
∞, if it was already ranked before.

I Theorem 1. For every pair of vertices s and t, such that there is a path from s to t in
the input graph, Algorithm 1 assigns ranks and adds shortcuts such that there is a shortest
up-down path from s to t.

Proof. We prove this by showing the following: If at the beginning of iteration i, there is a
shortest path from s to t that only uses unranked edges, then in iteration j > i, there exists
an up-down-path p from s to t that only uses edges of rank ≥ i. As at the beginning of the
first iteration, all edges are unranked, this proves the theorem.

In iteration i, an edge e gets ranked. Let p be a shortest path from s to t consisting
only of unranked edges. If e is not part of p, then p is still a shortest path that only uses
unranked (rank ∞) edges (which is an up-down path by definition).
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Figure 2 Example showing that EH construction needs to calculate distances on the complete
graph. Boxed numbers are edge ranks, unboxed numbers are edge weights.

If e is at neither end of p, then a shortcut is inserted that replaces two edges of p, so
there still is a shortest path only using unranked edges from s to t.

If e = (s, v) (the case e = (v, t) is analogous) we distinguish two cases:
1. There still exists a shortest path of unranked edges from s to v: Then there is also a

shortest path of unranked edges from s to t.
2. There is no shortest path of unranked edges from s to v: Then (s, v) gets assigned rank i

and can never change its rank (note for this, that edges can only be inserted or assigned
to a different rank if there is a shortest path of unranked edges between their endpoints).
Furthermore, there is a shortest path of unranked edges from v to t. By induction, in
every iteration j > i, there will be an up-down-path from v to t that uses only edges of
rank ≥ i. By adding the edge (s, v) to the beginning of that path, we get an up-down
path from s to t.

As the induction basis, note that at the end of the algorithm, no edges are unranked, so the
claim holds trivially. J

Note that from the induction in the proof above, it follows that we can use the EH query
for the distance calculation in Algorithm 1.

The algorithm can also be slightly altered by only adding a shortcut if (u′, u, v, v′) is the
only remaining unranked shortest path from u′ to v′. However, preliminary experiments
showed that the version presented here yields better results.

An important difference to CH construction is that Algorithm 1 has to calculate distances
in the complete graph, whereas CH construction only has to query the overlay graph. See
Figure 2 for an example why using the overlay graph does not suffice for EHs: If (b, d) is
assigned rank 2, we need to check whether p = (a, b, d, c) is a shortest path. If only the
overlay graph were used for the distance calculation, then we would falsely assume that p is
a shortest path and add a shortcut.

4.1 Shortcut Selection
The choice of the shortcut that is added in the inner loop of Algorithm 1 can make a
significant impact on the total number of shortcuts added. For example, in Figure 3, we
could either add the shortcut (u, v′) or all of the shortcuts (u′i, v) (assuming (u′i, u, v, v′) is
a shortest path for all u′i). In contrast, in CHs there is no choice of which shortcut to add.
We minimize the number of shortcuts added using a solution to a minimum bipartite vertex
cover problem for every iteration of the outer while-loop of Algorithm 1.

The problem (U ∪ V,E) is constructed as followed: Instead of directly adding one of the
two possible shortcuts, we add the vertices u′, v′ to U, V respectively (if they have not been
added before) and an edge between them.

ATMOS 2019
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Figure 3 When ranking (u, v), we could either add all shortcuts (u′
i, v) or just (u, v′).

After all shortcut candidates for an iteration of the outer loop have been added to the
bipartite graph, we compute a minimum Vertex Cover C. Note that this can be done in
polynomial time via maximum cardinality bipartite matching using König’s Theorem. We
then add the shortcuts (u′, v) for every u′ ∈ U ∩C and (u, v′) for every v′ ∈ V ∩C. It is easy
to verify that for every pair of candidate shortcuts, one is added. Also, every set of shortcuts
added implies a Vertex Cover for the graph above, so finding a minimum Vertex Cover
minimizes the number of shortcuts added in every iteration of the construction algorithm,
given the edge that is assigned a rank.

To further minimize the number of shortcuts added, we always prefer edges already
present in the graph: if (u′, v) or (u, v′) is already in the graph (ranked or unranked), we
change its weight accordingly and reset its rank. The pair (u′, v′) is then not added to the
minimum Vertex Cover problem described above.

4.2 Edge Selection

In every iteration of Algorithm 1, an edge is selected to rank. Our heuristic to select these
edges is guided by two goals: Adding a small number of shortcut edges to the graph, and
ranking edges uniformly throughout the graph. Here, we present the version that produced
the best results in our preliminary experiments. Other versions that resemble the vertex
selection strategies used for CHs resulted in worse preprocessing and query times.

Our heuristic works in rounds: in the beginning of each round, a set of edges to rank is
selected and fixed. Only when all edges selected are ranked, a new round is started and a
new set of edges is selected. Edges are selected by counting for each unranked edge e the
number of new shortcuts that would be added if e was ranked. This is done by simulating
an iteration of the outer while-loop of Algorithm 1 without actually adding any shortcuts to
the graph and resetting r(u, v) to ∞ afterwards. Then, we select all edges that cause the
minimum number of shortcuts among all their incident edges.

4.3 Stalling

A technique that significantly reduces query times for CHs is called Stall on Demand. The
idea is to stall the search at vertices that do not lie on a shortest path from s to t by checking
whether a shorter path can be found via incoming (outgoing) downward edges in the forward
(backward) search. This can happen because CHs only guarantee shortest up-down paths
between any pairs of vertices. The same is true for EHs. We present two stalling techniques
that can be used with EHs.
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Stall on Demand. In EHs any edge can be a downward or an upward edge depending on
the rank of the edges leading to the source vertex of that edge. Stall on Demand checks
all incoming (outgoing) edges in the forward (backward) search.

Stall in Advance. Stall on Demand may relax every edge twice: Once when settling the
source (target) vertex and once for stalling when settling the target (source) vertex in
the forward (backward) search. Stall in Advance relaxes every edge at most once: when
settling a vertex u, we not only relax all outgoing (incoming) edges that are ranked
higher than the path to u, but also all edges that are ranked lower. However, we do not
update dist with the distance computed via the low ranked edges. Instead, we store it
in a separate stallDist label. To check whether we can stall the search at vertex v, we
compare dist(v) with stallDist(v). If stallDist is smaller, we can stall at v.

5 Experimental Evaluation

We implement EHs in C++ and compile with gcc 7.4.0 using full optimizations (-O3). Our
implementation of the construction algorithm is relatively straight forward without much
emphasis on optimizations. For queries, we use adjacency arrays for incoming and outgoing
edges and sort all edges incident to a vertex in descending order of their rank. This way
we can stop iterating over a vertex’s neighborhood once we find an edge with a lower rank
than allowed for the current path. Additionally, we reorder the vertices in depth-first-search-
preorder for better memory locality. The EH construction algorithm uses CH queries to find
the distance between two vertices. The source code is available on GitHub1.

For comparison with CHs, we use the implementation from RoutingKit2 [9] where queries
use Stall on Demand.

The machine used for all experiments is equipped with 4 x Intel Xeon E5-4640 at 2.4
GHz and 512 GiB DDR3-PC1600 RAM but only a single core is utilized.

5.1 Data Sets
We evaluate EHs on two benchmark graphs from the DIMACS Challenge on Shortest Paths [8]:
The road network of Western Europe from PTV AG with 18 million vertices and 42 million
directed edges, and the TIGER/USA road network with 23 million vertices and 29 million
undirected edges (resulting in 58 million directed edges), as well as smaller subsets of the
TIGER/USA graph. Both graphs are available with edge weights corresponding to travel
times or geographic distance.

In addition to these graphs, we also evaluate the performance on graphs that model the
cost for taking turns at a crossing. We follow the approach used in [7, 3] to define simple
turn costs that reportedly yield performance characteristics similar to truly realistic values:
For the travel time metric, we assign costs of 100 seconds for U-turns (meaning an edge
pair (u, v), (v, u)) and 0 for all other turns. For the distance metric, all turns are free. We
explicitly model turns into our graphs. This can be done by splitting every vertex v into a
number of vertices equal to its degree and connecting each new vertex to one of v’s incident
edges. Then, edges between the new vertices are added: For each vertex incident to one of
v’s incoming edges, an edge is added to each of the vertices incident to one of v’s outgoing
edges. The weights of these new edges are set to the turn costs. We use a more compact

1 https://github.com/Hespian/EdgeHierarchies
2 https://github.com/RoutingKit/RoutingKit
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Figure 4 Left: Original graph. Right: Graph with added turns. 100 seconds are added to the
edge corresponding to a U-turn.

representation of the same concept: We only split a vertex into a number of vertices equal to
its outgoing degree and connect incoming edges directly to these new vertices, adding the
turn costs to the edge weights. Figure 4 shows an example for travel times. Table 1 lists all
instances and their sizes used in our evaluation.

The distance metric as well as adding turn information are cases in which CHs were
shown to perform significantly worse than with the travel time metric and without turn
information (e.g. [7]).

Table 1 Instances used in our evaluation. With turns are original instances with added turns.

Original With turns
Graph |V | |E| |V | |E|

USA.BAY 321 270 794 830 794 830 2 279 208
USA.W 6262 104 15 119 284 15 119 284 41 815 474
USA.CTR 14 081 816 33 866 826 33 866 826 93 609 832
USA 23 947 347 57 708 624 57 708 624 159 734 066
EUROPE 18 010 173 42 188 664 42 188 664 113 953 602

5.2 Choosing the Right Stalling Technique
In this section we evaluate the stalling techniques explained in Section 4.3. To get some
insight in how stalling performs for other techniques, we compare to Stall on Demand for
CHs. Tables 2 and 3 compare the query times, number of vertices settled and edges relaxed
for different stalling techniques averaged over 100 000 random queries. The number of edges
actually relaxed and the number of edges “relaxed” to check whether the search can be stalled
are shown separately. We also count the number of vertices that are settled at their actual
distance to the source vertex (min. vertices). This gives an insight into how many vertices
would be settled with a perfect stalling technique. For the travel time metric, EHs with both
Stall on Demand and Stall in Advance perform more stall checks than CHs, outweighing the
savings in number of vertices settled and leading to longer query times than without any
stalling. For the distance metric, Stall on Demand reduces the number of vertices settled
for EHs to less than for CHs. The total of number of edges touched is also less for EHs.
However, running times are still faster without stalling because less edges are relaxed (or
considered for stalling) and thus less distance labels are touched. Due to the additional
distance label, Stall in Advance significantly increases query times. The last column also
shows that stalling holds more potential for CHs than for EHs. However, we also see that
EHs already perform relatively well without stalling: CHs on the travel time metric would
have to settle more than twice as many vertices as EHs if no stalling was used and even
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Table 2 Query results for different stalling techniques for Edge Hierarchies and Contraction
Hierarchies on the EUROPE road network with the travel time metric and turns.

Algo. Stalling time [µs] settled relaxed stall checks min. vertices
E
H

- 199 906 1734 -
361S. on Demand 250 604 958 11920

S. in Advance 471 614 982 10563

C
H S. on Demand 130 533 1969 2888 253

- 338 1996 15500 -

Table 3 Query results for different stalling techniques for Edge Hierarchies and Contraction
Hierarchies on the EUROPE road network with the distance metric and turns.

Algo. Stalling time [µs] settled relaxed stall checks min. vertices

E
H

- 608 2573 5586 -
638S. on Demand 642 1368 2276 29192

S. in Advance 1387 1439 2442 26959

C
H S. on Demand 634 1943 16849 25007 704

- 3403 12320 300758 -

when not counting the stall checks, CHs with Stall on Demand relax more edges than EHs.
For the distance metric, this is even more severe: Here, the search space for CHs without
Stall on Demand increases so much that query times increase to over 3 ms. EHs already
settle a reasonably small number of vertices without stalling.

These experiments show that the increased number of edges touched outweighs the
decreased number of vertices settled. Thus, a stalling technique that only touches some
more edges might lead to improved running times if it successfully stalls at enough vertices.
Figure 5 shows the performance when only a fraction of the edges incident to a vertex are
considered for Stall on Demand – going from high ranked edges to low ranked edges (note
that this can be done efficiently in our implementation as edges are stored ordered by their
rank). We are going to refer to this as partial stalling from here on. We see a slight increase
in running time due to the associated calculations (see the data point for x = 0.0) but all
instances shown benefit from partial stalling for some fraction (10% for travel times and 30%
for distances).

5.3 Main Results
As EHs share similarities with CHs, both using similar query algorithms, we compare the
two with respect to their preprocessing and query times as well as the number of vertices
settled and edges relaxed during queries. Another interesting property is the number of edges
in the hierarchy. Note however, that CHs only store each edge once, whereas EHs need to
store each edge at both endpoints. Tables 4 and 5 show these numbers averaged over 100 000
random queries. We execute queries without Stall on Demand and with partial stalling in
increments of 10%. The numbers reported here are for the best query times among these
stalling configurations as indicated by the last column. In a real-world system the optimal
configuration could be found as a part of the preprocessing step. Due to time restrictions,
the construction was only run once for each algorithm and instance. Checking whether the
search can be stalled at a vertex is essentially an edge relaxation (minus priority queue
operations), so we combine these numbers here. We can see that EHs suffer less from adding
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Figure 5 Speedup of query with partial stalling over unstalled query with different fractions of
edges used for stalling. Times were measured on the EUROPE road network.

turns to the graphs than CHs. While the number of shortcuts added is comparable for EHs
and CHs on the original graphs (with CHs even adding slightly fewer), CHs add significantly
more when turns are added. This can also be seen in the number of edges relaxed: The
number of edges relaxed with and without turns are very similar for EHs. For the distance
metric, EHs perform even better when adding turns than on the original inputs. With turns,
EHs almost always relax less than half as many edges as CHs. This shows that the intuition
behind EHs – ranking roads (edges) rather than junctions (vertices) – helps to better prune
roads that are irrelevant for the query. However, CHs usually settle between 2 and 3 times
less vertices (except for the distance metric with turns where EHs often settle less vertices
than CHs). Overall this leads to longer query times for EHs in most cases. For the distance
metric with turns, query times for EHs are close to CHs – for the EUROPE instance EHs
even achieve faster queries. The preprocessing step is much faster for CHs, partially due to
our unoptimized implementation, but the CH vertex ranking also only updates the neighbors
of a vertex after it was ranked. The edge ranking we use, on the other hand, simulates
the ranking of every edge for each round of edge selection. The CH implementation in
RoutingKit also limits the number of steps done for the witness search, giving additional
speed up. As EHs have to find witnesses and (depending on the edge ranking technique)
calculate importance values for every edge, compared to CHs having to do the same for every
vertex, longer preprocessing times are to be expected.

The random queries used for the experiments above are long-ranged on average. However,
real-world queries tend to be short-ranged. For this reason, Sanders and Schultes [20]
introduce an evaluation methodology using Dijkstra Ranks. When running a Dijkstra query
starting at some vertex in the graph, the ith vertex removed from the priority queue is
assigned Dijkstra Rank i. Figures 6 and 7 show the number of vertices settled, number of
edges relaxed, and query times for vertices of Dijkstra Ranks 26, . . . , 2blog |V |c from 1 000
random starting vertices. This way, the performance of algorithms can be observed for both
short-ranged and long-ranged queries (and everything in between). EHs use 10% and 30%
partial stalling for travel times and distances, respectively. The comparison between number
of vertices settled and query time shows that the algorithm that settles less vertices has
the faster query time and edge relaxations play a less important role. This is likely due to
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Table 4 Running times and search space sizes of Edge Hierarchies and Contraction Hierarchies
on different graphs with the travel time metric.

Graph Prepr. [s] |E| [M] Query [µs] settled relaxed stall.
EH CH EH CH EH CH EH CH EH CH %

O
rig

in
al

USA.BAY 100 6 1.4 1.4 37 16 301 108 710 679 -
USA.W 1785 153 27.5 27.4 96 37 538 193 1299 1386 -

USA.CTR 4389 482 61.5 61.1 140 53 612 254 3132 2136 10
USA 7145 674 104.5 104.0 153 60 643 271 3320 2253 10

EUROPE 3171 453 70.3 70.3 138 75 607 356 2443 2967 10

W
ith

tu
rn
s USA.BAY 634 156 4.0 6.0 79 67 511 362 929 3253 -

USA.W 9403 2730 69.9 105.1 165 124 748 564 1365 4810 -
USA.CTR 25084 7316 159.3 239.2 240 172 885 700 3126 6530 10

USA 45904 15462 270.3 404.3 250 186 900 737 3217 6792 10
EUROPE 17822 4743 194.0 249.1 191 130 726 533 2662 4857 10

Table 5 Running times and search space sizes of Edge Hierarchies and Contraction Hierarchies
on different graphs with the distance metric.

Graph Prepr. [s] |E| [M] Query [µs] settled relaxed stall.
EH CH EH CH EH CH EH CH EH CH %

O
rig

in
al

USA.BAY 166 9 1.5 1.5 73 30 560 180 1440 1686 -
USA.W 3435 243 28.6 28.5 254 96 1002 446 8183 6045 20

USA.CTR 13062 1157 65.7 65.5 526 216 1697 832 20041 15561 30
USA 21041 1537 110.8 110.7 573 235 1769 897 21461 16787 30

EUROPE 14487 2152 79.6 79.6 538 355 1756 1179 19793 27807 30

W
ith

tu
rn
s USA.BAY 476 158 3.6 5.7 95 92 623 470 1149 4979 -

USA.W 8452 3338 64.9 102.3 278 250 1289 993 2564 13402 -
USA.CTR 30313 13629 148.5 235.7 556 537 1477 1743 15286 31629 40

USA 58025 30869 251.1 398.3 604 580 1605 1849 13712 33436 30
EUROPE 24757 13266 172.3 267.2 533 634 1543 1943 13355 41856 30

vertex accesses causing more cache misses than accesses to the edges of a singe vertex. If one
would improve the cache efficiency by better node orderings or other improvements, it seems
possible that EHs decreased number of relaxed edges can outweigh the increased number of
settled vertices.

6 Future Work

For CHs there is a lot of experience with configuring the preprocessing process. The additional
complications of EH preprocessing make it likely that much better versions are possible also
for EHs. Trying different ways of cleaning up the distance labels for new queries might lead to
some improvements as preliminary experiments showed some effect here. Due to EHs being
less cache-efficient than CHs right now, we expect them to profit more from such changes. On
the application side, we can look for networks with different characteristics where EHs might
have advantages. For road networks, we might harvest the advantage in number of relaxed
edges by looking at generalizations of static shortest path search where edge relaxations are
expensive, e.g., time-dependent edge costs [5, 17] or multicriteria shortest paths.
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Figure 6 Number of vertices settled and edges relaxed, and query times for different Dijkstra
Ranks on EUROPE with the travel time metric and turns.
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Figure 7 Number of vertices settled and edges relaxed, and query times for different Dijkstra
Ranks on EUROPE with the distance metric and turns.
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Abstract
We study a variation of offline Dial-a-Ride, where each request has not only a source and destination,
but also a revenue that is earned for serving the request. We investigate this problem for the uniform
metric space with uniform revenues. While we present a study on a simplified setting of the problem
that has limited practical applications, this work provides the theoretical foundation for analyzing
the more general forms of the problem. Since revenues are uniform the problem is equivalent to
maximizing the number of served requests. We show that the problem is NP-hard and present a
2/3 approximation algorithm. We also show that a natural generalization of this algorithm has an
approximation ratio at most 7/9.
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1 Introduction

Due to their practical applicability, Dial-a-Ride Problems (DARP) have been studied from
the perspective of operations research, management science, combinatorial optimization, and
theoretical computer science. There are numerous variants of the problem, but fundamentally
all DARP variants require the scheduling of one or more vehicle routes and associated times to
satisfy a collection of pickup and delivery requests, or rides, from specified origins to specified
destinations. Each ride can be viewed as a request between two points in an underlying
metric space, with the ride originating at a source and terminating at a destination. These
requests may be restricted so that they must be served within a specified time window, they
may have weights associated with them, details about them may be known in advance or
only when they become available, and there may be various metrics to optimize. For most
variations the goal is to find a schedule that will allow the vehicle(s) to serve requests within
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11:2 Maximizing the Number of Rides for DARP

the constraints, while meeting a specified objective. Much of the motivation for DARP
arises from the numerous practical applications of the transport of both people and goods,
including delivery services, ambulances, ride-sharing services, and paratransit services.

We study offline DARP on the uniform metric (i.e. where the distance between any
pair of locations is the same for all pairs) with a single server where each request has a
source, destination, and revenue. The server has a specified deadline after which no more
requests may be served, and the goal is to find a schedule of requests to serve that maximizes
the total revenue. We furthermore assume uniform revenues, and refer to this problem as
URDARP. URDARP is thus equivalent to maximizing the number of rides served by the
deadline. Although this form of the problem has fewer practical relevance than more general
forms, it can be applied to urban settings where it is reasonable to assume that a driver
would like to serve as many requests as possible and these requests take roughly the same
amount of time to serve. Our motivation for analyzing this basic form of the problem is
that doing so would allow us to extend the analysis to more general versions, which have
more practical applications, unlike this simplest form. However, we found in the course of
our work that analyzing this basic form was challenging in itself. We found that even this
fundamental variant is in fact NP-hard, and its analysis elusive. We expect it will provide
the theoretical foundation for analyzing the more general forms of the problem.

In particular, we have found that any DARP algorithm for the nonuniform revenue variant
that greedily chooses one request at a time to serve can be at best a 1/2-approximation.
Lemma 1 in Section 2 details what happens when, for example, the greedy strategy is
based on largest revenue. We have found a similar outcome for the variant of DARP on
a non-uniform metric with uniform revenues. Lemma 2 in Section 2 details what happens
when the greedy strategy is based on shortest request.

