
Open Research Online
The Open University’s repository of research publications
and other research outputs

Effective techniques for handling incomplete data using
decision trees
Thesis
How to cite:

Twala, Bhekisipho E.T.H. (2005). Effective techniques for handling incomplete data using decision trees. PhD
thesis. The Open University.

For guidance on citations see FAQs.

c© 2005 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

31 0287909 5

11111111 II

EFFECTIVE TECHNIQUES FOR HANDLING

INCOMPLETE DATA USING DECISION TREES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF STATISTICS

AT THE OPEN UNIVERSITY, MILTON KEYNES

IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Bhekisipho ETH Twala

January 2005

ft,..'1"'HoO((.. NO: ~ 8 '!>'3 "I, ~6
OPrf".e. of 'S1.4(~M.\-:'~IO""~ :l.1 ~~.I!fv"o~ '.toe~

() PrrE.. OF ~fl1'("(i': :;(e ~frT'o--oe. ... :l.oeQ5

© Copyright 2005

by

Bhekisipho ETH Twala

ii

This thesis is dedicated to the memories of my dad and three sisters -

Bhekithemba (1929-2002) Zanele (1966-1997), Hlengiwe (1971-1997) and

Nokuthula (1973-2001)

iii

Abstract

Decision Trees (DTs) have been recognized as one of the most successful formalisms

for knowledge representation and reasoning and are currently applied to a variety of

data mining or knowledge discovery applications, particularly for classification

problems. There are several efficient methods to learn a DT from data. However,

these methods are often limited to the assumption that data are complete.

In this thesis, some contributions to the field of machine learning and statistics that

solve the problem of extracting DTs for learning and classification tasks from

incomplete databases are presented. The methodology underlying the thesis blends

together well-established statistical theories with the most advanced techniques for

machine learning and automated reasoning with uncertainty.

The first contribution is the extensive simulations which study the impact of missing

data on predictive accuracy of existing DTs which can cope with missing values,

when missing values are in both the training and test sets or when they are in either

of the two sets. All simulations are performed under missing completely at random,

missing at random and informatively missing mechanisms and for different missing

data patterns and proportions.

The proposal of a simple, novel, yet effective proposed procedure for training and

testing using decision trees in the presence of missing data is the next contribution.

Original and simple splitting criteria for attribute selection in tree building are put

forward. The proposed technique is evaluated and validated in empirical tests over

many real world application domains. In this work, the proposed algorithm

maintains (sometimes exceeds) the outstanding accuracy of multiple imputation,

especially on datasets containing mixed attributes and purely nominal attributes.

Also, the proposed algorithm greatly improves in accuracy for 1M data. Another

major advantage of this method over multiple imputation is the important saving in

computational resources due to it simplicity.

iv

The next contribution is the proposal of three versions of simple probabilistic

techniques that could be used for classifying incomplete vectors using decision trees

based on complete data. The proposed procedure is superficially similar to that of

fractional cases but more effective. The experimental results demonstrate that these

approaches can achieve comparative quality to sophisticated algorithms like

multiple imputation and therefore are applicable to all kinds of datasets.

Finally, novel uses of two proposed ensemble procedures for handling incomplete

training and test data are proposed and discussed. The algorithms combine the two

best approaches either with resampling (REMIMIA) or without resampling

(EMIMIA) of the training data before growing the decision trees. Experiments are

used to evaluate and validate the success of the proposed ensemble methods with

respect to individual missing data techniques in the form of empirical tests.

EMIMIA attains the highest overall level of prediction accuracy.

v

Acknowledgements

Thanks Lord for making all things possible and for all the blessings you have

bestowed on me and my family. With every word on this thesis I give thee praise.

I always considered it trite and over-fulsome of thesis authors to list a full set of

people who were 'invaluable'; always, that is, until I wrote a thesis and realised just

how deeply I am in debt to the people listed below.

First and foremost, credits and very special thanks to my supervisor, Chris Jones, for

willing to take a chance with me and making this venture a reality, and without

whom this thesis would not have been possible. Writing this thesis was a blast. Our

concept from the beginning was to prepare a thesis that was different and fun

writing it. I feel like we succeeded on both counts. You are a master, as in

academia ... so in life!!! To thank you in perpetuity for all that you have done for me,

I proudly name the principal construction of this thesis - the CMJ series - after you.

To David Hand, sincerest thanks for your great talents, instinct, constant patience,

ideas, suggestions and great mind - it is indeed a pleasure to know you. Additional

special thanks and great appreciation to Allan White for your tremendous help,

thoughtful commentary, practical advice and for forcing me to think on my feet - it

has been both enlightening and entertaining!!! I am also thankful to Wray Buntine

for giving me a solid start, especially for encouraging me to learn about

implementation properly; and as I do theory, whip up a quick implementation to

back up things ... hence, in part, bringing that magic to research.

I would like to express my thanks to the Open University for giving me an

opportunity to do such a research I can be proud of and for contributing to a research

environment that has proven immensely rewarding. To all the members and staff of

the Statistics Department at the Open University - it never ceases to amaze me how

much the unique and incredible talents of each individual contribute to a thesis.

That helped bring this endeavour to life, thank you. I also thank all the members of

the 'Thunder Birds Team' (TBT). There will probably never be a time where the

vi

technology involved when writing a thesis will be snag free. I am so grateful that it

is you guys that deal with it instead of me!!!

Much love and respect to my officemates and "sisters", Mona Kanaan and Jane

Warwick (at least you can now think in S-PLUS!!!) for putting up with me for almost

three years, and for enriching my life immeasurably simply by being such

interesting and diverse people.

It gives me great pleasure to thank Martin Shepperd and Michelle Cartwright for

your endless patience and goodwill and in letting me finish this project.

Several teachers of statistics have influenced me profoundly at pivotal moments in

my early education. I wish to thank Antoni Szubarga for teaching me that the

essence of statistics is ideas - not notation!!! I still refer to the copy of M.H.

Degroot's book on "Probability and Statistics" which you gave me. I also wish to

express warm thanks to M.A. Ali for showing me statistics the way it was meant to

be done, and whetted my appetite for more. Like my current supervisor, you also

gave me extraordinary freedom to pursue my own interests as a graduate student. It

is no exaggeration to say that almost all of the results of this thesis are in some

respect fruits of the seeds planted during my time at the University of Swaziland,

and for this, I owe you a debt of gratitude. Additional thanks to Elkana (Ali)

Ngwenya for teaching me by his own shining example that the most important step

by far in any statistical problem-solving is finding the right point of view - the point

of view that makes things simple!! In retrospect, you introduced me to the "work

smarter, not harder" philosophy of statistics on which I have come to depend.

While at Salesian High School, I was fortunate to learn statistics from Eamon

Molloy. I thank you for encouraging me to pursue independent research even at this

early age, and for fostering my love of statistics for its own sake. Thank you, Eamon,

for launching me on the journey of a lifetime. It was a privilege to be in your class

and to have access to a statistician with a masters. I would also like to thank the

late Fr. Luke Boyle for his generous nature and for nurturing my development as a

high school student, and for enriching my life immeasurably.

vii

Now that I have recounted the entire history of my statistical upbringing, I have the

pleasure of acknowledging those who have provided me with the personal foundation

which has been so indispensable to my professional life.

First and foremost, grateful thanks to my mom (Siphiwe) and late dad

(Bhekithemba) whose love, understanding and bedrock of support has made my

academic career possible - without you none of this would have been possible. You

have always been the wind beneath my wings. Your patience and understanding

with the relentless demands of graduate study will surely earn you a place among

the Saints ofthe Ages!!!

Major domos to "my female team" at home; my wife and constant companion Ntonto,

and two lovely daughters, Okuhle (00) and Nobhekisipho (NoB) for putting up with

me, and for dealing on a daily basis with a crazy husband and dad. However, there

certainly is never a dull moment in our house. For the millionth time, thanks for

your patient kindness and love, and for never raising an eyebrow when I claimed my

thesis would be finished in the "'next two weeks" for nearly two years. You are all my

reasons for living. I will always cherish you.

Much love and happiness back to you, each of my sisters and all our relations; and to

all my nephews and nieces, wherever you are, "1 love you!!"

Finally, I also remain truly grateful for the wealth of support and talent I shared

with so many researchers, friends, and colleagues. Thanks for bringing gourmet

dishes to the research table. You are as solid as they come, not only in your craft, but

as people.

Is that everyone??

I alone remain responsible for the content of the following, including any errors or

omissions which may unwittingly remain.

"Sometimes a scream is better than a thesis."

-Ralph Waldo Emerson

viii

Table of Contents

CHAPTER 1 INTRODUCTION AND BACKGROUND

1.1 The Meaning of Learning

1.2 The Philosophy of Induction

1.3 Problems with Machine Learning

1.3.1 Noise and Overfitting

1.3.2 Missing Values

1.3.3 Bias

1.3.4 Learning as Search

1.3.5 Other Problems

1.4 Aims and Outline of the Thesis

CHAPTER 2 CLASSIFICATION AND DECISION TREES

2.1 Discriminant Functions

2.1.1 Linear Discriminant Analysis

2.1.2 Logistic Discriminant Analysis

2.1.3 The Multinomial Logit Model

2.2 Density Estimation Methods

2.3 Nearest Neighbour Methods

2.4 Support Vector Machines

2.5 Artificial Neural Networks

2.6 A 'NaIve' Bayes Classifier

2.7 Rule Induction

2.8 Decision Trees

IX

1

3

5

8

8

9

10

10

11

11

14

16

17

19

21

22

24

25

27

29

31

33

2.8.1 Splitting Rules

2.8.1.1 Information Gain Measure

2.8.1.2 Gain Ratio Measure

2.8.1.3 The GINI Index of Impurity

2.8.1.4 Chi-Square Statistic

2.8.1.5 Normalised Information Gain

2.8.1.6 Other Splitting Measures

2.8.2 Stopping Rules

2.8.3 Pruning Rules

2.8.3.1

2.8.3.2

2.8.3.3

2.8.3.4

2.8.3.5

2.8.3.6

Minimum Cost Complexity Pruning

Pessimistic Pruning

Minimum Error Pruning

Reduced Error Pruning

Error-Based Pruning

Other Pruning Procedures

2.8.4 Classification and Error Rates

2.8.5 Decision Tree Algorithms

2.8.5.1

2.8.5.2

2.8.5.3

2.8.5.4

2.8.5.5

2.8.5.6

2.8.5.7

ID3

C4.5

See5/C5.0

CART

Other Systems

Further Systems

Strengths and Weaknesses of Decision Tree Methods

x

40

42

43

44

46

46

48

49

49

50

52

51

53

52

53

55

57

59

60

62

63

64

67

70

CHAPTER 3 MISSING VALUES

3.1 Overview and Problems Caused by Incomplete Data

3.2 Type of Missing Data Mechanisms

3.3 General Approaches to Dealing with Missing Data

3.3.1 Ignoring and Discarding Data

3.3.1.1 Listwise Deletion

3.3.1.2 Pairwise Deletion

3.3.1.3 Re-weighting

3.3.2 Imputation Techniques

3.3.2.1 Single Imputation Techniques

3.3.2.1.1 Mean or mode imputation

3.3.2.1.2 Hot deck imputation

3.3.2.1.3 Regression-based imputation

3.3.2.1.4 Expectation maximization

3.3.2.1.5 Full information maximum likelihood

3.3.2.1.6 Other single imputation techniques

3.3.2.2 Multiple Imputation

3.4 Decision Trees and Missing Data

3.4.1 Imputation Techniques

3.4.1.1 Single Imputation Techniques

3.4.1.1.1 Mean or mode imputation

3.4.1.1.2 Conditioning on class imputation

3.4.1.1.3 ''New'' category level

3.4.1.1.4 Attribute value matching imputation

3.4.1.1.5 All possible values imputation

xi

73

73

75

81

81

81

82

83

84

85

85

86

87

88

91

93

94

97

98

98

98

98

98

100

100

3.4.1.1.6 Unordered decision tree imputation

3.4.1.1.7 Ordered decision tree imputation

3.4.1.1.8 Bayesian imputation

3.4.1.2 Multiple Imputation

3.4.2 Machine Learning Techniques

3.4.2.1 Surrogate Variable Splitting

3.4.2.2 Fractioning of Cases

3.4.2.3 Dynamic Path Generation

3.4.3 Other Methods 110

CHAPTER 4 EXPERIMENTS WITH CURRENT METHODS

4.1 Introduction

4.2 Related Work

4.3 General Experimental Set-Up

4.3.1 Datasets

4.4 Experimental Results

4.4.1 Overall Results - Incomplete Training and Test Data

4.4.1.1 Results for Individual Data Sets - Incomplete Training and
Test Data

101

102

102

104

105

105

108

109

112

112

112

118

128

134

135

140

4.4.1.1.1 Results on a dataset with purely numerical attributes 140

4.4.1.1.2 Results on a dataset with purely nominal attributes 141

4.4.1.1.3 Results on a dataset with mixed attributes 144

4.4.2 Overall Results - Incomplete Training Only

4.4.3 Overall Results - Incomplete Test Data Only

4.4.3.1 Supplementary Experiment and Results

4.5 Discussion

xii

144

148

150

151

CHAPTER 5 MORE ON THE PROBLEM OF BUILDING DECISION

TREES USING INCOMPLETE VECTORS AND

CLASS~GINCOMPLETE

TREES

5.1 Introduction

VECTORS USING

5.2 Building Decision Trees Using Incomplete Vectors and Classifying
Incomplete
Vectors Using Trees - Proposed Procedure

5.2.1 Learning Phase

5.2.2 Classification Phase

5.2.3 Illustration

5.3 Experimental Set-Up

5.4 Experimental Results

157

157

159

159

161

162

165

165

5.4.1 Overall Results - Current Vs. New Methods 166

5.4.2 Results for Individual Datasets - Current Vs. New Methods 168

5.4.2.1 Results on a Dataset with Purely Numerical Attributes 169

5.4.2.2 Results on a Dataset with Purely Nominal Attributes 170

5.4.2.3 Results on a Dataset with Mixed Attributes 171

5.4.3 Current and New Methods: Processing Time

5.5 Discussion

CHAPTER 6 MORE ON THE PROBLEM OF CLASSIFYING
INCOMPLETE VECTORS USING TREES

6.1 Introduction

6.2 Classifying Incomplete Vectors - Proposed Procedure

173

175

178

178

180

6.2.1 The Full Estimation of Probabilities from Training Set 184

6.2.2 Approximation of Probabilities by Related Probabilities Estimated
from Decision Tree 185

xiii

6.2.3 The Full Estimation of Probabilities from Training Set Using

Binary and Multinomial Logit Models

6.3 Experimental Set-Up

6.4 Experimental Results

188

192

193

6.4.1 Overall Results - Current Vs. New Testing Methods 193

6.4.2 Results for Individual Datasets - Current Vs. New Testing
Methods 196

6.4.2.1 Results on a Dataset with Purely Nominal Attributes 196

6.4.2.2 Results on a Dataset with Mixed Attributes 198

6.4.3 Current and New Testing Methods: Processing Time 199

6.5 Discussion 202

CHAPTER 7 ENSEMBLE METHODS AND DECISION TREES 207

7.1 Introduction

7.2 Combining Missing Data Techniques within the Mechanism of
Growing and Testing Decision Trees

7.2.1 EMIMIA Technique

7.2.2 REMIMIA Technique

7.3 Experimental Set-Up

7.4 Experimental Results

7.4.1 Overall Results - Ensembles Vs. Current and Proposed Missing

207

208

208

209

211

211

Data Methods 211

7.4.2 Current, Proposed and Ensembles of Missing Data techniques:
Processing Time

7.5 Discussion

CHAPTER 8 CONCLUDING REMARKS

8.1 Research Findings

8.1.1 Current Methods

xiv

213

216

218

218

218

8.1.2 Current Vs. New Methods 221

8.1.3 A Further Idea for Classifying Incomplete Vectors Using Trees 222

8.1.4 Ensemble Methods 223

8.2 Summary of Contributions 224

REFERENCES 226

APPENDIX 250

xv

List of Figures

1.1 A machine learning diagram 4

1.2 A decision tree framework 4

1.3 An induction learning framework 7

2.1 A "naIve" Bayes' classifier 30

2.2 (a) Example of a binary decision tree for a four~dimensional feature

space 37

2.2 (b) Hierarchical partitioning of the two-dimensional space induced by
the decision tree offigure 2.6(a) 37

