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Abstract: As there come to be more applications of intelligent robots, their task object is becoming 
more varied. However, it is still a challenge for a robot to handle unfamiliar objects. We review the 
recent work on the feature sensing and robotic grasping of objects with uncertain information. In 
particular, we focus on how the robot perceives the features of an object, so as to reduce the 
uncertainty of objects, and how the robot completes object grasping through the learning-based 
approach when the traditional approach fails. The uncertain information is classified into geometric 
information and physical information. Based on the type of uncertain information, the object is 
further classified into three categories, which are geometric-uncertain objects, physical-uncertain 
objects, and unknown objects. Furthermore, the approaches to the feature sensing and robotic 
grasping of these objects are presented based on the varied characteristics of each type of object. 
Finally, we summarize the reviewed approaches for uncertain objects and provide some interesting 
issues to be more investigated in the future. It is found that the object’s features, such as material 
and compactness, are difficult to be sensed, and the object grasping approach based on learning 
networks plays a more important role when the unknown degree of the task object increases. 

Keywords: uncertain objects; geometric uncertainty; physical uncertainty; feature sensing; robotic 
grasping 
 

1. Introduction 

Robots have been used in industrial manufacturing for decades and are being applied in more 
flexible scenarios with the improvement of robotic capability to manipulate varied objects [1–3]. In 
particular, the robotic capabilities of sensing and manipulating unfamiliar objects spawn more 
applications and enormous economic benefits. For instance, robots used in restaurants improve the 
efficiency of food delivery and also reduce labor cost [4]. Moreover, the successful applications of 
domestic robots help people to handle some housework to save people’s time [5], and robots in 
factories perform repetitive tasks quickly for a long time and reduce the loss caused by the worker’s 
fatigue [6]. 

For objects with certain information, their features—such as position, shape, pose, rigidity, etc.—
are well known previously to the robot before grasping. According to these known features, a 
reasonable motion trajectory is planned easily and then a grasping strategy is developed, such as 
form-closure grasp [7] and force-closure grasp [8]. An important issue is that approaches designed 
for objects with certain information cannot be applied directly to objects with uncertain information. 
For instance, the form-closure grasping fails to handle objects with uncertain shapes for the limitation 
of degrees of freedom [9]. Similarly, the force-closure grasp relies on the contact forces that depend 
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on the rigidity of the object [10]. It means that objects with a rigidity uncertainty are difficult to be 
grasped through the traditional force-closure approaches. Moreover, as the unknown object may 
have many kinds of uncertain features, the assumptions, such as simplified contact models [11] and 
rigid body modeling [12], are not suitable to deal with this kind of object. On the contrary, data-
driven grasping—i.e., a learning-based approach—is more inclusive to the object’s unknown nature 
and receives more and more attention from researchers. 

In order to grasp the object, the robot needs to complete two processes, which are feature sensing 
and robotic grasping. On the left side of Figure 1, feature sensing is divided into two steps—sensor 
sensing and feature identification at different phases. Different types of sensor are used to detect the 
object to obtain the original data. Furthermore, object features—such as position, pose, shape, etc.—
are estimated by decoding these sensing data. On the right side of Figure 1, the robotic grasping is 
realized through varied grasping strategies, which are based on various metrics, such as grasper 
structure, grasping force, grasper form, success probability, etc. Based on object features from feature 
sensing, the grasping strategy generates parameter configurations for the manipulator and grasper, 
and then the robot grasps the object with the given robotic configurations. 
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Figure 1. Pipeline describing feature sensing and robotic grasping. 

In this paper, we review the latest advances in the topic of the feature sensing and robotic 
grasping of objects with uncertain information. There have been many surveys covering the topics of 
object grasping or object manipulation, such as 3D object grasping synthesis [13], data-driven 
grasping synthesis [14], deep learning applications in robotic grasping detection [15], and the robotic 
manipulation and sensing of deformable objects [10]. Sahbani et al. [13] reviewed computational 
algorithms for generating 3D object grasping, particularly the analytical as well as empirical grasp 
synthesis approaches. Bohg et al. [14] focused on the data-driven grasp synthesis and divided the 
approaches into three groups for known, familiar, or unknown objects. Caldera et al. [15] 
summarized the current state-of-the-art approaches in regard to the application of deep learning 
methods to generalized robotic grasping and discussed the effect that the deep learning approach has 
on the overall performance of robotic grasping detection. Sanchez et al. [10] presented recent work 
on the robotic manipulation and sensing of deformable objects, where the reviewed deformable 
objects are classified into four categories, which are cloth-like objects, linear objects, planar objects, 
and solid objects. Following these reviews, the field of object grasping has made great progress. 

Our work focuses on the recent state-of-the-art approaches in the robotic community to address 
the sensing and grasping of objects with uncertain information. Although the classification of objects 
may vary with the type of uncertain information, objects with uncertain information could be 
classified considering their geometric features and physical features. Objects could be categorized 
based on the category of uncertain parameters. For instance, an object with an uncertain shape or 
position could be seen as a geometric-uncertain object because the shape or position could be 
described with geometric parameters, such as length and coordinates. Similarly, an object with an 
uncertain mass or rigidity could be regarded as a physical-uncertain object, as the mass or rigidity 
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belongs to physical parameters. Based on these criteria, the reviewed approaches are classified into 
the following three main categories, as shown in Figure 2. 

(1) Geometric-uncertain objects: This type of object usually lacks some generalized geometric 
information that not only includes objects’ geometric information but also the necessary geometric 
information for the grasp. For instance, the object’s intrinsic shape and the global position of the object 
both belong to the generalized geometric information. This type of object is often seen in service and 
industrial scenarios, such as the delivery of multi-shape fruits or picking up multitype parts within a 
box. 

(2) Physical-uncertain objects: This type of object commonly is short of some physical 
information, particularly the object’s physical property, which may be used in object grasping. For 
instance, the mass and rigidity of the object, which could be utilized to generate a feasible grasping 
configuration for the robot, are significant physical properties for objects to be operated. This type of 
object is also commonly found in unfamiliar service scenarios or industrial scenarios with multi-
unfamiliar objects, like food sorting and garbage classification. 

(3) Unknown objects: Compared to geometric-uncertain objects and physical-uncertain objects, 
the partial geometric and physical information of this type of object may be both uncertain. This kind 
of object is usually referred to as objects that are not common in daily life and often coincide with an 
unknown environment. 
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Figure 2. Classification of objects with uncertain information. 

This paper is organized as follows. Section 2 provides an overview of the feature sensing and 
robotic grasping of geometric-uncertain objects, which include position-uncertain objects, pose-
uncertain objects, and shape-uncertain objects. Section 3 concerns of sensing and grasping 
approaches for physical-uncertain objects. Particularly, it includes sensing approaches for the object’s 
mass, rigidity, and texture and grasping approaches for rigid objects and deformable objects, 
respectively. Section 4 introduces the localization and feature identification of unknown objects and 
summarizes several typical approaches for unknown object grasping. Finally, Section 5 discusses the 
pros and cons of the reviewed approaches for each type of uncertain object and gives some interesting 
problems to be more investigated in the future. 

2. Geometric-Uncertain Objects 

In this section, we review sensing and grasping approaches used on geometric-uncertain objects, 
such as position-uncertain objects, pose-uncertain objects, and shape-uncertain objects. Although 
there are other geometric features for objects, they may be not very important for robotic grasping or 
could be replaced with the given features. Most of the research, particularly for the robotic grasping 
process, focus on these features of objects. For instance, the robot localizes the object based on the 
position information, calculates the feasible grasping points based on the shape or pose information, 
and then grasps the object with a planned movement and a reasonable pose of the grasper. 
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2.1. Position Detection 

In service and industrial applications, particularly food handling and packaging, different types 
of sensors—such as 2D cameras, 3D cameras, and depth sensors—are commonly used for object 
localization [16]. For instance, a 2D camera obtains the object image and identifies the object through 
image processing algorithms [17]. The 2D image could achieve the plane localization of the object, 
while it is difficult to obtain the space coordinate of the object. Based on this consideration, the 
distance sensor is added into 3D cameras to detect the object’s depth information. Following these 
researches, the point cloud data [18] from depth sensors are also used for object localization. 