We therefore consider algorithms that give preference to sequences of requests that are
“chained” together, i.e. such that each request in a sequence is served immediately after the
previous request of that sequence. More formally, a chain of requests is defined as a sequence
of requests such that (1) for all requests except the first, the source is the destination of
the previous request and (2) for all requests except the last, the destination is the source
of the next request. Specifically, we consider an algorithm we call twochain that gives
preference to requests that are in chains of length at least two. We focus on this algorithm
and URDARP because, with an understanding of this fundamental setting, we can then
work to break the barrier of 1/2 in the setting with general revenues.

In sum, the focus of this work is on offline URDARP (i.e. DARP with a single vehicle, on
the uniform metric, with uniform revenues). We begin by showing even this basic problem
is NP-hard by a reduction from the Hamiltonian Path problem. We then show that our
twochain algorithm yields a 2/3-approximation, and exhibit an instance where twochain
serves exactly 2/3 the optimal number of requests. Since twochain yields a tight 2/3-
approximation, with a matching lowerbound instance that is quite simple and clean, we
expected that the natural generalization of the algorithm, an algorithm we call k-chain,
would yield a k/(k + 1)-approximation. Surprisingly, it does not. We exhibit an instance of
URDARP where k-chain earns at most 7/9 times the revenue of the optimal solution. We
conclude with a discussion of how the (non polynomial-time) algorithm that greedily always
chooses the longest chain gives at most a 5/6-approximation.

1.1 Related Work
DARP has been extensively studied and there are numerous variations on the problem,
including the number of vehicles, the objectives, the presence or absence of time windows,
and how the request sequence is issued (i.e. offline or online). The 2007 survey The dial-
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a-ride problem: models and algorithms [8] provides an overview of some of the models and
algorithms, including heuristics, that have been studied. A decade later, Typology and
literature review for dial-a-ride problems [9] focuses on classifying the existing literature based
upon applicability to particular real-world problems, again including both algorithms with
theoretical guarantees and heuristics. To our knowledge, despite its relevance to modern-day
transportation systems, the version of the problem we investigate in this paper has not been
previously studied, neither for the uniform nor general metric space.

However, there are a few variants that have similarities to our version. Our DARP
variant is closely related to the Prize Collecting Traveling Salesperson Problem (PCTSP)
where the server earns a revenue (or prize) for every location it visits and a penalty for
every location it misses, and the goal is to collect a specified amount of revenue while
minimizing travel costs and penalties. PCTSP was introduced by Balas [3] and studied by
many others including Awerbuch et al. [2], who gave the first approximation algorithms with
polylogarithmic performance. Bienstock et al. developed a 2-approximation for a version of
PCTSP where there is a cost for each edge and a penalty for each vertex, and the goal is
to find a tour on a subset of the vertices that minimizes the sum of the cost of the edges
in the tour and the vertices not in the tour [4]. Blum et al. gave the first constant-factor
approximation algorithm for the Orienteering Problem where the input is a weighted graph
with rewards on nodes and the goal is to find a path that, starting at a specified origin,
maximizes the total reward collected, subject to a limit on the path length [5]. The online
variant of the PCTSP, where the cities arrive over time, has also been studied by Ausiello
et al. [1] who presented a 7/3-competitive algorithm.

The online revenue-maximization variant of DARP, where requests have non-uniform
revenue and a release time at which they become known to the server and the goal is to
serve requests so as to maximize total revenue by a specified deadline, was also studied for
the uniform metric in [7] and a non-uniform metric in [6], where Christman et al. presented
competitive algorithms with ratios 1/2, and 1/6, respectively.

2 Preliminaries

The input to URDARP is a uniform metric space, a set of requests, and a time limit T . Each
request has a source point and a destination point in the metric space, and a revenue, where
the revenues are uniform. A unit capacity server starts at a designated location in the metric
space, the origin. The goal is to move the server through the metric space, serving requests
one at a time so as to maximize the revenue earned in T time units, which, with uniform
revenues, is equivalent to maximizing the number of requests served. For an URDARP
instance I, opt(I) denotes an optimal schedule on I.

We refer to a move from one location to another as a drive. If a request is being served
then we refer to it as a service drive (sometimes referred to in the literature as a carrying
move). If the drive is not serving a request and solely for the purpose of moving the server
from one location to another we refer to it as an empty drive (sometimes referred to in the
literature as an empty move). We refer to a sequence of one or more requests that are served
without any intermediary empty drives as a chain and a sequence of two requests that are
served without an empty drive in between as a 2-chain.

We now provide two lemmas regarding a more generalized version of URDARP, where
the revenues are nonuniform; we refer to this variant as RDARP. By an analysis similar
to that of the online Greatest Revenue First (GRF) algorithm, studied by Christman and
Forcier [7], it can be shown that the simple greedy algorithm that repeatedly finds and serves
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the highest-revenue request of those remaining is a 1/2-approximation for RDARP as well.
We now give the matching bound, showing that this greedy algorithm can yield at best a
1/2-approximation.

I Lemma 1. The approximation ratio of the greedy algorithm that repeatedly chooses a
maximum-revenue request to serve for RDARP is no greater than 1/2.

Proof. Consider an instance with x requests chained together each with revenue r, and x
individual requests, none of which are connected to other requests, each with revenue r + ε

for some small ε > 0. No requests start at the origin o. Let T = x+ 1. opt will serve all of
the x requests that are chained together, earning xr revenue. An algorithm that greedily
chooses one request at a time to serve will serve only the requests with revenue r + ε, and
can serve only bx/2c of them in time T , earning bx/2c(r + ε). J

We assume for the remainder of this work that revenues are uniform. We now show that
if we instead consider a non-uniform metric, the approximation ratio of a similar greedy
algorithm is at most 1/2.

I Lemma 2. The approximation ratio of the algorithm that greedily chooses the shortest
request to serve for DARP with uniform revenues on a non-uniform metric is no greater
than 1/2.

Proof. Let a, b, and c denote three points on a non-uniform metric space such that the
distance between a and b and b and c is T/k for some positive even integer k such that T
mod k = 0, and the distance between a and c is T/k − ε, for some small ε > 0. Let a be the
origin. Consider an instance on this space with k/2 requests from a to b, k/2 requests from
b to a, and k/2 requests from a to c. opt will alternately serve the k/2 requests from a to b
and the k/2 requests from b to a, i.e. as a chain of k requests. An algorithm that greedily
chooses the shortest request at a time to serve will serve only the requests from a to c while
spending T/k − ε time on an empty drive from c to a between each serve, thereby serving
k/2 requests in total. J

2.1 Hardness
While it was already shown in [6] that the problem of offline RDARP on a general metric is
NP-hard, we now show that even URDARP, where the metric is uniform and the requests
have uniform revenue, is NP-hard by reduction from the Hamiltonian Path problem. The
reduction proceeds as follows.

Given a directed Hamiltonian Path input G = (V,E) where n = |V |, build a uniform
metric space G′ with 2n+ 2 points (see Figure 1): one point will be the server origin o, one
will be a designated “sink” point t, and the other 2n points are as follows. For each node
v ∈ V , create a point v′ and a point v′′ in G′. Create a URDARP request in G′ from point
v′ to point v′′ for each v ∈ V , which we will refer to as a node request. Further, for each edge
e = (u, v) in E of G, create a URDARP request from point u′′ to point v′ in G′, which we
will refer to as an edge request. Additionally, for each v ∈ V , create an edge request from
v′′ to the designated sink point t in G′. Set T = 2n+ 1. Finally, make the server origin a
separate point that is one unit away from all other points.

I Lemma 3. There is a Hamiltonian Path in G if and only if 2n requests can be served
within time T = 2n+ 1 in the URDARP instance.
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Figure 1 An example instance G of the Hamiltonian Path problem where n = 5 (left), and its
corresponding instance for URDARP where T = 2n + 1 (right). Any Hamiltonian path on a graph
of n vertices has length n− 1, which would correspond to a sequence in the corresponding URDARP
instance of 2n− 1 requests (since a URDARP request is created for each vertex and each edge of
G). But note that here there is no Hamiltonian path in G, yet the URDARP instance still has a
sequence of requests of length 2n− 1 which starts from e′. The extra edges we add from each point
v′′ to t in the URDARP instance prevent such false positives by ensuring that any Hamiltonian path
in G will in fact correspond to a URDARP sequence of length 2n.

Proof. Let p = (v1, v2, . . . , vn) be a Hamiltonian Path in G. Construct the sequence of 2n
URDARP requests in G′ by the node request from v′1 to v′′1 , the edge request from v′′1 to v′2,
the node request from v′2 to v′′2 , the edge request from v′′2 to v′3, and so forth, through the
edge request from v′′n−1 to v′n, the node request from v′n to v′′n, and finally the edge request
from v′′n to the designated sink t. This sequence can be executed in time T = 2n+ 1 since it
requires one unit of time for the server to drive from the origin to v′1 and 2n units for the
remaining drives.

Conversely, consider a URDARP sequence in G′ of length 2n. Note that by construction
of G′, any sequence of URDARP requests must alternate between node requests and edge
requests, where any edge to the sink is counted as an edge request (and must be a terminal
request). Since destinations in G′ can be partitioned into the sink, single-primed points, and
double-primed points, we can thus analyze the three possibilities for the destination of the
final URDARP request.

If either the sink or a single-primed point is the destination for the final URDARP request,
the URDARP sequence must end with an edge request. The alternating structure ensures the
URDARP sequence begins with a node request, and thus contains exactly n node requests
and n edge requests. If a double-primed point is the destination for the final URDARP
request, the URDARP sequence must end with a node request. The alternating structure
ensures the URDARP sequence begins with an edge request, and contains exactly n edge
requests and exactly n node requests. Thus, the URDARP sequence always contains n node
requests. This ensures that the length n path in the original graph G includes all n vertices
in the original graph G, and thus the existence of a Hamiltonian Path. J

Due to the above reduction procedure along with Lemma 3, we have the following theorem.

I Theorem 4. The problem URDARP is NP-hard.

For the remainder of the work we focus strictly on URDARP (uniform metric, uniform
revenues).
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3 Algorithms

We begin by presenting our twochain algorithm that is a 2/3-approximation for URDARP
(please see Algorithm 1 for details). The idea of this polynomial-time algorithm is that it
simply looks for chains of requests of length at least 2 whenever a drive is required. At each
time unit if there is a request that starts at the current location of the server, the server
will always serve that request (continuing the chain) rather than driving away to a different
request. We note that this subtlety makes the algorithm differ from the algorithm that
simply chooses any 2-chain to serve; the approximation ratio of this latter algorithm is an
open problem. In addition, the server is never “idle” in that if there are remaining requests
to serve that can be served before the deadline, the server will drive to serve one of them.

While the analysis of twochain we provide requires many detailed cases, we were
surprised to discover that simpler more elegant approaches all failed in subtle ways, indicating
to us the problem is more nuanced than what one expects at first blush. We believe that
the interplay between requests and the possibility for numerous criss-crosses of chains of
requests prevents simpler analyses. We note that our proof actually yields a guarantee of not
only 2/3 of the optimal number of requests, but instead 1/3(|OPT |+ T − 1), where T is the
time limit.

3.1 The TWOCHAIN Algorithm

Algorithm 1 The twochain algorithm.

1: Input: Set S of requests, time limit T , origin o
2: Set t := T

3: Let S′ denote the subset of requests (a, b) ∈ S where b is the source of another request
in S.

4: while t > 0 do
5: if there exists a request starting from o in S then
6: Choose one such request (o, b), with preference given to requests from S′.
7: Serve (o, b).
8: t := t− 1
9: Remove (o, b) from S (and S′ if (o, b) was in S′).
10: o := b, and update S′ based on the new S.
11: else if t ≥ 2 and requests remain in S then
12: Choose one such request (a, b), with preference given to requests from S′.
13: Drive from o to a, then serve the request (a, b).
14: t := t− 2
15: Remove (a, b) from S (and S′ if (o, b) was in S′).
16: o := b, and update S′ based on the new S.
17: else . no requests remain (that we have enough time to serve)
18: t := t− 1

Let S, T , and o denote the set of requests, time limit, and origin, respectively. Let
OPT (S, T, o) and ALG(S, T, o) denote the schedules returned by OPT and twochain,
respectively, on the instance (S, T, o) and let |OPT (S, T, o)| and |ALG(S, T, o)| denote the
number of requests served by OPT and twochain, respectively.

We begin by showing that in the special case where the deadline is more than twice the
number of requests, twochain is optimal.
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I Lemma 5. If T ≥ 2|S| then |OPT (S, T, o)| = |ALG(S, T, o)| = |S|.

Proof. By induction on |S|. If |S| = 1, then clearly twochain can serve the request if
T ≥ 2. If |S| ≥ 2, then within the first two time units twochain serves at least one request.
So there are at most |S| − 1 remaining requests to serve within T − 2 time. Since T ≥ 2|S|,
then by the inductive hypothesis, T − 2 ≥ 2(|S| − 1), so twochain can serve the remaining
requests within the remaining time. J

In the next lemma, we tackle the general case where the deadline T is tighter. We
prove a lower bound on what twochain earns, that will suffice for later showing it yields a
2/3-approximation.

I Lemma 6. Let m = |OPT (S, T, o)|. If T < 2|S|, then |ALG(S, T, o)| ≥ 1
3 (m+ T − 1).

Proof. Since T < 2|S|, S 6= ∅. Let k denote the number of requests in the first chain
served by twochain and denote this chain as (u0, u1), (u1, u2), . . . , (uk−1, uk). Let c denote
the number of drives twochain makes to get to the first request, that is, either c = 0
if there is a request starting at o and c = 1 if not. After twochain serves the first
chain, we are left with a smaller instance of the problem (Snew, Tnew, onew) where Snew =
S − {(u0, u1), (u1, u2), . . . , (uk−1, uk)}, Tnew = T − c− k, and onew = uk.

We proceed by strong induction on T . If T = 0, 1, or 2, then the lemma is trivially
true. If T ≥ 3, then since |S| > T/2, twochain serves at least one chain. We assume
inductively that |ALG(Snew, Tnew, onew)| ≥ 1

3 (|OPT (Snew, Tnew, onew)|+Tnew − 1) and will
show |ALG(S, T, o)| ≥ 1

3 (|OPT (S, T, o)|+ T − 1).

Case 1: k = 1.
Case 1.1: c = 1. Then there is no ride starting at o and the first chain has length 1, so

we know that there must be no 2-chains in S. Then all solutions require an empty
drive after each service drive, so |ALG(S, T, o)| = m = bT/2c ≥ T

2 −
1
2 and hence,

m ≥ 1
3 (m+ T − 1).

Case 1.2: c = 0. Then there is a ride starting at o but there is no 2-chain that starts at
o. Let OPT (S, T, o) return the path (o, v1), (v1, v2), . . . , (vT−1, vT ). Therefore (o, v1)
and (v1, v2) cannot both be rides. Then the path (v2, v3), . . . , (vT−1, vT ) has at least
m− 1 rides from S and therefore at least m− 2 rides from Snew = S − {(o, u1)}. So
the path (onew, v2), (v2, v3), . . . , (vT−1, vT ) also has at least m − 2 rides from Snew.
Thus |OPT (Snew, T − 1, u1 = onew)| ≥ m − 2. By induction, |ALG(S, T, o)| ≥
1 + 1

3 (|OPT (Snew, T −1, u1)|+ (T −1)−1) ≥ 1 + 1
3 (m−2 +T −1−1) = 1

3 (m+T −1).
Case 2: k ≥ 2. There are two subcases.
Case 2.1: Tnew ≥ 2|Snew|. In this case, by Lemma 5 we have |ALG(Snew, Tnew, onew)|

= |Snew| = |S| − k. So we have:

|ALG(S, T, o)| = k + |ALG(Snew, Tnew, onew)| = k + |S| − k = |S|

Hence, |OPT (S, T, o)| = |S| as well, so recalling that T < 2|S|, we have, as desired:

|ALG(S, T, o)| = |S| = 1
3 (|S|+ 2|S|) > 1

3 (|OPT (S, T, o)|+ T − 1).

Case 2.2: Tnew < 2|Snew|. Let the path P ∗ of length T + 1 − c be the path that
traverses OPT (S, T, o) starting from onew. More formally, if c = 0, P ∗ is
(onew, o), (o, v1), (v1, v2), . . . (vT−1, vT ). If c = 1, then since (o, v1) is not in S, P ∗ is
(onew, v1), (v1, v2), . . . (vT−1, vT ).
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Let r denote the number of requests in (u0, u1), (u1, u2), . . . , (uk−1, uk) that are also in
OPT (S, T, o) and note that r ≤ k. So P ∗ has m requests from S and m − r requests
from Snew. Note that Tnew = T − c− k = (T + 1− c)− (k + 1) = |P ∗| − (k + 1).
We modify P ∗ to create a path P by deleting the last k + 1 drives from P ∗. Then
|P | = Tnew and P has at most k + 1 fewer requests from Snew than P ∗ so P has at least
m− r − (k + 1) requests from Snew. Hence, we have:

|OPT (Snew, Tnew, onew)| ≥ m− r − k − 1 (1)

There are two subcases.
Case 2.2.1: If −r + k − 1− c ≥ 0, then we have:

|ALG(S, T, o)| = k + |ALG(Snew, Tnew, onew)|
≥ k + 1

3 (|OPT (Snew, Tnew, onew)|+ Tnew − 1) by ind. hyp.
≥ k + 1

3 (m− r − k − 1 + Tnew − 1) by eqn.(1)
≥ 1

3 (m+ T − 1− r + k − 1− c)
≥ 1

3 (m+ T − 1)

which is the desired equation.
Case 2.2.2: If −r + k − 1− c < 0, then k − r ≤ c and there are two subcases.
Case 2.2.2.1: k = r. Please see the Appendix where we show that in all subcases of Case

2.2.2.1, P starts at onew, has at least m− r − k + 1 requests from Snew, and has length
Tnew. Thus:

|OPT (Snew, Tnew, onew)| ≥ m− r − k + 1 (2)

Then, since c = 0 or c = 1, we have:

|ALG(S, T, o)| ≥ k + 1
3 (|OPT (Snew, Tnew, onew)|+ Tnew − 1) by ind. hyp.

≥ k + 1
3 (m− r − k + 1 + Tnew − 1) by eqn.(2)

≥ k + 1
3 (m− 2k + 1 + T − k − c− 1) since k = r

≥ 1
3 (m+ T − c) ≥ 1

3 (m+ T − 1) since c = 0 or 1

So we are done with Case 2.2.2.1 and must now prove Case 2.2.2.2 to complete the proof.
Case 2.2.2.2: k 6= r. Recall that since k − r ≤ c, it must be that k = r + 1. Please see the

Appendix where we show that in all subcases of Case 2.2.2.2, P starts at onew, has at
least m− r − k requests from Snew, and has length Tnew. Thus:

|OPT (Snew, Tnew, onew)| ≥ m− r − k (3)

So we have:

|ALG(S, T, o)| ≥ k + 1
3 (|OPT (Snew, Tnew, onew)|+ Tnew − 1) by ind. hyp.

≥ k + 1
3 (m− r − k + T − k − c− 1) by eqn.(3)

= 1
3 (m+ T − 1− r + k − c)

= 1
3 (m+ T − 1− r + (r + 1)− c)

≥ 1
3 (m+ T − 1)

This completes the proof. J
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I Theorem 7. twochain gives a 2/3 approximation for URDARP.

Proof. We again proceed by considering two cases.
Case 1: T ≥ 2|S|: Then by Lemma 5, |ALG(S, T, o)| = |OPT (S, T, o)|, and we are done.
Case 2: T < 2|S|: Then by Lemma 6, |ALG(S, T, o)| ≥ 1

3 (|OPT (S, T, o)|+ T − 1).
As in Lemma 6, let m = |OPT (S, T, o)|. There are two subcases.

Case 2.1: Ifm < T , then |ALG(S, T, o)| ≥ 1
3 (m+T−1) > 1

3 (m+m−1). Since |ALG(S, T, o)|
is an integer, this implies |ALG(S, T, o)| ≥ 2m/3.

Case 2.2: If m = T , then an OPT (S, T, o) solution must be (o = v1, v1), (v1, v2), . . . ,
(vm−1, vm) where every drive must be a service drive, serving a request from S.
We use the same definitions of k, r, and c as in Lemma 6 and note that c = 0 in this case.
Denote the first chain served by twochain as (o = u0, u1), (u1, u2), . . . , (uk−1, uk). Note
that twochain would start with a service drive right from o because in this case there
is a 2-chain starting at o. If k = T = m then |ALG(S, T, o)| = |OPT (S, T, s)| so we are
done. If m = 1 or m = 2 then, k = m, so we are done. If m = 3 then k = 2 or 3, and in
both cases we have k > 2m/3, so we are also done.
So we consider the case where m ≥ 4 (so k ≥ 2) and k < m. After twochain serves
the first chain, the server is at uk and there is T − k time remaining, so in the smaller
instance of the problem, Tnew = T − k, and onew = uk.
Since |OPT (S, T, o)| = m, then |OPT (Snew, T + 1, uk)| ≥ m − r, since in time T + 1,
opt can drive from uk to the origin, and then follow the path of OPT (S, T, o) to serve
m− r requests (recall that r is the number of requests in OPT (S, T, o) that are also in
the first chain of ALG(S, T, o)). So recalling that Tnew = T − k, we have,

|OPT (Snew, Tnew, uk)| ≥ m− r − k − 1 (4)

And thus:

|ALG(S, T, o)| = |ALG(Snew, Tnew, uk)|+ k

≥ 1
3 (|OPT (Snew, Tnew, uk)|+ Tnew − 1) + k by Lemma 6

≥ 1
3 (m− r − k − 1 + T − k − 1) + k by eqn. 4

= 1
3 (2m) + 1

3 (−r + k − 2) ≥ 2m/3 unless k = r or k = r + 1

For the cases of k = r and k = r + 1, we follow the same steps we did for these cases in
the proof of Lemma 6 to modify the opt path.