2.3 The decision tree induction algorithm 39

4.1 Effects of missing values in training and test data on the error for
methods over 21 domains 136

4.2 Comparison for training and testing methods: confidence intervals of
mean error rates 137

4.3 Overall means for number of attributes with missing values 137

4.4 Overall means for missing data proportions 137

4.5 Overall means for missing data mechanisms 138

4.6 Interaction between methods and number of attributes with missing
values 139

4.7 Interaction between methods and proportion of missing values 139

4.8 Interaction between methods and missing data mechanisms 139

4.9 Interaction between number of attributes with missing values and
proportion of missing values 139

4.10 Comparative results of methods for the letter dataset 141

4.11 Comparative results of methods for kr-vs-kp dataset 142

4.12 Comparative results of methods for german dataset 143

xvi

4.13 Effects of missing values in training data on the error for methods
over 21 domains 145

4.14 Comparison for training methods: confidence intervals of mean error
rates 146

4.15 Overall means for number of attributes with missing values in training

set 146

4.16 Overall means for missing data proportions (training methods) 146

4.17 Overall means for missing data mechanisms (training methods) 147

4.18 Interaction between number of attributes with missing values and
proportions of missing values in training set 147

4.19 Effects of missing values in test data on the excess error for methods
over 21domains 148

4.20 Comparison for testing methods: confidence intervals of mean error
rates 150

5.1 Standard algorithm for feature selection 161

5.2 A proposed algorithm for feature selection with unknown attribute
values 161

5.3 An artificial example of a simple binary decision tree which allows
'missing' to be a possible choice on the tree 164

5.4 Effects of missing values in training and test data on error of current
and new testing methods 166

5.5 Comparison for current and new methods: confidence intervals of mean
error rates based on pooled standard deviation 167

5.6 Interaction between the number of attributes with missing values and
missing data mechanisms 168

5.7 Comparative results of current and proposed methods for the letter
dataset 169

5.8 Comparative results of current and proposed methods for the kr-vs-kp
dataset 171

5.9 Comparative results of current and proposed methods for the german
dataset 172

xvii

6.1 Example of a binary decision tree from a set of 40 training instances
that are represented by three attributes and accompanied by two
classes 183

6.2 Effects of missing values in test data on excess error current and new
testing methods over 21 domains 194

6.3 Comparison for current and new testing methods: confidence intervals
of mean error rates 195

6.4 Comparative results of current and new testing methods for the
kr-vs-kp dataset 197

6.5 Comparative results of current and proposed testing methods for the
zoo dataset 198

7.1 The EMIMIA algorithm 209

7.2 The REMIMIA algorithm 210

7.3 Effects of missing values in training and test data on the excess error
for ensemble and missing data methods over 21 domains 212

7.4 Overall means for current, proposed and ensemble methods 213

xviii

List of Tables

2.1 Attribute variables and values 35

2.2 Artificial outlook dataset 36

3.1 Missing data hierarchy 78

4.1 Missing data techniques to be investigated 119

4.2 Partitioning of dataset to training and test sets 121

4.3 Datasets used for the experiments 129

5.1 Artificial dataset with missing values on attributes AI and A3 162

5.4 Processing time (in seconds) for current and proposed methods for
selected datasets 174

6.1 Artificial dataset 183

6.2 Processing time (in seconds) for current and proposed testing methods
for selected datasets 201

7.1 An example pattern table 209

7.2 Processing time (in seconds) for current, proposed and ensemble
methods for selected datasets 215

xix

Chapter 1

Introduction and Background

Machine Learning (ML), which has been making great progress in many directions,

is the hallmark of machine intelligence just as human learning is the hallmark of

human intelligence. The ability to learn from observations and experience seems to

be crucial for any intelligent being. Likewise, ML plays a central role in Artificial

Intelligence research (Holland, 1975; Winston, 1992; Patterson 1996) and has

reached a certain level of maturity. It has been heralded as the next revolution in

learning systems by some experts in the area--but dubbed an OXYmoron by others.

ML is inspired by work in several disciplines. These include computer science,

mathematics, psychology, (neuro) biology/genetics, philosophy and among other

areas.

Common goals and similar evaluation methods drive ML research. The main aim is

to improve performance on some task, and the general approach is finding and

exploiting some regularities in training or learning data. The goals driving ML

research can be psychological (understanding human learning); empirical (to

discover principles relating algorithm characteristics); mathematical (to analyse

what concepts are learnable at all); and applications (to use the learning system and

results of learning in a real-world situation).

Recently, ML research (Hart, 1984; Michalski, 1986; Forsyth and Rada, 1986;

Winston, 1992; Michie et al., 1994; Langley, 1996; Mitchell, 1997; Barry and Linoff,

1997) has begun to payoff in many ways. ML methods are being successfully

integrated with powerful performance systems and more established techniques

have already made their presence felt. Recent successes in ML and statistics include

neural network learning, Bayesian network learning, instance-based or case-based

learning, genetic algorithm learning, analytic learning and rule induction, and so on.

To date the above could be identified as the six basic ML paradigms under active

investigation. These paradigms emerged from different scientific roots; differ in their

1

assumptions about the representation, performance and assessment methods, and

algorithms used in a learning system. They employ different computational

methods, and often rely on subtly different ways of evaluating success, although all

share the common goal of building machines that can learn in significant ways for a

wide variety of task domains.

ML paradigm techniques are also being applied to new kinds of problems including

knowledge discovery in databases, language processing, robot control, and

combinatorial optimisation as well as more traditional problems such as speech

recognition, face recognition, handwriting recognition, medical data analysis, game

playing, discrimination, classification, and so on. Some ML paradigms, like rule

induction, which employ decision trees (DTs), are specifically designed to deal with

uncertainty and are currently applied in a variety of data mininglknowledge

discovery/statistical modelling applications, particularly for classification problems.

These are the type of problems that are covered in this thesis.

Classification rules (or classifiers) are used to predict the corresponding class of an

example, where the class is some discrete variable of practical importance. An

application of classification using decision trees is when a bank makes a credit

decision or considers giving loans to its customers. This is done by a set of rules that

classify each loan applicant as low, medium or high risk, using data collected about

previous customers together with if the loans were good, bad or worse. Such rules

are called classification rules and the data on old customers is called the training

sample of classified cases (training set) from which the classification rules are

discovered. These classification rules can then be used to discover the group a new

customer belongs to. The main question is whether the objects fall into groups or

clusters, as against more haphazardly scattered over the domain of variation.

Despite the success of ML research, there are some problems that currently exist

within the ML community. These include bias, overfitting, noise, incomplete data,

uncertainty, learning as search, and so on. Some of these problems are discussed

briefly in Section 1.3.

2

1.1 The Meaning of Learning

To learn means to add something to a body of knowledge, a body that in the extreme

might be empty. Learning can be thought of as an interaction between two logically

distinct entities, the learner, L, and the supervisor or teacher, T. Learning

situations differ in the degree to which the responsibilities of these two entries are

functionally separate. The responsibilities of T can be thought of as providing

examples or occasions for L, providing a feedback concerning the correctness of L's

response to an example and providing a sequence or ordering in which the examples

are to be presented to L. The responsibilities of L can be thought of as providing a

response or answer to each example presented or modifying its knowledge

appropriately based on feedback from T concerning the correctness of its answer.

Without learning, everything is new. Hence, it could be argued that a system that

cannot learn is inefficient because it re-derives each solution and repeatedly makes

the same mistakes.

A learning system uses sample data to generate an updated basis for improved

performance on subsequent data from the same source, and expresses the new basis

in intelligible symbolic form (Michie et al., 1994). Early attempts to devise learning

systems during the cybernetic days of AI proved disappointing, so the whole idea

was dropped. Only recently has it been revived. Most, however, would still agree

that ML has not lived up to the hype and expectations that began a few years ago

even though there have been some advances in this field.

When a computer system improves its performance, without re-programming, it can

be said to have learned something. Two of the most central goals of any learning

algorithm are to provide more accurate solutions and to cover a wide range of

problems that seem to require intelligence, respectively. Other minor goals could be

to obtain answers economically and to simplify codified knowledge (Forsyth et al.,

1994).

All systems designed to modify and improve their performance share important

features. A typical machine learning system does not interact directly with its

3

environment. It uses "coded" observations of this environment to learn about it. Fig.

1.1 depicts a framework for a typical machine learning system. The environment E

represents the real world, the environment that is learned about. E represents a

finite number of observations, or objects, that are encoded in some machine learning

readable format by the encoder C. The set of encoded observations is the training set

for the learning algorithm ML.

Environment Encoder
(E) (C)

Fig. 1.1. machine learning diagram

Machine Learning
(ML)

Most ML algorithms use a training set of examples as the basis for learning. During

the learning phase, the system does not interact directly with its environment (also

called a model or a classifier for classification problems), but uses coded

observations, often stored in a set of labelled examples - called the training set. The

notion of a training set is important in understanding how a machine learning

system is tested. Typically there is a database of examples for which the solutions

are known. The system works through these instances and derives a rule or set of

rules for associating input descriptions with output decisions (Forsyth and Rada,

1986).

The general framework for a tree classifier, Figure 1.2 is a variation of the machine

learning framework.

Data Set
(Data Table)

Search Algorithm
(Hill-climbing)

Fig. 1.2. A decision tree framework

Predictive Model
(Decision Rule)

The first step is to select the types of data that will be used by the mining algorithm

(decision tree). The search procedure is part of the system that carries out the task.

4

It explores the search space defined by a set of possible representations. Associated

with each search strategy is the evaluation component or function that can be used

to estimate the distance from the current state to the goal state. If these estimates

are computed at each choice point, then they can be used as a basis for choice. It is

worth mentioning that such a type of framework could apply within different

research communities. For an example, statisticians would allow models to be used

for estimation purposes (as a search procedure), like, utilising the maximum

likelihood (ML) for estimating missing values. Recently, Hand et al. (2001) have

shown how such a framework could apply for data mining.

Two learning techniques are of special interest. In supervised learning, the system

searches for descriptions for the user-defined classes (training examples with the

correct classification for each example are given). In unsupervised learning the

system constructs the summary of the training set as a set of newly discovered

classes, together with their descriptions (training examples without classifications

are given).

1.2 The Philosophy of Induction

Before discussing further how systems are made to learn it is important that the

philosophers' and psychologists' thoughts about the subject be looked at.

Most learning systems are based on the general principle of induction, i.e. the

reasoning technique to infer information that is generalised from the information in

the database.

Both philosophers and psychologists have formulated laws by examination of several

pathological situations caused by multiple comparison procedures (induction). They

have looked at the part played by inductive reasoning in knowledge discovery and

have attempted to find rational grounds to validate them.

A typical act of induction is one about treatments used in the medical community,

whereby scientific evidence comes from clinical trials, but then an induction step is

needed to argue that the drug can help people who are not in the trial.

5

Another act of induction is the psychic watch repair. A self-proclaimed psychic, Uri

Geller, claimed to start previously-broken watches running using his psychic

powers. A wonderful story has been heard (though not been able to verify) about how

he asked the listening audience of a radio show to place watches on the radio and he

would reach out with his psychic powers and start them running. Many listeners

then called the station to say that their watches had started to run. However, the

number who tried and failed is not known nor the number who could have placed

their watch on the radio at another time and had it start running.

Another old favourite is the sunrise "problem"; the sun always rises from the East

and set in the West. Never in living memory has anyone seen it do anything else.

Throughout recorded history it has always risen in the East and set in the West.

Thus, it will do so tomorrow as well.

Hidden prophecies in text is another act of induction. Recent controversy over the

book "The Bible Code" has shown that searching over many possible "skip codes" can

find apparent hidden messages in any text, not just the bible. Examples are the

Microsoft License Agreement and Tolstoy's War and Peace.

Lateral thinking could also be an act of induction, especially to human-problem

solving. A good example is of a merchant who owes money to a money lender and

agrees to settle the debt based upon the choice of two stones (one black, one white)

from a money bag. If his daughter chooses the white stone, the debt is cancelled; if

she picks the black stone, the moneylender gets the merchant's daughter. However,

the moneylender "fixes" the outcome by putting two black stones in the bag. The

daughter sees this and when she picks a stone out of the bag, immediately drops it

onto the path full of other stones. She then points out that the stone she picked must

have been the opposite colour of the one remaining in the bag. Unwilling to be

unveiled as dishonest, the moneylender must agree and cancel the debt. The

daughter has solved an intractable problem through the use of lateral thinking.

Even though both acts of induction are of common sense, that does not mean they

are necessarily valid - not because the sun would be expected to rise from the West

and set in the East or not expect watches to run because of someone's psychic

6

powers. Crucial assumptions are needed to justify them. This is one important

reason why many philosophers are devoting a lot of attention to the problems of

induction these days.

" ... it is the peculiar and perpetual error of human intellect to be more excited by

affirmatives than by negatives; whereas it ought properly to hold itself indifferently

disposed towards both alike. Indeed in the establishment of any true axiom, the

negative instance is the more forcible of the two" (See Hart, 1984)

The problem addressed by an inductive-learning system (as shown in Figure 1.2) is

to take a collection of labelled "training" data and form rules that make accurate

predictions on future data. Inductive learning is particularly suitable in the context

of an automated design system because training data can be generated in an

automated fashion. For example, one can choose a set of training goals (a training

goal is a design goal used for training purposes) and perform an optimisation for all

combinations of training goals and library prototypes.

EXPERIENCE INFERENCE BELIEF
• Data • Learning • Knowledge
• Examples • Training • Discovery

~ f--

• Instances f-- • Evaluation I-- • Understanding
• Cases • Search • Models

Fig. 1.3. An induction learning framework

One can then construct a table that records which prototype was best for each

training goal. This table can be used by the inductive-learning algorithm to generate

rules mapping the space of all possible goals into the set of prototypes in the library.

If learning is successful, this mapping interpolates or extrapolates from the training

data and can be used successfully in future design sessions to map each new goal

into an appropriate initial prototype in the design library.

7

1.3 Problems in Machine Learning

There have been a variety of problems that have been the focus of research in the

ML community. The most commonly referred to problems shall now be reviewed,

even though much work has been spent during the last years to handle them. Also,

some of these problems are strongly related to each other, and these relationships

have led to considerable attention being devoted to them.

1.3.1 Noise and Overfitting

One problem is that large amounts of data are needed for inductive learning. In

many real problems there is a degree of uncertainty or error (imperfection) present

in the data. These could lead to errors in the classification process. One source of

uncertainty is that of random errors or "noise" which is inevitable. There are many

kinds of "noise" that could occur in the examples. These include errors, spurious

correlations (Le. correlations that are due mostly to the influences of one or more

"other" variables), attributes that are not recorded, two examples having the same

attribute/value pairs but different classifications, some values of attributes being

incorrect because of errors in the data acquisition process or the processing phase,

values of attributes being missing, and the classification or class label being wrong

(for example, 1 instead of 2) because of some error. Monago and Kodratofi (1987)

present a more detailed analysis of the sources of noise in data.

The next problem is also related to unnecessary attributes (which can be caused by

noise) which, besides making no contribution to the predictive performance of the

learning system, will simultaneously impose an extra computational burden. This

situation is generally referred to as overfitting (Schaffer, 1993; Forsyth et al., 1994;

Cohen and Jensen, 1997), i.e. overfitting the training example data. For example, if

the hypothesis space has many dimensions because of a large number of attributes,

meaningless regularity maybe be found in the data that is irrelevant to the true,

important, distinguishing features. Overfitting is harmful for several reasons. First,

overfitted models are incorrect; they indicate that some variables are related when

they are not. Second, overfitted models are difficult to understand due to the

8

unnecessary component that complicates attempts to integrate induced models with

existing knowledge derived from other sources, and overfitting avoidance has

sometimes been justified solely on the grounds of producing comprehensible models.

Finally, overfitted models can have lower accuracy on new data than models that are

not overfitted as demonstrated with a variety of domains and systems by Quinlan

(1987).

In the area of decision tree learning, overfitting is avoided or fixed, to a certain

extent, by: 1) Termination of tree growth when further splitting the data does not

yield a statistically significant improvement or by 2) Growing a full tree, then

pruning the tree by eliminating nodes. In practice the latter approach has been more

successful.

1.3.2 Missing Values

Another problem that is related to noise is that of incomplete data or missing values.

The presence of missing values is commonplace in large real-world databases. This

has become one of the most important problems in academic research since most

learning systems and statistical analysis were in the early stages not designed to

handle missing data (incomplete vectors). There are several reasons why there are

missing values in data. An item could be missing because it was unavailable or

arises by "default" in data recording activities. Missing values could also occur

because of confusing questions in the data gathering or because of sensor

malfunction. In some situations the missingness could be caused by the

relationships between the attribute variables themselves. That is, the information

that is missing on a given attribute variable could be as a result of its relation to

values of other attribute variables in the data set. An extreme case is that the

missing value could be as result of its relation to an unobserved (missing value) in

the data set.

Both large and small amounts of missing and/or faulty details in data might mislead

the learning process and have an influence in various statistical measures, yet not a

lot of work has been done in the research field.

9

1.3.3 Bias

The importance of bias has received a lot of attention over the last few years.

By definition, the bias of an estimator is the difference between its mean and the

true value. Suppose that there is a function f(x) = Y to learn given some sample

(X, Y) pairs. There are several hypotheses that could be made about this function. A

preference for one hypothesis over the others reveals the bias of the learning system.

For example to prefer piece-wise functions or prefer smooth functions or prefer

simple functions and treat outliers as noise.

Utgoff (1996) introduced several notions of biases. These are: good bias (which is

appropriate to learn the actual concept), strong bias (restricts the search space

considerably but is independent of appropriateness), declarative bias (defined

declaratively as opposed to procedurally) and preference bias (bias that is

implemented as soft preference rather definite restrictions to the search space).