Research into position detection based on vision has been highly reliable after decades of 
development. Particularly, camera calibration technology [19–21] enables a robot to obtain an object’s 
position with higher accuracy. The RGB pixel values of the object are easily obtained by RGB cameras, 
and the spatial coordinates of the object could be calculated by a Decision Tree and Decision Fusion 
[22]. With the development of machine learning techniques, neural networks are gradually used in 
the field of object recognition. The trained Convolutional Neural Network could be used to identify 
objects in multi-cluttered 2D images and test the performance of object recognition. In the paper [23], 
a general CNN-based multi-modal learning framework is proposed for object recognition. This 
framework constructs the depth CNN layer for color data and depth data and connects them by a 
specially designed multimodal layer. This approach could not only segment the object from clutter 
but also estimate the object’s position. Additionally, the color data and depth data from the RGB-D 
camera could be processed by Hierarchical Matching Pursuit (HMP) [24] to localize the object. The 
HMP is a multi-layer sparse coding network, and the data of the RGB-D camera are presented as 
abstract features to facilitate the SVM to obtain a better recognition result. The discriminative features 
extracted from RGB-D images are used to encode the RGB-D point cloud data, and the object could 
be recognized by Hierarchical Cascaded Forests [25] and Recurrent Convolutional Fusion [26]. 

Moreover, the spatial-temporal features of objects could be extracted from the point cloud data, 
which are significant information for object recognition and classification [27–30]. This process 
consists of three main periods: (a) depth sensor data filtering, (b) object segmentation and noise 
reduction, and (c) object recognition and classification using CNN. The point cloud data can not only 
be used alone but can also combine with RGB images for object localization. A sensory-fusion 
framework, Multi-View 3D Networks, is proposed [31]. This framework takes both point cloud data 
and RGB images as inputs to detect 3D objects. 

2.2. Shape Identification 

The object’s shape is an important reference for robotic grasping. The object’s shape could be 
used to calculate the feasible grasping points. For uniform objects, the object’s shape could be 
previously provided for the robot—i.e., the shape could be seen as the known feature. However, as 
for nonuniform objects or objects with occlusion, it would be a challenge regarding shape 
identification. There are two types of approaches to deal with this issue. 

The first is to extract the 2D image feature of the object and then estimate the 2D shape to provide 
supports for robotic grasping. Generally, there are multiple objects in a single image. The first step is 
to partially recognize the object based on the context information and exploit edge information to 
estimate the object’s shape at the same time. This process has been realized by the learning-based 
approach [32]. Besides this, the generative model is also available. In research [33], a generative model 
for the object geometry was studied and could be extended to recognize the object’s shape in a 
cluttered image, with which the robot calculates the grasping point; the example is as shown in Figure 
3. 
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Original Recovered  
Figure 3. Shape identification with completed 2D boundary [33]. 

The rest is that the object’s 3D data is used to calculate the 3D shape of the object. The advantage 
of this approach is that it provides rich information for the calculation of grasping points to find the 
best grasping point in space, particularly for unstructured objects. Chiu et al. [34] built a 3D class 
model to estimate the object’s 3D shape, including occluded parts, from a single image. This model 
is learned from a few labeled images for each class. Moreover, the 3D shape identification could be 
realized by learning networks. Kalogerakis et al. [35] introduced a deep architecture for the 3D shape 
identification of objects. This architecture combines image-based Fully Convolutional Networks 
(FCNs) and surface-based Conditional Random Fields (CRFs) to yield a coherent segmentation of 3D 
shapes. The image-based FCNs are used for efficient view-based reasoning about 3D object parts. 
Through a special projection layer, FCN outputs are effectively aggregated across multiple views and 
scales, then are projected onto the 3D object surfaces. At last, a surface-based CRF combines the 
projected outputs with geometric consistency cues to yield the 3D shape. Although their results show 
that this architecture is effective, there are particular cases where the training data is not enough, 
showing that the need for a better design of architectures and networks. Additionally, the CAD 
matching approach is a good choice to reconstruct and identify the 3D shape of the object. Kong et 
al. [36] use the dictionary of dense CAD models to reconstruct an object’s 3D shape from a single 
image. Firstly, the orthogonal matching pursuit is employed to rapidly choose the “closest” single 
CAD model in the dictionary to the projected image. Then, a novel graph embedding based on local 
dense correspondence is used to refine the camera position and create a dense 3D model of the object 
by fitting both landmarks and the silhouette. Kurenkov et al. [37] propose the DeformNet framework, 
which generates a 3D shape reconstruction from a single image. This network takes an image input, 
finds the nearest shape template from a 3D CAD database, and deforms the template to match the 
query image. Moreover, a new differentiable layer is introduced for 3D data deformation, and this is 
used in DeformNet to learn a model for 3D shape reconstruction. 

2.3. Pose Estimation 

The pose estimation of objects in the field of robotics has been a hot topic for a long time. We 
summarize three types of approaches for pose estimation which are based on template, voting, and 
learning.  

The first one is template-based approaches. Based on the priori template, a template-based 
approach, like LINEMOD [38], extracts the gradient information for matching and then estimates the 
object’s pose. In the paper [39], a hierarchical fragment matching approach for 3D pose estimation is 
presented. The Clustered Centerpoint Feature Histogram, as a descriptor, is used to compute the 
features of object fragments. Then, the Extreme Learning Machine classifier is applied to identify the 
matched segments and generate the estimated pose. In the paper [40], a template matching-based 
approach is proposed for the 6D pose estimation. This approach consists of three main components, 
PCOF-MOD (Multimodal PCOF), balanced pose tree (BPT), and optimum memory rearrangement 
for a coarse-to-fine search. The PCOF-MOD template is based on gradient orientation extracted from 
RGB images and describes the shape of object contours. These templates are integrated into BPT to 
reduce the search space for the 2D position and 3D pose simultaneously and make the pose 
estimation faster. The optimum memory rearrangement rearranges the input features so that the 
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different types of neighboring pixels are linearly aligned. The estimated objects’ 6D poses by this 
approach on tabletop (Figure 4a) and bin-picking (Figure 4b) scenarios are as shown in Figure 4. 

（a） （b）  
Figure 4. Scenarios of objects’ 6D pose estimation [40]: (a) tabletop scenario, (b) bin-picking scenario. 

The second one is the voting-based approach. This type of approach usually uses every local 
feature to predict a pose and then finds the optimal result by voting. The classical approaches include 
the Hough Forest approach [41–43] and the Point Pair Features approach [44,45]. Tejani et al. [42,43] 
proposed a novel framework, Latent-Class Hough Forests, for 3D pose estimation in heavily cluttered 
and occluded scenarios. The template matching feature, LINEMOD, is adapted into a scale-invariant 
patch descriptor which is integrated into a regression forest using a novel template-based split 
function. Every tree in the regression forest maps an image patch to a leaf that stores 6D pose votes. 
Drost et al. [44] realized the recognition of freeform 3D objects in point clouds. Global model 
description is created based on oriented point pair features, which consist of all model point pair 
features and represent a mapping from the point pair feature space to the model. Pose recognition is 
performed locally using an efficient voting scheme on a reduced two-dimensional search space. 
Following this research, Vidal et al. [45] proposed a variation of the PPF method and won the SIXD 
challenge. 