Case k = r: Then by Case 2.2.2.1 of the proof of Lemma 6, we have
|OPT (Snew, Tnew, onew)| ≥ m− r − k + 1. So:

|ALG(S, T, o)| = |ALG(Snew, Tnew, uk)|+ k

≥ 1
3 (|OPT (Snew, Tnew, uk)|+ Tnew − 1) + k by Lemma 6

≥ 1
3 (m− r − k + 1 + T − k − 1) + k

≥ 1
3 (2m− 3k) + k since T = m and r = k

≥ 2m/3

Case k = r + 1: Then by Case 2.2.2.2 of the proof of Lemma 6, we have
|OPT (Snew, Tnew, onew)| ≥ m− r − k. So:

|ALG(S, T, o)| ≥ 1
3 (m− r − k + T − k − 1) + k

≥ 1
3 (2m− 3k) + k since T = m and r = k − 1

≥ 2m/3
We have shown that for all cases, |ALG(S, T, o)| ≥ 2m/3, so the proof is complete. J
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We now show that the approximation ratio of 2/3 for twochain is tight.

I Theorem 8. The approximation ratio of twochain for URDARP is no greater than 2/3.

Proof. Consider an instance with three requests in a single chain with no requests starting
at the origin o. Let T = 4. twochain may select the second and third requests of the chain
as its first two requests. For twochain to drive to and then serve the two requests takes
three time units. It then drives and runs out of time. On the other hand, opt starts at the
first request of the chain and completes all three requests by time T = 4. J

3.2 The k-CHAIN Algorithm
We now show that a natural generalization of twochain, which we refer to as k-chain (see
Algorithm 2) yields at most a 7/9-approximation. This polynomial-time algorithm (which is
exponential in the fixed k that is selected) proceeds analogously to twochain, but rather
than prioritizing requests that are the first in a 2-chain, instead it prioritizes requests that are
the first in a k-chain. One might expect that this algorithm yields a k/(k+ 1)-approximation
but we show that, surprisingly, there exists an instance of URDARP where k-chain earns at
most 7/9 times the revenue of the optimal solution.

Algorithm 2 The k-chain algorithm.

1: Input: Set S of requests, time limit T , origin o
2: Set t := T

3: For i = 1 . . . k, for each request r ∈ S, add r to Si if request r is followed by a chain of
requests of length i− 1. So r ∈ Si means r is the start of a chain of length i. Note that
if r ∈ Si then we also have r ∈ Sj for all j < i.

4: while t > 0 do
5: Let j be the highest value for which Sj has a request starting at o.
6: if j > 0 then
7: Choose one such request (o, b) from Sj and serve it.
8: t := t− 1
9: Remove (o, b) from S and update the sets Si for i = 1 . . . k as needed.

10: o := b

11: else if t ≥ 2 and requests remain in S then
12: Let j be the highest value for which Sj is non-empty.
13: Choose one request (a, b) from Sj .
14: Drive from o to a, then serve the request (a, b).
15: t := t− 2
16: Remove (a, b) from S and update the sets Si for i = 1 . . . k as needed.
17: o := b

18: else . no requests remain (that we have enough time to serve)
19: t := t− 1

I Theorem 9. The k-chain algorithm yields at most a 7/9-approximation.

Proof. In the input instance (see Figure 2) there is a chain of c+ k requests, for two positive
integers c and k, and the origin, o, is at the start of this chain. Denote these c+ k requests
as (v0, v1), (v1, v2), (v2, v3), . . . , (vc−1, vc), . . . , (vc+k−1, vc+k), so o = v0. In addition, for each



B.M. Anthony et al. 11:11

Figure 2 An instance showing that the k-chain algorithm has approximation ratio at most 7/9.

point vi, for i = 1, 2, . . . , c, there is another pair of requests: one that leaves from vi to a
point not on the chain, call it v′i, and another that leaves from v′i and returns to vi, forming
a total of c loops each of length 2.

Let T = 3c. Then opt(S, T, o) = opt(S, 3c, v0) = 3c since opt can serve all the loops
“on the way” as it proceeds across from v1 to vc+k. I.e., the optimal schedule is

(v0, v1), (v1, v
′
1), (v′1, v1), (v1, v2), (v2, v

′
2), (v′2, v2), (v2, v3), . . . , (vc+k−1, vc+k).

On the other hand, Algorithm 2, which prioritizes chains of length k, may choose one
request at a time from the “spine” of this input instance, and end up serving all the requests
along the straight path first, rather than serving the loops along the way. In this event at
time c+ k it must then go back and serve as many loops (chains of length 2) as it can in the
remaining 3c− (c+ k) = 2c− k units of time, expending one unit of time on an empty drive
to the next loop after serving each loop. Hence:

|alg(S, T, o)| = c+ k +
⌊ 2

3 (2c− k)
⌋

And note that

lim
c→∞

|alg(S, T, o)|
|opt(S, T, o)| = lim

c→∞

c+ k +
⌊ 2

3 (2c− k)
⌋

3c = 7
9 . J

3.3 The LONGEST-CHAIN-FIRST Algorithm
We now provide a brief discussion of the greedy algorithm that serves the longest chain of
requests first, removing these requests from the instance, then serves the longest chain among
the remaining requests and removes these, and continues this way until time runs out. We
refer to this algorithm as the Longest-Chain-First (lcf) algorithm.

Implementation of this algorithm requires a solution to the longest trail problem, where
a trail is defined as a path with no repeated edges, i.e., a chain of DARP requests. Although
the longest trail problem is NP-hard [10, 11], a standard poly-time algorithm that simply
requires a topological sort on the vertices of the acyclic graph as a pre-processing step can
be employed for finding the longest trail in acyclic graphs. We use the term request-graph to
refer to the directed multigraph where each request is represented by an edge in the graph
and each vertex in the graph is the source or destination of a request. So if we consider the
space of inputs where the request-graphs are acyclic, we can employ the poly-time algorithm
for finding the longest trail in an acyclic graph to implement the greedy lcf algorithm.

It turns out that even when restricting to acyclic graphs, uniform revenues and a uniform
metric space, the lcf algorithm yields an approximation ratio of at most 5/6.

I Theorem 10. The approximation ratio of the lcf algorithm for URDARP on acyclic
request-graphs is at most 5/6.
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Figure 3 An instance showing that the lcf algorithm has an approximation ratio of at most 5/6.

Proof. Please refer to Figure 3. The instance depicts a request graph for which T = 8 and
the origin is one unit away from the source of all requests. An optimal solution is to serve the
top 3-chain followed by the bottom 3-chain for a total revenue of 6. The lcf algorithm may
instead start with (v1, v2), but then take (v2, v7), finishing with (v7, v8). lcf would then
require an empty drive to a remaining 2-chain, but after serving the 2-chain, there would be
no time left to drive to and serve any more requests, so lcf earns a revenue of only 5. J

We expect that in future work we will be able to prove that lcf does indeed yield a 5/6
approximation for URDARP on acyclic request graphs.
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A Appendix

We first show that in all subcases of Case 2.2.2.1 of Lemma 6, P starts at onew, has at least
m− r − k + 1 requests from Snew, and has length Tnew.

Case 2.2.2.1: If k = r then every request (ui−1, ui) is in P ∗, and in particular both
(uk−2, uk−1) and (uk−1, uk) are in P ∗. Either (uk−1, uk) is the last drive of P ∗ or it
is not.

Case 2.2.2.1.1: (uk−1, uk) is the last drive of P ∗. Then there is a drive (uk−1, y) immediately
following (uk−2, uk−1) in P ∗. There are three subcases.

Case 2.2.2.1.1.1: (uk−1, y) = (uk−1, uk) Then we delete the last k + 1 drives from P ∗ to
make P . Since the k + 1 drives include (uk−2, uk−1) and (uk−1, uk), which are not in
Snew, then P loses at most k− 1 requests from Snew and is a total k+ 1 shorter than P ∗.
So P has at least m− r − (k − 1) = m− r − k + 1 requests from Snew and has length
|P ∗| − (k + 1) = Tnew.

Case 2.2.2.1.1.2: (uk−1, y) 6= (uk−1, uk) and (uk−1, y) /∈ Snew. We make P from P ∗ as
follows. We first make P̂ from P ∗ by deleting (uk−1, uk) and replacing (uk−2, uk−1) and
(uk−1, y) by the shortcut (uk−2, y). So P̂ has at least m− r requests from Snew (since
none of the deleted requests are requests from Snew) and length two shorter than P ∗.
Then we make P from P̂ by deleting the last (k − 1) drives from P̂ . So P has at least
m− r − (k − 1) requests from Snew and length Tnew.

Case 2.2.2.1.1.3: (uk−1, y) 6= (uk−1, uk) and (uk−1, y) ∈ Snew. Note that uk−1 is not the
source of a request in S′new (those requests in Snew that start a 2-chain, as defined in line
3 of Algorithm 1) since if it were, twochain would have chosen that request instead of
(uk−1, uk) as the next request. So y cannot be the source of a request in Snew. Let (y, z)
be the next drive in P ∗ after (uk−1, y), and we know (y, z) is not in Snew. Then we make
P from P ∗ as follows. We first make P̂ from P ∗ by deleting (uk−1, uk) and replacing
(uk−2, uk−1), (uk−1, y) and (y, z) by the shortcut (uk−2, z). Then P̂ has at least m− r− 1
requests from Snew (since the only request from Snew P̂ lost was (uk−1, y)) and length
three shorter than P ∗. We then make P from P̂ by deleting the last k − 2 drives from P̂ .
So P has at least m − r − 1 − (k − 2) = m − r − k + 1 requests from Snew and length
|P ∗| − 3− (k − 2) = Tnew.

Case 2.2.2.1.2: (uk−1, uk) is not the last drive of P ∗ so there is a drive (uk, x) in P ∗. Note
that (uk, x) cannot be in Snew since if it were, then twochain would have served it after
(uk−1, uk) There are several subcases.

Case 2.2.2.1.2.1: (uk−2, uk−1) is the last drive of P ∗ and (uk−2, uk−1) = (uk, x). Then we
make P by deleting the last k + 1 drives from P ∗. Then P loses at most k − 1 requests
from Snew since at least 2 of the k + 1 drives (namely, (uk−2, uk−1) and (uk−1, uk)) are
not in Snew. So P has at least m− r − (k − 1) requests from Snew and length Tnew.

Case 2.2.2.1.2.2: (uk−2, uk−1) is the last drive of P ∗ and (uk−2, uk−1) 6= (uk, x). Then we
make P from P ∗ as follows. We first make P̂ from P ∗ by deleting (uk−2, uk−1) and
replacing (uk−1, uk) and (uk, x) by the shortcut (uk−1, x). So P̂ has at least m − r

requests from Snew (since none of (uk−2, uk−1), (uk−1, uk), and (uk, x) are in Snew)
and has length two shorter than P ∗. We then make P from P̂ by deleting the last
k − 1 drives from P̂ . So P has at least m− r − (k − 1) requests from Snew and length
|P̂ | − (k − 1) = |P ∗| − 2− k + 1 = Tnew.
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Case 2.2.2.1.2.3: (uk−2, uk−1) is not the last drive of P ∗ so there is a drive (uk−1, y) in P ∗
and (uk−1, y) = (uk−1, uk). Then we make P̂ from P ∗ by replacing (uk−2, uk−1),
(uk−1, uk) and (uk, x) by the shortcut (uk−2, x). So P̂ has at least m− r requests from
Snew and length two shorter than P ∗. We then make P from P̂ by deleting the last k− 1
drives. So P has at least m− r − (k − 1) requests from Snew and length Tnew.

Case 2.2.2.1.2.4: (uk−2, uk−1) is not the last drive of P ∗ so there is a drive (uk−1, y) in P ∗
and (uk−1, uk) 6= (uk−1, y) and (uk−1, y) /∈ Snew. Then we make P̂ from P ∗ by replacing
(uk−1, uk) and (uk, x) by (uk−1, x) and replacing (uk−2, uk−1)
and (uk−1, y) by (uk−2, y). So P̂ has at least m − r requests from Snew (since none
of (uk−1, uk), (uk, x), (uk−2, uk−1) and (uk−1, y) are in Snew) and length two shorter
than P ∗. Then we make P from P̂ by deleting the last k − 1 drives. So P has at least
m− r − (k − 1) requests from Snew and length Tnew.

Case 2.2.2.1.2.5: (uk−2, uk−1) is not the last drive of P ∗ so there is a drive (uk−1, y) in P ∗
and (uk−1, uk) 6= (uk, y) and (uk−1, y) ∈ Snew. Note that uk−1 is not the beginning of a
request in S′new, (since if it were, twochain would have chosen that request instead of
(uk−1, uk) as the next request. Thus y cannot be the start of a request in Snew. Either
(uk−1, y) is at the end of P ∗ or let (y, z) denote the next drive in P ∗ after (uk−1, y) and
observe that (y, z) is not in Snew. There are three subcases.

Case 2.2.2.1.2.5.1: (uk−1, y) is the last drive of P ∗. Then we make P̂ from P ∗ by replacing
(uk−1, uk) and (uk, x) by (uk−1, x) and deleting (uk−2, uk−1) and (uk−1, y). So P̂ has at
least m − r − 1 requests from Snew (since the only Snew request P̂ lost was (uk−1, y))
and length three shorter than P ∗. Then we make P from P̂ by deleting the last k − 2
drives from P̂ . So P has at least m− r− 1− (k− 2) = m− r− k+ 1 requests from Snew

and length Tnew = |P ∗| − 3− (k − 2) shorter than P ∗.
Case 2.2.2.1.2.5.2: (uk−1, y) is not the last drive of P ∗ so there is a drive (y, z) and (y, z) =

(uk−1, uk). Then to make P̂ from P ∗ we replace (uk−2, uk−1), (uk−1, y), (y, z), (uk, x) by
the shortcut (uk−2, x) . So P̂ has at least m − r − 1 Snew drives (since the only Snew

drive P̂ lost was (uk−1, y)) and length three shorter than P ∗. Then we make P from P̂ by
deleting the last k−2 drives from P̂ . So P has at least m− r−1− (k−2) = m− r−k+ 1
Snew drives and length Tnew = |P ∗| − 3− (k − 2) shorter than P ∗.

Case 2.2.2.1.2.5.3: (uk−1, y) is not the last drive of P ∗ so there is a drive (y, z) and (y, z) 6=
(uk−1, uk). Then we make P̂ from P ∗ by replacing (uk−1, uk), (uk, x) by (uk−1, x) and
replacing (uk−2, uk−1), (uk−1, y) and (y, z) by (uk−2, z). So P̂ has at least m − r − 1
Snew drives (since the only request from Snew P̂ lost was (uk−1, y)) and length three
shorter than P ∗. Then we make P from P̂ by deleting the last k − 2 drives from P̂ .
So P has at least m − r − 1 − (k − 2) = m − r − k + 1 requests from Snew and length
Tnew = |P ∗| − 3− (k − 2) shorter than P ∗.

This concludes all the subcases of Case 2.2.2.1 of Lemma 6. We now show that in all
subcases of Case 2.2.2.2 of Lemma 6, P starts at onew and has at least m− r − k requests
from Snew.

Case 2.2.2.2: k 6= r so it must be that k = r + 1. So all but one (ui−1, ui) from P is in P ∗,
thus at least one of (uk−2, uk−1) and (uk−1, uk) is in P ∗.

Case 2.2.2.2.1: (uk−1, uk) is in P ∗. There are two subcases.
Case 2.2.2.2.1.1: (uk−1, uk) is at the end of P ∗. Then to make P from P ∗ we delete the

last k + 1 drives (which include (uk−1, uk)). So we deleted at most k requests from Snew

from P ∗ (since (uk−1, uk) is not in Snew). So P has at least m − r − k requests from
Snew and length Tnew.
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Case 2.2.2.2.1.2: (uk−1, uk) is not at the end of P∗. Then there is a next drive (uk, x) in
P ∗. So we first make P̂ from P ∗ by replacing (uk−1, uk) and (uk, x) by the shortcut
(uk−1, x). So P̂ has length one shorter than P ∗. Note that (uk, x) cannot be in Snew

since otherwise twochain would have continued with a request after (uk−1, uk). So P̂
has at least m− r requests from Snew. Now we make P by deleting the last k drives from
P̂ . So P has at least m− r − k requests from Snew and length Tnew = |P ∗| − 1− k.

Case 2.2.2.2.2: (uk−1, uk) is not in P ∗, and therefore (uk−2, uk−1) is in P ∗. There are
several subcases.

Case 2.2.2.2.2.1: (uk−2, uk−1) is at the end of P ∗. Then to make P from P ∗ we delete the
last k + 1 drives (which include (uk−2, uk−1)). So we deleted at most k requests from
Snew from P ∗ (since (uk−2, uk−1) is not in Snew). So P has at least m− r − k requests
from Snew and length Tnew.

Case 2.2.2.2.2.2: (uk−2, uk−1) is not at the end of P ∗ and has a next drive (uk−1, y) that
is not in Snew. We first make P̂ from P ∗ by replacing (uk−2, uk−1) and (uk−1, y) by the
shortcut (uk−2, y). So P̂ has at least m− r requests from Snew and is one shorter than
P ∗. We then make P from P̂ by deleting the last k drives from P̂ . So P has at least
m− r − k requests from Snew and length Tnew.

Case 2.2.2.2.2.3: (uk−2, uk−1) is not at the end of P ∗ and has a next drive (uk−1, y) that is in
Snew and (uk−1, y) is at the end of P ∗. We first make P̂ from P ∗ by deleting (uk−2, uk−1)
and (uk−1, y). So P̂ has at least m−r−1 requests from Snew (since the only request from
Snew P̂ lost was (uk−1, y)) and length two shorter than P ∗. We then make P from P̂ by
deleting the last k − 1 drives from P̂ . So P has at least m− r − 1− (k − 1) = m− r − k
requests from Snew and length Tnew = |P ∗| − 2− (k − 1).

Case 2.2.2.2.3.4: (uk−2, uk−1) is not at the end of P ∗ so there is a next drive (uk−1, y) that
is in Snew and (uk−1, y) is not at the end of P ∗ so there is a next drive (y, z) in P ∗. Then
by the same reasoning as in subcase 2.2.2.1.2.5, we have that (y, z) is not in Snew. To
make P̂ from P ∗ we replace (uk−2, uk−1), (uk−1, y) and (y, z) by the shortcut (uk−2, z).
So P̂ has at least m− r − 1 requests from Snew (since the only request from Snew P̂ lost
was (uk−1, y)) and length two shorter than P ∗. We then make P from P̂ by deleting the
last k − 1 drives from P̂ . So P has at least m − r − 1 − (k − 1) = m − r − k requests
from Snew and length Tnew = |P ∗| − 2− (k − 1).

This concludes all the subcases of Case 2.2.2.2 of Lemma 6.
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Abstract
We present a novel framework to mathematically describe the fare systems of local public transit
companies. The model allows the computation of a provably cheapest itinerary even if prices depend
on a number of parameters and non-linear conditions. Our approach is based on a ticket graph
model to represent tickets and their relation to each other. Transitions between tickets are modeled
via transition functions over partially ordered monoids and a set of symbols representing special
properties of fares (e.g. surcharges). Shortest path algorithms rely on the subpath optimality
property. This property is usually lost when dealing with complicated fare systems. We restore it by
relaxing domination rules for tickets depending on the structure of the ticket graph. An exemplary
model for the fare system of Mitteldeutsche Verkehrsbetriebe (MDV) is provided. By integrating
our framework in the multi-criteria RAPTOR algorithm we provide a price-sensitive algorithm for
the earliest arrival problem and assess its performance on data obtained from MDV. We discuss
three preprocessing techniques that improve run times enough to make the algorithm applicable for
real-time queries.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Applied com-
puting → Transportation

Keywords and phrases shortest path, public transit, optimization, price-sensitive, raptor, fare,
operations research

Digital Object Identifier 10.4230/OASIcs.ATMOS.2019.12

Funding Our research was supported by the Federal Ministry of Transport and Digital Infrastruc-
ture(BMVI) under the project no. 19E17001C.

Acknowledgements We thank Niels Lindner and Pedro Maristany de las Casas for many fruitful
discussions on the subject as well as MDV and InfraDialog GmbH for providing the data for this
study.

1 Introduction

Recent progress in the field of routing algorithms for public transportation has led to several
very fast algorithms [2]. Usually, these algorithms determine the best itinerary with respect
to travel time in mere milliseconds. This led to the desire to optimize additional criteria
such as the number of transfers or the reliability of the connection. For most users of
public transportation systems the price of a journey is one of the most important criteria
for assessing its quality. Unfortunately, public transportation fare systems are notoriously
complex and therefore algorithmically hard to deal with. The ticket price can depend on a
variety of variables such as the set of fare zones, the distance traveled, the number of stops
visited, surcharges for night buses or ferries, etc. To reduce this complexity, previous research
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has usually focused only on specific aspects such as zone- or distance-based prices and/or
dealt with them heuristically. In this study, we present a novel and flexible framework to
model the price structures of (regional) public transportation companies that is able to take
all of the aforementioned criteria into account. The framework can be used to compute
price-optimal journeys by applying typical multi-criteria shortest path algorithms such as
RAPTOR or Dijkstra. When comparing itineraries by price, the subpath optimality principle
is usually lost. An example could be taking a detour into a new fare zone to avoid paying
a special connections surcharge (e.g. for using ferries). It is possible that, at a later point
in the journey, the surcharge has to be paid anyway (e.g. the target station can only be
reached via a ferry). In that case, the detour was a suboptimal decision. To avoid this
problem, we base dominance relations between labels not on price, but on paths in a directed
ticket graph modeling the relations between tickets. Transitions between different tickets are
modeled as directed arcs and usually depend on a number of additional fare attributes such
as fare zones or the distance traveled. We model these fare attributes as (positive) partially
ordered monoids.