Extensions to the problem of bias can be found in Haussler (1988) and Ripley (1996).

In medical statistics bias could define a systematic disposition of certain trial

designs to produce results consistently better or worse than other trial designs.

Hence, wherever bias is found it results in a large over-estimation of the effect of

treatments. For example, a poor trial design makes treatments look better than they

really are. It can even make them look as if they work when actually they do not

work. This is why good guides to systematic review suggest strategies for bias

minimisation by avoiding including trials with known sources of bias.

1.3.4 Learning and Search

This is one other important problem that has to be taken into account when

developing learning search systems. Search is a fundamental problem solving

technique employed by human beings and also by computers. As a search problem, a

search through all possible functions or rules is carried out to see which best

accounts for the example data. Whenever there are several possibilities to continue

10

from a certain point and there is no way to determine in advance what possibility

will lead to the intended goal then a search is performed.

Search problems are common place in ML research. Usually the search approaches

employed by computer systems are not the same problem solving approaches that

people use and therefore it is not obvious how the learning process of people can be

transferred to the search approaches. It is also unclear within the ML community as

to what set of goals a learning system should be searching for. In fact, in general the

'search space' is very large and impractical. So, inductive learning is about clever

ways of managing search for possible rules. This search problem arises in DT

induction during the splitting and/or pruning stages.

1.3.5 Other Problems
There are some other common problems in ML research like residual variation

(where extraneous factors that are not recorded affect the results leading to

unexplained variability in terms of the available data). There is also the problem of

how to integrate already existing background knowledge into the learning process.

Another problem is, if a system learns only from what the system has already seen,

there is no guarantee that what has been learned will be correct for all future

unseen situations.

1.4 Aims and Outline of the Thesis
This thesis addresses the problem of dealing with missing data in the context of

supervised learning for classification tasks using decision trees. The attractiveness

of decision trees is due to the fact that, in contrast to other tools for classification

and prediction, decision trees represent rules. Rules can readily be expressed so that

humans can understand them or they can even directly be used to discover

regularities and improved futUre decisions by using historical data (data mining,

knowledge discovery from databases, machine learning or advanced data analysis).

Hence, decision trees could be considered as one of the generation of data mining

algorithms.

11

Unfortunately, when constructing tree classifiers one must deal with the problem of

missing data (incomplete attribute vectors). New techniques for rule extraction with

DTs for classification tasks from possibly incomplete databases are explored and

developed and are shown to perform reasonably well compared to other approaches

previously proposed. For tree classifiers, two cases can be distinguished: first,

growing (training) trees from incomplete data; secondly, classifying (testing) a new

incomplete vector.

In the introduction the issues and importance of ML research and the most

prominent paradigms were reviewed. The most commonly referred to problems in

the ML community were also looked at. The conclusions in Chapter 8 shall give the

reader some answers to the open questions that had been raised during the thesis

work.

Chapter 2 contains a basic introduction to relevant methods of supervised learning

and how such methods have been used for classification tasks. The main focus is on

tree classifiers. Current leading tree learning methods such as Classification and

Regression Trees (CART) and C4.5 and other methods are reviewed.

The missing value problem and the important definitions of missingness in data are

presented in Chapter 3. The second part of Chapter 3 reviews tree learning

techniques that have been used for dealing with missing values for both the training

and test cases. The thesis to this stage consists almost entirely of review material.

A number of experiments and ideas are reported in Chapter 4. Twenty one datasets

are used for these experiments. The first part of Chapter 4 starts with an

experiment comparing the performance of various current techniques used for

handling incomplete data given various missing proportions on both training and

test data, and using three missing data mechanisms. The effect that incomplete

training data have on predictive accuracy is explored in the second part of Chapter

4. The results of the simulation when looking at the impact of missing values when

they occur only in the test set are presented in the third part of Chapter 4. The

chapter is closed with a discussion of results.

12

In Chapter 5 an idea of constructing tree classifiers using incomplete training

vectors and classifying incomplete vectors using trees is proposed. The performance

of the new idea is compared with two current approaches previously proposed to deal

with the problem and which achieved higher accuracy rates in experiments carried

out in Chapter 4.

Chapter 6 presents a new probabilistic technique for classifying incomplete vectors.

This new technique is in a form of three probability estimation methods. Once again,

a series of experiments are carried out to analyse the performance of the new

methods with the two best techniques previously proposed approaches to deal with

the problem of incomplete test data (based on the simulation study carried out in

Chapter 4).

Novel uses of two new ensemble procedures for handling incomplete training and

test data are proposed and discussed in Chapter 7. Experiments are used to evaluate

and validate the success of the new ensemble methods with respect to individual

missing data techniques in the form of empirical tests.

13

Chapter 2

Classification and Decision Trees

Classification has two meanings in the statistical literature. It is concerned with

assigning a sample to one of a set of previously recognised classes, on the one hand,

and the construction and description of the classes themselves, on the other hand

(Gordon, 1981; Gower, 1998). There are therefore two types of classification

problems; supervised classification and unsupervised classification.

In supervised learning, for multivariate data, a classification function y = ft:x) from

training examples of the form {(Xl' Yl)' ... ' (Xm' Ym)}' predicts one (or more) output

attribute(s) or dependent variable(s) given the values of the input attributes of the

form (x, ft:x». The Xi values are vectors of the form {xil, ... xiJJwhose components can

be numerically ordered, nominal, or ordinal. The y values are drawn from a discrete

set of classes n, ... , K} in the case of classification. Depending on the usage, the

prediction can be "definite" or probabilistic over possible values. Given a set of

training examples and any given prior probabilities and misclassification costs, a

learning algorithm outputs a classifier. The classifier is an hypothesis about the true

classification function that is learned from, or fitted to, training data. The classifier

is then tested on test data.

In contrast, the aim of unsupervised learning (clustering) is to formulate a class

structure, i.e., to decide how many classes there are as well as assigning instances to

their appropriate classes. For unsupervised classification, there is no such model

and the number of classes (clusters, categories, groups, species, types, and so on) and

the specifications of the classes are not defined or given. This type of classification

problem identifies occurring structures in nature and it is variously known as

cluster analysis (Wishart, 1999), Bayesian clustering (Stutz and Cheeseman, 1995),

mixture modelling (McLachlan and Basford, 1988; McLachlan and Peel, 2000),

intrinsic classification (Wallace, 1998) numerical taxonomy (Cohen and Martin,

14

1997), vector quantization (Gammerman et al., 1995), unsupervised pattern

recognition and unsupervised classification in different disciplines (Ripley, 1996).

This thesis focuses on supervised learning.

The most common types of predictor variables are now briefly defined.

A variable is continuous if its values are ordered, without a set of predefined values.

Optionally a lower or upper bound can be specified for it. An example for such a

variable is distance. which take values from a certain range. A discrete variable is

characterized by predefined sets of numerical values. An example for a discrete

variable is age. This variable takes values from the set {O, 1.2 •...• 130}; A variable is

nominal if it takes values in a finite set not having any natural ordering such as hair

colour. marital status. and so on. A list of students in alphabetical order. a list of

favourite cartoon characters, or the names on an organizational chart would all be

classified as ordinal data. Boolean variables are binary and only have one possible

cutting point. Because of this fact. it does not matter whether they are treated as

ordered or nominal variables; A variable is ordinal if it takes values in a finite set

whose values possess a clear ordering from greatest to lowest but the absolute

distances among them is unknown. For example. Likert scales, Thurstone technique.

preference scale. severity of an injury. and so on.

A wide range of algorithms in both classical statistics and from various ML

paradigms have been developed for this task of supervised classification. These

methods include linear or logistic discriminant analysis (Fisher, 1936; Cox, 1966;

Hand, 1981; Krzanowski. 1990; McLachlan. 1992). logistic regression (Hosmer and

Lameshow. 1989; Agresti. 1990; McCullagh and NeIder. 1990; Collett. 1991). density

estimation (Silverman. 1986; Wand and Jones. 1995). memory-based reasoning

which consists of variations on the nearest neighbour techniques (Cover and Hart.

1967; Dasrathy. 1991; Hand. 1997). DTs (Breiman et al.. 1984; Quinlan. 1993),

neural networks (Ripley. 1996; Patterson, 1996). genetic learning (Grefenstette.

1991; Koza. 1992). association rules (Pearl. 1988; 1994; Agrawal et al .• 1993). rule

induction (Clark and Boswell. 1991; Cohen. 1995). support vector machines (Vapkin.

1995; Burges. 1998). nslve Bayes classifier (Kononenko. 1991; Langley and Sage.

15

1994; Zheng and Webb, 1997) and so on. These methods are described in the

following sections.

2.1 Discriminant Functions
Discrimination is the assignment of samples or the process of deriving classification

rules from samples of classified objects. This assignment of samples can either be

probabilistic or non-probabilistic (Gower, 1998). Distances between pairs of

observations, between pairs of populations or between an observation and a

population form the basis of many methods of multivariate analysis. The

Mahalanobis and Euclidean distances are the two most widely used, especially for

continuous data. Discrimination functions, which have received lots of attention in

recent years, are one type of rules that are based on the Mahalanobis distance.

Discriminant Analysis (Fisher, 1936; Mardia et al., 1979; Kendall, 1980; Hand, 1981;

1982; Dillon and Goldstein, 1984; Krzanowski, 1990; Everitt and Dunn, 1991;

McLachlan, 1992) is a parametric method that is concerned with the problem of

allocating an individual to one of the set of populations, on the basis of knowledge

about those populations derived from the samples. Its main use is to predict

membership in two or more mutually exclusive groups from a set of predictors, when

there is no natural ordering on the groups.

Given a partition space (0), let P(CJX') denote the probability that a feature vector

x belongs to class i denoted C;. Any function that computes p(CilX') is denoted a

discriminant function (Duda and Hart, 1973; Hand, 1981; 1997).

Bayes theorem is applied to compute p(CjlX').

I~ p(X'IC)p(C)
P(C j x) = ~

P(x)
(2.1)

P(CJ are known as the prior (or a priori) probabilities and p(CjlX') the posterior (or

a posteriori) probabilities.

16

Since we have the information on the observations to be classified, namely a vector

x , we can compare the probabilities of belonging to each class at x and classify

according to whichever is the largest

(2.2)

where x E Ok means that the object will be classified as belonging to class Ck • This

rule is known as Bayes minimum rule (Hand, 1981).

p(x') can be ignored since it is the same for all the classes, and does not affect the

relative values of their probabilities. A large number of assumptions are made in

order to compute the conditional probabilities p(xICk). These conditional

probabilities are usually unknown but can be estimated from a set of classified

samples.

Based on different assumptions made, discriminant functions can be defined in

various degrees of polynomials such as linear and quadratic. DA has also been

extended to quadratic discriminant analysis (QDA) and logistic discrimination.

However, QDA is not covered in this thesis.

2.1.1 Linear Discriminant Analysis

The two most important assumptions in linear discriminant analysis (LDA) are that

the data (for the variables) represent a sample from a multivariate normal

distribution and the variance/covariance matrices of variables are homogeneous

across groups (they are equal). With these assumptions, a linear discriminant

function can be computed.

In order to understand how the posterior probabilities are computed for classification

purposes, it is important to first consider the so-called Mahalanobis distance (a

measure of distance between two points in the space defined by two or more

correlated variables), Mahalanobis distance is used to do the classification, and thus,

derive the probabilities.

17

Let N p (p, £) be the probability density function of t~e normal distribution,

02 (x, y) = (x - y)1::-1(x - y), for x, y E 9tP is called the Mahalanobis distance

between x and y in the p-dimensional space 9tP •

Suppose that P(C) is the prior probability of class Cj and that fj(x) is the normal

probability density function of x associated with class i, using the normal density

function Np (/-lj , l:j), i = 1,2 with 1:1 = 1:2 and taking the Mahalanobis distance. The

joint probability of observing class i and example x is P(CJ * fj(x) and is given as

follows:

(2.3)

which reduces to

(2.4)

times a term constant over i; where Jis are mean vectors and L's are covariance

matrices.

Suppose there are 2 classes. Once the LDF has been calculated an observation x can

be allocated to one of 2 populations on the basis of its "discriminant score". The

discriminant function is taken to find the a posteriori class probabilities P(C j I x)

given by equation 2.4.

The parameters Ilj and 1: are both unknown but they can be estimated using the

sample mean vector of the ith class and the pooled estimate of the covariance

matrix, respectively. The end result is that an observation is classified as belonging

to class 1 ifit has the highest posterior probability and to class zero otherwise.

When there are more than two classes, multiple discriminant analysis (MDA) is

performed by estimating more than one discriminant function like the one presented

above, requiring both independent and joint interpretation. For example, when there

18

are three classes, one model could typically be a good fit, say, for a function

discriminating between class 1 and classes 2 and 3 combined. The other function will

be a good fit for discriminating between class 2 and class 3. Therefore, taken in

combination with one another, both of the functions explain the three classes better

than either one would if interpreted alone. The order in which classes are

partitioned is determined by the respective functions. Canonical analysis

(McFadden, 1976; Krzanowski, 1990; McLachlan, 1992) has also been performed

when dealing with discriminant functions for multiple classes.

LDA has the strength of having a form of classifier that is simply interpretable.

Also, LDA is a one-step procedure that does not make a recursive partitioning of

input space. One other strength of linear discriminant classifier lies in its ability to

generate decision surfaces with arbitrary slopes. However, the assumptions made

impose restrictions to problems to which LDA is applied. But it is known that,

despite these restrictions, the linear discriminant function still performs well on

data which do not satisfy the multivariate normality assumption and where the

classes have different covariances (Ripley, 1996). A major drawback of LDA is its

dependence on a relatively equal distribution of class membership. For example, if

one class within the population is substantially larger than the other class, as it is

often the case in real life, LDA might classify all instances in only one class. Also,

LDA has the limitation of not being designed to handle categorical independent

variables. Instead it codes the categorical variables into dummy variables. Its

inability to treat missing values naturally has also been criticized (Breiman et al.,

1984). There is some evidence that the use of discriminant function estimation may

tend to generate substantial bias in some applications (McLachlan, 1992).

2.1.2 Logistic Discriminant Analysis

Logistic discrimination analysis (LgDA), due to Cox (1966) and Day and Kerridge

(1967), is related to logistic regression. The dependent variable can only take values

of 0 and 1, say, given two classes. This technique is partially parametric, as the

probability density functions for the classes are not modelled but rather the ratios

between them.

19

Let Y E to, I} be the dependent or response variable and let x = Xii' xj2 , ... , xip be the

predictor variables vector. A linear predictor 11i is given by ~o + ~'x where ~o is the

constant and P'is the vector of regression coefficients (~w .. , ~p) to be estimated from

the data. They are directly interpretable as log-odds ratios or in terms of exp(~'), as

odds ratios.

The a posteriori class probabilities are computed by the logistic distribution:

(2.7)

~' are estimated by maximising the likelihood function

n

L(~o'···, ~p) = II xt (1- X;)I-Yi (2.8)
i=l

Computational details can be found in (Menard, 1995).

The estimated predicted value ~j and the estimated probability Jfj for a new

observation x jl ' ••• , Xjp are given by

~j = Po + P'X and

'" _,.,.{ A) _ exp{~j} x· - ,,,,x,.., - .
J 1 + exp{~)

(2.9)

These terms are often referred to as "predictions" for given characteristic vector x.

Therefore, a new element is classified as 0 if Xo ~ c and as 1 if Xo > c, where c is

the cut-off point score. Typically, the cut off point used could be 0.5 (Rumelhart et

al., 1986). In fact, the slope of the cumulative logistic probability function is steepest

in the region where Xi = 0.5 (Pinder, 1996).

One advantage of using the LgOA (rather than LDA) is that it is relatively robust,

i.e., many types of underlying assumptions lead to the same logistic formulation. By

contrast the LDA approach is strictly applicable only when the underlying variables

are jointly normal with equal covariance matrices. As with both LOA and QDA, one

20

difficulty of LgDA is its failure to deal well with categorical predictors, as these are

transformed into dummy vectors. Thus, a disproportionately large number of

degrees of freedom may be wasted. In terms of computational time LDA has been

found to have a definite advantage over LgDA as it does not require the use of an

iterative algorithm.

Logistic Regression (at least in the "logistic discriminant analysis" form) is another

kind of supervised classification method. It is also a part of a category of statistical

models called generalised linear models (Cox and Wermuth, 1966; McLachlan and

Besford, 1988; McCullagh and NeIder, 1990; Menard, 1995).