The last one is the learning-based approach. This approach needs a previous database to train 
estimation models or networks and could deal with objects in depth images and objects in color 
images as well. Based on the depth image, the random forest approach [46] could achieve the 6D pose 
estimation. As shown in Figure 5, this approach consists of two parts: training and testing. In the 
training process, depth images are taken as the inputs to train six trees and give the initial pose. In 
testing, based on the initial pose and the depth image, the forest prediction is used to refine the 
object’s pose. As for objects in RGB images, Georgakis et al. [47] proposed an approach for 3D pose 
estimation. This approach does not need to mark the object’s pose in the training phase. Through the 
deep quadruplet CNN, the relationship between RGB images and the rendering depth images of the 
CAD model is established, and then the object’s pose is estimated via the RANSAC algorithm and 
PnP algorithm. 

Training Testing
Target Object Learning Data Generation

6 Decision Trees for 6D Pose

Input
T0

Random Forest

Update Prediction

Rendered Depth Image  
Figure 5. The whole pipeline of the random forest approach [46]. 

2.4. Robotic Grasping 

For geometric-uncertain objects, most physical properties could be seen as known and not 
considered for robotic grasping in this section. The robotic parameters are more related to the 
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geometric features of the object, such as position, shape, and pose. The commonly used grasping 
approach could be described as a direct configuration-based grasping approach that grasping control 
is related to in the structure of the grasper. 

According to different grasping requirements, varied structures of graspers are designed, such 
as the sucker, the multi-fingered dexterous grasper, and the soft grasper, as shown in Figure 6. Due 
to having more degrees of freedom and a better shape adaptability, the multi-fingered dexterous 
grasper and the soft grasper are more powerful for different types of objects. The configuration of the 
multi-fingered dexterous grasper and the soft grasper are also more challenging compared to other 
graspers. 

(a) (b) (c)

(d) (e) (f)  
Figure 6. Different structures of grasper: (a) sucker [48], (b) two-fingered grasper [49], (c) three-
fingered grasper [50], (d) four-fingered grasper [51], (e) five-fingered grasper [51], (f) soft grasper [48]. 

For the multi-fingered grasper, a framework including Multi-Dimensional Iterative Surface 
Fitting (MDISF) and Grasp Trajectory Optimization (GTO) for grasp planning is proposed [52]. The 
MDISF is used to search for the optimal contact region based on the position of the object. The hand 
configuration is optimized by minimizing the collision and surface fitting error. The optimal 
trajectory to reach the highly ranked grasping configuration is generated by GTO. The grasping 
configuration could also be generated according to the curvature of objects. In the paper [53], Calli et 
al. propose an active visual grasping algorithm for the hand-eye system. This algorithm models the 
object with the Elliptic Fourier Descriptors and uses a visual servo rule to realize the grasping 
configuration with curvature measurements. 

Furthermore, to overcome the problem that the soft grasper is difficult to control accurately, an 
efficient mathematical representation of soft fingers based on screw theory is proposed [54]. As 
shown in Figure 7, this grasper is underactuated; tendon-driven; and consists of two flexible fingers, 
whose configuration could be changed according to the object’s shape. The grasping state is detected 
through rolling soft fingertips, and the grasping force and the grasper pose are changed by adjusting 
the control parameters [55]. However, there also exist some constraints—such as contact reachability, 
object restraint, force control, etc.—for a specific manipulating task. As a result, Rosales et al. [56] 
present a kinematic formulation for the grasping synthesis problem. This formulation could generate 
an optimal grasping configuration by considering these constraints. 

Pulley
Screws

Tendon wire Rigid link

Motor
Lower base
Soft  joint

 
Figure 7. Object grasping with a soft grasper [54]. 

3. Physical-Uncertain Objects 
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For the process of object grasping, the robot is required to localize the object and find the feasible 
grasping points at first. Next, the robot needs to grasp and manipulate the object regarding the 
desired task. In industrial scenarios where heavy and light objects are usually manipulated 
alternately, it is not reasonable to grasp the object only with geometric features. For instance, variable 
mass parts usually require different grasping forces, otherwise it is easier for the grasp to be 
unsuccessful or destructive. Similarly, in some service scenarios where the robot needs to deal with 
a set of deformable objects, this is an unlikely task without the rigidity information of the object.  

Furthermore, for a scenario with physical-uncertain objects, the grasping approach for 
geometric-uncertain objects does not work anymore. Generally, the physical properties of the object 
are identified firstly, and then the robotic grasping parameters are configured based on these 
properties. In the process of object grasping, the physical parameters that are commonly concerned 
include mass, rigidity, and texture. In this section, we review approaches used on physical-uncertain 
objects, such as mass-uncertain objects, rigidity-uncertain objects, and texture-uncertain objects. 
There has been a lot of research on these properties, and here we have collected and sorted it out.  

3.1. Mass Estimation 

The accurate estimation of an object’s mass is a big challenge for robots, as robots are unlikely to 
use the commonly used method of static weighing to obtain the object’s mass. Usually, force/torque 
sensors or tactile sensors are used to detect an object’s mass. For instance, Kubus et al. [57] used 
measurements of the force and torque from a sensor on the wrist as well as measurements of angular 
velocity, linear, and angular accelerations to estimate an object’s mass. Further, Petković et al. [58] 
designed an adaptive underactuated compliant grasper with distributed compliance and built a 
prediction model for the mass estimation of the object in relation to sensor stress. In addition to the 
one-dimensional grasping force, the mass of the in-hand object could also be calculated based on the 
3D force vector [59] from tactile sensors on fingertips. Due to the limitation of the generalization 
ability of the estimation model, the detection accuracy is often reduced when the new object’s mass 
is detected. 

Moreover, deep learning also has applications in the mass detection of objects. In the paper [60], 
a Scalable Tactile Glove (STAG) covered with 548 tactile sensors is designed, as shown in Figure 8. 
This STAG acquires the normal force recorded by each sensor and builds a tactile dataset. The mass 
is estimated through a ResNet-18 architecture [61] based on the data from tactile sensors. This type 
of approach has a strong dependence on datasets, and it usually needs to spend a lot of time to train 
the learning network. 

Knitted 
glove

Sensor 
array sleeve

Scalable 
tactile glove

26 objects

Isolation/readout 
electronics

Dataset of 
tactile maps

Convolutional 
neural network

Identify objects 
Weigh objects
Tactile signatures

 
Figure 8. The Scalable Tactile Glove (STAG) as a platform to learn from the human grasp [60]. 

In addition, the visual approach is also used to detect the object’s mass. The principle of the 
visual approach is establishing the relationships between the object’s visual information (object 
geometry, RGB images, depth images, point clouds, etc.) and the object’s mass properties, and then 
calculating the object’s mass based on the real-time data from visual sensors. The regression model, 
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like the geometric outline-mass model [62], the volume-mass model [63,64], etc., is a commonly used 
way to identify an objects’ mass. The mass detection precision of this type of approach is not very 
high and mainly depends on the accuracy of the mapping model and the reliability of the visual 
detection. 

3.2. Rigidity Prediction 

Rigidity is one of the most important properties of objects. An object with an uncertain rigidity 
is difficult to manipulate successfully, as the object may be distorted by the grasping force. Most of 
the research is directly aimed at rigid objects or deformable objects to give the corresponding grasp 
and manipulation strategy. There is little research on objects’ rigidity detection for object grasping, 
which severely restricts the autonomous task ability of the robot to grasp objects. 

For a robot, it is hard to accurately obtain the rigidity parameter of the object before the robotic 
grasping. The application of sensors in robotic manipulation still has many limitations. 
Comparatively, it is feasible that the rigidity degree of an object is predicted to distinguish rigid 
objects and deformable objects, and then the manipulation strategy is given according to the 
classification result. In the paper [65], Zang et al. proposed a motion analysis-based approach for 
detecting an object’s rigidity. This approach distinguishes rigid objects and nonrigid objects by 
coupling motion estimation and optic flow matching. Moreover, tactile sensors are also used to 
classify objects. Drimus et al. [66,67] designed a flexible tactile sensor for the classification of rigid 
objects and deformable objects. The flexible tactile-sensor array is used to acquire the rigidity 
information of the object. The array of tactile information is denoted as a time series of features and 
used as the input for the k-nearest neighbor classifier to classify the various rigid objects and 
deformable objects. After the classification of the object is given, the manipulations could be carried 
out according to varied grasping approaches for rigid objects and deformable objects. 