1.1 Related Literature
For an exhaustive overview of shortest path algorithms in road and public transportation
networks please refer to [2]. It has previously been observed that shortest path problems
can be generalized to ordered monoids [10] and semirings [8]. In the study of public transit
routing, prices are taken into account to varying degrees. Müller-Hannemann and Schnee
study fare systems that entail distance- and relation-based prices [9], i.e., fare systems that in
Germany are usually associated with long-distance public transportation. They approximate
fares by assigning a fixed price to every edge. Their approach, however, does not take into
account fares based on fare zones and short-distance city tickets. Both of these are usually
more prominent in local public transportation. Delling et al. [6][5] use their RAPTOR
algorithm to compute itineraries that touch the smallest number of fare zones. The idea of
restoring subpath optimality by relaxing rules for label domination is discussed in a different
context in [3]. The ticket graph approach bears similarity to the finite automata used to find
language-constrained shortest paths (Barrett et al [1]). It is different, however, in that it
serves to evaluate paths instead of restricting the set of feasible paths. Furthermore, our
approach also covers fares based on numerical attributes that are not expressed as part of a
formal languages. We originally presented the idea of using a ticket graph in [4, German
language].

1.2 Our Contribution
In this paper, we make two novel contributions. The first is a framework based on graphs
and monoids to mathematically model public transportation fare systems. The aspects
of fare systems that can be modeled include (but are not limited to): zone-based fares,
distance-based fares, surcharges for special vehicles or daytime, and discounted short-distance
tickets that do not allow transfers. Our second contribution is a formal definition of label
domination rules for public transportation tickets while retaining the subpath optimality
property. We prove that these rules do in fact yield lowest-price itineraries.

1.3 Overview
In Chapter 2, we present a framework for public transportation fare systems and show
how it can be used to model several aspects of fare systems. The algorithmic treatment of
fares is laid out in Chapter 3. Chapter 4 discusses how our framework can be used in the
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context of the RAPTOR algorithm. We propose three different speed-up techniques and an
evaluation of the framework’s performance for the network of MDV, a public transit company
in Saxony, Germany. Chapter 5 concludes the paper with some final remarks. The proofs of
all propositions can be found in the appendix.

2 A Formal Framework for Fare Systems

We are given a (directed) routing graph G = (V,A), in which arcs represent either public
transport connections, footpaths or transfers between lines and/or modes of transportation.
Every path p in G is associated with a ticket t and every ticket has a corresponding price
π(t) ∈ Q+. In order to efficiently compute cheapest paths, we need a model that is able
to locally describe the development of a path’s ticket once arcs are added to it as well as
a provably correct way of comparing those tickets. This is done in the following way: We
denote the set of all available tickets by T and define a ticket graph F = (T,E) where an edge
e ∈ E models how the ticket changes when following an arc in the routing graph. Each edge
in E carries a Boolean function determining the conditions under which the path transitions
to a different ticket. For example, when visiting the fifth stop on a path, a short-distance
ticket t0 could be lost and a more expensive ticket t1 would be applicable. The edge (t0, t1)
would then carry a condition on the number of stops visited.

The transition along an edge e ∈ E usually depends on multiple factors, e.g., the set of
fare zones visited thus far, the distance traveled (in meters), surcharges for special trains, etc.
These factors are picked up when relaxing an arc in the routing graph. We generalize them
in two kinds of mathematical objects: abstract symbols from a symbol set S and elements of
a partially ordered positive monoid (H,+,≤).

I Definition 1 (Partially ordered monoid). Let (H,+) be a monoid and let ≤ be a par-
tial order on H that is translation-invariant with respect to the monoid operation +, i.e.,
h1 ≤ h2 ⇒ h1 + x ≤ h2 + x∀h1, h2, x ∈ H. We call (H,+,≤) a partially ordered monoid.
We call (H,+,≤) positive, if e ≤ h∀h ∈ H where e is the neutral element of (H,+).

A common example for fare systems is the power set 2Z of a set of fare zones Z combined
with k numerical fare attributes in Qk. In this case, H = 2Z × Qk. For h1 = (z1, r1),
h2 = (z2, r2) ∈ H, we define h1 + h2 = (z1 ∪ z2, r1 + r2) and h1 ≤ h2 if and only if z1 ⊆ z2
and r1 ≤ r2. Translation invariance in (H,+,≤) is inherited from the translation invariance
in (2Z ,∪,⊆) and (Qk,+,≤).

Every arc a ∈ A of G is annotated with a fare attribute A(a) = (As(a),Ah(a)) ∈ S ×H
that is picked up when relaxing the arc. Every vertex v ∈ V is annotated with a start state
S(v) = (St(v),Sh(v)) ∈ T ×H giving an initial ticket and element from the monoid.

Using this notation we can define the fare state of a path.

I Definition 2 (Fare State). We call an element f ∈ T ×H a fare state. The set of all fare
states is denoted by F := T ×H. We use f t and fh to denote its components.

A fare state contains all information necessary for calculating the price of a journey (the
ticket associated with the path) as well as all information necessary to decide domination
between paths. We now want to enable the tracking of the fare states along paths in G. To
do so, we formalize the notion of the fare transition function on arcs in the ticket graph.
The definition is intentionally left rather general to capture a large number of possible
ticketing conditions.

ATMOS 2019
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I Definition 3 (Fare Transition Function). We call a function Tr : E × S ×H −→ {0, 1} a
fare transition function for the ticket graph F if

∀ e = (t1, t2) ∈ E : ∀ s ∈ S : ∀h ∈ H :
∑

e∈δ+(t1)

Tr(e, s, h) ∈ {0, 1}.

Hence, a fare transition function allows only one well-defined transition from any fare
state f ∈ F . We use the notion of fare transition functions to define the update of tickets
when relaxing an arc of the routing graph.

I Definition 4 (Ticket Update Function ). We introduce a ticket update function
Up : F ×A −→ F in the following way. Let f = (f t, fh) ∈ F, a ∈ A. Then, we define
f̃ = Up(f) by

f̃h := fh +Ah(a) (1)

f̃ t :=
{
head(e) if ∃ e ∈ δ+(f t) with Tr(e,As(a), f̃h) = 1
f t otherwise.

(2)

We now have a tool at our disposal to track the tickets along a path in G in the ticket graph
F . Each path in G can be associated with a sequence of fare states in F .

I Definition 5 (Path-Induced Fare Sequence). We call a sequence of fare states (f1, . . . , fn)
path-induced if there is a path p = (v1, . . . , vn) with the following properties:
1. f1 = S(v1)
2. fi = Up(fi−1, (vi−1, vi))∀ i = 2, . . . , n
We call the fare state f(p) := fn the fare state of the path p.

Combining all the above definitions we arrive at the notion of conditional fare networks
which can precisely capture a fare system.

I Definition 6 (Conditional Fare Network). Let G = (V,A) be a routing graph and let the
following be given:
1. the space of fare attributes S×H as product of a set of symbols S and a partially ordered,

positive monoid (H,+,≤),
2. a set of tickets T ,
3. a cycle-free ticket graph F = (T,E) with transition function Tr : E × S ×H −→ {0, 1},
4. arc attributes A(a) ∈ S ×H ∀ a ∈ A,
5. start fare states S(v) ∈ T ×H ∀ v ∈ V and
6. a price function π : T −→ Q+ that is monotonously non-decreasing along directed paths

in F , i.e., if there is a directed t1 − t2-path in F for t1, t2 ∈ T , then π(t1) ≤ π(t2).
We call the six-tuple (F ,A,S, S, T r, π) a conditional fare network N of G.

Note that cycle-freeness in F and the monotonicity condition on π as well as the positivity
of H ensure that no price-decreasing cycles exist in G. We consider those assumptions
natural enough that most reasonable price system should satisfy them.

Soon, we will see that dominance relations between paths need to be based on their
fare states instead of their price. Thus, we can drop the monotonicity condition on π while
still retaining optimality. In this case, however, price-based target pruning (confer Section
4.2), which proved essential in ensuring acceptable performance for our shortest path search,
cannot be applied.

Having introduced conditional fare networks, we now define the price-sensitive earliest
arrival problem.
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Figure 1 Ticket graph for MDV. There is a total number of fourteen different tickets.

I Definition 7 (Price-Sensitive Earliest Arrival Problem). Let a public transportation network
be given as a graph G = (V,A) and let (F ,A,S, S, T r, π) be a conditional fare network of G.
Let for all a ∈ A a time-dependent FIFO travel time function c(a) : I → I be given, where I
is the set of time points. Finally, let Ps,t be the set of all s, t-paths in G for some s, t ∈ V.
Then, the price-sensitive earliest arrival problem (PSEAP) is defined as finding a Pareto-set
of s, t-paths P ∗s,t ⊂ Ps,t in G, such that

∀ p∗ ∈ P ∗s,t @ p ∈ Ps,t : π(p) ≤ π(p∗) ∧ c(p) ≤ c(p∗) ∧ (π(p) < π(p∗) ∨ c(p) < c(p∗)). (3)

In our following theoretical discussion, we will ignore the arrival time aspect of PSEAP and
focus only on the fare framework. The correctness results carry over to the full version of
PSEAP.

I Example 8 (The Fare System of MDV). The fare systems of MDV divides its operational
area into 67 fare zones Z. A ticket Zi is applicable if the itinerary touches i zones from Z.
Once a total of seven fare zones have been touched a maximum price M is reached that
does not change. Two fare zones, Halle and Leipzig, are cities and are more expensive than
other zones. They offer special tickets H and L. They, however, count as normal zones
for all itineraries that pass through multiple fare zones. Several smaller cities are part of
larger fare zones, but allow for discounted tickets (T1 and T2) when traveling in the city only.
They do not count as fare zones of their own. For Halle and Leipzig there are discounted
tickets for short trips (KH and KL), which do not allow for transfers and are valid for a
maximum number of four stations on the itinerary. Discounted tickets exist also for other
zones (K), but these are cheaper and depend on the length of the itinerary (4 km maximum).
Figure 1 depicts the associated ticket graph F . The monoid (H,+H ,≤H) is defined by
H := (2Z ,N2, {0, 1}), where Z captures the fare zones, N2 the distance traveled in meters
and the number of stations and {0, 1} the existence of transfers. Addition +H and partial
order ≤H are induced from the respective operations in 2Z and N2 and the logical or ∨ on
{0, 1}. Note that there is no connection between, e.g., Z2 and Z4. This is due to the fact
that we can touch only one fare zone at any station. Also, there are no discounted trips
that cover more than three fare zones and hence there is no arc between K and Z5. This
highlights that the structure of the routing graph influences the structure of the ticket graph.

A list of all fare transition functions can be found in the appendix.
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Transfer Penalties, Footpaths and Surcharges

Footpaths are modeled as arcs with the arc attribute (S0, e), where S0 ∈ S is a symbol that
cannot activate a ticket transition and e ∈ H is the neutral element of the monoid. The
fare attribute is set to e so as to not modify the current fare state. The transition from a
footpath to a public transportation vehicle requires some care. Assume we walk from station
v0 to v1 along arc a0 = (v0, v1) to take a vehicle along a1 = (v1, v2) to reach v2. Some fare
systems use the number of stations a path touches to calculate prices. Here, this number
would obviously be two. Counting a station when relaxing a0 is a mistake if the optimal
journey would be to continue on foot. Counting both v1 and v2 when relaxing a1 is also
wrong since this would overcount the number of stations for every itinerary that reaches v1
via a vehicle. Hence, the graph model needs to be extended by splitting up stations into
vertices for every route and a vertex that is connected to footpaths. These vertices are then
connected via transfer arcs and boarding arcs. We can also have arc attributes different
from (S0, e) on transfer arcs. This allows us to make the applicable ticket dependent on the
number of transfers. Arc attributes on arcs representing boarding can be used to model
surcharges for the route boarded. For more details on how to build these expanded graphs,
we refer to [7].

Neutral Zones

Some fare systems that are based on fare zones contain neutral zones. Stations in a
neutral zone can be counted as part of either of its neighboring zones, whichever is cheapest
for the costumer. This is meant to mitigate sharp price increases at fare zone borders.
MDV uses them as well as several other German railway companies (e.g. Verkehrsverbund
Bremen/Niedersachsen GmbH). Neutral zones can be incorporated by label duplication:
Assume a neutral zone neighbors n fare zones. We associate each arc a whose head(a)
represents a station in the neutral zone with n fare attributes, one for each fare zone it could
possibly be part of. When settling the vertex in a shortest path search, the current fare state
is updated once for each fare attribute thereby creating n new labels.

3 The Fare Framework in Routing Algorithms

Classical shortest path algorithms rely on dynamic programming and the subpath optimality
condition [3]. That is, every subpath of an optimal s, t-path is in itself an optimal path.
When comparing paths in G naively by means of the price function π, the subpath optimality
condition is usually violated. Think about taking a local detour to avoid a fare zone: Later
on, travelers may be forced to cross the zone due to the infrastructure, turning the locally
dominant detour into a suboptimal choice. On the other hand, a locally dominated subpath
might still lead to an optimal s, t-path. This type of problem persists in our framework:
the transition between tickets depends on the fare attributes already collected, but also on
the structure of the reachable ticket graph and the transition functions of reachable fare
arcs. Example 9 highlights that problems can already arise even with simple examples of
ticket graphs.

I Example 9 (Label Dominance in Figure 2). Consider the routing graph (a) together with
the conditional fare network (b). Examining the paths p1 = (v1, v2, v4) and p2 = (v1, v3, v4),
we find their respective fare states are f(p1) = (B, 1) and f(p2) = (D, 2). Extending them
by v5 to p′1 and p′2 yields f(p1) = (C, 3) and f(p2) = (E, 4). Comparing fare states by price
would indicate that p1 could be cut off at v4 since π(B) > π(D). This is a suboptimal choice
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(a) Routing Graph.

A

B C

D E

1{s=S1}

1{s=S3}

1{s=S2}

1{s=S3}

(b) Ticket Graph.

A

B

C

1{s=S3∧h≤3}

1{s=S3∧h>3}

(c) Ticket Graph with Divergence.

Figure 2 Example of a routing graph (a) with two possible conditional fare networks (b) and (c).
For both, the underlying partially ordered monoid is (R,+,≤), the symbol set is S = {S0, S1, S2, S3}
and the start state for all vertices vi with i = 1, . . . , 5 is S(vi) = (A, 0). We give prices for the tickets
as π(a) = 0, π(B) = 2, π(C) = 3, π(D) = 1 and π(E) = 5. Transition functions are displayed as
indicator functions on fare arcs. Using the ticket graph (b), the upper v1, v5-path yields ticket C,
while the lower path yields ticket E. Using ticket graph (c), the upper path yields ticket B, the
lower path yields ticket C.

as p′1 dominates p′2 since π(C) < π(E). Hence, price cannot be used as dominance criterion
for fare states. A natural alternative would be to use the partial order defined by paths in
the ticket graph, instead. A ticket t1 then dominates a ticket t2 if there is a t1, t2-path. This
would render the tickets B and D and the tickets C and E mutually incomparable. The
idea, however, comes with problems of its own. To see this, consider now the conditional fare
network (c). At v4, we have f(p1) = (A, 1) and f(p2) = (A, 2) and hence both paths are
equivalent and it would be sensible to keep only one of them based on the relation between
fh(p1) and fh(p2). By relaxing (v4, v5), we obtain f(p′1) = (B, 3) and f(p′2) = (C, 4), which
are incomparable, i.e., the fare states of p′1 and p′2 diverged from comparable to incomparable.
Consequently, any dominance ruling cutting off either p1 or p2 would be defective.

To mitigate these and similar problems, we might assume a general incomparability of
fare states. This comes down to enumerating all s, t-paths and simply comparing them
by price. However, in a sensibly designed fare system it is usually clear which ticket is
better and taking a cheaper subpath should usually not turn out more expensive overall.
In the remainder of this chapter, we propose a more tailored approach. It generally bases
domination rules on path relationships but adds exceptions to cover cases in which it is not
safe to do so.

3.1 Dominance for Fare States
We want to define a comparison operator for fare states that restores subpath optimality
while not relaxing dominance too strongly.

To do so, we partition the ticket set T into three disjoint comparability groups: CF (full
comparability), CP (partial comparability), CN (no comparability). Based on the partition
C = (CF , CP , CN ), we define a comparison operator for fare states.

ATMOS 2019
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I Definition 10 (Comparability of Fare States). Let f1 = (t1, h1), f2 = (t2, h2) be fare states.
We say f1 ≤C f2 if and only if t1 /∈ CN , h1 ≤ h2 and

t1 = t2 if t1 ∈ CP (4)
∃ t1, t2-path in F if t1 ∈ CF . (5)

If and only if f1 ≤C f2 and either h1 < h2 or t1 6= t2, we say that f1 is strictly lesser than
f2, i.e., f1 <C f2.

We denote by P fs,t the set of all paths Pareto-optimal with respect to ≤C , i.e.,

p∗ ∈ P fs,t ⇒ @ s, t-path p : f(p) <C f(p∗). (6)

Note that P fs,t is not equal to P ∗s,t. Proposition 16 shows that it is in fact a superset of the
set of all price-optimal paths, which we denote by Pπs,t. We call paths in P fs,t state-optimal
and paths in Pπs,t price-optimal.

The partition C has to be defined in a way that monotonicity of the update function
along all arcs a ∈ A is not violated1, i.e.,

∀ f1, f2 ∈ F : f1 ≤C f2 =⇒ ∀ a ∈ A : Up(f1, a) ≤C Up(f2, a). (7)

This condition is enough to ensure that a weaker form of subpath optimality holds.

I Proposition 11 (Weak Subpath Optimality). Let G = (V,A) be a routing network and
N = (F ,A,S, S, T r, π) be its conditional fare network. Let p∗ ∈ P fs,t be a state-optimal s,t-
path in G for some s, t ∈ V . Then, there is a path p′ = (s = v0, v1, . . . , vn−1, vn = t) ∈ P fs,t
with fp∗ = fp′ , such that every subpath p′′ = (v0, . . . , vl), l < n of p′ is a state-optimal
v0, vl-path.

Note that Proposition 11 doesn’t imply that every subpath of a state-optimal path is
state-optimal. It, however, implies that we can discard all state-optimal paths without this
property since a path with equal fare state still remains in P fs,t. Hence, all classical algorithms
relying on subpath-optimality can still be applied. Note also that Equation 7 need not hold
for all f1, f2 ∈ F but only for those that might occur on paths in G.

3.2 Comparability Partitions
In choosing CF , CP and CN , there is some degree of freedom. We want CF to be as big and
CN as small as possible while still fulfilling Equation 7. It is clear that the choice does not
only depend on F and Tr but also on the structure of G and its arc attributes A. Choosing
the partition depending on G and A would require some preprocessing of G. We propose a
solution that depends only on F and Tr and needs less recomputation when changes in the
network occur. To deal with this dependency, we use the notion of a vertex’s reach.

I Definition 12 (Reach). Let F = (T,E) be a directed graph. We define the reach R(t) of a
vertex t ∈ T as the subgraph induced by all vertices reachable from t, i.e.,

R(t) := F [{t̃ ∈ T : ∃ t, t̃-path}]. (8)

1 Shortest path algorithms on graphs with weights from partially ordered monoids require the monoid
operation to be translation-invariant with respect to the partial order. Since the fare states and arc
attributes do not belong to the same structure, the notion of translation invariance is relaxed to a
monotonicity formulation.
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To simplify our notation, we introduce operators that represent path relations. If there
is a path in F between t1, t2 ∈ T, t1 6= t2, we write t1 −→ t2. We write t1 −→= t2 if either
t1 −→ t2 or t1 = t2.

I Definition 13 (No-overtaking Property). Let F∗ be a vertex-induced subgraph of F . We
say it has the no-overtaking property if for all e = (t1, t2) ∈ F∗, (s, h) ∈ S ×H and t̃1 ∈ T
with t1 −→= t̃1 −→= t2 the following holds:

Tr(e, s, h) = 1⇒ ∀ h̃ ≥ h ∈ H : ∃(t̃1, t̃2) ∈ E : Tr(t̃1, t̃2, s, h̃) = 1 and t2 −→= t̃2. (9)

The no-overtaking property bears some resemblance to the FIFO (first-in, first-out)
property: A worse fare state, i.e., either worse fare attributes from H or a worse ticket,
cannot give rise to a better fare state when relaxing the same arc in the routing graph. Note
that the condition is necessary not only for the neighbors of t but for R(t).

Subgraphs with the no-overtaking property allow for the strictest domination rules. We
use them as comparability group CF .

I Definition 14 (Comparability Partition). Let G = (V,A) be a routing network and
N = (F ,A,S, S, T r, π) be its conditional fare network. We define

CF := {t ∈ T : R(t) traceable and has the no-overtaking property } (10)
CP := {t ∈ T\CF : ∀ e ∈ R(t) : ∀ s ∈ S : ∀h1, h2 ∈ H : Tr(e, s, h1) = Tr(e, s, h2)} (11)
CN := {t ∈ T\(CF ∪ CP )}. (12)

To be in the set CF , the reach of a ticket has to be traceable, i.e., contain a Hamiltonian
path. This condition is needed to avoid the divergence seen in Example 9. If a ticket has
non-traceable reach it is placed in CP . Transition functions here must be independent of
H. This also ensures that comparable fare states do not diverge in an incomparable state.
All remaining tickets are added to CN . Fare states containing tickets from CN cannot be
compared at all.