2.1.3 The Multinomial Logit Model

The generalisation of the logistic discrimination approach to the case of three or

more classes is known as the multinomial logit model (MLM) and the derivation is

similar to that of the logistic discrimination model. To give a flavour of how this

model can be used for classification, the procedure for a three-class case is sketched

out. In this case, the probabilities of an observation belonging to each of the three

classes, given a particular characteristic vector, are given by the following

expressions:

p(x I x) = exp{~I}
I 1 + exp{~I} + exp{~2}

p(x I x) = exp{~2}
2 1 + exp{~I} + exp{~2}

1
p(X3 I x) = " "

1 + exp{rh} + exp{Th}

Given estimates of the values for the population parameters for the model, the first

expression can be used to calculate the probability of a new observation with

characteristic vector x belonging to class 1, the second expression can be used to

calculate the probability of a new observation with characteristic vector x belonging

to class 2, and the third expression can be used to calculate the probability of a new

observation belonging to class 3. Given the fact that there are only three classes,

these probabilities must sum to unity. Then the classification rule is stated as

21

follows: If faced with the problem of classifying a new observation with

characteristic vector x, then classify it as belonging to the class with the highest

calculated probability. Extensions to the four-class case and beyond are

straightforward.

An important property of MLM is the assumption of independence from irrelevant

alternatives (IIA), which could be a mEYor drawback for some practical applications.

The property of IIA could be stated as follows: the ratio of the choice of probabilities

of any two alternatives is unaffected by the systematic utilities of any other

alternatives. In other words, the odds of outcome 1 (say, Path 1) versus outcome 2

(say, Path 2) do not depend on what other outcomes (say, a and b) are available.

2.2 Density Estimation Methods

This is a non-parametric technique that has been studied in statistics by several

authors (Silverman, 1986; Wand and Jones, 1995; Hand, 1982; 1997). The main aim

of kernel density methods in the discriminant analysis context is to estimate the

conditional probability of a class given a set of predictor variables without making

parametric assumptions. Its main focus is on estimating the separate distributions

of classes.

The univariate kernel estimator can be defined as follows:

rex) = _1 tK(X -Xi)
nh i=1 h

(2.10)

where h is the bandwidth of the estimator or the smoothing parameter that controls

the degree of smoothing; Xi (i = 1, ... , n) comprise a random sample from an unknown

density f and the kernel K is taken to be a radially symmetric, unimodal non­

negative function that is centred at zero and integrates to one, for instance the

multivariate normal density.

For classification tasks the following multivariate product kernel estimator can be

used as the basis:

22

(2.11)

where X' = (XW .• ' xd) and hj represents the bandwidth of the j-th predictor variable.

Here, the same univariate kernel is used in each dimension, but with a different

smoothing parameter. The data Xii are collected in an n x d matrix.

Classification is carried out with the kernel density estimates as follows:

Suppose there are k classes, Cpo .. , Ck , together with a d-dimensional attribute

vector x. For each class Cj , take only the training data that belongs to classj and

estimate the density for the data from that class using f/x) = aX' I C j). Bayes

theorem provides a method for classification:

(2.12)

where p(C;) is the prior probability of class Cj and these are estimated from the

data.

One primary advantage of kernel methods is that no training is required to build the

model; the training data is the model. Also, the procedure is conceptually quite

simple and easily explained. However, Kernels suffer from disadvantages that have

kept them from becoming highly used in practice, especially in data mining

applications. Since there is no model, they provide no easily understood model

summary. As a result, they cannot be easily interpreted. Kernel methods produce a

"black box" prediction machine, i.e. in order to make each prediction, the kernel

method needs to examine the entire dataset, which could be time consuming for

large datasets and requires that the entire dataset be stored in random access

memory. Also, kernel classification methods have the weakness of using all the

input dimensions as compared to other supervised learning methods (like DTs),

which construct a model using only those dimensions that are necessary to

discriminate between classes. Other difficulties with kernel density estimation

23

methods are how to choose the bandwidths hi "'" hd for a finite sample size and how

to choose the form of kernel. These methods also require very complex computations

especially for large datasets. Most seriously, they give very little usable information

regarding the structure of the data.

2.3 Nearest Neighbour Methods

One of the most venerable algorithms in machine learning is the nearest neighbour

(NN). NN methods are sometimes referred to as memory-based reasoning or

instance-based learning (lBL) or case-based learning (CBL) techniques and have

been used for classification tasks. They essentially work by assigning to an

unclassified sample point the classification of the nearest of a set of previously

classified points.

The entire training set is stored in the memory. To classify a new instance, the

Euclidean distance (possibly weighted) is computed between the instance and each

stored training instance and the new instance is assigned the class of the nearest

neighbouring instance. More generally, these k-nearest neighbours (k-NNs) are

computed, and the new instance is assigned the class that is most frequent among

the k neighbours. mL's have three defining general characteristics: a similarity

function (how close together the two instances are), a "typical instance" selection

function (which instances to keep as examples), and a classification function

(deciding how a new case relates to the learned cases) (Aha et at., 1991).

Consider a set of n pairs is (XI' CI), ..• , (xn' Cn) , where x/s take values in the metric

space X upon which is defined a metric d, and the Cj's take values in the set {I, 2,

... , Kl. A new measurement x is observed, and it is desired to estimate C by utilising

the information contained in the set of correctly classified points. Cover and Hart

(1967) call x: e {xl"'" xn} a NN to x if min d(xj' x) = d(X:, x) i = 1,2, ... , n. The NN

rule decides that x belongs to the category c: of its nearest neighbour x:. A mistake

is made if C: ~ C. Notice that only classification of the NN is utilised by this,

simplest, nearest neighbours rule. The remaining n-l classifications Cj are ignored.

24

A further non-parametric procedure of this form is the k-nearest neighbour (k-NN)

approach. For each element in the test set, the k-NN approach finds the k closest

observations in the training set. To classify an unknown pattern, a collection of the k

nearest points are looked at and a "majority voting" mechanism to select between

them is used, instead of looking at the single nearest point and classifying according

to that with ties broken at random. If there are ties for the ktb. nearest observations,

all candidates are included in the vote.

Despite its simplicity and making minimal assumptions about the format of the

underlying distribution, the nearest neighbour (NN) classifier has the advantage of

being able to learn from a small set of examples. It also has the ability to

incrementally add new information at run time (i.e., nearest neighbor methods do

not need any computation up-front. All the computation occurs at run time when a

classifier is asked to produce a class label for a new unknown instance.). Lastly,

NNCs can give competitive performance with more modern methods such as DTs or

neural networks.

One difficulty with k-NN methods is the choice of the distance metric k that is

unknown for finite n. In fact, the distance function could be Euclidean, Manhattan,

Mahalanobis, Pearson, etc. Also, the NNC has the limitation of being slow in

runtime performance and requires very large memory. This is as a result of storing

and recalling of the training sample each time a new case is classified. The classifier

cannot be constructed beforehand. Also, the computation of nearest neighbour

distances is expensive in high dimensions. Futhermore, there are no natural or

simple ways to handle discrete variables and missing data. Notice that some of these

limitations are common for both kernel density estimation and k-th nearest

neighbour methods.

2.4 Support Vector Machines
Support Vector Machines (SVMs) are pattern classifiers that can be expressed in the

form of hyperplanes to discriminate positive instances from negative instances

pioneered by (Vapkin, 1995, Burges, 1998). The principal goal of the SVM approach

is to fix the computational problem of predicting with kernels (Breiman et aZ., 1984),

25

as discussed in Section 2.1.2. The basic idea of SVMs is to determine a classifier or

regression machine which minimizes the empirical risk (i.e., the training set error)

and the confidence interval (which corresponds to the generalisation or test set

error). In other words, the idea is to fix the empirical risk associated with

architecture and then use a method to minimize the generalisation error. Motivated

by statistical learning theory, SVMs have successfully been applied to numerical

tasks, including classification. They can perform both binary classification (pattern

recognition) and real valued function approximation (regression estimation) tasks.

The key understanding of SVMs is to see how they introduce optimal hyperplanes to

separate classes of data in the classifiers. Intuitively, given a set of points which

belong to either of two classes, a linear SVM finds the hyperplane leaving the largest

possible fraction of points of the same class on the same side, while maximising the

distance of either class from the hyperplane. The hyperplane is determined by a

subset of the points of the two classes, named support vectors, and has a number of

interesting theoretical properties.

SVMs have the strength of being highly flexible as regards the kind of problem

which may be tackled. They can be used to classifY both linearly and non-linearly

separable data. Another benefit of SVMs is that the complexity of the resulting

classifier is characterised by the number of support vectors rather than the

dimensionality of the transformed space. As a result, SVMs tend to be less prone to

problems of overfitting than other methods.

SVMs share the some weaknesses of ordinary kernel methods. They are a black-box

procedure with little interpretive value. Outliers in the data can distort the

boundaries. Therefore, before using SVMs, data should be cleaned to clarifY that

outlying points are supplying genuine information rather than false measurement

and so on. As with all kernel methods, the choice of the kernel when classifying

nonlinear separable data, which is not only problem specific rather than adhering to

global rules but could also be very sensitive to the performance is another weakness

of SVMs. SVMs can take longer to train and they are more suited to problems with

26

numerical data rather than categorical. Also, determining a suitable learning

algorithm for minimizing empirical risk may be quite difficult.

2.5 Artificial Neural Networks
Networks that mimic the way the brain works is just one of the many claims and

attractions of Artificial Neural Networks (ANNs). ANNs are inspired by the strong

interconnectedness of the human brain. The network learns in the training phase by

having its weights (strengths) adjusted such that the actual network output becomes

more similar to the desired output.

An ANN is a set of one or more layers of nodes that are interconnected by directed

weighted links. Each link has an associated weight (strength). Links with positive

weights are called excitatory links and links with negative weights are called

inhibitory links.

Artificial Neural Networks, usually nonparametric approaches, are represented by

connections between a very large number of simple computing processors or

elements (neurons), have been used for a variety of classification and regression

problems. These include pattern and speech recognition, credit card fraud detection,

chemical process control, robotics, and so on (Winston, 1992; Ripley, 1992; 1994;

1996; Patterson, 1996). There are many types of ANNs, but we shall concentrate

briefly on single unit perceptrons and multi layer perceptrons also known as

"backpropagation networks".

The backpropagation learning algorithm performs a hill-climbing search procedure

on the weight space described above or a (noisy or stochastic) gradient descent

numerical method whereby an error function is minimised. At each iteration, each

weight is adjusted proportionally to its effect on the error. One cycles through the

training set and on each example changes each weight proportionally to its effect on

lowering the error. One may compute the error gradient using the chain rule and the

information propagates backwards through the network through the

interconnections, which accounts for the procedure's name.

27

There are two stages associated with the backpropagation method: training and

classification. The ANN is trained by supplying it with a large number of numerical

observations or the patterns to be learned (input data pattern) whose corresponding

classifications (target values or desired output) are known. During training, the final

sum-of-squares error over the validation data for the network is calculated. The

selection of the optimum number of hidden nodes is made on the basis of this error

value. The question of how to choose the structure of the network is beyond the

scope of this thesis and is a current research issue in neural networks. Once the

network is trained, a new object is classified by sending its attribute values to the

input nodes of the network, applying the weights to those values, and computing the

values of the output units or output unit activations. The assigned class is that with

the largest output unit activation.

Neural network-based approaches are usually non-parametric even though

statistical information could be possibly incorporated to improve their performance

(for example, speed of convergence). Even though ANNs explore a rich hypothesis

space with a "bias" that seems to work well in many domains, and they also offer

most advanced classification power because of their capability of implementing

complex mappings due to their multi-layer structure and the use of non-linear

threshold functions, a number of difficulties with them have become evident with

experimentation.

Despite their strengths, ANNs have the weakness of lacking explicitness, i.e., the

process is most of the time unexplained; they also take a long time to learn to

recognise underlying patterns in data. ANN s classifiers are like "black boxes" - they

are very hard to interpret. There is also the difficulty of choosing the network

topology (the number of hidden units and initial weights to choose). As in LR,

categorical predictors are treated via dummy vectors. Furthermore, ANNs are highly

redundant and overparameterized because of the many examples they use, thus,

many parameters need to be estimated. This not only slows down the learning

process but makes the method susceptible to noise and overfitting.

28

2.6 A 'Naive' Bayes Classifier
One role for Bayesian methods is to provide practical learning algorithms such as

naIve Bayes learning, Bayesian belief network learning, and combining prior

knowledge (prior probabilities) with observed data (Cooper, 1990; Cooper and

Herskovitz, 1992; Buntine, 1994; Jensen, 1996; Heckerman et al., 1994; Heckerman,

1996).

The purpose of learning or training is to make predictions for future cases in which

only the inputs to the network are known. The result of conventional network

training is a single set of weights that can be used to make such predictions. In

contrast, the result of Bayesian network training is a posterior distribution over

network weights. If the inputs of the network are set to the values for some new

case, the posterior distribution over network weights will give rise to a distribution

over the outputs of the network, which is known as the predictive distribution for

this new case. If a single-valued prediction is needed, one might use the mean of the

predictive distribution, but the full predictive distribution also tells you how

uncertain this prediction is. Bayesian learning algorithms use probability theory as

an approach to concept classification. Bayesian classifiers produce probabilities for

(possibly multiple) class assignments, rather than a single definite classification.

Bayesian learning should not be confused with the "Bayes optimal classifier." Also,

Bayesian learning should not be confused with the "naIve" or "idiot's" Bayes

classifier (see Figure 2.1), which assumes that the inputs (or attributes) are

conditionally mutually independent given the target class. The naIve Bayes

classifier is usually applied with categorical inputs, and the distribution of each

input is estimated by the proportions in the training set; hence the naIve Bayes

classifier (NBC) is a frequentist method.

The NBC is perhaps the simplest and most widely studied probabilistic learning

method. It learns from the training data, the conditional probability of each

attribute Ai' given the class label C (Duda and Hart, 1973; Ripley, 1992; Mitchell,

1997). The strong major assumption is that all attributes Ai are independent given

the value of the class C. Classification is therefore done applying Bayes rule to

29

compute the probability of C given AI' ... ' An and then predicting the class with the

highest posterior probability. The probability of a class value Ci given an instance

X = {Al' ... ' AJ for n observations is given by:

p(CjIX) = p(XICj).p(Cj)/p(X)

(l p(AI , ... , An ICJ.p(Cj) (2.13)

n

= np(AjICJ.p(CJ
j=1

The assumption of conditional independence of a collection of random variables is

very important for the above result. Otherwise, it would be impossible to estimate

all the parameters without such an assumption. This is a fairly strong assumption

that is often not applicable. However, bias in estimating probabilities may not make

a difference in practice - it is the order of the probabilities, not the exact values that

determine the probabilities.

Fig. 2.1. A "naIve" Bayes classifier; the arrows represent causal influence

When the strong attribute independence assumption is violated, the performance of

the NBC might be poor. However, Domingos and Pazzani (1996) argue that the NBC

is still optimal even when the independence assumption is violated as long as the

ranks for the conditional probabilities of classes given and instance are correct. A

few techniques (Kononenko, 1991; Langley and Sage, 1994; Zheng and Webb, 1997)

have been developed to improve the performance of the NBC. However, more work

still has to be done on this independence assumption violation.

30

The NBC was also found to be inherently robust with respect to noise, and scales

well to domains that involve irrelevant features and large datasets (Langley, 1993;

Sing, 1997). The "nalve" classifier has also been shown to give remarkably high

accuracies in many natural domains (Langley et aZ., 1992). However, despite its

strengths (of quick learning and low computational overhead), this approach is

limited to learning classes that can be separated by only a single decision boundary

(Langley and Sage. 1994) as opposed to other learning algorithms (like DTs) that

recursively partition the instance space into sub-regions. For each partitioning there

is a corresponding DT. Thus, the classes are separated by more than one decision

boundary. The NBC is also limited in expressiveness in that it can only create linear

frontiers (Domingos and Pazzani, 1996). Also, even with many training instances

and no noise, the NBC does not approach 100% (maximal) accuracy on some

problems. Langley (1993) proposed the use of 'recursive Bayesian classifiers' to

address this limitation. NBC suffers from domains where the feature variables are

correlated given the class variable. Also, the NBC is restricted to categorical

variables even though some work on using continuous variables has been made

(Gammerman et al., 1995).

2.7 Rule Induction

This is sometimes called affinity grouping. The systems learn a set of condition­

action rules from data (such as: "IF item A is part of an event, THEN x percent of

the time, item B is part of products, training and support"). Disjunction Normal

Form is a logical formula consisting of a disjunction of conjunctions where no

conjunction contains a disjunction. For example, the Disjunction Normal Formula of

(A or B) and C is (A and C) or (B and C). This is the most common representation

used for rules induced by such algorithms. Examples of rule learning systems are

AQ15 (Michalski et aZ., 1986), CN2 (Clark and Niblett, 1989), GREEDY3 (Pagallo

and Haussler, 1990), PVM (Weiss et al., 1990), RIPPER (Cohen, 1995) and many

more. These algorithms induce rules for each class and instances directly whereby

each rule covers a subset of the positive instances, and few or no negative ones, then

"separating out" the newly covered examples and starting again on the remainder.

31

The rule is composed of a consequent (predicted class) and an antecedent (a

condition involving a single attribute).