3.3. Texture Detection 

Texture detection is an important part of object recognition and also plays an important role in 
robotic grasping. As early as 1992, higher order statistics were applied to detect and classify random 
textures [68]. Satpathy et al. [69] introduced two classes of edge-texture features, which are the 
Discriminative Robust Local Binary Pattern and Ternary Pattern. These edge-texture features make 
better recognition effects on objects, particularly in light and dark backgrounds. Afterward, an online 
texture rendering model that deals with low-texture and high-light objects is established [70]. The 
dynamic template in continuous 6DoFs pose space is created based on the texture rendering model. 
This dynamic template could be used to handle the 3D object tracking problem and the partially 
occluded problem. 

For a cluttered environment, the specific texture plays a significant role in separating the object 
from the background. In the paper [71], a texture segmentation approach was proposed based on the 
parametric active contour model. It calculates the gray-level co-occurrence matrix and co-occurrence 
energy of the region inside and outside of the dynamic contour. The texture contour is determined 
while the co-occurrence energy is in the maximum state. Moreover, texture recognition could also be 
realized by the fusion of tactile and visual images. Luo et al. [72] proposed a novel fusion approach, 
Deep Maximum Covariance Analysis (DMCA), to learn a joint latent space for sharing features via 
vision and tactile sensing. The features of visual images and tactile data are learned by deep neural 
networks. The maximum covariance analysis is used to pair the learned features. In the paper [73], 
the progress of the texture representation in the past two decades is summarized, and the challenges 
for future research are also discussed. 

3.4. Robotic Grasping 

Applications for the robotic grasping of rigid objects and deformable objects frequently exist in 
industrial and service scenarios. Particularly, more applications of deformable objects in industrial 
and service scenarios can be found in [74,75]. An object’s features, such as mass, rigidity, and texture, 
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can help the robot to set a feasible grasping force to grasp the object. This kind of approach is mainly 
used when there is no special classification for the object. Normally, the object could be divided into 
rigid objects and deformable objects according to the stiffness characteristics. For rigid objects, the 
human could teach robots how to grasp objects and manipulate them or plan the robotic grasping 
based on tasks. As for deformable objects, robotic grasping is more difficult to implement because of 
undesired deformation during manipulation. The following are grasping approaches for rigid objects 
and deformable objects. 

3.4.1. Robotic Grasping of Rigid Objects 

As for rigid objects, learning from demonstration (LfD) is a popular approach for a robot to 
improve its capability of object manipulation. This approach enables the robot to acquire new skills 
through leveraging demonstrations offered by human operators [13,76]. As shown in Figure 9, the 
robotic grasping configuration learned from human demonstrations and the object’s features are also 
taken into account. The object’s sensing information and the priori features are combined to obtain 
the object’s database which provides basic data for robotic configuration. Further, the robot observes 
the grasp and manipulation of rigid objects by the human, and the kinematic parameters of the 
moving process are stored. Finally, the robotic configuration database is built and guides the robot 
to finish the robotic grasping of the object. 

Scenario
( human, 

objects, robot )

Object 
recognition

Priori features

Human 
demonstration

Object grasping 
manipulation

Object database

Robotic 
configuration

database

 
Figure 9. Functional flowchart of object grasping by learning from demonstration (LfD). 

The grasping strategy—such as grasping type, thumb placement, and direction, etc.—is 
extracted from human demonstration and then integrated into the grasping planning procedure. It is 
crucial to generate a feasible grasp concerning object features and manipulation tasks [77]. However, 
there will be some mistakes, as the human operator gives an imperfect demonstration because of the 
unintentional operator error in the kinesthetic teaching demonstration. To solve this problem, 
Mueller et al. [76] improved the LfD and proposed a novel algorithm, which is Concept Constrained 
Learning from Demonstration (CC-LfD). The CC-LfD not only realizes the robust skill learning but 
also finishes the skilled repair that incorporates the annotations of conceptually grounded constraints 
during live demonstrations of the LfD. Furthermore, Welschehold et al. [78] proposed an RGB-D 
observation-based demonstration approach. This approach prevents the requirement of accurate 
knowledge about the interactions between the robot and the object, which also eliminates the 
unintentional operator error. In order to increase the robustness of LfD, Van et al. [79] designed a 
GraspNet for object detection from merely a single demonstration. The GraspNet is based on a 
convolutional neural network and can be rapidly fine-tuned for a new demonstration. Based on data 
from previous demonstrations, the training time is decreased further. 

In addition, the skill-based programming approach is an effective way to reduce the 
requirements of operators and the difficulty of programming. This approach is divided into three 
layers, which are the primitive layer, skill layer, and task layer [80]. The primitive level is to describe 
the capability of the robotic system into simple and intuitive symbolic units, such as the movement 
of the manipulator and the operation of the gripper. The skill layer consists of numerous skills that 
transform the world from an initial state to a goal state based on the specified prior parameters, such 
as the perception skill of the external environment for decision and the pick and place skill with 
provided objects and place poses. The task layer is the topmost layer of the operational abstraction 
and combines the required skills to achieve the objective. With skill-based programming, the robot is 
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able to finish varied object manipulation, such as grasping, picking, assembly, and so on [81,82]. 
Huang et al. [83] presented a robotic system with a library of assembly skills. These skills are acquired 
by machine learning and can be reused for different furniture sets. Herrero et al. [84] combined skill-
based programming with a state machine and improved the skills of interaction and communication 
with humans. The skill-based programming approach eases the robot program generation and is 
helpful for the robot to grasp the object and complete the task, particularly in a human–robot 
collaborative workspace. 

Moreover, the task oriented-based grasping approach is another popular option. The robot is 
not only required to grasp the object steadily but also to complete a specific task, such as handling, 
placing, parts assembly, etc. To achieve this, two processes are followed in parallel, as shown in 
Figure 10. For one thing, the functional meaning of the object part is reasoned, and the object is 
separated into several parts based on their functional meaning. The features of each object part are 
detected and used to generate the particular affordance for each part. For another, according to the 
robotic requirements of the special task, the task could be decomposed into a serial of continuous 
subtasks. It could be seen as a manipulation policy for the task-oriented network, and then the task-
oriented network is established based on the learning network. Finally, the task-oriented network 
guilds the robot to finish object grasping and task manipulation. 

Object

Task

Part 
segmentation

Subtask
decomposition

Affordance
detection

Task-oriented
network

Object 
grasping

Task 
execution  

Figure 10. Functional flowchart of object grasping based on the task. 

Lakani et al. [85] proposed an RGB-D part-based approach for task performance. The 
affordances are detected and associated with parts of the object. As these affordances are related to 
the task, the task could be executed directly on the object. Furthermore, several kinds of robotic tasks 
are tested, such as grasping, pouring, scooping, cutting, striking, and placing. In addition, an object 
grasping system—Box Approximation, Decomposition, and Grasping (BADGr) [86]—is used to 
generate a stable grasp for a hand-object pair. As shown in Figure 11a, the stable grasps are labeled 
and saved into the task-related grasping database for training and testing. The affordance function is 
defined by basic grasping metrics and extends the grasping quality metric to task-oriented grasps 
[87]. This task-based grasping matrix can not only guild the grasping process, but also evaluate the 
grasping quality of task completion. 
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Figure 11. Examples of task oriented-based grasping approaches: (a) the schematic diagram for 
generating a task-related grasp database [86], (b) Task-Oriented Grasping Network [88]. 
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To establish a closer relationship between object grasping and task manipulation, Fang et al. [88] 
built a Task-Oriented Grasping Network (TOG-Net) to jointly optimize the task-oriented grasp and 
the manipulation policy. As shown in Figure 11b, the inputs of TOG-Net are two crops of depth 
images and the sampled grasper depth. The task-agnostic grasp quality, conditioned task-oriented 
grasping quality, and manipulation actions are predicted through TOG-Net. As the typical 
movement is associated with a particular task, the previous sensor experiences could be used in the 
predictive model for subsequent task execution [89]. The grasping capability could be enhanced 
through leveraging the semantic object parts [90]. The pre-grasp configurations are reasoned with 
respect to the intended task. The object-task affordances and object-task ontologies are employed to 
encode rules for generalizing over similar object parts and object-task categories.  