The comparison operator defined by this comparability partition fulfills Equation 7.

I Proposition 15 (Monotonicity of the Comparability Partition). The partial order defined by
Definitions 10 and 14 fulfills the monotonicity condition

∀ f1, f2 ∈ F : f1 ≤C f2 =⇒ ∀ a ∈ A : Up(f1, a) ≤C Up(f2, a). (13)

Propositions 15 and 11 enable us to apply dynamic programming shortest path algorithms
to the PSEAP using the comparability partition from Definition 14. However, we obtain
only the set of state-optimal paths. It remains to show that this set contains the cheapest
price itinerary.

I Proposition 16 (Correctness). Let π∗ := minPs,t
π(p). Then, there is at least one s, t-path

p∗ with π∗ = π(p∗) and p∗ ∈ P fs,t := {p̃ s,t-path : @ p : f(p) <C f(p̃)}.

I Example 17 (Dominance Rules for MDV Fares). In the graph in Figure 1 all nodes have
traceable reach. It is also easy to see that the no-overtaking property holds for all tickets
as well and hence CF = {T1, T2, Z1, Z2, Z3, Z4, Z5, Z6,M,H,L,KL,KH ,K}, CP = ∅ and
CN = ∅. Note that changing the transition condition from Z1 to Z2 from |hz| > 1 to |hz| = 1
breaks the no-overtaking property in cases where more than one fare zone is covered by a
station. Since this is never the case, we can replace the inequalitiy by an equality while
maintaining optimality.
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4 Price-Sensitive RAPTOR

In this last section, we will discuss how to integrate conditional fare networks into the
RAPTOR-algorithm. Finally, we introduce some speed-up techniques and evaluate their
performance on real-world instances obtained from MDV. We will change notation slightly
and use P ∗s,t to refer to the Pareto-set optimized for transfers, arrival time and price and P fs,t
to refer to the Pareto-set optimized for transfers, arrival time and fare state.

4.1 Applying the Framework to RAPTOR

We use our framework to implement a price-sensitive version of the multi-criteria RAPTOR
algorithm (McRAPTOR) [6]. That is, we solved the earliest arrival problem with price as
an additional optimization criterion. RAPTOR implicitly optimizes also for the number of
transfers. To facilitate discussion, we presented the framework in a graph-based context.
However, RAPTOR does not use a graph model but works directly on the timetable. It
operates in rounds k = 1, . . . , n. In each round, a set of marked routes is visited and labels
are propagated along them. Labels are updated in this process by reading the new arrival
time directly from the route’s arrival time array. At each station, it is checked whether the
new label improves upon the current optimal label. If so, that local label is updated and the
station is marked as a starting point for the next round. The standard RAPTOR version
labels all stations solely with arrival times.

Adapting our findings to work with RAPTOR is straightforward: Each pair of adjacent
stations (vi, vi+1) on a trip can be interpreted as an arc. Hence, we store for every trip not
only an array of arrival times but also an array of all fare attributes. A label li = (ti, fi)
(at station vi) consists of an arrival time ti and a fare state fi. When traversing along
a trip from station vi to vi+1, the arrival time is updated and the fare state is set to
fi+1 = Up(fi, (vi, vi+1)). Dominance of labels is checked according to the theory developed
above while also taking arrival times into account. Update steps that were associated with
arcs modeling transfers are performed whenever the algorithm hops on a new route. This
requires storing an additional array with fare attributes at every station to represent transfer
costs for every trip at the station. Note that, in most cases, it is enough to store one array
for each route instead of trip, as fare attributes seldom vary among the trips of a route.
Since walking is free, fare states do not need to be updated in the footpath stage. Depending
on the data set, it might thus be possible to save money by walking a long distance in the
middle of an itinerary. This kind of journey can be excluded during postprocessing.

4.2 Speed-up Techniques

Price-based Target Pruning

In RAPTOR as well as Dijkstra’s algorithm, it is possible to prune labels that are worse than
the labels that have already been found at the target station. Naturally, the same speed-up
technique is also possible for our algorithm. Moreover, we need not use ≤C to compare fare
states. Since the labels at the target station are never updated and the price function π is
non-decreasing, a path already more expensive than the incumbent cheapest s, t-path cannot
be price-optimal. Hence, we can prune all labels with a fare state f with π(f t) ≥ π∗, with
π∗ being the incumbent price at the target station.
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Bounded McRAPTOR

By design of fare systems the cheapest path is often among the fastest as detours are penalized
by increases in both price and travel time. Therefore, it seems beneficial for a multi-criteria
search to compute a minimal travel time itinerary early on by running a standard RAPTOR
query. The labels obtained in this first stage can then be used to prune the multi-criteria
search. Let tk be the optimal arrival time at the target station in round k of the first stage
(computed with RAPTOR). During round k of McRAPTOR, we prune every label that
has an arrival time t with t > tk + ε. Note that this possibly cuts off optimal paths from
P fs,t (and P ∗s,t) if ε is chosen to be small. This technique, alongside an even tighter pruning
scheme, has been introduced in [5].

Problem Specific Speed-ups

Certain dimensions in H might only be relevant for some tickets in T . For example, many
short-distance tickets depend on the number of stations visited while this number is irrelevant
for all other tickets that can be reached from that ticket. We can therefore alter the
comparison operator ≤C for those tickets to ignore the number of stations. Hence, more
labels become comparable which results in a smaller Pareto-set P psss,t with P ∗s,t ⊆ P

pss
s,t ⊆ P

f
s,t.

4.3 Computational Results
We implemented the McRAPTOR algorithm in C++17 compiled with gcc 8.1.0 and −03
optimization. All tests were conducted on Dell Poweredge M620 machines with 64 GB of
RAM. While the general structure of the MDV price system is captured in our model, our
computations deviate from the prices charged by MDV in the following three cases: A list of
relations that is, contrary to the general rules, not eligible for the short-distance discount is
not taken into account. Neutral zones are as of yet not implemented. Instead, we add each
neutral zone to one of its surrounding zones. Stations and fare zones that a route passes
through without stopping are not represented in the available data and therefore cannot be
taken into account.

From MDV’s2 GTFS3 feed, we extracted the timetable of the 22 May 2019. It contains
4,371 stations, 18,215 trips, 5347 routes and 845 footpaths. The original footpath set was
not transitively closed4. After computing the transitive closure, there were 1,029 footpaths.
40 unconnected stations as well as 960 duplicate trips were removed from the data. We then
chose a test set of 5,000 queries uniformly at random from the set of connected stations.

In Table 1, we depict results for six different versions of RAPTOR. A standard RAPTOR
query (RAPTOR) and a McRAPTOR query optimizing for fare zones (zones) were included
for comparison. All other versions optimize for price and travel time using the framework
presented above. Version fare uses price-based target pruning as presented in Section 4.2.
Employing standard target pruning (using ≤C for comparison) instead yielded extremely
poor results in exploratory computations and is therefore not included in this study (One
query found 1000 paths of which only four were in P ∗s,t). Version pss additionally uses

2 The MDV GTFS timetable is licensed under CC BY 4.0 and is publicly available under https://www.
mdv.de/informationen/downloads/.

3 Fare data is not part of the feed and was obtained separately via InfraDialog GmbH.
4 RAPTOR requires a transitively closed footpath set [6].
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Table 1 Computation results for 5000 queries in the MDV network. All values depicted are
averages. 30 queries for which no itinerary was found were excluded. The column pareto the size of
the Pareto-set as computed by RAPTOR, while sols reports the size of P ∗s,t. We also report the
number of scanned routes (scan). For bound60 and bound30, the results of the actual multi-criteria
query are reported (second phase). Total combines the results for the first and second phase.

Criteria Technique Query Total
tr
an

sfe
rs

tim
e

zo
ne
s

fa
re T
P

EB PS
S

pa
re
to

so
ls

tim
e[
m
s]

sc
an

tim
e[
m
s]

sc
an

RAPTOR • • ◦ ◦ ◦ ◦ ◦ 1.58 – 6 11032 – –
zones • • • ◦ ◦ ◦ ◦ 49.53 – 5066 19563 – –
fare • • ◦ • • ◦ ◦ 6.01 2.66 48084 16457 – –
pss • • ◦ • • • ◦ 3.5 2.66 406 14842 – –
bound60 • • ◦ • • • • 2.51 2.21 274 14322 280 25354
bound30 • • ◦ • • • • 2.34 2.14 260 14063 266 25085

problem-specific speed-ups and bound60 (bound30 ) computes bounds to cut off all paths
that are more than 60 (30) minutes slower than those computed in the first phase. The
field pareto reports the average number of solutions computed by the RAPTOR/McRaptor
query. When optimizing for price and arrival time, this set is bigger than the size of P ∗s,t,
which is reported as sol. Note that these sets are smaller for bound60 and bound30 since
they compute restricted Pareto-sets. When taking fare zones into account (zones), the size
of the Pareto-set increased from 1.58 (RAPTOR) to a staggering 49.53. This is reflected in
a high run time of more than 5 s. The price-based target pruning used in fare results in a
significantly smaller Pareto-set P ∗s,t (6.01) on average. The average size of P ∗s,t is 2.66. This
indicates that most of the itineraries computed by zones are not interesting for a typical
costumer and the fare framework can be leveraged to avoid their computation. However,
the framework is computationally more involved and requires optimization of two additional
criteria (distance and visited stations), which leads to run times of 48 s on average. In pss,
fare zones are not compared anymore after reaching ticket M . Distance and the number of
visited stations is only considered for the tickets K, KL and KH , T1 and T2. This results
in an average run time of 406 ms which is even considerably faster than the zones queries.
Computing bounds in a first phase reduces run times further to 280 and 266 ms, respectively,
while not reducing the number of itineraries found too much.

5 Conclusion

We presented a novel framework for modeling fare systems of public transportation companies.
It is independent of the shortest path algorithm used and can be used to solve price-sensitive
earliest arrival queries in real-world networks. Our test case forces the implicit optimization
for distance, number of stations visited and fare zones, which resulted in slow run times and
large Pareto-sets. Both can be greatly improved by utilizing insights into the price structure
to tighten dominance rules, which lead to the framework faring even better than a purely fare
zone-based McRAPTOR. The speed-up is, however, dependent on the ticket transition rules
and thus, performance might vary significantly depending on the fare system in question.
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A Fare Transition Functions for MDV

In the following, we provide the fare transition function associated with the fare transition
arcs in Figure 1. We refer to the dimensions of the partially ordered monoid (H,+h,≤h) as
H := Hz ×Hs ×Hd ×Ht, where HZ = 2Z , Hs = N, Hd = N and Ht = {0, 1}. The set HZ

represents all possible combinations of fare zones, Hs and Hd represent distances measured
in the number of stations and in meters, respectively, and Ht, whether a trip contains a
transfer. The symbol set is S= {H,L, T1, T2, S0}, where H and L are associated with all
stations in Halle and Leipzig, respectively. The symbol T1 is associated with stations in cities
that allow the T1 price, the symbol T2 with stations in cities that allow the T2 price. All
remaining stations have the symbol S0. Let s ∈S and h = (hz, hs, hd, ht) ∈ H. Then, the
fare transition function is defined by
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Tr(Zi, Zi+1, s, h) = 1⇔ |hz| > i ∀ i ∈ 1, . . . , 6 with Z7 := M

Tr(Tj , Z1, s, h) = 1⇔
s 6= Tj ∧ (ht = 1 ∨ hd > 4) ∀ j = 1, 2

Tr(Tj ,K, s, h) = 1⇔
s 6= Tj ∧ (ht = 1 ∧ hd ≤ 4) ∀ j = 1, 2

Tr(K,Zi, s, h) = 1⇔ |hz| = i ∧ (ht = 1 ∨ hd > 4) ∀ i = 1, 2, 3, 4
Tr(L,Z2, s, h) = 1⇔ s 6= L

Tr(H,Z2, s, h) = 1⇔ s 6= H

Tr(KL, Z2, s, h) = 1⇔ s 6= L ∧ (ht = 1 ∨ hs > 4)
Tr(KH , Z2, s, h) = 1⇔ s 6= H ∧ (ht = 1 ∨ hs > 4)
Tr(KL, L, s, h) = 1⇔ s = L ∧ (ht = 1 ∨ hs > 4)
Tr(KH , H, s, h) = 1⇔ s = H ∧ (ht = 1 ∨ hs > 4).

B Proof of Proposition 11

Proof. Let p∗ = (s = v0, v1, . . . , vn−1, vn = t) ∈ P fs,t be a state-optimal s, t-path and let
(f0, . . . , fn) be the fare sequence associated with it. Assume there is another s, t-path
p̃ = (s = u0, u1, . . . , ul−1 = vn−1, ul = t) with fare states (f0, f̃1, . . . , f̃l). Let k be the
largest integer such that vn−k = ul−k, i.e. the paths (vn−k, . . . , vn) and (ul−k, . . . ul) are
equal. Now assume f̃l−k−1 <C fn−k−1. By definition, fn−k = Up(fn−k−1, (vn−k−1, vn−k))
and f̃l−k = Up(f̃l−k−1, (ul−k−1, ul−k)). We apply Equation 7 to obtain f̃l−k ≤C fn−k. By
repeating the process for i ∈ {k − 1, . . . , 0}, we find f̃l ≤C fn. Since p∗ was state-optimal, it
follows that f̃l =C fn and consequently p is also state-optimal. Since the number of paths in
G is finite, we can repeat this procedure to find the path p′. J

C Proof of Proposition 15

Proof. Let a ∈ A and f1, f2 ∈ F such that f1 ≤C f2. We write f̃1 := Up(f1, a) and
f̃2 := Up(f2, a). Clearly, fh1 ≤ fh2 implies f̃h1 ≤ f̃h2 . First, assume that f t1 ∈ CP , hence
f t1 = f t2. By applying the definition of CP , we obtain

Tr(f t1,As(a), fh1 +Ah(a)) = Tr(f t2,As(a), fh2 +Ah(a)).

Thus, f̃ t1 = f̃ t2. Note that the definitions of CP and CF imply that f̃ t1 ⊂ CP ∪ CF since
f̃ t1 ∈ R(f t1) and hence f̃1 ≤C f̃2. Now, assume f t1 ∈ CF . Note that R(f t1) ⊂ CF . Hence, if
f̃ t1 = f̃ t2, we obtain f̃1 ≤C f̃2.

If instead f̃ t1 6= f̃ t2 we need to show that f̃ t1 → f̃ t2. Note that f t2 ∈ R(f t1) and R(f t1) is
traceable. Hence, f t2, f̃ t2 and f̃ t1 are on a directed path. Since F is acyclic and f t2 −→= f̃ t2 holds
there are four cases to consider:
1. f̃ t1 −→= f t2 −→= f̃ t2, which implies f̃ t1 −→= f̃ t2;
2. f t2 −→= f̃ t1 −→= f̃ t2, which implies f̃ t1 −→= f̃ t2;
3. f t2 −→= f̃ t2 → f̃ t1 and f t1 = f̃ t1, which creates the cycle f t1 −→= f t2 −→= f̃ t2 → f̃ t1 = f t1 in F

and is hence contradictory;
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4. f t2 −→= f̃ t2 → f̃ t1 and f t1 → f̃ t1. Note that f t1 −→= f t2 → f̃ t1 and also that
Tr(f t1, f̃ t1,As(a), fh1 +Ah(a)) = 1. Hence, we can apply the no-overtaking property for
the edge (f t1, f̃ t1), the ticket f t2 and the fare attribute (As(a), fh2 +Ah(a)).
Since fh2 +Ah(a) > fh1 +Ah(a), this yields the existence of an edge (f t2, f t) ∈ E with
Tr(f t2, f t,As(a), fh2 + Ah(a)) = 1 and f̃ t1 −→= f t. Note that (f t2, f t) is not necessarily
the only outgoing edge at f t2 but by definition of Tr there is only outgoing edge at f t2
with transition function Tr equal to one for the fare attribute (As(a), fh2 +Ah(a)). Since
also Tr(f t2, f̃ t2,As(a), fh2 + Ah(a)) = 1, it follows that f̃ t2 = f t. This creates the cycle
f̃ t2 → f̃ t1 → f̃ t2, which also yields a contradiction.

Hence, we conclude that in fact f̃ t1 → f̃ t2 and therefore, concluding the proof, f̃1 ≤C f̃2. J

D Proof of Proposition 16

Proof. Consider p ∈ Pπs,t := {p̃ s,t-path : π(f t(p̃)) = π∗} 6= ∅. If there is a path p′ ∈ P fs,t
with f t(p′) = f t(p), we are done. If not, there is a path p′ ∈ P fs,t with f t(p′)→ f t(p). This
implies π(f t(p′)) ≤ π(f t(p)) and hence that a path of the same price as p is present in
P fs,t. J
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Abstract
We study the problem of finding bi-criteria Pareto optimal journeys in public transit networks. We
extend the Trip-Based Public Transit Routing (TB) approach [18] to allow for users to select modes
of interest at query time. As a first step, we modify the preprocessing of the TB method for it to be
correct for any set of selected modes. Then, we change the bi-criteria earliest arrival time queries,
and propose a similar algorithm for latest departure time queries, that can handle the definition of
the allowed mode set at query time. Experiments are run on 3 networks of different sizes to evaluate
the cost of allowing for mode personalization. They show that although preprocessing times are
increased, query times are similar when all modes are allowed and lower when some part of the
network is removed by mode selection.
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1 Introduction

In public transit networks, part of the information is available in the form of timetables that
give the schedules at given stations of different public transportation modes such as buses,
trains or tramways. Transfers between those modes of transportation are possible by walking
between the stations, if they are not too far away from one another.

Finding paths in such public transit networks is highly relevant in practice, as millions of
users use routing applications such as Naver Map1, Citymapper2 or Google Maps3 to plan
their trips daily. In the recent years, research has been very active for this problem [3] and
many dedicated techniques, such as Transfer Patterns [2], RAPTOR [5] or CSA [6] have
been developed to make this routing efficient.

However, defining criteria and constraints to optimize those paths according to user
preferences is a complicated task. Many criteria can be considered, such as earliest arrival
time (given a start time or a start time range), latest departure time (given an arrival
time or an arrival time range), number of transfers, travel cost, total transfer duration,
total waiting time, etc. In multicriteria optimization, a solution is said to be dominated in
the Pareto sense if there is another solution that is strictly better on one criteria and at
least as good on the others. It is frequent to look for either the Pareto set, that is all the

1 https://map.naver.com/
2 https://citymapper.com/
3 https://www.google.com/maps
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non-dominated solutions in the Pareto sense, or the Pareto front, that is the image of the
Pareto set in the criteria space. For minimum total cost path problems, considering two or
more criteria often makes the problem of finding all the optimal solutions intractable, with
possibly exponential size Pareto sets [11], although the number of optimal solutions in the
Pareto sense can be manageable in practice for some problems [15]. In this work, we consider
the following polynomial bi-criteria problems: minimizing the arrival time and the number
of transfers and maximizing departure time and minimizing the number of transfers. We are
interested in finding the Pareto front, rather than the Pareto set, and we want to be able
to compute one solution corresponding to each element of the Pareto front for minimum
number of transfers and either minimum arrival time or latest departure time. Note that in
that case, the maximum number of solutions returned is bounded by the number of public
transport trips (as we cannot make more transfers) and is hence polynomial in the size of
the instance. Providing sets of solutions rather than a single solution enables users to make
their own compromises between the number of transfers and the travel time of the trip,
according to their preferences. We choose not to compute the complete Pareto set, but only
one solution for each element in the Pareto front to ensure polynomial time construction of
the set of solutions. Note that the actual Pareto set can be much larger in practice. Indeed,
in multimodal networks, having several solutions with the same value in the criteria space
can be frequent for the considered criteria, for instance solutions sharing the same final (resp.
initial) trip when optimizing earliest arrival time (resp. latest departure time) and number
of transfers. In a theoretical network, it can be of exponential size.

As a second step toward more personalized solutions, we consider an additional constraint:
at query time, the user can exclude some modes of transportation from the network. For
example, a user want to avoid buses, because he/she thinks that they are not reliable enough.

Indeed, the type of transit modes is an important vector of choice between itineraries. In
addition to the speed to reach destination, it impacts the price, the comfort, and of course,
some modes are more or less appreciated by the user depending on his/her preferences.
In many cases, the mode type information is available in the transit data. For instance,
the General Transit Feed Standard format [10], very often used to describe public transit
information, proposes this information as mandatory. In an itinerary planning application
or website, the user will often be able to choose the modes that he/she wants to enable or
disable in the interface as option for the search.

Several methods have been designed for mode related personalization. In [12], the authors
consider a graph based approached with a time-dependent model of the timetables [16]. They
propose personalized mode sequences described by a regular language and solve the associated
regular language constrained shortest path problem using a combination of the DRegLC [1]
and ALT [9] algorithms called State-Dependent ALT. Preprocessing time is light (less than a
minute on Île-De-France transportation network), but the languages involved must be defined
at the preprocessing step. The User-Constrained Contraction Hierarchy [7] on the other
hand, doesn’t have this restriction and the mode sequence can be defined at query time. It is
also based on a time-depend model for the transit modes and uses Contraction Hierarchy [8]
on each mode’s network to speed up the search. As a consequence, preprocessing time can
be important on large networks (42 min for a small Europe network with 30K stations).