Learning algorithms in the rule-induction framework usually select the "best" rule

by a greedy search through a space of rule sets and utilising the evaluation function

to select attributes for incorporating in the knowledge structure. The choice of the

evaluation function is of great importance to that algorithm's performance. The AQ

algorithm (Michalski et al. 1986) uses the accuracy of the rule on the training set

given in a formula as:

(2.14)

where i+ is the number of positive instances that satisfy the rule and (is the

number of negative instances that satisfy the rule. Given the rule, E should increase

with i+ and decrease with t. The AQ and CN2 systems originally used the entropy

rule (Quinlan, 1986) as its search heuristic. The entropy measure not only prefers

rules which cover examples of only one class, it was not able to generate an ordered

set of rules. To overcome this problem a Laplace error estimate approach is used by

Niblett (1987):

E(i i) = i+ + 1
+' - . .

1+ + 1_ + C
(2.15)

where c is the number of classes.

When generating a rule list, the predicted class for a rule is simply the class with

the most covered instances in it. Classification of a new instance is performed by

matching each rule with that particular instance, and selecting those it satisfies. If

there is only one such rule, its class is assigned to the instance. If there are none a

"default rule" is used, i.e., assigning the instance to the class that occurs most

frequently in the entire training set, or among those instances not covered by any

rule. Finally, if more than one rule covers the example one strategy is to order rules

into a "decision list", and select only the first rule that fires (Rumelhart et al., 1986).

The other strategy is to let different rules vote, and select the class with most votes

(Clark and Boswell, 1991).

32

Rule Learners' strength lies in their comprehensibility since they have a very low

storage requirement and can partition subspaces of the instance space. Rules are

also easy for people to understand and modify, and are therefore good for providing

insights about regularities in the data. Since there are a lot of variables to tune, rule

induction is slow in training. Rule learning systems use search procedures that

could become intractable if the space of variables gets too large. The main difference

between rule learners and DTs is that even though they both partition a space; rule

learners do not do it recursively in the manner of trees.

2.8 Decision Trees

DT induction is one of the simplest and yet most successful forms of supervised

learning algorithm. It has been extensively pursued and studied in many areas such

as statistics (Kass, 1980; Clark and Pregibon, 1993; Breiman et ai, 1984; Jordan,

1994; Vach, 1995) and machine learning (Quinlan, 1979; 1983; 1986; 1993) for the

purposes of classification and prediction.

DT classifiers have four major objectives. According to Safavian and Landgrebe

(1991), these are: 1) to classify correctly as much of the training sample as possible;

2) generalise beyond the training sample so that unseen samples could be classified

with as high accuracy as possible; 3) be easy to update as more training samples

become available (i.e., be incremental- see sub-section 2.2.5); 4) and have as simple

a structure as possible. Objective 1) is actually highly debatable and to some extent

conflicts with objective 2). Also, not all tree classifiers are concerned with objective

3).

DTs are non-parametric (no assumptions about the data are made) and a useful

means of representing the logic embodied in software routines. A DT takes as input

a case or example described by a set of attribute values, and outputs a Boolean or

multi-valued "decision". For the purpose of this thesis, we shall stick to the Boolean

case. A brief overview about Boolean expressions is given below.

A Boolean value is either True or False. A Boolean variable may only take a Boolean

value. The negation of a Boolean value is the other Boolean value (for example, the

33

negation of True is False}. The symbol often used to denote the negator, Not, is '.,'

(for example, ., True == False). There are sixteen Boolean junctors, binary operators

for joining two Boolean variables. The most commonly used Boolean junctors are

And and Or. The And junctor is often denoted by the symbol' A' and is known as the

con junctor. The Or junctor is often denoted by the symbol 'V' and is known as the

disjunctor. Each of the following is a Boolean expression: a Boolean value, a Boolean

variable, a negation of a Boolean expression, the conjunction of two Boolean

expressions, the disjunction of two Boolean expressions. Each occurrence of a

variable in an expression is known as a literal.

From a Boolean expression we can construct a DT, which actually looks more like an

upside down tree of nodes, as follows; each negator, junctor and literal is converted

to a node, nodes which become parents of other nodes are placed higher than their

children and connected by a line to each child, the operand of a negator is made the

right child of that negator, the left and right operands of a junctor become left and

right children of that junctor, and parentheses, after being used to specify the

structure of the expression, are redundant and are implied by the structure of the

tree rather than being represented explicitly.

The power of this approach comes from its ability to split the instance space into

subspaces where each subspace is fitted with different models. Other distinctive

advantages of Boolean expressions are their time complexity and space complexity,

i.e., as the input size as Boolean functions grow linearly, computer time and storage

requirements of algorithms to represent and manipulate DTs do not necessarily

grow exponentially (as is the case for traditional representation techniques). Thus,

both the memory space to store DT and the time of the learning and using phase are

decreased (Murphy and McCraw, 1991).

Boolean attributes have also been used to incorporate continuous-valued attributes

so that they compete with other discrete-valued candidate attributes available for

growing the DT. In particular, for an attribute that is continuous-valued, the DT

algorithm can dynamically create a new Boolean attribute Ac that is true if A < C

and false otherwise. Further, information-based attribute selection measures used in

34

the induction of DTs are all biased in favour of attributes that have many possible

values (White and Liu, 1994; White, 2001). The use of Boolean attributes is one

strategy for handling multi-valued attributes and as a result overcomes this

problem, i.e., attributes with fewer levels and those with many levels are all selected

on a competitive basis.

We are given a set of instances. Each instance has the same structure consisting of a

number of attribute/value pairs. One of these attributes represents the category of

the instance. The problem is to determine a DT that on the basis of answers to

questions about the non-category attributes predicts correctly the value of the

category attribute. Sometimes the category takes only the values {true, falsel or

{success, failure}, or something equivalent. In any case one of its values will mean

failure.

Graph representation of Boolean expressions are represented by binary DTs i.e.,

tree-based algorithms allow the creation of a family of Boolean expressions for one to

be able to draw the corresponding binary partitions and as a result binary DTs.

Therefore, from now on in this thesis, we shall be using the terminology binary DT

to mean graph representation of Boolean expressions.

Consider the following artificial example taken from Quinlan (1979), where the

categorical attribute specifies whether to play or not to play a game of golf. The

attributes are:

Table 2.1 Attribute variables and values

ATTRIBUTE POSSIBLE VALUES

Outlook sunny, rain

Temperature (F) continuous

Humidity continuous

Windy true, false

35

For this example, the outlook attribute has only two possible values compared to the

original example by Quinlan which has three values (i.e. sunny, outcast and rain).

The training data is shown in Table 2.2.

Table 2.2 Artificial outlook dataset

OUTLOOK TEMPERATURE HUMIDITY WINDY CLASS

Sunny 85 85 False Don't play

Sunny 80 90 True Don't play

Rain 83 78 False Play

Rain 70 96 False Play

Rain 68 80 False Play

Rain 65 70 True Don't play

Rain 64 65 True Play

Sunny 72 95 False Don't play

Sunny 69 70 False Play

Rain 75 80 False Play

Sunny 75 70 True Play

Rain 72 90 True Play

Rain 81 75 False Play

Rain 71 80 True Don't play

The training data is used to build the model (a DT) and a corresponding hierarchical

partitioning shown in Figures 2.2 (a) and 2.2 (b), respectively.

The DT has classes play and don't play. This is a classifier in the form of a tree, a

structure that is either: a leaf (rectangular box), indicating a class, or a decision

node (ovals) that specifies some test to be carried out on a single attribute value,

with one branch and subtree for each possible outcome of the test. Notice that Test 2

is a test on the real~valued attribute Humidity, i.e., Humidity > cut~off point. The

36

other tests use the nominal attributes. Further note that the attribute variable

temperature has been not utilised in the DT even though we have it as one of the

attributes in the training data. It is also easy to see that as the depth of the tree

increases, the resulting partitioning becomes more and more complex.

Fig. 2.2. (a) Example of a binary axis - parallel decision tree for a four­

dimensional feature space and 2 classes for deciding whether or not to play golf.
Ovals represent internal nodes; rectangles represent leaf nodes or terminal nodes.

Fig. 2.2. (b) Hierarchical partitioning of the two-dimensional feature space
induced by the decision tree of Figure 2.5 (a)

37

The prediction problem is handled by partitioning classifiers. These classifiers split

the space of possible observations into partitions. For example, when a person needs

to make a decision whether to play golf or not based on several factors (e.g. weather

conditions), a classification tree can help identify which factors to consider and how

each factor has historically been associated with different outcomes of the decision.

A classification tree, which is what will be covered in this thesis, as opposed to a

regression tree means that the response variable is qualitative rather than

quantitative. In the classification case, when the response variable takes value in a

set of previously defined classes the node is assigned to the class which represents

the highest proportion of observations. Whereas, in the regression case, the value

assigned to cases in a given terminal node is the mean of the response variable

values associated with the observations belonging to a given node. Note that in both

cases, this assignment is probabilistic, in the sense that a measure of error is

associated with it. Clustering trees just group instances in leaves.

On another note, the DTs we shall be looking at in our research are binary (Yun and

Fu, 1983; Breiman et al., 1984; Clark and Pregibon, 1993; Venables and Ripley,

1994; Therneau and Atkinson, 1997) as opposed to non-binary. Binary trees use

strictly binary, or two-way, splits that divide each parent node into exactly two child

nodes by posing questions with yes/no answers at each decision node. The algorithm

searches for questions that split nodes into relatively homogenous child nodes. As

the tree evolves, the nodes become increasingly more homogenous, identifying

important segments. Multi-way (non-binary) splits tend to favour attributes with

many levels or values as opposed to those with a few levels. The use of binary splits

overcomes the problem of bias from differences in the number of levels of attributes

(White, 2001). Multi-way splits can also paint visually appealing trees but can bog

models down with less accurate splits (Breiman et ai., 1984). However, a large

amount of work has also been done on non-binary classification trees, see (Kass,

1980; Biggs et al., 1991; Quinlan, 1986; 1993; Kerpta, 1996).

A tree is characterised by an ordered set of nodes. Each of the internal nodes in the

tree represents a partition of one or more features. A DT induces a hierarchical

38

partitioning over decision space. The root is the top node (refer to Test 1 in Figure

2.2 (a» and the training sample is passed down the tree, with decisions or predicted

probabilities of the classes being made at each node until the terminal node (or leaf

node) is reached. Each leaf contains the label of a classification. Each node, except

the leaves, is a parent node, which is linked to its children. Basically, at each node

the best variable is chosen, where the best means most homogenous in terms of child

nodes. Since the data is recursively partitioned, each node contains a subset of the

initial population with the root containing the whole training sample and the other

nodes contain sub-groups of the training sample.

DTs use a top down recursive partitioning process, i.e., a divide-and-conquer

strategy or targeted stratification that "greedily" searches (a "look-ahead" principle

like forward stepwise regression) over all the variables to produce a sequence of

optimal splits, so that a large tree is grown. The core algorithm that builds a DT

from data is summarised in Figure 2.3.

Input: A set of training examples. Stopping and splitting rules.

Output: A DT with class counts at the leaves

1. Find out how many of the training examples belong in each class at the
current terminal node (leaf)

2. If all training examples belong to one class or if some stopping rule
applies, the leaf is labelled with that class.

3. Otherwise,

a) select a test using a splitting rule, based on one attribute, with
mutually exclusive outcomes;

b) divide the training set into subsets of examples, each corresponding to
one outcome, and

c) apply the same procedure to each subset

Fig. 2.3. The decision tree induction algorithm

Learning systems that are based on this approach belong to the Top Down Induction

of Decision Trees (TDIDT). If the observations from the classes overlap (a typical

39

problem involving noise), we over-fit the training sample at hand and try and stop

the tree from growing either by stopping growing the tree or by pruning the tree

after constructing it. A single tree is then selected according to a model choice

criterion (e.g. cost-complexity pruning, cross validation error-based pruning or even

multiple tests of whether two adjoining nodes should be collapsed into a single

node). Details of all these aspects will be developed in the remainder of this section.

In top-down approaches, the process of tree development involves selection of the

next feature; specification of the threshold (cut-off point) on that feature;

determining which nodes should be terminal nodes and assignment of each terminal

node to a class label. This can be summarised in three important stages: a splitting

rule, a stopping rule, and a pruning rule.

Of the above tasks, the class assignment is by far the easiest. To minimise the

misclassification rate, the terminal nodes are assigned to the classes which have the

highest probabilities. These probabilities are usually estimated by the ratio of the

samples from each class at that specific terminal node to the total number of

samples at that specific terminal node. The label of the class that has the most

samples at that terminal node is assigned to the terminal node.

2.8.1 Splitting Rules

The problem of designing a truly optimal DT seems to be very difficult. In fact,

Hyafil and Rivest (1976) and later Rounds (1980) have shown that finding a minimal

DT consistent with a set of data is a NP-complete problem. A problem is called NP

(nondeterministic polynomial) if its solution (if one exists) can be guessed and

verified in polynomial time; nondeterministic means that no particular rule is

followed to make the guess. Also, Hyafil and Rivest (1996) conjecture that no

sufficient tree learning algorithm exists and thereby supply motivation for finding

efficient heuristics for constructing near-optimal DTs. Furthermore, Dasarathy

(1980), and Cohen and Martin (1997) show that even the problem of identifying the

root node in an optimal strategy is NP-hard. The problem of building optimal trees is

looked at by Murthy et al. (1994) who proved that for most cases, construction of

storage optimal trees is NP-complete

40

Tree learning algorithms use heuristics which perform a one-step look-ahead search

which works as a splitting rule to create subsets of data obtained. The system

chooses the test that maximises or minimises some heuristic function over the

subsets that are relatively "pure" in one class, and chooses the split that has the

fewest errors. This is sometimes referred to as the evaluation or selection test and is

guided by a measure of "goodness of split".

To construct a tree it is necessary to assess the quality of a given test, based on the

attribute values, and the resulting partition. A splitting rule works by finding the

variable (or test) which is most discriminatory and partitioning the data with

respect to that variable. The variable that gives the strongest association with class

is selected to branch on.

The binary tree partitions each non-terminal node into two branches in the following

way. Each internal node n has an associated splitting rule and is labelled with one

predictor attribute Xn called the splitting attribute. Each internal node has a

predicate qn' called the splitting predicate associated with it. For an ordered

attribute at node X,., q,. is of the form Xn ~ x,. or X,. > x,. (where xn e domain(Xn);

x n is the split point at node n) was used. For a nominal attribute, q,. is of the form

Xn e Y,. or Xn ~ y" (where y" c domain(X,,); Y"is called the splitting subset at node

n) was used. In other words, a split for numeric attributes is carried out by: sorting

the training instances based on the values of the attribute being considered; sorting

out the values of the numeric attribute and dividing the set into two subsets using

some interval; and finally selecting the midpoint for each interval as the split point.

A split for nominal attributes is carried out by considering all possible partitions of

that attribute into two non-empty categories. An ordered attribute with M distinct

values yields M-1 distinct splits. For a nominal attribute with L distinct values there

are 2 L
-

1 -1 distinct splits to consider.

Several measures of node homogeneity or impurity have been proposed, but the two

most commonly used (based on the information gain) are the entropy impurity

function and the Gini index of impurity. These two are also based on probabilities

41

estimated from the training examples. Most of the measures are based on

information theory, distance, dependence and other areas. Some of them have been

reviewed and compared by Mingers (1989b) who surprisingly concluded that the

choice of measure affects only the tree size but not its accuracy. According to

Mingers the accuracy remains the same even when the attributes are randomly

selected. Mingers' claim was questioned by Buntine and Niblett (1992) and further

by Liu and White (1994) who used more experiments to justify why they refuted the

claim.

We shall now look at some impurity measures.

2.8.1.1 Information Gain Measure

This measure originates from information theory (Shannon, 1948a; 1948b), and is

computed by the following formula.

Using Quinlan's (1986) notation, the information needed for distinguishing k classes

of randomly drawn members of training set T is given by:

Ie:

Entropy(T) = -L pJOg2Pi (2.16)
i=l

where Pi = Ni , where N is the total number of cases at a particular node and Nj is
N

the number of cases in class i. In other words, pjis the proportion ofT belonging to

class i. These probabilities are estimated from the training examples. The logarithm

is base 2 because entropy is the measure of the expected encoding length measured

in bits. Note also that the maximum possible entropy is log2k, obtained when the

classes are equiprobable.

The information needed for distinguishing classes of randomly drawn members of T

after the value of attribute A has been obtained is defined as:

IT I
Entropy(A) = L _J Entropy(Tj)

jEValues(A) I T I
(2.17)

42

where Values (A) is the set of all possible values of the predicate for attribute A, and

~ is the subset of T for which attribute A has value j, and the entropy of the

partitioned data is calculated by weighting the entropy of each partition by its size

relative to the original set. Here, I T I denotes the number of elements of set T. This

is the information needed to classify items given knowledge of the attribute value or

simply the sum of the entropies of each subset Tj , weighted by the fraction of

instances I Tj I / I T I that belong to 1j.

The information measure ("goodness of split") of an attribute is defined to be the

gain in information brought about by the knowledge of the attribute:

Gain(T, A) = Entropy(T) - Entropy(A) (2.18)

Gain(T, A) can also be defined as the expected reduction in entropy caused by

partitioning on this attribute. The most 'informative' attribute is the one that

minimises Entropy(A), i.e., it maximises Gain. The value of Gain(T, A) is the

number of bits saved when encoding the target attribute value of an arbitrary

member of T, by knowing the value of attribute A. The corresponding heuristic

selects the attribute that results in the maximum gain for that step. The process of

selecting a new attribute and partitioning the training instances is repeated for each

non-terminal descendant node, this time using only the training instances

associated with that node.