3.4.2. Robotic Grasping of Deformable Objects 

Deformable objects also have many applications in industrial, domestic, and service scenarios. 
The categories of deformable objects could be given based on their geometry. For instance, Sanchez 
et al. [10] classified deformable objects in domestic and industrial applications into four main 
categories, which are cloth-like objects, linear objects, planar objects, and volumetric objects. 
Moreover, Saadat et al. [74] introduced the automatic manipulation of three categories of deformable 
objects in industrial applications, including linear objects, sheet objects, and three-dimensional 
objects. As noted previously, deformable objects could roughly be categorized into three categories 
including linear objects, planar objects, and 3D objects. 

Linear objects: This type of object is often smart enough to withstand one-dimensional forces, 
such as cables, springs, beams, and ropes. The robotic grasping of these objects is a major industrial 
problem. In the case of robotic grasping with ropes, the two main desired robotic tasks are knotting 
and inserting. The robot not only needs to control the object’s deformation but also needs to complete 
the given tasks. Yamakawa et al. [91] studied the relationship between a knotting process and the 
individual skills of a robot hand, and identified loop production, rope permutation, and rope pulling 
skills. In the following research [92], they derived a model of the flexible rope and proposed a motion 
planning method. They were able to change a rope into different shapes, such as a rectangular corner 
and a semi-circle. As for the insertion task with ropes, Nakagaki et al. [93] observed the shape of the 
wire by the stereo vision and applied a force acting on the flexible wire to control the wire’s shape to 
ensure that the deformed wire is transformed to the straight one. Furthermore, Wang et al. [94] 
realized that the robot inserts a rope through a series of holes with high robustness. However, these 
approaches have, so far, not been applied in real situations as their test environments are simplified. 
The real-time performance of these approaches also needs to be improved. 

Planar objects: The feature of this type of object is that the geometry in one dimension is 
considerably smaller than the other two. For instance, the thickness of the paper is negligible 
compared with its width and height. Cards, foam sheets, and metal sheets are considered in this 
category. Most of the research focuses on two types of object manipulation, including folding and 
picking up. In a series of studies, such as Balkcom and Mason et al. [95], Elbrechter et al. [96], and 
Namiki et al. [97], the robot is able to fold a paper using predefined folds, fiducial marker tracking, 
or the mass–spring–damper model. Although these approaches could be extended to planar object 
folding, more flexible manipulations are not easily performed. As for planar object grasping, the 
grasper needs to maintain real-time contact with the object and adapt to the object’s deformation. 
Gopalakrishnan and Goldberg et al. [98,99] defined the concept of deform closure, where the form 
closure of rigid object grasping is extended to deformable planar objects. Furthermore, the 
deformable parts are modeled as linearly elastic polygons with a triangular finite element mesh and 
given stiffness matrix. This research is based on the assumption that the elasticity is linear and the 
gravity is negligible. The effect of these aspects needs to be studied in the future. More analysis of 
grasping deformable planar objects could refer to the review [100]. 

3D objects: In its geometry, this type of object does not have extreme disparity in each 
dimension. Objects such as plush toys, dough-like foods, bulk material, etc., belong to this category. 
This type of object is more likely to produce unexpected deformation and usually requires more 
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comprehensive information to assist with robotic grasping. Jørgensen et al. [101] captured a point 
cloud of deformable objects using a structured light scanner and used the pick and place strategy 
after analyzing the sensing data. This approach could manipulate different pork cuts by suction cups 
rather than fixed grippers in real-world trials. In addition, Delgado et al. [102,103] used tactile sensors 
to achieve the estimation of deformability degree during the grasping process and the adaptation of 
deformable objects with different elastic properties. They not only consider the deformation of the 
object but also take the object’s softness into account. Later on, they proposed an adaptable control 
scheme with a tactile servo to handle the manipulation tasks of deformable objects. In addition, the 
physically based model is also significant for deformable object grasping. For instance, the Kelvin–
Voigt model [104] that describes the contact relationship between the grasper and the object could 
enable the grasper to lift the deformable object with a minimum force. The finite-element model [105] 
could approximate the deformation of the object caused by the grasper. Although these models work 
well in the simulation environment, their usability in real life still needs to be further explored, 
because the real model is usually more complicated and the accurate model is difficult to obtain. 

4. Unknown Objects 

In this section, we review the approaches used on unknown objects of which some geometric 
and physical features both are uncertain. This type of object often exists in unknown environments 
or multiple object scenarios with occlusion. The first work for the robot is to search and localize the 
object, because the object’s information is hardly determined, particularly in environments with 
multiple uncertain objects or occlusion. The next work is for features—such as pose, shape, mass, 
rigidity, etc.—to be identified for the robotic grasping. The approach used for geometric-uncertain 
objects and physical-uncertain objects could also be applied to identify the geometric and physical 
information of unknown objects. 

Moreover, the robotic grasping is usually complicated, as the parameters of the object have too 
much uncertainty. These uncertainties severely limit the robot’s ability to manipulate the object. From 
the perspective of applications and task requirements, the geometric and physical parameter 
identification of unknown objects could be collectively referred to as feature identification without 
explicit classification. Due to the uncertainty impact, typical grasping approaches—such as form-
closure approaches and force-closure approaches—are difficult to apply. The approach based on skill 
learning and transferring by learning networks is more popular. In some way, the grasping 
experience of familiar objects improves the grasping robustness of unknown objects. 

4.1. Search and Localization 

As for unknown objects, one of the most challenging problems for object grasping is how to 
obtain an accurate position with regard to the robot. Generally, sensors—such as 2D cameras, 3D 
cameras, depth sensors, and tactile sensors—are used for the search and localization of unknown 
objects. Notwithstanding, the 2D camera does not acquire all the feature information of unknown 
objects, especially objects with occlusion, and it works for the rough localization of the object. In 
contrast, the 3D camera not only obtains the plane feature information of the object but also acquires 
the spatial position information. As a result, the unknown object recognition by 3D cameras has 
become a research hotspot in recent years [106]. Compared with passive sensors, such as cameras, 
lidars, etc., the tactile sensor inspired by human touch acquires object feature information by active 
contact perception. The information obtained by tactile sensors is the closest to the real features of 
the object.  

According to the characteristics of varied sensors, approaches for the search and localization of 
unknown objects are classified into three categories, which are image-based approaches, point cloud-
based approaches, and tactile perception-based approaches. The first approach is that the object is 
detected and segmented from the 2D image, and the part registration of the object is generated with 
the viewpoint identification. Based on Extremum Seeking Control [107], the active vision strategy is 
able to conduct continuous optimization backed up with mechanisms to escape from local maxima. 
For the clutter environment, as shown in Figure 12, the Partially Observable Markov Decision Process 
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(POMDP) [108] is used to solve the problem of object searching. In the clutter environment, the robot 
needs to move objects around to acquire the information of the object, which reduces the perception 
uncertainty. The POMDP provides a principled planning and decision-making framework for the 
robot to search and move the object in a partially observable domain. In addition, the 3D point cloud 
data could be fused with images to localize the 3D object. Xu et al. [109] proposed a dense PointFusion 
architecture, where the image data and original point cloud data are independently processed by 
CNN and PointNet architecture. The 3D point cloud data are used as spatial anchors to predict the 
hypothesis and reliability of multiple 3D boxes. As the boundary box of the object is determined, the 
object’s position could be calculated. Notwithstanding that the image and point cloud data can 
estimate the position of objects, there are still residual uncertainties, especially when the important 
features of objects are obscured. 