If we want to select the enabled scheduled modes for a query, rather than defining specific
mode sequences, dynamic programming approaches such as CSA or RAPTOR might be
used with very few modifications. The Connection Scan Algorithm [6] is based on a sorted
connections array that contains all the trip segments between two consecutive stops. You
can pass from one connection to the next if they are one after another in the same trip or if
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you can leave the first connection and reach the next on time to take it (for instance by a
walking transfer). This algorithm could be modified for mode personalization by pruning at
query time the search space by taking only connections corresponding to allowed scheduled
modes. Similarly, the RAPTOR algorithm [5] works directly with timetable information. It
uses a round-based approach where in each round, trips are taken from lines passing at stops
reached at the preceding iteration. In this context, some trips of disabled scheduled modes
could also be avoided at query time by saving and checking the mode of each line. This
approach can be found in [17] where a wider set of mode sequences is considered. Another
approach can be found in [4], where the authors use the number of buses as an additional
criterion for computing a subset of the Pareto set. They can hence obtain optimal solutions
with no buses (as well as solutions with several bus trips).

In this work, we are interested in extending the Trip-Based Public Transit Routing
approach [18] (TB) in order to be able to personalize the set of scheduled modes used at
query time. TB is a round-based approach, iterating on the maximum number of transfers
allowed in a solution, that relies on a different graph model: the nodes of the graph are
the trips, while the arcs represent possible transfers. A preprocessing phase computes a
non-minimal arc set T such that for any value in the Pareto front, there exists a solution S
with this value such that all the transfers of S belong to T . Search phase is then breadth-first
search like and builds one solution for each element of the Pareto front for minimum arrival
time and minimum number of transfers. Note that the author uses a slightly modified
definition of Pareto dominance to call the set built Pareto set, but here we choose to keep
the standard definition.

2 Preliminaries

As we extend the TB algorithm, we give in this section a brief description of this method
and discuss some of the claims made by the author in his article.

2.1 Notations
We will use notations similar to that of [18] to describe the public transit network. A
sequence of stops −→p (t) = 〈p1

t , p
2
t , . . . 〉 is associated with each trip t. The schedule of t is

defined by the arrival and departure times of t at the stops of its sequence. We denote
by τarr(t, i) (resp. τdep(t, i)) the arrival time (resp. departure time) of t at the ith stop
of −→p (t). Trips are grouped into lines, that do not exactly represent the routes of the public
transport network. First, all the trips of a line L have exactly the same sequence of stops,
denoted −→p (L) = 〈p1

L, p
2
L, . . . 〉. Second, all the trips of a line are completely ordered following

comparison relations � and ≺ defined for two trips having the same sequence:{
t � u⇐⇒ ∀i ∈ [0, |−→p (t)|) , τarr(t, i) ≤ τarr(u, i)
t ≺ u⇐⇒ t � u and ∃i ∈ [0, |−→p (t)|) , τarr(t, i) < τarr(u, i)

Lt denotes the line of trip t. For a given stop s, we define L(s) as the set of all pairs (L, i)
with L a line and i an index in the sequence of L such that s = pi

L. A displacement between
the ith stop of t and the jth stop of t using trip t is denoted pi

t → pj
t and similarly, a walking

transfer between trip t at the ith station and trip u at the jth station is denoted pi
t → pj

u.
Walking transfer times are defined for any pair of stops (p, q), p 6= q that are close enough
of one another and the associated duration is ∆τfp(p, q). When transferring between two
trips at a given station (pi

t = pj
u = p), a minimum change time ∆τfp(p, p) can be defined, to

represent the time needed to move within this station.
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2.2 Preprocessing
The aim of the preprocessing of the TB algorithm is to build a set T of transfers between trips
such that any transfer pi

t → pj
u of T is feasible, that is τarr(t, i) + ∆τfp(pi

t, p
j
u) ≤ τdep(u, j),

and for any element of the Pareto front, there exists an optimal solution with this element
as value, such that all its transfers pi

t → pj
u belong to T . Note that the algorithm does not

require the set T to be minimal, that is to be a set of minimum cardinality with this property.
It needs only to be correct, that is to contain only feasible transfers and to contain all the
transfers of at least one optimal solution per element in the Pareto front.

In order to compute a correct set of transfers, the preprocessing considers the transfers
from each trip separately, which allows for trivial parallelization of the algorithm. For a
given trip t, starting from the last stop of −→p (t) and taking the sequence in reverse order,
we consider for each stop pi

t with i > 1 all the reachable stops q from pi
t (i.e. such that

∆τfp(pi
t, q) is defined). We set the earliest arrival and change times at each of those stops at

τarr(t, i) + ∆τfp(pi
t, q) and we look for transfers to all the possible lines passing by q. For

each of those lines, we find the earliest trip u such that the transfer pi
t → pj

u is feasible (with
pj

u = q and j < |−→p (u)|). We remove U-turn transfers as described in [18]. Then, in order to
reduce the transfer set, we try and update or set earliest arrival and earliest change times
at the stops later in the sequence of u or at the stops reachable from those stops. If any
improvement occurs or a new stop is reached, the transfer is kept. If not, it will be removed
from the set of transfers. Note that if two transfers are equivalent (in term of reachable stops
and arrival and change times at those stops), only the first one generated will be kept. Since
we are looking at the stop sequence −→p (t) in reverse order, the later transfers are added to
the set before equivalent earlier transfers that will be checked later in the process.

2.3 Query phase
The TB algorithm deals with earliest arrival time queries, where given a start time, the
objective is to find the Pareto front for earliest arrival time and number of transfers.

At initialization, origin trip segments (trips segments whose boarding stop can be reached
by a walking displacement from the origin point) and destination trip segments (trips segments
from the unboarding stop of which the destination point can be reached) are computed.
Origin trips are added to a queue. Note that instead of considering only departure from
stops, it is possible to consider a departure from any location on the transportation network
by allowing to compute shortest paths in the walking network to or from the closest stops.

The query phase is then a breadth-first search like procedure in the graph whose nodes
are the trips and whose arcs are the possible transfers. At each iteration n, all the trip
segments of queue Qn are processed in order. If one is a destination trip, current earliest
arrival time at destination is updated. It can be used to prune the search, by not adding
transfers to the queue if they cannot be part of a solution that improves on this arrival time.
For a given trip segment of Qn, all possible transfers from it are performed, increasing the
number of transfers by one in the partial solutions computed. When a transfer reaches a trip
segment that is not marked, the trip segment is added to the queue for the next iteration and
the trip itself and all the corresponding later trip segments of the same line are marked as
processed. Iterations continue until maximum transfer number has been reached or current
arrival time at destination cannot be improved (which means that the queue of trip segments
is empty). The earliest arrival time itinerary to destination obtained at iteration k (when it
exists) is hence an earliest arrival time itinerary with at most k transfers. The Pareto front
for earliest arrival time and number of transfers is hence generated during the search phase.
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2.3.1 Construction of the solution

Witt [18] claims to optimize latest departure time as a secondary criterion to break ties, but
the construction proposed does not ensure this property. To build solutions, he suggests to
store for each trip segment a pointer to its origin trip segment when the trip is added to the
queue, in order to rebuild the sequence of trips and to compute optimal transfer between the
trips as a postprocessing. Consider the very simple example shown in Figure 1.

Figure 1 Small network with 3 trips and 2 transfers.

The network consists in 2 lines, one with trips t1 and t2 such that t1 ≺ t2, one with
trip t3. Both trips t1 and t2 can transfer from their ith stop to the same index j of trip t3.
When preprocessing those transfers, both are kept in the set as they update the arrival times
of the stops of t3. In the search phase, starting from source xsrc, trip t1 is the earliest trip of
the line that can be reached and is hence added to the queue. Then transfer to t3 is done
to reach destination xtgt. Hence, the sequence of trips is t1 and then t3, while with latest
departure time as a secondary criterion, t2 and then t3 should have been returned. As there
is no sorting on departure trips, a similar example can be built with trip t2 belonging to
another line if the search starts with t1.

Note that in both cases, the transfers in the solution with latest departure time for the
given earliest arrival time and number of transfers were in the computed set of transfers.

In order to actually find the maximum departure time for a given number of transfers and
a given arrival time, it is possible to consider several strategies, such as using profile queries.

Profile queries are given a time range as input. In our case, for every possible start time
(resp. arrival time) in that range, you want to compute optimal values of the Pareto front
for earliest arrival time (resp. latest departure time) and number of transfers. In order to
speed profile queries, Witt proposes for earliest arrival time profile queries to start by the
end of the time range and to iterate backward on this time interval. The idea is to keep the
labels of the preceding time step as journey starting later never dominates earlier ones.

Consider an earliest arrival time solution S with value (τarr, k) in the Pareto front obtained
for start time τ . In order to find the latest departure time for which there exists a solution
with value (τarr, k), it is possible to make a profile query with departure time range [τ, τarr].
Going backward, we compute the Pareto front for each instant of the range. Unless origin
and destination are equal, for a departure time t = τarr, value (τarr, k) doesn’t belong to
the Pareto front, but it will belong to it for a departure time of τ . Hence, decreasing the
minimum departure time value from τarr to τ , (τarr, k) will belong to the Pareto set at a
certain iteration. The latest departure time associated with (τarr, k) is the first instant when
value (τarr, k) belongs to the Pareto set.
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3 Scheduled mode selection

The preprocessing phase of the TB algorithm removes transfers from the search phase
without modifying the Pareto front when all the modes are available. Consider the example
of Figure 2.

Figure 2 Example of transfer removed by the TB algorithm’s preprocessing pruning phase.

Suppose that we have only those 3 lines in a public transportation network. Lines A and
B are tramway lines (represented with solid lines) and the line C is a bus line (represented
with a dashed line). A walking transfer (dotted line) is possible between the stop p on line A
and the stop q on line B. Suppose that exploring the transfers from a trip from line A at
stop p, we first look at the transfer from that trip to line C at stop p. We set the arrival and
change times of the stops q, r and s and move to the next transfer. We now try and update
stops’ arrival times by transferring from the current trip of line A to B. The earliest trip of
line B does not improve arrival or change times at stops r or s. It is hence pruned.

Now, consider that you want to allow only tramways for a given query. If buses cannot
be taken, the removed transfer could have found itself in an optimal solution, for instance
starting with the trip of A and arriving at s on line B.

A possible solution, to avoid loosing correctness, could be to have several instances of
the routing service, each corresponding to a selection of transit modes. Each server would
run on preprocessed data for the corresponding subnetwork. To consider all the possible
combinations of modes, you will need 2|M |−1 servers, if M is the set of modes of the network.

A second option, that we will use as a base line, it to use the complete set of transfers in
the search phase, without any pruning based on arrival times. In [18], the author reports
query times about 3 times as slow with this graph compared to the pruned one.

In this article, we propose a method for computing a reduced transfer set that is correct
for any set of modes asked by the user at query time, which enables to answer that type of
queries with a single server. This preprocessing step is explained in Section 3.1. Then, with
such set as input, the search phase requires only a few modifications that will be explained
in Section 4.

3.1 Preprocessing with mode selection
The aim of the preprocessing would now be to return a set of transfers T that is correct
when enabling any subset µ of the set of all transit modes M .

In order to achieve this aim, we propose to change the pruning phase to be sure that
for each value of the Pareto front and for any µ ⊆ M there is at least one solution with
this value that uses only transfers of T . As before, we preprocess the transfers of each trip
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separately. We denote mt ∈ M the mode associated with the line of trip t. As we are
computing transfers from trip t, mode mt needs to be allowed for the transfer to potentially
belong to an optimal solution. So for a transfer to a line l of mode m to be in an optimal
solution, at least mode mt and mode m need to be in the subset µ of allowed modes.

For a given trip t, we propose to compute the contribution to the set of transfers T that
will be used in the search phase in the following way. At each stop of the network, we try
and update a minimum arrival time and minimum change time for any given subset µ of M
such that µ = {m, mt} with m ∈M . Hence, at most 2|M | values are recorded for each stop.
When transferring to a trip t of mode m ∈M \{mt}, we can use the same procedure as before
to update arrival and change times when using only modes m and mt. When transferring to
another trip of mode mt, the arrival and change times for all the subsets of M are updated
simultaneously, as mode mt is necessarily allowed when transferring from t. We denote
by τA(q, m) (resp. τC(q, m) ) the minimum arrival time (resp. minimum change time) found
so far during the execution of the procedure when transferring from t for subset µ = {m, mt}
of allowed modes. The procedure is presented in Algorithm 1.

Algorithm 1 Pruning.

Input: Timetable data, footpath data, transfer set T
Output: Reduced transfer set T
for trip t do

τA(., .) ←∞ . Earliest arrival time at stops for a given mode subset
τC(., .) ←∞ . Earliest change time at stops for a given mode subset
for i← |−→p (t)| − 1, . . . , 1 do

Update(pi
t, mt, mt, τarr(t, i), τarr(t, i) + τfp(pi

t, p
i
t))

for each stop q 6= pi
t such that ∆τfp(pi

t, q) is defined do
Update(q, mt, mt, τarr(t, i) + τfp(pi

t, q), τarr(t, i) + τfp(pi
t, q))

for each transfer pi
t → pj

u ∈ T do
keep← false
for each stop pk

u on trip u with k > j do
keep← keep ∨ τarr(u, k) < τA(pk

u,mu)
keep← keep ∨ τarr(u, k) + τfp(pk

u, p
k
u) < τC(pk

u,mu)
Update(q, mt, mu, τarr(u, k), τarr(u, k) + τfp(pk

u, p
k
u))

for each stop q 6= pk
u such that ∆τfp(pk

u, q) is defined do
ρ← τarr(u, k) + ∆τfp(pk

u, q)
keep← keep ∨ (ρ < τA(q, mu)) ∨(ρ < τC(q, mu))
Update(q, mt, mu, ρ, ρ)

if ¬keep then
T ← T \ {pi

t → pj
u} . No improvement: remove the transfer

procedure Update(q, mt, mu, e, c)
Input: stop q, mode mt, mode mu, arrival time e, change time c
τA(q, mu) ← min (τA(q, mu), e)
τC(q, mu) ← min (τC(q, mu), c)
if mt = mu then . Mode mt is allowed since we are transferring from it

for each m ∈M \ {mt} do
τA(q,m) ← min (τA(q,mt), τA(q,m))
τC(q,m) ← min (τC(q,mt), τC(q,m))
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I Proposition 1. Algorithm 1 computes a correct set of transfers for earliest arrival time
and minimum number of transfers, for any subset µ of M .

Proof. First, note that, when transferring from trip t, as mt belongs to all the considered
subsets of M , it is sufficient to update the value of the keep variable before the Update
procedure, even if mu = mt. Hence, for a given starting trip t, and an index i in its sequence
of stops, keep will be set to true whenever a transfer pi

t → pj
u improves the arrival time or

the change time at a given stop for the subset µ = {m, mt} of M . Hence if transfer pi
t → pj

u

belongs to an optimal solution for µ = {m, mt}, at least one equivalent transfer is added to
the set of transfers returned at the end of the procedure.

Now, consider an arbitrary subset µ of M and an optimal value (τarr, k) of the Pareto
front with 1 ≤ k and a solution s from the Pareto set of value (τarr, k). We represent this
solution by the trip segment sequence that composes it:
s =

〈
pj1

t1
→ pi1

t1
, pj2

t2
→ pi2

t2
. . . , p

jk+1
tk+1
→ p

ik+1
tk+1

〉
Consider the last transfer pik

tk
→ p

jk+1
tk+1

of s. Since s is an optimal solution for µ, it is not
possible to arrive sooner at stop pik+1

tk+1
from trip segment pjk

tk
→ pik

tk
. Hence, either pik

tk
→ p

jk+1
tk+1

is in T or there is a transfer from tk at pi′k
tk
, ik ≤ i′k in T leading to a trip with the same

arrival time at pik+1
tk+1

for the subset
{
mtk

,mtk+1

}
of µ. Let pi′k

tk
→ p

j′k+1
t′

k+1
be the transfer that

is actually in T . Trip t′k+1 is either of mode mtk
or of mode mtk+1 which both belong to µ.

Now consider the previous transfer in s, pik−1
tk−1
→ pjk

tk
. Either this transfer is in T or, as

jk ≤ j′k, there exist another transfer from tk−1 in T that has a change time at least as early at
stop pj′k

tk
. We denote pj′k−1

tk−1
→ p

i′k
t′

k
, with jk−1 ≤ j′k−1 the transfer actually in T . The transfer

from t′k at stop pj′k
tk

to trip segment pj′k+1
t′

k+1
→ p

i′k+1
t′

k+1
with pi′k+1

t′
k+1

= p
ik+1
tk+1

is feasible as trip t′k has
a change time at least as early as tk at that stop. Hence, either it is in T or there is a transfer
with at least as good an arrival time at pik+1

tk+1
for the subset of modes

{
mt′

k
,mt′

k+1

}
⊆ µ that

is in T . Hence, going backward in the transfer of s, we can build a solution using a subset
of the modes of s, with the same number of transfers, all its transfers being in T and the
arrival time at pik+1

tk+1
being identical. This solution has therefore the same value as s. J

I Lemma 2. Algorithm 1 computes a correct set of transfers for latest departure time and
minimum number of transfers for any subset µ of M .

Proof. As before, we need to prove that for any element (τdep, k) of the Pareto front, there
exists a solution those transfers are in T such that the value of s is (τdep, k). Consider
an instance Idep = (τ, µ, xorg, xtgt) of the latest departure time problem with τ the latest
departure time, µ ⊆ M the allowed modes, xorg the origin and xdest the destination.
Let (τdep, k) be an optimal value of the Pareto front and τarr the earliest arrival time when
starting at τdep and using at most k transfers. Let s be an optimal solution of the latest
departure time problem for Idep with value (τdep, k) and arrival time τarr.

Consider the following earliest arrival time problem and an instance Iarr = (τdep, µ, xorg,

xtgt) with the same origin, the same destination and a minimum departure time equals
to τdep.

Suppose that a solution s′ with k transfers arrives at τarr and leaves at τ > τdep. Then,
it dominates s for the latest departure time problem and instance Idep which is not possible
as s is optimal. So no solution with k transfers can improve other s.

It remains the possibility of an optimal solution s′′ with value (τarr, k
′) with k′ < k for

the earliest arrival time problem with instance Iarr and departure time τ ≥ τdep. Suppose
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first that τ > τdep. In that case, solution s′ dominates s for the latest departure time problem
and instance Idep, which is not possible as s is optimal. Hence τ = τdep. In that case, we
have a contradiction as (τdep, k) is optimal for Idep and would be dominated by (τdep, k

′).
So all the optimal solutions with k transfers of the earliest arrival time problem for Iarr

start at τdep and arrive at τarr. From Proposition 1, T contains all the transfers of at least
one of those solutions, that we denote sarr. sarr is also optimal for the latest departure time
problem and instance Idep, which completes the proof. J

4 Earliest arrival time and latest departure time queries

Algorithm 2 Latest departure time query.

Input: Transfer set T , origin xsrc, destination xtgt, latest arrival time τ , mode selection µ
Output: Pareto front J
J ← ∅ . Pareto front
L ← ∅ . Target lines
Qn ← ∅ for all n = 1, 2, . . . . Queue of trips for each iteration
R(t)← 0 for all trips t . Maximum index at which a trip is unboarded during the search
for each stop q such that ∆τfp(xsrc, q) is defined do

∆τ ← 0 if xsrc = q, else ∆τfp(xsrc, q)
for each (L, i) ∈ L(q) such that mL ∈ µ do
L ← L ∪ {(L, i,∆τfp(xsrc, q))}

for each stop q such that ∆τfp(q, xtgt) is defined do
∆τ ← 0 if xtgt = q, else ∆τfp(q, xtgt)
for each (L, i) ∈ L(q) such that mL ∈ µ do

t← latest trip of L such that τarr(t, i) + ∆τ ≤ τ
BW_ENQUEUE(t, i, 0)

n← 0
τmax ← 0
while Qn 6= ∅ do

for each pb
t → pe

t ∈ Qn do
for each (L, i, ∆τ) ∈ L with b ≤ i < e and τdep(t, i)−∆τ > τmax do

τmax ← τdep(t, i)−∆τ
J ← J ∪ {(τmax, n)} and remove dominated entries

for each pi
u → pj

t ∈ T with b ≤ j < e and mt ∈ µ do
if τdep(u, i− 1) < τmax then

BW_ENQUEUE(u, i, n+ 1)
n = n+ 1

return J

procedure BW_ENQUEUE(trip t, index i, nb transfers n)
if Rn(t) < i then

Qn ← Qn ∪
{
p

Rn(t)
t → pi

t

}
for each trip u such that Lt = Lu and u � t do

R(u)← max(R(u), i)

In order to adapt earliest arrival time queries from [18] to transit mode selection, only a few
modifications are necessary. First, only add to the queue by the ENQUEUE procedure trips
that belong to the selected set of modes µ. Then, when considering transfers from a given
mode, only scan transfers to modes that belong to µ. The set of transfers being correct for
any value of µ with preprocessing of Section 3.1, the search will compute the Pareto front.
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Table 1 Data sets used for the experiments.

stops trips lines foot paths connections Modes
TCL 4583 70614 578 87834 1425044 Bus, subway,

tram, funicular
IDFM 42404 351908 1869 1061959 7803633 Bus, subway, rail,

tram, funicular
Korea 180948 446741 31708 4195659 22346975 Bus, subway, rail, tram

In order to deal with latest departure time queries, we propose the following modifications
of the base algorithm. Basically, the search is a backward search in the graph of trips and
transfers. When we add a trip t to the queue, we hence mark the maximum index R(t) at
which t is unboarded rather than the minimum index at which it is taken (see procedure
BW_ENQUEUE of Algorithm 2). When a trip segment of the queue is processed, we first
check if we can improve on the latest departure time found so far and update the Pareto
front accordingly. Then transfers are scanned, and the origin trip segment of the transfer is
potentially added to the queue. To take into account mode selection, the same modifications
as before are necessary, as we check the modes of the trip segments before adding them to
the queue. The algorithm can be found in Algorithm 2.