2.8.1.2 Gain Ratio Measure

The information gain heuristic has been shown to favour many-valued attributes

over one with few, which tend to discriminate better among classes because they

have more values (Kononenko et al., 1984; Quinlan, 1986; White and Liu, 1994;

Ripley, 1996, Luzowski, 1996). For example, if we have an attribute D that has a

distinct value for each instance, then E(D) is 0, thus Gain (D) is maximal. To

compensate for this a normalisation procedure is proposed by Quinlan (1993). This

measure incorporates the information measure (entropy) of an attribute, Gain (A),

with the information value of the attribute, IV(A), as follows:

43

Jk

where, IV(A) = LPjlog2Pj'
j=i

GR(A) = Gain(A)
IV(A)

2.8.1.3 The GINI Index of Impurity

(2.19)

This measure, which is similar to the information gain measure but based on a

different function, was introduced by Breiman et al. (1984) and, at node t, it is

computed as follows:

i{t) = L~PiPj = ~~PiPj - ~p~ =(LPi)2 - LP; = 1-~p~ (2.20)
,)'" ') " I

where Pi = p(ci I t) is estimated from the relative frequencies of the classes in the

same way as in the previous section. The GINI index has also been described as the

estimated probability of the misclassification error or as a measure of how different

the members of a set of probabilities are from each other. The decrease in impurity

is the class impurity minus the weighted average of the implied descendant nodes'

impurity given by:

where i(tl) and i(tr) are the impurity measures at sub-nodes tl and t r , respectively;

PI, and PI, are the proportions of the instances that are sent by the split sp of a node

t to the right tr and left tl nodes, respectively. The idea in CART is to calculate

.1i(sp, t) for each split sp E Qt is the set of all possible splits at node t and then

select the best split s; such that

However, since the decrease in impurity is essentially linear among the instances, it

has the defect of favouring the more extreme one from two competing splits. For

example if there were two competing splits, one separating the data into 80% and

20% groups of purity and the other split into 70% and 30%, we would prefer the

44

former because it better sets things up for the next split. Also, the Gini criterion has

a difficulty when there are a relatively large number of classes. Breiman et aZ. (1984)

suggested the towing rule (twoing and ordered twoing) as a remedy. The twoing

criterion requires the selection at every node be divided in two superclasses, i.e.,

both methods are designed as a binary partition and group the classes from the

original set of classes (c) into two mutual subclasses C1 and c2 (c - c1). Then, as if it

were a two class problem, compute the decrease in impurity for c1 (~i(sp, t, c1»,
given that ~i(sp, t) depends on the selection of c1• A split sPe! which maximises

~i(sp, t, c1) and the superclass c~ which maximises ~i(spc!' t, c1) are finally found.

The criterion attempts to group together classes that are similar in some

characteristics near the top of the tree and attempts to isolate single classes near

the bottom of the tree. It is an intuitive criterion that attempts to inform the user of

class similarities (Breiman et aZ., 1984).

The twoing criterion for any node t and split 8 into left node, t L , and right node, t R is

defined by

(2.21)

The split that maximises the twoing criterion at a node is determined as the best

split for this node. For a discrete attribute twoing investigates each possible

combination of values resulting in two supercIasses. For continuous attributes the

data is sorted and the midpoint between each data sample is used as the sample

split. Once the twoing criterion is maximised, the split defined by this function is

applied. Ordered twoing restricts the classes in each subset to be ordered and

requires, for each possible ordered superset class, the evaluation of the numbers in

the "super" class.

Towing is used when there are more than two classes (if there are two classes the

twoing criterion is the same as the Gini criterion). The twoing criterion has the

significant advantage of giving the user additional insight concerning the structure

of the data from the output (i.e. by informing the user of class similarities). Twoing

also seems desirable with a large number of classes, but has a drawback in terms of

45

computational efficiency. For example, for J classes, there are 2J
-

1 distinct divisions

into two groups.

2.8.1.4 Chi-Square Statistic

This is a traditional statistic for measuring association between two variables for

categorical data in a contingency table. (Haussler, 1988; Mingers, 1989b; Mitchell,

1997) employ the Z2 statistic to evaluate the attributes and then select the most

important attribute.

(2.22)

where Xu is the observed number of cases with value X; in class Y, and Eu=Xi.x./N is

the expected number for each observation. The resulting statistic is distributed

approximately as a chi-square distribution, with larger values indicating higher or

greater association between the attributes and the class variable. In other words the

statistical test is used to decide whether expanding a node is likely to improve

performance over entire instance distribution, or only on current sample of training

data.

2.8.1.5 Normalised Information Gain

This attribute selection measure was proposed by Lopez de Mantaras (1991), and is

related to Quinlan's information gain measure. The main difference is the former's

reliance on a distance measure on any partitions PA, PH and Pc of X. The measure

is given by:

(2.23)

where PA and PH are partitions of A and B· , and

[(PA / PH) = [(PA,PH)/ PH are the average information gain in partition PH given PA

and PA. given PH' respectively. For example, I(PHIPA)=I(PHI'IPA)-I(PA). The

measure d(PA,PH)should satisfy the following conditions:

46

(i) d(PA' PB) ~ 0, and the equality holds iff PA = PB

The normalisation is given by the following distance (Lopez de Mantaras, 1991):

(2.24)

For proofs the reader is referred to Lopez de Mantaras (1991).

Mantaras re-writes Quinlan's information for distinguishing classes and the

expected information content of the tree with attribute A as root as [(Pc) and

[(Pc I Pv), respectively. Therefore, the information gain measure can now be defined

as:

Gain(A) = I(pc) - I(Pc I P v)

So,

(2.25)

The node that is selected is the one whose corresponding partition is the closest (in

terms of some distance) to the correct partition of the subset of examples in the node.

The idea behind this method is very simple. The different values of each attribute

generate a partition of the training examples. That is, if an attribute has two values,

say, 0 and 1, those training examples that have value 0 for that attribute are in one

class of the partition, and those that have value 1 are in the other class. If all those

that are in class 0 are of the same target class and those in class 1 are also of the

same target class then the distance is 0 and this attribute would therefore be the

best one. In general, however, there are examples of different target classes in each

of the classes of the partition generated by the attribute values and therefore the

distance to the correct partition will be different from O. Then, the attribute selected

is the one whose distance to the correct partition is smallest. This measure happens

to solve the problem of bias of Quinlan's gain ratio measure.

47

2.8.1.6 Other Splitting Rules

Several other splitting rules have been proposed. GIeser and Cohen (1972) and later

Talmon (1986) proposed a measure that relies on dependence, using a combination

of mutual information and i measures. Rounds (1980) has suggested using

Kolmogorov-Smirnov distance and test as the splitting criteria. Li and Dubes (1986)

proposed a permutation statistic as a splitting criterion. The permutation statistic

measures the degree of similarity between two binary vectors: the vector of

threshold attribute values and the vector of class labels. Another attribute splitting

measure which uses information theory is called binarisation (Bratko and

Konenenko, 1986). Binirisation is used to normalise the informativity of attributes

with respect to the number of values. This method works by grouping the various

attribute values together so that all the attributes become binary. Loh and

Vanichsetakul (1988) used a measure that employs statistical hypothesis tests to

select a variable for splitting each node and then use linear discriminant analysis to

generate linear combination splits. The same idea is followed up by Loh and Shih

(1997). Other splitting measures used are based on the minimum description length

(Quinlan, 1989; Venables and Ripley, 1994). However, it is not clear how it operates

in a statistical domain. Mingers (1989b) has used the G statistic to select among

attributes. This is an information theory based statistic that has also been used in

contingency tables, and is closely related to Quinlan's information gain measure.

Taylor and Silverman (1993) suggested a splitting criterion called mean posterior

improvement (MPI), which emphasises exclusivity between offspring subsets rather

than equal sized offspring and purity of both daughter nodes (as with GINI index).

Clark and Pregibon (1991) use the likelihood function to maximize the reduction in

deviance produced by each partition. They view the tree as a probability model for

the training sample. Van der Merckt (1993) suggested a measure that combines both

geometric distance and information gain and argued that such measures are more

appropriate for numeric attribute space. A weighted sum approach is considered by

Shih (1999), who shows how several splitting criteria can be written as weighted

sums of two values of divergence measures. One of them contains the Z2 and

entropy criteria while the other contains the MPI criterion.

48

2.8.2 Stopping Rules

Stopping rules were originally called pre-pruning and are used to prevent problems

like overfitting. These rules are used to stop growing the tree when there is not

enough data to make realistic decisions, or when the instances or examples are

acceptably homogenous. Esposito et al. (1993; 1995; 1997) present these rules as:

1. All observations reaching a node belong to the same class.

2. All observations reaching a node have the same feature vector (but not

necessarily belong to the same class).

3. The number of observations in a node is less than a certain threshold.

4. There is no rejection for statistical tests on the independence between feature ~

and the class attribute C (Quinlan, 1986; White, 1997)

Rules 1 and 2 are universally accepted if the decision process adopted for the tree is

based on the majority class criterion, i.e. each respective leaf node is labelled by the

majority class. Stopping rules are easier and more intuitive than pruning but are

not easy to get right (Breiman, et al. 1984; Quinlan, 1993). For example, thresholds

that are too high can terminate the splitting before its benefit becomes evident,

while too low thresholds result in large trees and overfitting resulting in poor

generalisation error. Even with the above rules, it remains very difficult to know

when to stop growing the tree. One way of getting around these problems is by

pruning.

2.8.3 Pruning Rules
Post-pruning is used to prune some branches of the tree after a fully expanded tree

is already grown. Most pruning algorithms prune by replacing a subtree by a single

leaf node when the estimated error of the leaf replacing the subtree is lower than

that of the subtree.

Breiman et al. (1984) suggest that instead of using stopping rules, you continue the

splitting until all the terminal nodes are pure or nearly pure, thus resulting in a

49

large tree. Then selectively prune this large tree by getting a decreasing sequence of

subtrees. Finally, use cross validation to pick out the subtree which has the lowest

estimated misclassification rate.

Pruning is one of the most important part of tree building. DTs that are grown by a

recursive partitioning procedure (a greedy look-ahead heuristic) tend to be too large

and complex, and are likely to suffer from noise caused by over-fitting (as is the case

with all stepwise procedures). The question would be: how much of that model to

retain?

The following principal approaches have been used not only to overcome the problem

of noise but finding a good structure tree that is likely to give better classification

performance on unseen data. All the methods use the bottom-up strategy that starts

with the lowest internal node in the tree and prunes those that meet the algorithm's

criteria.

2.8.3.1 Minimal Cost Complexity Pruning

This is a cross-validation procedure to trim back the tree. This method is essentially

a (multipass) pruning algorithm that was developed by Breiman et al. (1984) as part

of the Classification and Regression Trees (CART) system. Cost complexity is

defined as:

Ra (T) = R(T) + a size(T) (2.26)

where R(TJ is a performance measure of a tree, which could be the misclassification

error or re-substitution error (cost) of the subtree T, size(T) is the number of

terminal nodes of T, and a is the cost-complexity parameter that weighs the relative

importance of the tree size to the error rate. For any specified value of a, the "best"

subtree produced is the one that minimises the cost complexity measure over all

subtrees of T. The method works as follows. First, a sequence of trees (sub-trees) is

grown from each node of the induced (grown) tree and the subtrees yielding minimal

cost complexity are pruned, successively. The strategy used is bottom-up, i.e., the

sequence of trees are all nested and all match at the root node. Then the subtree (the

"best" tree) is selected as the final model from the sequence of trees based on its size

50

and cost complexity measure used. CART either uses two variants of cross validation

(CV-OSE, CV-1SE) or two variants of an independent test sample estimate of error

(O-SE, 1-SE) to choose the most predictive tree in this sequence. The k-SE rule is

defined as follows:

Let R(T) be the estimated misclassification cost for T and SE(R(T)) be its

estimated standard error. Suppose the tree T.ominimises R(Tk). Then the k-SE tree

Tkl is the smallest subtree such that

(2.27)

2.8.3.2 Pessimistic Pruning

Quinlan (1986) developed this top-down tree pruning method in the context of ID3.

Like the minimal cost complexity pruning measure, the method does not use a

separate pruning set. The estimates that are produced from the training data and

based on the resubstitution error are overly optimistic since they tend to be lower

than estimates produced by the use of test sets. Pessimistic pruning compares the

number of errors introduced by eliminating the branch to the estimated error rate in

the subtree using the continuity correction for the binomial distribution plus the

standard error of the estimate. One half is added to the number of errors associated

with each node in order to get a more accurate error estimate. Quinlan attempts to

compensate for the optimistic estimates based on the re-substitution error by

adjusting the number of standard errors added to this calculation. Subtrees are not

pruned unless their respective corrected number of misclassifications are lower than

that of the node by at least one standard error, respectively. One of the advantages

of this approach is that the same training set is used for both growing and pruning a

tree. The method is also very quick since it only has to make one pass and looks at

each node only once. However, the statistical justification for the use of the

continuity correction in the estimation of the error rates is not clear.

51

2.8.3.3 Minimum Error Pruning

Niblett and Bratko (1986) proposed a bottom-up approach seeking for a single tree

that minimizes the expected error rate on an independent dataset. Minimum error

pruning was first introduced using Laplace probability estimates, and later modified

to what was referred to as m-probability estimation (Cestnik and Bratko1991). The

parameter m is varied in an attempt to match the degree of tree pruning to

properties of the learning domain such as noise. To prune a tree at a node, the

expected error rates of its children are first determined, and this is called static

error. Dynamic error, defined as the weighted sum of the static error of its children,

is then calculated and if the static error is greater than dynamic error the node is

replaced by the leaf. One of the disadvantages of this method is the dependence of

the expected error rate on the number of classes.

2.8.3.4 Reduced Error Pruning

Quinlan (1983; 1987; 1993) also developed this method as part of the ID3 system.

The training data are divided into a training set and a validation set. For each node

in a tree you consider the effect of removing a subtree rooted at that node, making it

a leaf, and assigning it majority classification for examples at that node. The

performance of each pruned tree is noted over its validation set. The node that most

improves accuracy over the validation set is removed. This is continued until further

pruning is harmful. This method uses a growing set for induction and the pruning

set to estimate the error rate, which is then used to generate and evaluate pruned

trees. This is another bottom-up strategy that examines every internal node in the

tree and prunes all nodes that it finds when pruned nodes do not decrease the

pruning set accuracy of the tree. Reduced error pruning is guaranteed to deliver a

small and accurate tree with respect to the pruning set. Unlike MCCP, REP does not

build a sequence of trees and thus it has been claimed to be faster. Mingers (1989a)

found this pruning technique to be prone to pruning branches that correspond to

rare cases. Another drawback of this approach is that one cannot use all the data to

build the tree.

52

2.8.3.5 Error· Based Pruning

Like reduced error pruning, error-based pruning derives error estimates from the

training data. This type of method removes the terminal splits which have the same

class for each leaf and allows the use of cross validation to estimate the error rate.

Breiman et al. (1984) suggest the l-SE rule by taking the smallest pruned tree

whose error rate is within one standard deviation of the minimum. Quinlan (1986)

follows a similar approach by comparing the error rate of the tree, say, T. with the

error rate at node t (adding a "continuity correction" of 0.5 to each error count

observed at each leaO. He proposes to prune when:

Error rate for t $ error rate for Te + SEC error rate for Te)

Error-based pruning was also developed as part of the C4.5 system (Quinlan, 1993).

Like PP, it assumes that the error in the set of patterns covered by a leaf of a tree

follows a binomial distribution and computes a confidence interval on the error

counts based on the fact that the binomial distribution is closely approximated by

the normal distribution in the large sample case. The upper limit of confidence of the

probability of misclassification can then be calculated from an assumed confidence

level (default is 25%). The upper limit of this confidence interval is used to estimate

the leafs error rate on fresh data. The predicted error rate comes from multiplying

the upper limit confidence by the number of patterns covered by a leaf. If the

number of predicted errors is less than that for the subtree containing the leaf, then

the subtree is replaced with a leaf. The method further adds a pruning operation

called grafting by Esposito et al. (1997), which allows the node to be replaced by one

of its subtrees if this does not increase the estimated error. EPB presents the

advantage, with respect to the other pruning techniques, of allowing a subtree to be

replaced by one of its branches, However, the assumption that errors in the sample

have a binomial distribution is questionable.

2.8.3.6 Other Pruning Procedures

Several other pruning methods have been introduced but their merits have not been

examined. Mingers (1986) proposed a bottom-up critical value pruning (CVP)

53

method similar to REP, which performs the decision about pruning using the "

information-gain" that was achieved when growing the tree. It then specifies a

critical value which defines the level at which pruning takes place. The full tree is

pruned for increasing critical values giving a sequence of trees, and then the best

tree is selected on the basis of predictive ability. Crawford (1989) introduced a .632

bootstrap method as an alternative to Breiman et al. 's cross validation procedure,

which he pointed out has a large variance especially for small training samples.