A cluttered refrigerator Uncertainty due to occlusion  
Figure 12. Object searching in a cluttered environment [108]. 

The third approach is that the tactile perception combined with proprioception provides the 
highly reliable localization information of objects. Hsiao et al. [110] presented a decision-theoretic 
approach to solve the localization problem. The robotic actions are guided by tactile feedback to 
search the object and localizes the object by selection among the parameterized set of trajectories. 
Vezzani et al. [111] introduced an effective Bayesian-based algorithm named Memory Unscented 
Particle Filter. This algorithm recursively solves the 6DoFs localizing problem in a timely way by the 
measurement of contact points. In addition, an active exploration approach solely based on tactile 
information for the robot to explore unknown workspaces is introduced in [112]. This active approach 
enables the robot to explore the whole workspace and cluster all the data points to acquire the points 
that belong to the same object into one category. Based on the category, a 3D minimum bounding box 
is calculated to represent the object. The geometric features of the object, such as length, width, and 
height, are roughly estimated by calculating the Euclidean distance, and then the coordinate of the 
object is calculated. Although this type of approach could obtain more realistic information, the 
exploration efficiency is low, and the exploration accuracy is greatly affected by the sensor resolution. 

4.2. Feature Identification 

After obtaining the object’s position, the robot needs to decide how to grasp the object. Although 
many feature parameters of unknown objects are useful for the robotic grasping, the pose and shape 
of the object are more important for the grasp. These parameters determined the initial motion 
configuration of the robot to grasp the object. In addition, other properties concerned—such as color, 
mass, material, and compactness—are also discussed in this section. 

4.2.1. Pose Estimation 

The pose estimation of unknown objects is more challenging than other objects because most 
information on the object is uncertain. To solve this problem, Wang et al. [113] proposed a 
DenseFusion architecture for 6D pose estimation based on RGB-D images, as shown in Figure 13a. 
This architecture processes the RGB data and depth data and then extracts the pixel-wise features for 
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pose estimation. In addition, Tekin et al. [114] presented a single-shot approach for the pose 
prediction of objects in RGB images. A CNN architecture predicts the 6D pose by the PnP algorithm 
and realizes the real-time processing without requiring multiple periods or examining multiple 
hypotheses. For the problem of multi-object pose estimation, Collet et al. [115] proposed a detection 
framework for multi-object pose estimation and detection (MOPED). This framework addresses two 
main challenges, which are robust performance in complex scenarios and low latency for real-time 
operation. The Iterative Clustering Estimation algorithm is used to estimate groups of features that 
belong to the same object. Through clustering, the object hypotheses are searched within each of the 
groups. Then, the poses are estimated using Levenberg–Marquardt by iterations to obtain the final 
poses from each cluster. The examples of pose recognition are shown in Figure 13b. 
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Figure 13. Approaches for pose estimation: (a) the DenseFusion architecture [113], (b) recognition 
based on the multi-object pose estimation and detection (MOPED) framework [115]. 

4.2.2. Shape Detection 

In addition to the approaches mentioned in the shape detection of geometric objects, the 
approach based on tactile perception is also a trend at present. In the research [116], the problem of 
shape reconstruction from sparse tactile data is studied. The Information Gain Estimation Function 
combines different goals as a criterion to quantify the cost-aware information gain during 
exploration. This approach reconstructs the object’s shape by adding multi-oriented contacts based 
on criteria such as local information maximization and exploration cost minimization. Based on 
tactile sensors, a fast estimation criterion [117] is chosen for active contact selection, which not only 
considers the uncertainty of shape estimation but also takes the travel cost of contact into account. In 
addition, the Monte Carlo tree searching approach [118] is used to optimize the gesture sequence of 
the wrist and select the gesture to obtain the maximum recognition possibility. The Gaussian Process 
Implicit Surface Model is used to learn the shape of objects from tactile information and evaluate the 
estimation uncertainty. These approaches extend the research field of unknown objects’ shapes, but 
the timeliness and accuracy of the detection results have not been able to meet the standards required 
for practical applications. 

4.2.3. Other Properties Identification 

In addition to features, such as position, pose, shape, and texture, which are commonly used in 
object recognition and robotic grasping, other features, such as color, material, compactness, mass, 
etc., need also be further considered in the process of the recognition and grasp of unknown objects. 
The object color is compact and computationally efficient, and particularly is effective for the 
recognition of occluded objects [119]. Sande et al. [120] studied the invariance properties and 
distinctiveness of color descriptors. The analytical invariance properties of color descriptors are 
explored by the taxonomy with respect to photometric transformations. In addition, Škoviera et al. 
[121] built a bio-inspired intelligent network named Hi-Erarchical Temporal Memory. This network 
recognizes the object in cluttered color images based on the information of color, texture, and shape. 
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In general, the mass of an object could be calculated by Hooke’s law. However, the motion process 
of a manipulator is a multi-dimensional motion process, and it is difficult to maintain the in-hand 
object to carry out the one-dimensional motion state during the object manipulation. Therefore, the 
mass information of the object is usually acquired by an indirective estimated approach instead of 
calculating with force data directly. The mass estimation approach used for physical-uncertain 
objects could be extended to unknown objects. In the field of robotic grasping, however, not all 
properties are easily obtained because of the limitations of sensor technology. At present, there is no 
very effective approach to detect the properties of material and compactness. Therefore, more studies 
on sensor technologies and detection approaches to identify objects’ material and compactness need 
to be performed in the future. 

4.3. Robotic Grasping 

For unknown objects, there is not enough feature information for robotic grasping. It is difficult 
to precisely solve the parameters in the process of grasping. As a result, the robotic grasping of 
unknown objects is hard to carry out by traditional approaches, such as form-closure approaches, 
force-closure approaches, feedback control approaches, etc. When humans operate on unfamiliar 
objects, they usually deal with them according to their experience of familiar objects. Similarly, a 
priori experience is also significant for a robot. To generalize these experiences, many studies focus 
on using a learning algorithm to train the previous data and adapting these a priori experiences to 
new unknown objects. In the paper [122], a hierarchical controller based on active learning and 
reactive control is proposed for global perception and local perception. The controller architecture is 
shown in Figure 14a. The upper level is used to select the place for object grasping by a reinforcement 
learner. The lower level consists of an imitation learner and a vision-based reactive controller, which 
is used to determine the appropriate grasping motions. In order to improve the grasping quality, the 
grasping function is usually trained by CNN [123]. In the research [124], the Baxter robot is used to 
establish datasets with more than 50 K data points through 700 h of experiments, and then a CNN is 
trained to predict the grasp function. By smoothing the grasping function with the pose uncertainty 
function, the robustness for unknown objects is improved. 
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Figure 14. A priori experience-based grasping approaches: (a) the hierarchical controller architecture 
[122], (b) the active learning architecture [125]. 

In addition, Fu et al. [125] presented an active learning architecture for some accurate industrial 
manipulation. This approach combines the high accuracy of geometry-driven grasping approaches 
and the generalization ability of data-driven grasping approaches. As shown in Figure 14b, this 
process is categorized into the pre-grasping state and the grasping state. In the pre-grasping state, 
the manipulator actively moves until the object is perceived, and a trained CNN is used to estimate 
the motion. In the grasping state, the manipulator executes an expected motion to finish the grasping 
task. Moreover, Quillen et al. [126] proposed a deep reinforcement learning algorithm for grasping 
policy learning. Off-policy learning enables the utilization of grasping data over a wide variety of 
objects and improves the ability of generalization to new unknown objects. In order to reduce the 
cost of training data, an efficient learning algorithm is proposed for robotic grasping [127]. The 
geometric consistency between the object images and the task space is exploited. A relatively small, 
fully convolutional neural network is used to predict grasping parameters. The grasping success 
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probability is predicted by a trained learning network for the task space motion [128]. This trained 
network does not need camera calibration or the current robotic pose. The grasping process is less 
dependent on the environment and the object—that is, it is more robust with unstructured 
environments and unknown objects. Although the learning network improves the grasping ability of 
unknown objects by training with a priori grasping data, the ability of this type of approach to resist 
external disturbance is insufficient, especially for unknown moving objects and scenarios with high 
requirements of manipulation accuracy. 