5 Experiments

The experiments are run on a 64 2.7 GHz CPU Intel(R) Xeon(R) CPU E5-4650 server with
20 M of L3 cache and 504 GB of RAM. We perform our tests on three data sets. The first,
the TCL [13] (Transports en Commun de Lyon) data set, is made available by the Grand
Lyon metropolitan area for research purpose. The second covers the Ile-De-France area and
is provided by Île de France Mobilités [14] with permissive license. We denote it IDFM. Note
that although it has been used in previous publications, it might be different to the one cited
due to regular updates. In [12], for instance, the size of the IDF network is closer to that of
the TCL data set. The last is a proprietary data set for whole Korea. For those data sets,
we use a mixture of the provided footpaths (if any) and generated footpaths. Closure of the
footpaths is not required by the TB algorithm or our adaptation (as opposed to RAPTOR [5]
or CSA [6]) but users will often accept to walk, for limited distances, between stations. Hence,
for each stop, we include footpaths to all the stops reachable within a distance of 600 m,
using a walking speed of 3.6 kph. Data set information is summarized in Table 1.

Table 2 Comparison of preprocessing steps between MS, STD and NP versions.

Data Set TCL IDFM Korea
Preproc. MS (s) 18 521 1326
Preproc. STD (s) 6 141 381
Preproc. NP (s) 4 56 69
Preproc. MS/STD 3.0 3.7 3.5
# transfers MS (in million) 11.7 110.7 259
# transfers STD (in million) 10.9 103.6 245
# transfers NS (in million) 136 1984 3479
# transfers per trip MS 166 315 580
# transfers per trip STD 155 295 571
# transfers per trip NS 1952 5651 7800
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Table 2 compares the results of the preprocessing obtained with the standard version
(STD) and with the modified version that allows correct results for a selection of modes
(MS). As an additional base line, we also run our experiment with a version that performs
no pruning, but implements the mode selection in the search phase (NP). As it uses the
complete set of transfers, this baseline will give correct solution sets.

As expected, the number of transfers in T is only slightly increased by the modifications
of the preprocessing. On the other hand, the duration of the preprocessing is significantly
increased. This is probably explained by the interconnection of the different networks: a
large part of the lines will be able to connect to most of the different modes and hence,
earliest arrival times are updated for nearly all trips and modes.

In order to test the effect of our modifications on query times, we generate 500 random
origin-destination pairs for each data set. We compare in Table 3 our 3 implementations
(with and without mode selection, and mode selection without pruning). Note that our
execution times include the computation of one solution for each element in the Pareto
front. The average and maximum number of solutions for the different test sets can be found
in Appendix A in Table 6. As expected from Witt [18], the version without pruning is much
slower (more than 3 times slower on Korea and IDFM) due to the larger number of transfers
in the search phase.

Table 3 Comparison of query times between MS, STD and NP versions.

Data set Algorithm EAT (ms) profile 1H (ms) profile day (ms)
TCL MS 12 56 366
TCL STD 20 55 304
TCL NP 34 123 702
IDFM MS 57 157 848
IDFM STD 57 173 857
IDFM NP 382 1007 6432
Korea MS 46 236 1922
Korea STD 51 239 1940
Korea NP 148 940 8042

For queries with sets of allowed modes, we try and remove different scheduled modes and
look at the influence on query times. Note that for the 3 data sets, the network contains a
majority of bus trips. Table 4 compares our results with the no pruning base line. We also
provide the results of [12] in Table 5 as an example of integration in the time-expended model:
although the data set used is not exactly identical to ours, the algorithm also builds solutions
(only the earliest arrival time one) and results are provided for several mode selections. Note
that for [12], the query times are similar for the different mode selections, but with the TB
modifications that we propose, we see that removing parts of the public transit network
improves the query time. It is expected as the transfers to disabled modes will not be
performed during the search, effectively reducing the number of trip segments processed
(see Table 7 in Appendix A). This property also holds for the version without pruning, but
although forbidding some modes reduces the execution times, the improvement brought by
the pruning is still clear, especially on more time consuming profile instances.
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Table 4 Comparisons of query times for several selections of modes.

MS NP MS NP MS NP
Data set Forbidden modes EAT EAT profile profile profile profile

(ms) (ms) 1H (ms) 1H (ms) day (ms) day (ms)
TCL None 12 34 56 123 366 702
TCL Bus 5 10 16 26 96 128
TCL Bus, train 5 10 15 29 96 126
TCL Subway 10 25 41 195 277 528
TCL Subway, tram, train 10 21 37 88 223 445
IDFM None 57 382 173 1007 857 6432
IDFM Bus 17 72 34 126 114 647
IDFM Bus, tram, train 8 25 18 56 56 257
IDFM Subway 50 318 135 1621 698 5165
IDFM Subway, tram, train 51 319 144 816 680 4392
Korea None 46 148 236 940 1922 8042
Korea Bus 28 56 47 82 185 340
Korea Bus, tram, train 25 48 44 76 172 323
Korea Subway 39 112 227 892 1746 7313
Korea Subway, tram, train 37 116 216 923 1759 7698

Table 5 Query times of SDALT from [12] for several selections of modes.

Data set Forbidden modes EAT (ms)
IDFM - SDALT None 186
IDFM - SDALT Bus, train 175
IDFM - SDALT Subway, tram, train 216

6 Conclusion

In this article, we present an extension of the Trip-Based Public Transit Routing algorithm [18].
It enables the user to select any subset of the possible scheduled modes at query time as the
enabled modes for the query. The preprocessing time is increased by the modification, but we
show that it guaranties that the Pareto front is returned by the algorithm, and that, similarly
to the standard version, it significantly improves the query times. We also prove that the
computed transfer set is still correct for latest departure time queries, that we propose as
an extension. Query times are not much impacted when all the modes are allowed, and
removing any scheduled mode from the list of the enabled modes reduces the computation
time significantly, making those personalized queries faster than the regular ones.

A perspective of this work could concerns the adaptation of the Trip-Based Public Transit
Routing using condensed search trees [19] to mode selection. In his article, Witt propose
to a speed-up technique based on the idea of Transfer Patterns [2]. A specific search graph
is precomputed for each origin from one-to-all all day profile queries. The result of those
queries is of course dependent of the allowed lines and hence the obtained search graphs
cannot be used directly to compute optimal queries for all possible mode selections. As the
preprocessing time is important even for the standard version (231 hours for Germany on 64
threads), trade-off between correctness and preprocessing execution times might be needed
for enabling mode selection at query time.
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Korea None 2.94 10 32.78 80 317.84 791
Korea Bus 1.32 5 11.72 44 105.11 320
Korea Bus, tram, train 1.32 5 11.71 44 105.28 324
Korea Subway 2.59 7 26.44 62 224.5 695
Korea Subway, tram, train 2.58 7 28.17 63 273.1 695
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Table 7 Comparisons of mean queue sizes for several selections of modes on the Korean network.

MS NP MS NP MS NP
Data set Forbidden modes EAT EAT profile profile profile profile

(k) (k) 1H (k) 1H (k) day (k) day (k)
Korea None 35.6 87.5 183.2 373.8 1881.9 3536.2
Korea Bus 9.7 11.3 13.8 17.0 71.6 76.2
Korea Bus, tram, train 8.5 9.4 13.5 14.5 65.4 68.3
Korea Subway 30.7 78.2 169.6 358.0 1668.1 3213.3
Korea Subway, tram, train 28.6 72.8 166.0 350.6 1650.5 3193.8
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Abstract
In the classical Travelling Salesman Problem (TSP), one wants to find a route that visits a set of n

cities, such that the total travelled distance is minimum. An often considered generalization is the
Travelling Car Renter Problem (CaRS), in which the route is travelled by renting a set of cars and
the cost to travel between two given cities depends on the car that is used. The car renter may
choose to swap vehicles at any city, but must pay a fee to return the car to its pickup location. This
problem appears in logistics and urban transportation when the vehicles can be provided by multiple
companies, such as in the tourism sector. In this paper, we consider the case in which the return fee
is some fixed number g ≥ 0, which we call the Uniform CaRS (UCaRS). We show that, already for
this version, there is no o(log n)-approximation algorithm unless P = NP. The main contribution is
an O(log n)-approximation algorithm for the problem, which is based on the randomized rounding
of an exponentially large LP-relaxation.
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1 Introduction

Transportation is a key aspect of modern society, as it connects people, businesses and services.
Related problems are spread in many areas, such as logistics [18], supply-chain [34] and, in
particular, urban transportation [12, 27, 2]. To the latter, the transportation decisions are
determinant to, e.g., the diffusion of the population with the growth of cities and urban areas,
the movement of people who commute from or to school and work, and easy access of tourists
and visitors to events or leisure activities. Vehicles comprise the most used means in urban
transportation, which can be divided into two main traffic modes: public transportation
and private cars. The first is usually considered to be a cheap form of transport and helps
cities to reduce traffic congestion and the overall level of pollution. The second mode is more
flexible and convenient but has a relatively higher price and consumption [23].
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A special trend in urban transportation, especially for private cars, is the offer of individual
transport services, such as sharing or rental. Car sharing allows customers to reserve, access
and use vehicles remotely [7], and vehicles are rented on an hourly basis by members looking
for a high level of convenience and a low level of commitment [1]. On the other hand,
car rental may be less straightforward but allows rents on a day, week, month or even on
a yearly basis. Independent of the form, in most cases, the vehicle rental problems are
discussed from a company’s point of view [31], whose goal is to maximize the total profit or
the number of customers served. Some works, however, consider problems from a client’s
perspective [17, 15, 5, 26], who has a set of available rental services and wants to choose
which services to hire to minimize its total cost.

A problem that aims at minimizing costs associated with the service’s user appears
in the tourism industry [5]. Goldbarg et al. [17] considered the Travelling Car Renter
Problem (CaRS), which can be described as follows. A tourist wants to visit a set of cities
and, to this, there are many rental services which offer a set of available cars. The cost to
rent each car depends on the route taken by this car from the pickup point to its return
location. Moreover, for each time the tourist rents a car, there is an additional fee, which
corresponds to the cost to return the car to its pickup location. The cost of both the route
and the return fee may depend on the selected car. The objective is to find a closed route
that visits all the cities and comes back to the original place, such that the cost of all rented
cars is minimum. The classical Travelling Salesman Problem (TSP) is a particular case of
this problem. Indeed, TSP corresponds to instances of CaRS in which there is only one
available car, and the return fee is zero. Since TSP is NP-hard, CaRS is NP-hard as well.

In this paper, we consider the version of CaRS in which the return fee is fixed regardless
of the return point, and is the same for every car, which we call the Uniform CaRS (UCaRS).
Formally, an instance of UCaRS is composed of set of cities V = {1, 2, . . . , n}, a set of
cars C = {1, 2, . . . , r}, a return fee g ≥ 0 and, for each car i ∈ C, an associated cost
function di : V ×V → R≥0. A solution is a sequence of walks P1, P2, . . . , Ps on V , associated
with indexes e1, e2, . . . , es ∈ C, respectively, such that P = (P1 P2 . . . Ps) is a closed route,
and each city of V appears in P at least once. Denote by E(H) the set of edges of a graph H.
The objective of the problem is to find a solution which minimizes the sum

s∑
i=0

 ∑
(u,v)∈E(Pi)

dei
(u, v) + g

 ,

which is the cost of edges in each walk Pi corresponding to car ei plus the return fees.

1.1 Our contribution and summary of techniques
In this paper, we study UCaRS from the perspective of approximation algorithms. An
algorithm for a minimization problem is an α(n)-approximation algorithm if it runs in
polynomial time and, for every instance I of size n of the problem, it returns a solution
with value at most α(n) ·OPT(I), where OPT(I) the value of an optimal solution for I. An
α(n)-approximation algorithm is said to be asymptotically optimal if any approximation
algorithm has factor Ω(α(n)) unless P = NP.

We assume that for each car i ∈ C, the function di is metric, i.e., each function di satisfies
the following assumptions:

1. (symmetry) for every u, v ∈ V , di(u, v) = di(v, u), and
2. (triangle inequality) for every u, v, w ∈ V , di(u, v) ≤ di(u,w) + di(w, v).
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Intuitively, the symmetry means that going from a city u to a city v using a car i costs the
same as going from city v to city u using the same car. Also, the triangle inequality means
that, to go from u to v, taking a direct route is always one of the most economical choices.
If no restrictions on the cost functions are made, then it is very unlikely that the problem
would have any approximation, since this version of UCaRS generalizes the non-metric TSP,
which cannot be approximated by any computable function unless P = NP [32].

For TSP, one requires that a solution P is a Hamiltonian cycle, i.e., it is a closed walk
which visits every city of V exactly once. For most applications, this assumption is without
loss of generality, since the triangle inequality implies that any closed walk corresponds to a
cycle spanning the same cities of no larger cost. For UCaRS, however, we observe that, if a
solution were required to visit each city exactly once, then the problem would not admit
any approximation algorithm, even under the assumption that every cost function di is
metric. Indeed, we show that if such a variant has an α(n)-approximation algorithm for any
computable function α(n), then one can solve the Hamiltonian Cycle Problem (HamC) in
polynomial time. Since HamC is NP-hard, this would imply P = NP.

As for hardness results, we show that UCaRS is as hard to approximate as the Set
Cover Problem (SC), which implies that UCaRS has no approximation algorithm with factor
o(logn), unless P = NP [20, 9]. Then, we note that there is a natural correspondence between
instances of UCaRS and instances of Group TSP (G-TSP), which is a generalization of TSP
whose instance is comprised of a family of groups of cities, and whose goal is to find a
route that visits at least one city of each group. Namely, we show that UCaRS can be
reduced to G-TSP preserving the approximation factor, implying an approximation factor
of O(log2 n log r) for UCaRS by results from Garg et al. [13] and Fakcharoenphol et al. [10].

Our main contribution is a better approximation algorithm, which achieves a factor of
O(logn). This algorithm is asymptotically optimal because of the proved lower bound. The
reduction to G-TSP gives only a polylogarithmic factor, thus our algorithm takes a different
approach. We observe that a solution of UCaRS can be seen as a set of walks which cover
the set of cities in V . Recall that in SC, given a family of subsets of V , each with a given
weight, one wants to select some subsets such that the whole set V is covered, and the total
weight of selected subsets is minimized. This suggests that an instance of UCaRS could be
reduced to an instance of SC, where the subsets correspond to possible sets of walks whose
weights are the cost of visiting the corresponding cities plus the return fee.

This reduction does not work as is, however, for two main reasons. First, there are
exponentially many distinct walks, and thus it does not run in polynomial time. Second,
a solution for the SC instance does not take into account connectivity, and thus the union
of the walks attained from the SC solution may not form a closed walk. Yet, we use this
reduction to obtain a linear programming (LP) formulation which gives a lower bound on
the optimal value. While this formulation is still exponential, we show how to obtain a good
solution to its relaxation in polynomial time. Then, in a first phase, we obtain a set of walks
that visit every city, by using a randomized algorithm which rounds the LP solution, and
whose expected cost is at an O(logn) factor of the optimal value. The set of walks might be
disconnected, thus, in a second phase, we show how to combine the walks into a single closed
walk of not much larger cost.

The most involved and technical part of our algorithm is finding a feasible solution for
the LP formulation with bounded value. To this, we note that the number of variables is
exponential, but there are only polynomially many constraints. Then, an optimal solution
can be obtained if the corresponding dual separation problem can be solved in polynomial
time. This separation problem, for its turn, is NP-hard, and even hard to approximate by
any constant. Thus, we show that a restriction of the original LP can still be used to obtain
a lower bound, and that, for this restriction, we can compute an approximate solution.
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1.2 Related works
CaRS was introduced by Silva et al. [30, 17], who proposed a memetic algorithm and a
hybridization between GRASP and VND heuristics. Following, several other heuristic meth-
ods have been proposed for the problem, such as ant-colony optimization [29], transgenetic
algorithms [31, 16], and evolutionary algorithms [11, 5, 8, 26, 6]. Exact algorithms based on
mathematical formulations have also been proposed, which include mixed integer program-
ming formulations [24, 5, 26, 25], and models based on the Quadratic Assignment Problem
(QAP) or on network-flow formulations [14]. To the best of our knowledge, no approximation
algorithms for CaRS or one of its variants have been discussed before this work.

It is folklore that the so-called Double-MST is a 2-approximation for the metric TSP.
This algorithm calculates a Minimum Spanning Tree (MST) of the input graph G, then
duplicates all its edges to complete a Eulerian graph, i.e., a graph for which there is a route
visiting each edge exactly once. By making shortcuts, one obtains a Hamiltonian cycle whose
cost no more than twice the cost of the MST.

SC is a classical NP-hard problem, and it is NP-hard to approximate SC by a factor
(1− ε) logn, where n is the size of the ground set, and ε > 0 is an arbitrary constant [20, 9].
For this problem, a simple greedy algorithm is an O(logn) approximation [4]. It is well known
that the same factor can also be obtained by a probabilistic algorithm which rounds its LP
relaxation by independently selecting each set according to the corresponding variable [33].

G-TSP is a generalization of both TSP and SC, and thus the SC hardness holds for
G-TSP as well. In fact, even if the cost function corresponds to the Euclidean distance, it is
hard to approximate G-TSP by any constant [28]. A closely related problem is the Group
Steiner Problem (G-ST). In this problem, an instance is composed of an edge-weighted
graph on n vertices and m groups of vertices. The objective is to find a minimum weight
tree that contains at least one vertex from every group. For this problem, it is unlikely that
a O(log2−εm)-approximation algorithm exist, for any ε > 0 [21]. The best-known algorithm
has a factor of O(log2 n logm) [13, 3].

1.3 Paper organization
The remainder of the paper is organized as follows. In Section 2, we discuss the inapproxim-
ability of UCaRS and give the reduction from UCaRS to G-TSP. In Section 3, we present
a covering integer programming formulation which gives a lower bound for the problem.
Then, we show how to use the LP relaxation to derive a solution for the problem whose
cost is at most at a factor O(logn) of the optimal value. This is done by a randomized LP
rounding algorithm which takes as the input a pre-computed LP solution. In Section 4, we
show how to obtain such a solution. First, we describe the separation problem corresponding
to the LP formulation and observe that it is NP-hard. Then, we consider a restriction of
the formulation for which the corresponding separation problem can be approximated and
show that the value of this restriction is not too far from the optimal value. In Section 5, we
discuss the used techniques and possible extensions to similar problems.

2 Inapproximability

As in the case of TSP, if the cost functions of an instance of UCaRS are arbitrary, then the
problem cannot be approximated by any function computable in polynomial time unless
P = NP. Next, we observe that, for the version of the problem which requires a solution to
be a Hamiltonian cycle, this hardness holds even if we assume that each cost function di is
symmetric and satisfies the triangle inequality.
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I Theorem 1. Let α(n) be a function computable in polynomial time with α(n) ≥ 1. If
P 6= NP, then there is no α(n)-approximation algorithm for the problem of, given an instance
of UCaRS, finding a solution P which is a Hamiltonian cycle with minimum cost.

Thus, from now on, we allow routes which visit the same city more than once. Even if
every cost function is metric and the solution is not required to be a Hamiltonian cycle, next
lemma states that that UCaRS is SC-hard, i.e., there is a reduction from the unweighted
version of SC to UCaRS. Recall that an instance of unweighted SC is composed of subsets
S1, S2, . . . , Sm of a ground set E. The objective is to find a set of indices e1, e2, . . . , es such
that Se1 ∪ Se2 ∪ · · · ∪ Ses

= E and s is minimum.

I Theorem 2. If there is an α-approximation for UCaRS, then there is an α-approximation
for unweighted SC.

Using the hardness result for SC [9], this immediately implies the following.

I Corollary 3. If P 6= NP, there is no (1− ε) logn-approximation for UCaRS, for any ε > 0.

On the other hand, one can reduce an instance of UCaRS to an instance of G-TSP, such
that the optimal value of the first is at a constant factor of the optimal value of the second,
and vice-versa. An instance of G-TSP is formed by a graph G, a cost function on the edges d′,
and sets S1, S2, . . . , Sm ⊆ V (G). A solution is a closed walk P such that Si ∩ V (P ) 6= ∅ for
1 ≤ i ≤ l. The objective is to find a solution which minimizes the sum

∑
(u,v)∈E(P ) d

′(u, v).

I Lemma 4. If G-TSP admits an α-approximation, then UCaRS admits an α-approximation.

Since an α(n)-approximation for G-ST implies a 2α(n)-approximation for G-TSP, using
the O(log2 n logm)-approximation for G-ST by Garg et al. [13, 10], we obtain the following.

I Theorem 5. There exists an O(log2 n log r)-approximation for UCaRS.

3 An LP rounding algorithm

In this section, we describe the LP rounding algorithm with factor O(logn). We start with
an integer programming formulation which gives a lower bound for the optimal value.