Gelfand et al. (1991) claimed that the cross validation method was inefficient and

possibly ineffective in finding the optimally pruned tree and modified CART's

pruning procedure by proposing a new iterative tree growing and pruning algorithm

. that is guaranteed to converge. The algorithm divides the training sample into two

subsets. The binary tree is iteratively grown on one half of the data and pruned on

the other half (using the error rate on the other half), and alternating the roles of

the halves in each iteration. This is done until the tree size is unchanged. Their

pruning algorithm is simple and (one pass) bottom-up approach which starts from

terminal nodes and proceeds up the tree, pruning away branches. Bratko (1994)

proposed a pruning method by using dynamic programming, which prune trees

optimally and efficiently in the absence of noise. Friedman et al. (1996) introduced a

pruning technique that is based on analysing the DT as a description of the training

instances. Other pruning with costs methods have been proposed (Breiman et ai.,

1984). Quinlan and Rivest (1989) and later Wallace and Patrick (1993) proposed tree

construction and pruning methods based on the minimum description length (MDL).

Recently, Oates and Jenson (1998) proposed a method based on the idea of the

permutation test called randomised pruning. For each subtree, the probability p
that an equally or more accurate subtree would have been generated by chance

alone is computed. If p is greater than a certain threshold (the authors suggest

0.05) the subtree is discarded and replaced by a leaf node.

Approaches other than pruning for improving accuracy of a tree have been proposed

and carried out by several authors. Buntine (1992) discussed using smoothing and

averaging techniques as one alternative to pruning. Oliver and Hand (1993) and

Shannon (1998) and Shannon and Banks (1998) use a set of DTs and then average

54

them as an alternative method to pruning. Murthy et aZ. (1993) use a technique

called tree balancing. A balanced tree is where no leaf is much farther away from

the root than any other leaf. Different balancing schemes allow different definitions

of Itmuch farther lt and different amounts of work to keep them balanced). Tree

balancing can be applied after pruning to reduce the depth of the tree without

affecting the accuracy of the tree. Brodley and Utgoff (1995) use multiple attributes

per test as an alternative to basic pruning, i.e., using splits that contain more than

one attribute at each internal node

Empirical comparisons of pruning methods have been carried out by Monago and

Kodratoff (1987) who found that pruning methods that use a separate pruning set

performed better than others that did not. However, his claim was questioned by

Esposito et aZ. (1993) on both methodological and empirical grounds, and found not

to be true. In particular, Monago and Kodratoff (1987) used analysis of variance

(AN OVA) to test for statistically significant differences between pruning methods

instead of paired two-tailed t-test (which had been used by previous investigators).

Nonetheless, as with splitting rules, there is no single best pruning algorithm given

the overfitting avoidance and bias issues that were raised by Schaffer (1993).

Just as in the case of splitting criteria, no single pruning method has been adjudged

to be superior to the others. The choice of a pruning method depends on the size of

the training set, availability of extra data for pruning, and so on.

2.8.4. Classification and Error Rates

A DT is used rather like a pinball machine. Given a new instance, an unknown

object is classified by starting at the top of the tree. The various tests deflect them

one way or another. This will put you in one of the terminal nodes (leaves) of the

tree. The predicted class is just that of the majority of the observations that were

used to train the tree originally. A tree misc1assifies an object if the classification

output by the tree is not the same as the object's correct class label.

DT performance is usually given in terms of some variant of misclassification error

rate.

55

Let f(x) be the distribution of measurement vectors x and fCc I x) the probability of

belonging to class c at x. A classification rule estimates fCc I x) and forms a defined

region R)n which the rule classifies points to class c. Thus, the error rate for such a

classifier is given by L 1 [1 - fCc I x)]f(x)dx.
c C

Alternatively, suppose you want to predict a response variable of interest Y, given a

set of attribute variables X, to produce an output Y. Then, the loss or cost incurred

due to the prediction could be defined as (Chou, 1991):

L(Y, Y) = {I if Y *' V (misclassification error rate), or
o if Y=V

L(Y, Y) = /lY - Vf (squared error)

These are the same for binary Y.

Due to the difficulty of computing the misclassification rate, it is usually estimated

from either the training sample or the test sample. The misclassification error rate

is estimated by the ratio of samples misclassified to the total number of samples

used to do the test.

There are many types of classification error rates. These are defined below:

Sample error: Given N examples and the number of times that the tree misclassifies

the examples, say, E. The error rate for the tree is then EIN. The sample error is

obtained from an independent test sample.

Instead of summing terms that are either zero or one as in the error-count

estimator, the smoothed error rate uses a continuum of values between zero and one

in the terms that are summed. The resulting estimator has a smaller variance than

the error-count estimate. Also, the smoothed error rate can be very helpful when

there is a tie between two competing classes.

56

The overall error rate is estimated through a weighted average of the individual

group-specific error-rate estimates, where the prior probabilities are used as the

weights.

When the input data set is an ordinary data set and no independent test sets are

available, the same data set can be used both to define and to evaluate the

classification criterion. The resulting error-count estimate has an optimistic bias and

is called an resubstitution error rate.

Generalisation error rate: Given a probability measure P xy and a loss function

I : y x y ~ 9t+ , the generalisation error G [h] of a function h : x ~ y is defined by:

G [h] = E [1(h(X), Y)]
XY

(2.28)

Cross validation error: This type of error is used to estimate the error for a tree

growing method and it attempts to remove the error rate bias. When using cross

validation (CV), you divide the training set into N partitions. Do N experiments:

each partition is used once as the validation set, and the other N-1 partitions are

used as the training set. Such a technique is very useful when training data is

limited.

Average conditional error rate: The true error rate of a rule can be written as

je(x)f(x)dx, where e(x) is the conditional probability of error at x given the correct

data set, and fix) is the overall mixture distribution (Hand, 1997).

Other performance criteria like the computational speed (the time spent learning

the tree) and storage (space), depth of the tree (number of splits) and the number of

terminal nodes have been used for tree-based models.

2.8.5 Decision Tree Algorithms

The two most standard and leading DT algorithms are the CART system, that of

Breiman et al. (1984) and 103 (Quinlan, 1986; 1987) and its successors C4.5 and

C5.0 by Quinlan (1993; 2002), respectively. They are both TDIDT (Top Down

57

Induction of Decision Trees; Section 2.2) approaches which induce axis-parallel

binary DTs; they use feature vectors for the input but a tree structure for the

decision rules that they build up. Post-pruning algorithms are used for both systems.

Many variants of DT algorithms have concentrated on DTs in which each node

checks the value of a single attribute. This class of DTs may be called axis-parallel

because the tests at each node are equivalent to hyperplanes that are parallel to

axes in the attribute space, i.e., they correspond to partitioning the parameter space

with a set of hyperplanes that are parallel to all the features axes except for the one

being tested and are orthogonal to that one. An example of such a DT has already

been given in Figures 2.2 (a) and 2.2 (b), which shows both the tree and the

partitioning it creates in a 2-D attribute space. In axis-parallel decision methods, a

tree is constructed in which at each node a single parameter is compared to some

constant. If the feature value is greater than the threshold, the right branch of the

tree is taken; ifthe value is smaller, the left branch is followed.

There are DTs that test a linear combination of the attributes at each internal node.

They allow the hyperplanes at each node of the tree to have any orientation in

parameter space. (Murthy and Salzberg, 1992; Murthyet ai., 1993). Mathematically,

this means that at each node a linear combination of some or all the parameters is

computed (using a set of feature weights specific to that node) and the sum is

compared with a constant. The subsequent branching until a leaf node is reached is

just that used for axis parallel trees. Since these tests are equivalent to an oblique

orientation to the axes, we call this class of DTs oblique DTs. Note that oblique DTs

produce polygonal (polyhedral) partitioning of the attribute space. For obtaining

oblique decision, DT program OC1 (Murthy et ai., 1993; Murthy et al., 1994) is such

an algorithm. OC1 uses a hill-climbing search procedure (Le. maximising the

goodness of split) and chooses multiple attributes for testing trees.

Oblique DTs are considerably more difficult to construct than axis parallel trees

because there are so many more possible planes to consider at each node. AB a

result, the training process is slower. However, they have a major advantage over

other methods: they often produce very simple structures that use only a few

58

parameters to classify objects. It is straightforward through examination of an

oblique tree to determine which parameters were most important in helping to

classify objects and which were not used.

2.8.5.1 ID3

The ID3 algorithm (Quinlan, 1979; 1983; 1986) equips a new feature to the basic DT

algorithm. This is called windowing. Windowing can be used if the training set is

very large. A subset of the training set called the window is chosen randomly to

build an initial tree. The remaining input cases are then classified using the tree. If

the tree gives correct classification for these input cases then it is accepted for the

entire training set and the process ends.

If this is not the case then a selection of incorrectly classified instances are appended

to the window and the process continues until the tree gives correct classification for

the whole set. Empirical evidence suggested that a correct DT was obtained more

quickly by the windowing method than by creating a tree from the entire training

set. However it is suggested by Vadera and Nechab (1994) that the advantages of

windowing are negligible and Niblett (1987) has indicated that the windowing

method does not always guarantee to find a correct DT unless the window uses the

entire training set.

The basic ID3 algorithm, including the window component, is given below:

1. Select at random a subset of the training set (the "window set") of any size.

Windowing generates the initial tree from a subset of the data and uses the rest

of the data to modify the tree as necessary to account for any statistical

differences between the data and the initial subset.

2. Apply a computer learning system algorithm to generate a rule (DT) for the

current window set.

3. Test the tree over the rest of the training set.

4. Scan the whole database, not just the window, to find if there are exceptions or

misc1assified examples to the latest rule.

59

5. If there are exceptions, insert some of them into the window (possibly replacing

existing examples).

6. Stop in branch if pure node is attained. Repeat steps 2 -5; otherwise stop and

display the rule.

All the probabilities used to estimate the informativity of the attributes are

approximated with relative frequencies taken from the training set.

ID3 has the strength of being fast yet suffers from the fact that it uses non­

probabilistic rules. 103 uses a "greedy" search approach, which performs no

backtracking, i.e., once an attribute is selected as an internal node, the algorithm

does not go back to change this decision. Therefore, ID3 is susceptible to the usual

risk of converging to locally optimal solutions that are not globally optimal. Another

limitation of ID3 is that the DT produced overfits the training examples (also known

as the problem of small splits) because it performs a stepwise splitting that attempts

to optimize at each individual split, rather than on an overall basis (McKee, 1995).

This leads to DTs that are too specific. From statistical point of view, very small (or

overfitted) groups are quite likely to be chance occurrences and therefore unreliable

for predicting new sets of data. Furthermore, ID3 has the weaknesses of being

unable to deal with contradictory examples. Finally, ID3 is over-sensitive to small

alterations to the training set.

2.8.5.2 C4.5

The system is a successor to ID3 and was developed by Quinlan (1993). It provides

two choices of classifier forms; DTs or rulesets. It also performs the window selection

method as in ID3 (but with some refinements), and then "greedily" searches over all

the attributes to produce a sequence of optimal univariate splits (on both

numerically ordered or ordinal variables and on nominal variables), in a top-down

recursive divide-and-conquer strategy, so that a large tree is grown. Numeric

attributes are handled using the attribute sub-setting method. The tree starts as a

single node with all the training examples and uses recursive partitioning. C4.5 uses

information gain or information gain ratio measures as splitting rules. The split that

60

yields the highest information gain or gain ratio is selected. C4.5 follows two types of

pruning. During tree construction C4.5 requires that a split results in at least two

branches having a minimum number of instances. The default value for the

minimum weight is 2, but can be changed by a program option. Larger values of

minimum weight help prevent overfitting of noise. The main pruning procedure C4.5

follows is error-based and it is based on statistical heuristics (no cross validation is

used) and relies on the estimated confidence intervals on the training set, as already

described in Section 2.2.3.

Large DTs can sometimes be very difficult to understand. An important feature of

C4.5 is its mechanism to convert DTs into collections of rules called rulesets. The

hypothesis space of C4.5 is within the disjunctive normal form (DNF) formalism, i.e.,

for each DNF, the conditions along the branch represent conjuncts and the

individual branches can be seen as disjuncts. Each branch forms a rule with a

conditional part and a conclusion. The conditional part is a conjunction of conditions.

In other words, you write a rule for each path in the DT from the root to a leaf. In

that rule the left-hand side (LHS) is easily built from the labels of the nodes and the

labels of the arcs. The resulting rules set can then simplified: Let LHS be the left­

hand side of a rule and let LHS* be obtained from the LHS by eliminating some of

its conditions. We can replace LHS by LHS* in this rule if the subsets of the training

set that satisfy respectively LHS and LHS* are equal. The DT example (See Figure

2.2 (a» can be converted to the following rules:

IF
THEN

IF

THEN

and so on.

(Outlook = Sunny) and (Humidity >75)

Don't Play Golf

(Outlook = Sunny) and (Humidity <=75)
Play Golf

For a detailed discussion of rule learning, the reader is referred to Section 2.7.

C4.5 provides a choice of classifier forms - DTs or rulesets. In many applications,

rulesets are preferred because they are simpler and easier to understand than DTs,

but the methods for finding rules used in C4.5 are slow and memory-hungry.

61

A major weakness of C4.5 is that the information gain measure selection criterion it

uses has a tendency to favour many valued attributes. However, Quinlan offers a

solution to this by introducing the information gain ratio measure. As mentioned in

Quinlan (1986), this ratio may not always be defined; the denominator may be zero

or it may tend to favour attributes which the denominator is very small. Also, the

gain ratio measure also discriminates the selection of attributes with many

uniformly distributed values. However, the experiments described in (Quinlan,

1988) show improvement in tree simplicity and prediction accuracy when gain ratio

criterion is used.

C4.5 always subdivides the data subsets until no single exception remains. The

resulting subsets may become so small that partitioning them further would have no

statistically significant basis. By creating a branch for each attribute value, C4.5

encounters the problem of over-branching caused by unnecessary partitioning of the

training data.

2.8.5.3 See5/C5.0

8ee5/C5.0 represents a complete rethink of Quinlan's C4.5 algorithm for generating

DTs and rulesets, and the improvement is dramatic. Also, C5.0 is for classification

only; there is no regression tree. It uses multiple splits rather than binary splitting.

The Unix system C5.0 and its Windows counterpart 8ee5 are superior to Quinlan's

earlier system C4.5 in several important ways.

C5.0 is more than two hundred and forty times faster than C4.5 on the coding data.

It uses less memory (5.6Mb versus more than 6.0Mb for C4.5), and produces a more

accurate ruleset into the bargain (Quinlan, 2002).

C5.0 incorporates several new facilities such as variable misclassification costs. In

C4.5, all errors are treated as equal, but in practical applications some classification

errors are more serious than others. C5.0 allows a separate cost to be defined for

each predicted/actual class pair; if this option is used, C5.0 then constructs

classifiers to minimise expected misclassification costs rather than error rates.

62

C5.0 has several new data types in addition to those available in C4.5, including

dates, times, timestamps, ordered discrete attributes, and case labels. In addition to

missing values, C5.0 allows values to be noted as not applicable. Further, C5.0

provides facilities for defining new attributes as functions of other attributes.

C5.0 is also easier to use. Options have been simplified and extended to support

sampling and cross-validation, for instance.

2.8.5.4 CART

CART is an acronym for Classification and Regression Trees, a decision-tree

procedure introduced by Breiman et ai. (1984) based on Friedman's foundation

(Friedman, 1977). It uses a "greedy" approach and several single-variable

(univariate) splitting criteria on both numerically ordered or ordinal variables and

on nominal variables - Gini, twoing, ordered twoing and least squares and least

absolute deviation for regression trees - and one linear combination split on

numerically ordered variables method. Linear combination splits are in the form

L aiXi ~ c versus L ajXi > c, where c is the "cut-oft" point and c, {aJ are constants
i i

that are chosen to maximise separation of the sample. The default GINI method

typically performs best but, given specific circumstances, other methods can

generate more accurate models.

In CART, pruning is done via the test sample or cross validation, utilising the cost

complexity pruning technique. The idea is to estimate the misclassification cost for

each subtree with the test sample or cross validation and select the subtree with the

smallest estimated cost.

The CART system is quite efficient. It generates results much faster than other tree

algorithms such as C4.5 and non-tree classification methods, such as neural nets.

C4.5 has since been superseded by C5.0 which is much faster than CART. However,

C5.0 still does not have the cross-validation capability to choose the best tree.

CART allows only either a single feature or a linear combination of features at each

internal node. Linear combination splits and nominal variables with many

63

categories are computationally very expensive, as it requires generation of multiple

auxiliary trees. There is also no guarantee of global optimality with linear

combination splits. However, they are more nearly optimal than if linear

combination is not used. Also, it should be noted that considering the use of linear

combination splits increases the risk of overfitting substantially. One other

important criterion for classifiers is computational speed which is affected by many

factors. For example, with most tree-based algorithms, a 10 fold cross validation

increases running time by a factor of 10.