Sensors such as cameras, depth sensors, and tactile sensors could be further used to obtain 
information supplements for the robotic grasping status [129]. Features such as position, shape, pose, 
and other physical properties provide criteria for the configuration of grasping parameters. For 
instance, the active vision obtains the object’s contour curvature and updates the robotic pose to 
acquire the appropriate configuration by maximizing the curvature value [53]. Moreover, the tactile 
feedback provides tactile feedback for the robotic motion, while vision and other sensors are 
supplementary [130,131]. For unknown objects with occlusion, the point cloud data could be used to 
realize the active recognition of objects and then be applied for the semantic segmentation of objects 
[90,132]. The 3D deep CNN [133], as shown in Figure 15, learns effective features from point clouds 
and classifies objects by classifier. The grasping direction and wrist orientation are also predicted 
based on the shape and pose of the object. A typical grasping approach [134] based on sensors and 
learning networks is shown in Figure 16. In this approach, a touch localization model sequentially 
explores the workspace and uses a particle filter to aggregate beliefs from multiple hits of unknown 
objects. The object’s location is estimated, and an initial grasp is generated base on the position of the 
unknown object. An unsupervised auto-encoding scheme is used to learn the representation of tactile 
signals. Then, the re-grasping model learns to progressively improve grasps with tactile feedback. 
This network could estimate the grasp stability and predict the adjustment for the next grasp. 
Although the tactile-based approach improves the perception accuracy of unknown objects, this is at 
the cost of high resolution and high time consumption and is not suitable for occasions with high 
real-time requirements. 
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Figure 15. Framework of point cloud processing [133]. 
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Figure 16. A grasping approach based on sensors and learning networks [134]. 

5. Discussion and Conclusions 

In this paper, we review a series of approaches that focus on the feature sensing and robotic 
grasping of objects with uncertain information. A categorization of uncertain objects based on the 
type of uncertain information is defined, and uncertain objects are classified into three categories, 
which are geometric-uncertain objects, physical-uncertain objects, and unknown objects. Based on 
this classification, we summarize the corresponding approaches for each type of object to present a 
detailed overview of the feature sensing and robotic grasping of objects with uncertain information. 
Tables 1–3 summarize all the approaches discussed in this paper. Since there are differences between 
the robot platforms, the properties of the object, and so on in these works, it is meaningless to declare 
which is better or worse. However, some facts are discussed as follows. 

Geometric-uncertain objects: For robotic grasping, the object’s geometric information—such as 
position, shape, pose, etc.—determines how the robot plans its path and grasps the object with a 
feasible pose. The reviewed approaches of feature sensing and robotic grasping are presented Table 
1. The commonly used approach is to collect the object’s images and then detect the position, pose, 
and other information of the object through the image processing algorithm [17]. The image-based 
approaches [22,24] achieve the plane localization and space localization of the object, which are used 
in a variety of situations. The learning networks [32] and CAD models [36,37] obtain the better 
identification of the shape of the object in large-scale photo collections. For the pose estimation of the 
object, approaches such as LINEMOD [38], the PCOF-MOD template [40], Hough Forest [41–43], 
Point Pair Features [44,45] and Random Forest [46] can predict the object’s pose quickly and robustly, 
even if there is partial occlusion. In addition, the point cloud and tactile data are also used to detect 
the object’s geometric features. The point cloud-based approach could realize the 3D reconstruction 
of the object, which enables the robot to find the spatial grasping point of the object. The high-
resolution tactile sensor [135] could obtain more real feature information of the object, while the 
detection efficiency is not enough and not suitable for scenarios with a high real-time requirement. 
In contrast, the image-based approach is more efficient and obtains a better recognition effect.  

In the existing applications, the geometric-uncertain object is usually uncomplicated or 
commonly encountered. It is not a big challenge to grasp this type of object for a robot. Considering 
the different requirements, varied structures of graspers are designed. The robot could grasp the 
object with a feasible grasper structure and predefined parameters according to the specific scenario. 
The classical approaches, such as form-closure grasp [7] and force-closure grasp [8], can work well 
for this type of object. As noted previously, varied graspers are designed to adapt the robotic 
grasping, such as multi-fingered graspers [50,51] and soft graspers [48,54], which enhance the 
grasping capability for the geometric-uncertain object. 
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Table 1. Feature sensing and robotic grasping for geometric-uncertain objects. 

Sensing 

Position 
detection 

2D images [17,22], 3D images [23,24], Point clouds [18,25,26], Spatial-temporal feature 
[27–30], Sensory-fusion feature [31] 

Shape 
identification 

Learning-based [32], 2D boundary [33], 3D class model [34], FCNs and CRFs [35], Dense 
CAD model [36], DeformNet [37] 

Pose estimation 

Template-based approaches (LINEMOD [38], Hierarchical fragment matching [39], 
PCOF-MOD template [40]); Voting-based approaches (Hough Forest [41–43], Point Pair 
Features [44,45]); Learning-based approaches (Random Forest [46], Deep quadruplet 
CNN [47]) 

Grasping 
Direct 

configuration-
based grasping 

MDISF & GTO [52], Active vision [53], Underactuated tendon-driven [54] 

Physical-uncertain objects: Compared with geometrical-uncertain objects, the feature sensing 
and robotic grasping of physical-uncertain objects are more complex. As for the physical properties, 
such as mass, rigidity, texture, and so on, it is more difficult to build an accurate sensing model due 
to the applied limitation of specific sensors in robotic grasping. Due to the limitation of effective 
sensors, the robot is unlikely to directly and accurately detect the object’s mass. Although 
force/torque sensors [57,59] and tactile sensors [60] have been tried to detect the object’s mass, the 
detection accuracy depends more on the mathematic model. In addition, approaches based on the 
geometric outline-mass model [62] and volume-mass model [63,64] also offer new possibilities for 
mass detection. The rigidity is another challenging property that remained to be detected. Tactile 
sensors [66,67] could be used to detect this property; however, an unexpected change in the object’s 
geometric features or damage of the object should be avoided. When it comes to texture detection, 
approaches are becoming more diverse. A tactile sensor array could be used to detect the object’s 
texture, while the sensor array has high-resolution requirements. In addition, the texture could also 
be sensed through image processing. As mentioned in [69,70], the texture of objects in light and dark 
backgrounds or low-texture and high-light objects can be detected with high resolution. The DMCA 
[72] learns visual images and tactile data through deep neural networks and achieves cloth texture 
recognition. The texture detection only with visual perception is easily affected by the image quality, 
especially the resolution, color difference, and distortion. Multi-sensor fusion can effectively improve 
the accuracy and robustness of texture detection.  

The mentioned physical properties play a major role in the robotic grasping of the object. For 
instance, the robot needs to grasp the object with an appropriate grasping force so that the object is 
grasped tightly without slippage and damage. The object’s mass and texture provide the reference 
for the selection of grasping force. Furthermore, the object’s rigidity determines whether the object is 
a rigid object or a deformable object. For rigid objects, the deformation of objects is negligible. The 
LfD approach [76,78] could transfer the manipulation skill from human to robot, which enables a 
robot to manipulate objects with more flexibility. Skill-based programming [80–84] eases the robot 
program generation and enables the robot to complete varied object manipulation, such as grasping, 
picking, and assembly. This approach requires mastering in advance what the robot can accomplish. 
Moreover, the task-oriented network [86,88] builds a close relationship between object grasping and 
aimed tasks, which makes tasks easier to be completed by a robot. When it comes to deformable 
objects, the deformation of objects must be taken into account in the process of robotic grasping. 
Based on their geometry, deformable objects are classified into three categories, which are linear 
objects, planar objects, and 3D objects. The robotic grasping and manipulating approach for each type 
of deformable object are listed in Table 2. Most of the approaches are only applicable to specific 
objects; the generalization ability is not enough. In addition, the nonlinear physical model of 
deformation needs to be studied and the real-time performance also needs to be improved to adapt 
the time requirements of the working situation. 