3.1 A covering formulation
The main idea for the algorithm comes from the observation that a solution consists of a set
of walks that visit the whole set of cities. Each walk corresponds to a pair of a car i and
a subset of cities S, which we call a component. The cost of each component corresponds
to the total weight of its edges plus the return fee. For the sake of simplicity, instead of
considering every possible walk for each subset of cities, we consider each subset only once
for each car. Thus, instead of looking for a set of segments that forms a closed walk, we are
only interested in finding a set of connected components that cover the set of cities. The
cost of each representative connected component corresponds to the weight of a minimum
spanning tree of S according to di plus the return fee g. Note that any minimum walk which
visits S has cost at most twice that of the minimum spanning tree. This is sufficient for our
purposes since we are only interested in an asymptotic factor O(logn).

In the following, we denote by S the set of all pairs (i, S) with S ⊆ V and i ∈ C. For each
(i, S) ∈ S, we denote by MSTi(S) the cost of a minimum spanning tree of S with respect
to di. The cost of (i, S) is defined as cost(i, S) = MSTi(S) + g. In the following integer
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linear program, for each (i, S) ∈ S, there is a binary variable x(i,S) which indicates whether
the component (i, S) belongs to the solution.

minimize
∑

(i,S)∈S

x(i,S) cost(i, S)

subject to
∑

(i,S)∈S:v∈S

x(i,S) ≥ 1, ∀ v ∈ V,

x(i,S) ∈ {0, 1}, ∀ (i, S) ∈ S.

(IP)

In the following, given an integer linear program or a linear program (Q), denote by
OPT(Q) the optimal value of (Q). Also, we denote by OPT the value of an optimal solution
for the instance of UCaRS. We observe that a solution for the UCaRS instance induces a
feasible solution of (IP), thus OPT(IP) is a lower bound for the optimal value.

I Lemma 6. Consider an instance of UCaRS and the corresponding formulation (IP). Let
OPT be the value of an optimal solution for this instance. Then, OPT(IP) ≤ OPT.

Let (P) be the linear relaxation of (IP). Notice that (P) has an exponential number of
variables and therefore we do not know how to solve this problem directly. However, we
can obtain an approximate solution with only a polynomial number of non-zero variables,
according to the following lemma, which is a central result for the algorithm. The proof is
given in Section 4.

I Lemma 7. There is an algorithm that, in polynomial time, finds a feasible solution for (P)
whose value is at most c ·OPT(IP), for some constant c.

3.2 Rounding the fractional solution
Next, we assume that we are given a solution x of (P), and the objective is to find a solution
for the instance of UCaRS by rounding the value of variables x(i,S) for each (i, S) ∈ S. The
rounding algorithm can be broken into three phases. In the first phase, we find a set of
components which cover V . In the second phase, we complement the set of components to
obtain a connected cover. In the third phase, we turn the set of components into a route
that visits each city at least once.

Covering phase
Note that for each (i, S) ∈ S, we can assume that 0 ≤ x(i,S) ≤ 1. Thus, the value of x(i,S)
can be interpreted as a probability that component (i, S) is used in an integral solution.
We start with an empty set of components C and execute the following iteration: include
each component (i, S) in C independently with probability x(i,S). The expected cost of the
included components in this iteration is at most the value of x, but this does not guarantee
that every city is covered by some component of C. If we repeat this process a sufficient
number of times, then the probability of a city remaining uncovered tends to zero. After
logn iterations, the probability that a city is uncovered is small, then for each uncovered
city v, we include a component corresponding to a singleton {v} and an arbitrary car, say,
the first one. The steps for the covering phase are summarized in Figure 1.

The following lemma states that indeed the obtained set covers all the cities. The proof
follows directly from the algorithm.

I Lemma 8. Let C be the set of components returned by the covering phase of the algorithm.
Then, for every v ∈ V , there is a component (i, S) ∈ C such that v ∈ S.



L. L. C. Pedrosa, G. Y.O. Quesquén, and R. C. S. Schouery 14:7

1. Compute an (P) solution x using Lemma 7.
2. Let C ← ∅ and repeat dlogne times:

For each (i, S) include (i, S) in C with probability x(i,S).
3. For each v ∈ V :

If v /∈ S for all (i, S) ∈ C, then add (1, {v}) to C.
4. Return C.

Figure 1 First phase of the rounding algorithm: covering.

Lemma 10 estimates the expected cost of C. First, using standard analysis, we bound the
probability that a city is not covered by one component included in the random step.

I Lemma 9. Let C′ be the set of components included in any iteration of step 2 of the
covering phase of the algorithm. Also, let V ′ be the set of cities v for which there exists
(i, S) ∈ C′ with v ∈ S. Then, Pr(v /∈ V ′) ≤ 1/n for every v ∈ V .

I Lemma 10. Let C be the set of components returned by the covering phase. Then

E

 ∑
(i,S)∈C

cost(i, S)

 ≤ O(logn) ·OPT.

Proof. Consider set C` of components (i, S) included in the iteration ` of step 2. Since each
component (i, S) is included with probability x(i,S), the expected cost of these components is

E

 ∑
(i,S)∈C`

cost(i, S)

 =
∑

(i,S)∈C

Pr((i, S) ∈ Cj) cost(i, S)

=
∑

(i,S)∈C

x(i,S) cost(i, S) ≤ c ·OPT(IP),

where the inequality comes from the fact that, from Lemma 7, the objective value for x is at
most c ·OPT(IP), for some constant c. Thus, the expected cost of the set of components C′
drawn in step 2 can be bounded as

E

 ∑
(i,S)∈C′

cost(i, S)

 ≤ dlogne∑
`=1

E

 ∑
(i,S)∈C`

cost(i, S)

 ≤ dlogne · c ·OPT(IP).

Let V ′ be the set of vertices covered by some component of C′. For each v ∈ V \V ′, a new
component of the form (1, {v}) is added in step 3 of the first phase of the algorithm. Using
Lemma 9, this happens with probability at most 1/n. Let C+ be the set of such components
and observe that C+ = C \ C′. Also, note that for any component (i, S) ∈ C+, a minimum
spanning tree of S contains no edges, and thus cost(i, S) = g. It follows that

E

 ∑
(i,S)∈C+

cost(i, S)

 =
∑
v∈V

Pr(v /∈ V ′) cost(1, {v}) ≤
∑
v∈V

1
n
g = g.

Observe that any feasible solution of (IP) has at least one component, thus g ≤ OPT(IP).
From Lemma 6, we know that OPT(IP) ≤ OPT. Combining everything, the costs of all
components in C add up to O(logn) ·OPT. J
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1. Let D ← ∅.
2. While C ∪ D induces a disconnected graph H:

Find vertices v and v′ in distinct components of H which minimize dmin(v, v′).
Add (j, {v, v′}) to D, where j is such that dj(v, v′) = dmin(v, v′).

3. Return D.

Figure 2 Second phase of the rounding algorithm: connection.

Connection phase
After the first phase, the set of components C covers all cities V , but they are possibly
disconnected. So we want to connect C by selecting additional components, D, each of which
connect two components of C. Since each such an additional component corresponds to an
edge which connects two cities, v, v′, we may simply select the car i with the smallest cost
di(v, v′). Thus, we consider an edge-weight function dmin such that for every pair of cities
v, v′ ∈ V , we define dmin(v, v′) = min{di(v, v′) : i ∈ C}.

We execute the following. Start with an empty set D. Then, while the graph H induced
by the minimum spanning trees of C ∪ D is disconnected, find vertices v and v′ such that
v and v′ are in distinct connected components of H, and dmin(v, v′) is minimum. Include
component (j, {v, v′}) in D, where j is such that dj(v, v′) = dmin(v, v′). After the last
iteration, the minimum spanning trees of C ∪ D induce a connected graph H which contains
all vertices. The steps for the connection phase are summarized in Figure 2.

To bound the cost of components in D, we need the following auxiliary lemma.

I Lemma 11. Let T be a minimum spanning tree of V with respect to dmin. Then∑
(v,v′)∈E(T )

dmin(v, v′) ≤ OPT.

Proof. Consider an optimal solution P = P1, P2, . . . , Ps of UCaRS. For each (v, v′) ∈ E(P ),
let φ(v, v′) ∈ C be the car associated with edge (v, v′). Let T be a minimum spanning tree
of P . Since P spans every vertex of V , T is also a spanning tree of V . We get∑

(v,v′)∈E(T )

dmin(v, v′) ≤
∑

(v,v′)∈E(T )

dφ(v,v′)(v, v′) ≤ OPT,

where the last inequality holds because T is a minimum spanning tree of P . J

The edge cost of components of D is bounded by the next lemma.

I Lemma 12. Let D be the set of components returned by the connection phase of the
algorithm. Then

|D| ≤ |C| and
∑

(i,S)∈D

MSTi(S) ≤ OPT.

Routing phase
Given the set of components C and D, we construct a closed walk which visits all cities by
considering each component at a time. Let r ∈ V be an arbitrary vertex and start a trivial
closed walk P composed only of r. Now, while there are components of C ∪ D which have
not been considered yet, find one such a component (i, S) such that S ∩ V (P ) 6= ∅ and let
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1. Let r ∈ V and make P ← (r).
2. Make N ← C ∪ D.
3. While N 6= ∅:

Find (i, S) ∈ N such that S ∩ V (P ) 6= ∅, and let v ∈ S ∩ V (P ).
Construct a cycle P ′ of S \ V (P ) ∪ {v}.
For each edge (u, u′) ∈ E(P ′), make φ(u, u′)← i.
Insert P ′ into P .
Make N ← N \ {(i, S)}.

4. Return P , φ.

Figure 3 Third phase of the rounding algorithm: routing.

v ∈ S ∩ V (P ). Then, from a minimum spanning tree T ′ of S with respect to di, construct
a cycle P ′ of S \ V (P ) ∪ {v}. Observe that, by doubling the edges of T ′ and then taking
shortcuts, one can build such a cycle with cost at most 2MSTi(S). The edges of P ′ are
labelled with the index of car i, and the walk P is extended by including P ′.

Note that P visits all vertices and can be decomposed into a sequence of maximal walks
with the same label. Therefore, it induces a feasible solution for the instance of UCaRS. The
steps for the routing phase are summarized in Figure 3.

The cost of the returned solution corresponds to travelled edges and to the return fees.
The edge cost is bounded as follows.

I Lemma 13. Let P , φ be the solution returned by the routing phase of the algorithm. Then,∑
(v,v′)∈E(P ) dφ(v,v′)(v, v′) ≤ 2 ·

∑
(i,S)∈C∪DMSTi(S).

Proof. Recall that to each component (i, S) ∈ C ∪ D, one constructs a cycle P ′ by doubling
the edges of minimum spanning tree of S and taking shortcuts, then the cycle P ′ has cost at
most 2MSTi(S). Now observe that E(P ) is the union of the edges of cycles P ′ and each
such a cycle P ′ corresponds to a distinct component (i, S) ∈ C ∪ D. J

Finally, we can show the main result.

I Theorem 14. There exists a randomized O(logn)-approximation algorithm for UCaRS.

Proof. By Lemma 7, the solution x of (IP) is computed in polynomial time. Since each
of the three phases of the LP rounding algorithm also runs in polynomial time, the whole
algorithm is polynomial.

Using Lemma 13, the expected edge cost of edges is

E
[∑

(v,v′)∈E(P ) dφ(v,v′)(v, v′)
]
≤ 2 · E

[∑
(i,S)∈CMSTi(S)

]
+ E

[∑
(i,S)∈DMSTi(S)

]
≤ O(logn) ·OPT + OPT = O(logn) ·OPT,

where the last inequality follows from Lemmas 10 and 12.
Now it remains to bound the expected cost of the return fees. There is a return fee

of cost g for each vertex in the walk P where there is a switching car, thus it is sufficient
to count the number of vertices in P whose adjacent edges have different labels. In each
iteration of step 3 of the routing phase of the algorithm, the labels of every edge in the
inserted subwalk P ′ are the same, thus the number of swaps in P increases by at most 2.
Since this step is executed for |C|+ |D| iterations, the total expected return fee is at most
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E [2 · (|C|+ |D|) · g] ≤ E [4 · |C| · g] ≤ E
[
4 ·

∑
(i,S)∈C cost(i, S)

]
≤ O(logn) ·OPT,

where the first inequality comes from Lemma 12, the second inequality is due to g ≤ cost(i, S),
and the last inequality comes from Lemma 10.

Adding up the expected costs of edges and the return fees, we conclude that the expected
cost of the returned solution cost is at most O(logn) ·OPT, and the theorem follows. J

4 Approximating the LP-relaxation

The objective of this section is to find a feasible solution of (P) and prove Lemma 7. The
main ingredient will be solving a relaxed version of the separation problem and using the
Ellipsoid method. For the sake of completeness, we begin by briefly reviewing this method
and identifying the corresponding separation problem.

4.1 The separation problem
Remember that (P) has an exponential number of variables. A strategy to tackle this
difficulty is solving the separation problem corresponding to the dual formulation. The idea
is that, if the number of variables in the dual is bounded by a polynomial, then one can use
the Ellipsoid method. Informally, this method consists of iteratively picking a candidate
solution y and querying an oracle for the separation problem. Given vector y, the separation
problem is the task of either deciding that y is feasible, or finding a violated constraint. If y
is not feasible, another solution y is picked, until a feasible optimal solution is found

I Theorem 15 ([19]). Let (Q) be a non-empty linear program. Then an optimal solution can
be found querying an oracle for its separation problem only a polynomial number of times.

The dual formulation of (P) is given next.

maximize
∑
v∈V

yv

subject to
∑
v∈S

yv −MSTi(S) ≤ g ∀ (i, S) ∈ S

yv ≥ 0 ∀ v ∈ V.

(D)

For a set A ⊆ V , we define y(A) =
∑
v∈A yv. Note that the separation problem consists

of finding (i, S) ∈ S for which the constraint y(S) −MSTi(S) ≤ g is violated, or showing
that there is no such constraint. Since the number of cars is polynomial, we can solve the
problem separately for each i ∈ C. For some i ∈ C, it is enough to find S ⊆ V such that
y(S) −MSTi(S) is maximum and verify that this value is greater than g. Unfortunately,
this problem corresponds to the Net Worth Maximization Problem (NWMP), which has no
constant-factor approximation algorithm unless P = NP [22].

4.2 Cost-restricted components
To be able to use the Ellipsoid method, we will define a slightly different linear program, but
whose separation problem is easier. If one considers only sets S for which MSTi(S) is small,
i.e., less than g, then maximizing y(S) is a good approximation for the optimization version
of the separation problem. Since, a priori, MSTi(S) is greater than g, we will consider a
relaxation of (D) which contains only constraints where MSTi(S) ≤ g.
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Let S≤g be the subset of components (i, S) ∈ S such that MSTi(S) ≤ g, and define (P≤g)
to be the restriction of (P) which contains only variables corresponding to (i, S) ∈ S≤g. We
note that the value of this restriction is at a constant factor of the value of (IP).

I Lemma 16. OPT(P≤g) ≤ 4 ·OPT(IP).

Proof. We build a feasible solution for (P≤g) from a feasible solution for (IP). For each
U ⊆ S, define cost(U) =

∑
(i,S)∈U cost(i, S).

Note that a solution x of IP corresponds to a set U∗ ⊆ S such that cost(U∗) = OPT(IP).
We build an integral solution of (P≤g) corresponding to a set U ⊆ S≤g. If g = 0, we add
component (1, {v}) to U for v ∈ V , thus cost(U) = 0, and we are done. Thus, assume g > 0.

Consider a component (i, S) ∈ U∗. We can partition S into parts S′ such that
MSTi(S′) ≤ g. First, let T be a minimum spanning tree of S with respect to di. Then,
obtain a closed walk P by doubling the edges of T and finding an Eulerian walk whose
edge weight is at most 2 ·MSTi(S). Finally, break P into disjoint maximal subwalks whose
edges add up to at most g. To do this, greedily find a maximal prefix P ′ of P whose edges
weights do not add up more than g, and remove V (P ′) from P . Observe that the total
weight of the subwalks is at most 2 ·MSTi(S), and that the number of subwalks is at most
d(2 ·MSTi(S))/ge. Therefore, the component (i, S) can be replaced by a set of components
whose total cost is 2 ·MSTi(S) + d(2 ·MSTi(S))/ge g ≤ 4 ·MSTi(S) + g ≤ 4 · cost(i, S).

Repeating this procedure for each component of U∗, we obtain a set U of components
(i, S) such that MSTi(S) ≤ g and cost(U) ≤ 4 · cost(U∗). Since every vertex is in some
component, U induces a feasible solution for (P≤g), and the lemma holds. J

4.3 Constructing an approximate solution
Let (D≤g) be the dual formulation of (P≤g). Note that (D≤g) is a relaxation of (D) which
contains only constraints corresponding to (i, S) ∈ S≤g. Instead of solving (D≤g), we will
consider a different linear program in which we replace constraints

∑
v∈S yv −MSTi(S) ≤ g

by constraints
∑
v∈S yv ≤ g. The resulting linear program is described below.

maximize
∑
v∈V

yv

subject to
∑
v∈S

yv ≤ g, ∀ (i, S) ∈ S≤g,

yv ≥ 0, ∀ v ∈ V.

(D′≤g)

Now, the separation problem of (D′≤g) corresponds to, given a vector y and an index i,
find a set S ⊆ V such that y(S) is maximum and MSTi(S) ≤ g. This problem corresponds
to the Budget Steiner Tree Problem (BSTP), which is, again, an NP-Hard maximization
problem. However, unlike NWMP, it admits a constant-factor approximation algorithm with
factor 5 + ε, for every ε > 0 [22]. Thus, instead of solving (D′≤g) directly, we will obtain a
solution to a relaxation.

To do this, we execute the Ellipsoid method, but stop if we cannot decide whether the
candidate solution is infeasible for (D′≤g). Thus, it may return an infeasible solution whose
value might be larger than OPT(D′≤g). More precisely, we execute the following algorithm.
First, we initialize A = ∅ and start the Ellipsoid method. Suppose that we are given a
candidate solution y. For each car i, we execute the (5 + ε)-approximation algorithm for
the BSTP whose input is y and the distance function is di, and find a set Ai ⊆ V with
MSTi(A) ≤ g. Let j be the car for which y(Aj) is maximum. There are two cases to consider:
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a) If y(Aj) > g, then we add the constraint y(Aj) ≤ g, which is a constraint of (D′≤g),
because (j, Aj) ∈ S≤g. We make A = A∪ {(j, Aj)} and the execution of Ellipsoid method
resumes with the set of constraints corresponding to A.

b) If y(Aj) ≤ g, then we stop and return (y,A, (j, Aj)).

The previous algorithm returns a set A of polynomial size since we stopped before the
end of the Ellipsoid algorithm. Let (D′A) be the relaxation of (D′≤g) where only constraints
corresponding to components in A are added. Similarly, let (DA) be the relaxation of (D≤g)
where only the constraints corresponding to components in A are added.

Next lemmas relate the values of (DA) and (D′A) and of D′A and D′≤g.

I Lemma 17. OPT(DA) ≤ 2 ·OPT(D′A).

Proof. Let y be an optimal solution for (DA) and (i, S) ∈ A. Since y is feasible for (DA), we
have y(S) ≤ g + MSTi(S), and, since (i, S) ∈ S≤g, we have MSTi(S) ≤ g. Then,

y(S)
2 ≤ MST(S) + g

2 ≤ g + g

2 = g.

Since the choice of (i, S) is arbitrary, this inequality holds for every (i, S) ∈ A, thus y
2

is feasible for (D′A). Therefore the value of the solution y
2 is not larger than the value of an

optimal solution and we conclude that OPT(DA) = 2 · y2 (V ) ≤ 2 ·OPT(D′A). J

I Lemma 18. OPT(D′A) ≤ (5 + ε) ·OPT(D′≤g).

4.4 Proof of Lemma 7
I Lemma 7. There is an algorithm that, in polynomial time, finds a feasible solution for (P)
whose value is at most c ·OPT(IP), for some constant c.

Proof. Note that dual formulation of (DA) corresponds to a linear program (PA) which is
similar to (P), but contains only variables corresponding to components in A.

We execute the following algorithm. First, execute the modified Ellipsoid method
described in Subsection 4.3 and obtain a set A. Next, construct the linear program (PA).
Then, solve (PA) with any polynomial-time algorithm (e.g., Ellipsoid method), and obtain a
solution x, indexed in A. Finally, return the extension of x in which, for each (i, S) /∈ A, we
represent x(i,S) = 0 implicitly.

Notice that the above algorithm runs in polynomial time since A has polynomial size
and therefore (PA) has a polynomial size too. Also, note that x is a feasible solution for (P)
since (PA) is a restriction of (P).

It remains to bound the value of an optimal solution for (PA). Using lemmas 17 and 18,
we have OPT(PA) = OPT(DA) ≤ 2 · OPT(D′A) ≤ 2 · (5 + ε) · OPT(D′≤g). Now observe that
(D′≤g) is a restriction of (D≤g), thus OPT(PA) ≤ 2 · (5 +ε) ·OPT(D≤g) = 2 · (5 +ε) ·OPT(P≤g).
Since, by Lemma 16, we have OPT(P≤g) ≤ 4 ·OPT(IP), the lemma follows. J

5 Concluding remarks

While our O(logn)-approximation is probabilistic, it can be derandomized by techniques
of conditional probabilities. Also, this paper focus on the asymptotic analysis, so changes
to the algorithm may improve the hidden constant which multiplies logn. Notice that our
algorithm achieves the same asymptotic guarantee for the variant of the problem in which,
instead of a closed walk, asks for a spanning tree composed of multiples subtrees.
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We believe that the techniques of our algorithm can generalize to other variants of CaRS
or similar problems. For example, one might consider the version in which the return fee
depends on the car, that is, there is a return fee gi for each car i ∈ C. A possible direction is
considering the more general version of CaRS, in which, for each car i, the return fee is a
given distance function fi which depends on the return and pickup locations.
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