Table 2. Feature sensing and robotic grasping for physical-uncertain objects. 

Sensing 
Mass 

estimation 
Force and torque [57], 3D force vector [59], Deep learning and STAG [60], Geometric outline-
mass model [62], Volume-mass model [63,64] 
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Rigidity 
prediction 

Motion analysis model [65], Flexible tactile-sensor array [66,67] 

Texture 
detection 

Higher order statistics [68], Edge-texture feature [69], Texture rendering model [70], Texture 
contour model [71], DMCA [72] 

Grasping 

Rigid 
objects 

LfD(CC-LfD [76], RGB-D observation-based demonstration [78]); Skill-based programming 
[80–84]; Task oriented-based grasping (RGB-D part-based [85], BADGr [86], TOG-Net [88]) 

Deformable 
objects 

Linear objects (Robotic individual skills [91], Flexible rope model [92]); Planar objects 
(Predefined parameter [95], Fiducial marker tracking [96], Mass–spring–damper model [97], 
Extended deformable model [98,99]); 3D objects (Point clouds [101], Tactile data [102,103], 
Kelvin–Voigt model [104], Finite-element model [105]) 

Unknown objects: Since there are too many uncertainties about the geometric and physical 
features of the object, this type of object is the most challenging for a robot to handle. In order to sense 
the object’s feature, the first step is to search and localize the object. As showed in Table 3, the 
reviewed approaches are classified into three categories, which are image-based approaches 
[107,108], point cloud-based approaches [109], and tactile perception-based approaches [110–112]. 
The first two approaches are relatively mature and could deal with the problem of multi-object search 
in a cluttered environment. The POMDP [108], extremum seeking strategy [107], and learning 
networks [109] are usually used in these approaches and the results are acceptable to a certain extent. 
However, these methods require a higher quality of images and point clouds. When the important 
features of the object, such as texture and shape, are obscured, the position accuracy may greatly 
decrease. In contrast, the tactile perception-based approach obtains the realistic position information 
of unknown objects through the sense of touch, as humans do. The decision-theoretic approach [110] 
guides robotic actions by tactile feedback to search the object, while the Bayesian-based approach 
[111] can solve the 6DoFs localization problem by the measurement of contact points. Moreover, the 
active approach proposed in [112] enables the robot to explore the whole workspace and calculates 
the 3D minimum bounding box of the object. However, the efficiency of this approach is not enough, 
and it is difficult to establish an accurate analytical model to evaluate the relationship between tactile 
data and object features. 

Table 3. Feature sensing and robotic grasping for unknown objects. 

Sensing 

Search & 
localization 

Image-based approaches (Extremum Seeking Control [107], POMDP [108]); Point cloud-
based approaches (PointFusion architecture [109]); Tactile perception-based approaches 
(Decision-theoretic approach [110], Bayesian-based approach [111], Active exploration 
approach [112]) 

Pose 
estimation 

DenseFusion [113], CNN [114], MOPED [115] 

Shape 
detection Information Gain Estimation [116], Monte Carlo tree [118] 

Other 
properties 

identification 

Color (Color descriptors [120], Hi-Erarchical Temporal Memory [121]); Mass (Approaches 
used for physical-uncertain objects could be extended to unknown objects); Material and 
Compactness (Not a very effective approach) 

Grasping 
Learning-

based 
grasping 

Hierarchical controller [122], Active learning [125], Deep reinforcement learning [126], 3D 
deep CNN [133], Sensors and learning networks-based approach [134] 

As the object’s position is obtained, the robot needs to identify more features of the object to 
support the robotic grasping. The approaches used for geometric-uncertain objects and physical-
uncertain objects could also be extended to unknown objects after the identification model is 
redesigned and optimized. For example, the MOPED [115] based on the Iterative Clustering 
Estimation algorithm can complete the multi-object pose estimation and detection. It addresses two 
main challenges, which are robust performance in complex scenarios and low latency for real-time 
operation. In addition, any characteristic of unknown objects is also valuable for object recognition. 
For instance, the unknown object’s color data from color sensors are helpful for the recognition of the 
object’s shape and pose [119,121]. The material is also significant for the identification of unknown 
objects; however, there is no highly effective way to detect the category of material—such as metal, 
plastic, glass, etc.—in the robotic field. There are two possible assumptions, which are Non-
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Destructive Testing Technology (NDTT) [136,137] and Ray Transmission Imaging Technology (RTIT) 
[138–140] and may be used to classify the material. In general, the NDTT is used for product defect 
detection; however, it may also be used for material detection. For instance, ultrasonic testing is an 
NDTT and is able to detect metal, nonmetal, and composite materials. The classification model needs 
to be further studied, and it identifies the type of material based on ultrasonic signals. The RTIT is 
usually used in security check occasions, especially in airports, stations, etc. The object’s shape and 
density information are easily obtained through the RTIT. Before identification, a material matching 
database needs to be established firstly, and then the category of material is classified based on the a 
priori knowledge of material categories. 

Although some features of unknown objects could be acquired through feature sensing, there 
are still errors between these features and real features. As a result, the robotic grasping approaches 
for familiar objects are not applied to unknown objects, and even approaches for geometric-uncertain 
objects and physical-uncertain objects are also hardly used in the robotic grasping of unknown 
objects. Inspired by humans, the grasping experience of familiar objects is significant for the grasping 
process of unknown objects. These experiences could improve the robustness of the grasping ability 
to uncertain properties. Learning-based approaches, such as active learning [125], deep reinforcement 
learning [126], and 3D deep CNN [133], play a significant role in experience transferring and are 
becoming a future trend to be more investigated. However, the learning-based approach is usually 
time-consuming because of the training and learning process based on a large database. As a result, 
it not suitable to deal with the sudden change in objects at industrial lines. Additionally, it does not 
overcome the object’s uncertain features. When it comes to the high-precision scenario, such as peg-
in-hole assembly with small clearance, these uncertain features may still have a converse impact on 
the accuracy of subsequent manipulation tasks. To solve this problem, a feasible way is that multiple 
types of sensors are used to provide more abundant information about the object. Especially with the 
development of sensor technology, the grasping approach based on learning networks and multi-
sensor fusion has attracted more attention. A typical approach is the sensors and learning networks-
based approach [134]. This type of approach is that the learning network generates an initial grasping 
configuration and the additional sensor is used to provide feedback information to correct the process 
of grasping. For instance, as the object is grasped based on the learning work, the grasper with finger 
tactile sensors detects the grasping state in real time. Then, the robot timely adjusts the grasping 
configuration according to the grasping state, which is helpful to improve the accuracy of the 
manipulation task. This way requires high real-time performance, which, in turn, imposes more 
requirements of the robot’s hardware and the complexity of the algorithms. 

Hopefully, this review will help researchers with the feature sensing and robotic grasping of 
objects with uncertain information. Since there are many differences between the test platform and 
the feature type of uncertain objects, it is impossible to choose an approach that has a good 
performance for all uncertain objects. For the grasp and manipulation of uncertain objects, there are 
several interesting problems to be more investigated in the future, including (a) the effective sensing 
approach for object’s unconventional features, such as irregular shape and real-time deformation; (b) 
the precise correlation model between object grasping and task manipulating; and (c) the real-time 
evaluation criteria for the degree of object grasping and task completion. 
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