2.8.5.5 Other Systems

Several other tree-based systems have been developed for supervised learning. Most

of them re-implement some parts of the "classical" CART and C4.5 algorithms. We

do not describe all of them here in detail but some of them deserve mention.

CAL3

This system is due to Muller and Wysotzki (1994; 1996) and was designed

specifically for continuous and ordered attributes. It was also designed to convert

real-valued attributes into discrete ordered attributes (intervals) using statistical

splitting methods. The intervals are automatically constructed and adapted to

establish an optimal discrimination of the classes in the feature space. However,

CAL5 does have a procedure to handle unordered discrete valued attributes. The

trees are constructed top-down by stepwise branching with new attributes to

improve the discrimination of classes.

A quotient is used as the evaluation function for splitting given by the following

measure:

A2
quotient(N) = 2 2

A +D
(2.29)

where N is the internal node in the tree construction process; A 2 is the mean value

of the square of distances between the centroids of the classes; D2 is the mean value

of the squared variance of the classes with respect to their centroid vector. This is

done for continuous attributes only, and an attribute with the least value of the

64

quotient is selected as the best one for partitioning. The evaluation function requires

discretisation at N for each attribute before choosing the best attribute for splitting

at that node. Discretisation is done by forming, recursively, intervals and discrete

points on the axis for ordered and unordered discrete variables, respectively. This is

done until a class decision can be made at a given level of confidence. Trees grown by

CAL5 can also use Quinlan's gain measure when choosing the best attribute for

splitting. The trees are automatically pruned with the help of a threshold and

significance level for the estimated class probabilities in an interval. By means of

this threshold the user can control the complexity of the tree, i.e., the degree of

approximation of class regions in feature space. In addition, pruning occurs during

tree construction.

One main strength of this system is its ability to construct either binary discrete

valued attributes or attributes with an arbitrary number of discrete values

(intervals) and work entirely with either. It has no restriction to binary ones as, for

example, in CART or in modifications of ID3. An obvious limitation of this method is

the procedure of pruning during learning. It is always difficult to know when to stop

growing the tree. It is also difficult to choose an appropriate threshold that

determines whether to split a node or not.

QUEST

Quick, Unbiased and Efficient Statistical Tree (QUEST) is a statistical DT algorithm

for classification and data mining developed by Loh and Shih (1997). The objective of

QUEST is similar to the CART algorithm. The algorithm constructs a tree by linear

statistical methods. QUEST uses a variable selection method that is unbiased in

selecting variables that have more splits and also much faster than the exhaustive

search method of Breiman et al., especially when there are nominal variables with

many categories, or when linear combinations splits are employed. The F and

Z2 statistical tests are utilised for this task of variable selection. At each node, an

analysis of variance F-statistic is calculated for each ordered variable. The variable

with the largest F-statistic is selected and linear discriminant analysis is applied to

it to find the best splitting point. Unlike CHAID (described later) and CART, which

65

handle variable selection and split point selection simultaneously during the tree

growing process, QUEST deals with them separately. Pruning is done via test

sample or cross validation while missing values are handled by imputation. The

strength of QUEST lies in its fast tree construction speed. QUEST has been

demonstrated to be much better than exhaustive search methods in terms of

variable selection bias and computational cost. In terms of classification accuracy,

variability of split points and tree size, however, there is no tree algorithm that has

been found to be superior to the others when univariate splits are used. The most

obvious limitation at present is its inability to detect pairwise interactions between

predictor variables at each node (Loh, 2001).

AID, THAID and MAID

Morgan and Sonquist's early 1960's work on AID (Automatic Interaction Detector)

created interest in recursive partitioning. AID uses binary splits, chooses the

predictor and split that maximizes the variance explained by the binary split, and

stops splitting when there is no split that could explain some user-specified

minimum fraction of the original full-sample sum of squared deviations. After AID,

the same group developed THAID (Theta AID) for a categorical dependent variable

(Morgan and Sanquist, 1973), and MAID (Multivariate AID) for a continuous

dependent variable (Gillo, 1972). The statistical community's interest in AID was

soon tempered however by the realization that the arbitrary stopping rule was not

effective in controlling Type I and Type II errors, and AID acquired the reputation of

'a method that could find a significance in any data set'. This started two

independent threads of work to put AID on a statistically sound foundation so that it

would make only 'real' splits. This led to the birth of CHAID, which is discussed

below.

CHAm

One interesting rule-generator is the system described by Kass (1980) called Chi­

Squared Automatic Interaction Detection (CHAID). The system partitions the data

into mutually exclusive and jointly exhaustive subsets that best describe the class

variable. It tends to favour non-binary (multi-way) splits that can paint visually

66

appealing trees, but that can bog models down with less accurate splits. The best

partition is chosen on the basis of a Bonferroni-corrected p-value of the %2 statistics

for each merged predictor. CHAID's multi-way splitting criterion is based on

measuring the association between two variables in a contingency table, and then

utilising Pearson's %2 statistic to select among attributes. An improved method of

calculating the significance is proposed by Biggs et al. (1991).

CHAIn has the weakness of yielding trees with excessive branching at each node.

This can affect the gain in impurity and significantly biases the selection towards

nominal variables with many categories (Loh and Shih, 1997). To address this

problem, White and Liu (1994) suggested using only binary splits, i.e., splitting a

node into branches so as to avoid having to decide what an appropriate number of

branches would be. Also, multiway splitting does not make as effective use of the

conditional information potentially present in the tree as does binary splitting

(Friedman, 1977). However, Kass (1980) seem to think that binary splits are often

misleading and inefficient by arguing that they poorly communicate structure in the

data if the data more naturally split into more branches. For example, if salaries are

vastly different in Swaziland, South Mrica and United Kingdom, then the

algorithm, ought to separate the three countries all at once when predicting salaries.

2.8.5.6 Further Systems

Several statistical packages have since incorporated tree functions, like S-Plus Tree

(Clark and Pregibon, 1992; Venables and Ripley, 1994) and RPART (Therneau and

Atkinson, 1997), which implement binary trees for classification and regression

problems.

Other types of DT systems have been proposed. The standard algorithm of building

DTs uses at each node a test based on one attribute. These type of trees are called

univariate trees. Multivariate trees use tests based on linear combinations of

attributes, i.e., splits that are based on more than one attribute at each internal

node (Brodley and Utgoff, 1995).

67

Another approach is known variously as dynamic path generation (White, 1977) or a

lazy DT (Friedman, 1996) which involves branching an attribute in a way that is

best for each individual case. Unlike dynamic path generation, lazy DTs construct

the "best" DT for each test instance. The information gain measure is used to choose

the appropriate test but there is no pruning done. Missing values are handled by

considering only splits on feature values that are known in the test instance.

Incremental induction (modifying the existing knowledge in response to new data or

facts) has been proposed by several authors. Incremental decision trees (IDTs) are

trees where statistics about the attribute values are maintained at each node

without retaining past examples (Schlimmer and Fisher, 1986; Utgoif, 1991; Kalles

and Morris, 1996). The basic idea of IDT is to accept new training instances, and to

update the tree in response. This is done in two steps. First, by incorporating a

training instance into the tree by passing it down the branches until it reaches a

leaf. Secondly, by traversing the tree from root to leaves to ensure a best test at each

decision node by which to partition the training instances. The main strength of

incremental learning is in its lower cost for serial learning than repeated running of

a non-incrementalleaming algorithm.

Several authors have considered constructing tree classifiers that have linear

discriminants (Duda and Hart, 1973) at each node in the DT. These type of trees are

known as linear discriminant trees. Loh and Vanichsetakul (1988) have considered

the use of linear discriminants at each node of the DT for their called the fast

algorithm for classification trees (FACT) system. Their method chooses the variables

at each stage according to the data and the type of splits desired. Yun and Fu (1983)

use a multivariate stepwise regression approach to optimise the structure of the DT

as well as to choose subsets of features to be used in the linear discriminants.

Bayesian trees - Another form of tree induction but from a Bayesian theory point of

view, have been considered by several authors. The two basic components of this

approach consist of prior specification and search. Bayesian trees put independent

and identical Dirichlet priors at each node. The priors induce posterior distributions

which then guide the model search algorithm (deterministic or stochastic) towards

68

fitting the tree (Buntine, 1990; Chipman et al., 1998a; 1998b; Denison et al., 1998) ..

The class posterior distribution is calculated for each terminal node, which makes

the use of DTs within a Bayesian framework computationally expensive (Breiman et

al., 1984; Buntine, 1992). Trees with largest posterior probability are chosen as good

trees. As well as re-implementing parts of the CART and C4.5 algorithms and

offering experimental control suites, IND (Bun tine, 1992) also introduces full

Bayesian and Minimum Message Length (a Bayesian method of inductive inference)

methods and more sophisticated search in growing trees.

Option trees - Trees include option nodes, which replace a single decision with a set

of decisions. Buntine (1990) introduced options trees as a generalisation of DTs. For

split selection, all promising attributes are selected instead of the "best" attribute as

most DTs algorithms do. For each selected attribute a DT is built. Once the option

trees have been built, averaging is then done on them (Buntine, 1990; Kohavi and

Kuntz, 1997). The main difficulty of option trees is that they require a lot more

memory than ordinary trees.

Intermediate decision trees (Holder, 1995) are the subtrees of the full (unpruned) DT

generated in a breadth-first traversal of the internal nodes (splits) of the DT. The

best-first traversal orders the splits based on information gain. Both the depth-first

and best-first traversals indicate higher error until a majority of the splits have been

performed. The breadth-first traversal, however, quickly achieves a low error, which

gradually ascends to the final error level.

Recent approaches have involved the use of fuzzy theoretical methods (Zadeh, 1965;

1994) to create fuzzy trees (Klir and Folger, 1988; Hayishi et aI., 1998; Hirota and

Pedrycz, 1996; Holve, 1997; Janikow, 1998). By applying such approximate

reasoning techniques, more flexible and robust DTs have been created. The fuzzy

tree allows for gradual transitions to exist between attribute values, whilst

simultaneously maintaining a degree of transparency in how the decision outcome

was reached. Current work is being also being undertaken on the creation of fuzzy

DTs using a range of hybrid machine learning techniques. Once again, the statistical

validity of this approach is open to questions.

69

Cestnik et al. (1987) makes some improvements on the attribute splitting and

pruning strategies used by other tree-based systems. ASSISTANT 86's main idea is

based on the binarisation of attributes and the growing of binary trees.

The GID3* (Fayyad and Irani, 1991; Fayyad, 1991) system builds on Quinlan's ID3

learning system. Its rules start off like the ID3 and become more and more specific.

It uses the gain ratio measure rather than the entropy as a selection measure, but

branches only on a subset of values while grouping the rest in one default branch. A

selection criterion is then used to select the attribute that "induces" the best

partition on the data. Fayyad and Irani (1991) further define a new family of

selection measures, called C-SEP, which they argue are better suited for the purpose

of class separation.

2.8.5.7 Strengths and Weaknesses of Decision Trees

Strengths of DTs

1. One property that sets DTs apart from all other methods is their invariance

to monotone transformations of the predictor variables. For example,

replacing any subset of the predictor variables {x) by (possible different)

arbitrary strictly monotone functions of them {Xj f- mj(x)}, gives rise to the

same tree model. Thus, there is no issue of having to experiment with

different possible transformations mj(xj) for each individual predictor Xj to

try to find the best ones. This invariance provides immunity to the presence

of extreme values ("outliers") in the predictor variable space. In addition,

DTs incorporate a pruning scheme that partially addresses the outlier (noise)

removal problem.

2. A DT is a form of knowledge that is relatively easy for humans to generate

and understand from a conceptual view point. However, this is necessarily

not true if most attributes are continuous and the tree is very large.

3. DTs are able to generate understandable rules.

70

4. DTs are non parametric in nature; since they do not assume any underlying

family of probability distributions. This makes them more robust than

parametric techniques. DTs are capable of generating arbitrarily complex

decision boundaries from a given set of training samples.

5. DTs are relatively fast to construct and classification is very fast too. They

work for almost all classification problems and can achieve good performance

on many tasks.

6. DTs are particularly convenient for handling mixtures of real-valued and

nominal features and interactions among them for which there is no well­

defined distance metric, which would be required for a nearest neighbour of

kernel estimation approaches. They can also handle a large number of

features.

7. It is easy to read or interpret small trees. They also generate understandable

rules no matter how complicated the units are; it is generally easy to follow

anyone path through the tree, so explaining the decisions along the way is

easy.

8. The computation cost for each split is inexpensive; programs are relatively

fast to run.

9. Once a DT has been constructed, classification of future cases is fast and

simple.

10. DTs provide a clear indication of which attributes are most important for

prediction or classification.

Weaknesses of DTs

1. The principal limitation of DTs is that in situations not specifically

advantageous to them, their performance tends not to be competitive with

other methods that might be used in those situations.

2. Another problem with DTs is instability. Changing the values of just a few

observations can dramatically change the structure of the tree, and

substantially change its predictions. This is especially the case for large trees.

71

3. It is also hard to use DTs for problems involving time series data unless a lot

of effort is put into presenting the data in such a way that the trends are

made visible.

4. DTs suit discrete attributes (relatively poor performance when applying them

to mainly continuous attributes problems). Some problems with continuously­

values attributes or classes may not be easily discretized.

5. DTs are prone to errors in classification problems with many classes and a

relatively small number of training examples.

6. A greedy algorithm is non-backtracking. Once a data set is partitioned into

multiple subsets, knowledge across the subsets cannot be explored.

7. They have problems with large number of missing data. Most of the available

methods for handling missing attribute values in trees are somewhat clumsy.

8. The process of growing a DT can be computationally expensive. Each

attribute which is considered a candidate for splitting field must be sorted

before its best split can be found. In some algorithms, combinations of fields

are used and a search must be made for optimal combining weights. Pruning

algorithms can also be expensive since many candidate sub-trees must be

formed and compared.

9. DTs do not deal with non-rectangular partitioning of the data space well.

Most DT algorithms only examine a single attribute at a time. This leads to

rectangular classification boxes that may not correspond well with the actual

distribution of records in the decision space.

10. In some instances, especially when the number of classes is large, DTs can

cause some nodes to have overlap classes, i.e., the number of terminal nodes

is much higher than the number of actual classes, thus increasing the search

time and space. In many situations this multiplicity reflects variation in

posterior probabilities.

72

Chapter 3

Missing Values

3.1 Overview and Problems Caused by
Incomplete Data

Given a large database it is unlikely that all the information will be complete for

each case. This seems especially common in medical and social sciences. Rates of less

than 1% missing data are generally considered trivial, 1-5% manageable. However,

5-15% require sophisticated methods to handle, and more than 15% may severely

impact any kind of interpretation (Pyle, 1999). Incomplete data could be caused by

unit nonresponse (where no data could be collected from the sampled unit) or item

nonresponse (where partial data is collected for the unit, but some items are

missing). In panel studies, where persons are interviewed several times, causes of

incomplete data could be the first and subsequent interview or "wave" nonresponse

(where a subject is missing for one or more waves of the panel survey) and attrition

or dropout (where a subject leaves a panel survey and does not return).

There are many patterns of missingness in data (Cohen and Cohen, 1983). The

pattern simply defines which values in the data set are observed and which are

missing. These can be classified into general pattern and special patterns

(univariate missing data, unit nonresponse and monotone missing data). The

general or arbitrary pattern is when any set of variables may be missing for any

unit. Univariate missing data occur when missing values are confined to a single

variable, i.e., only one variable is subject to nonresponse. Another pattern could be

where a block of variables is missing for the same set of instances, and the

remaining variables are complete ("unit nonresponse"). The third special pattern

occurs if a variable, say Yj , has missing values missing then the other variables,

73

say Yj +1 , ••• , Yp ' have missing values as well (monotone pattern). The pattern of

monotone missing data arises commonly in longitudinal data subject to attrition.

Incomplete data can cause two major problems in general: decrease in statistical

power of hypothesis tests and bias in results, especially parameter estimates

because the sample size for the incomplete data is less than it would be if the data

were complete (no missing values). The concept of power in statistical theory is

defined as the probability of rejecting the null hypothesis given that the null

hypothesis is false. In this context, statistical power is the ability of a statistical test

to discover a relationship in a given set of data. Power depends on the type of test,

increases with increasing sample size, effect size, and significance level, and declines

with increasing sampling variance. Kim and Curry (1977) showed experimentally

how statistical power requirements could be associated with increases in proportions

of missing data.

Second, missing data can bias results, especially parameter estimates. All these

effects of missing data depend upon why the data are missing and the method used

for handling missing data in analyses. Missing data are also problematic because

most statistical packages require a value for each variable. When a data set is

incomplete, the data analyst has to decide how to deal with it or the algorithm being

used must have a mechanism for dealing with it.

Another problem with missing data is that they make common statistical methods

inappropriate or difficult to apply (Rubin, 1987). For example, when missing data

are present in a factorial analysis of variance the design is unbalanced (i.e. unequal

number of instances in cells of a design). Consequently, the standard statistical

analysis that is appropriate for balanced designs is no longer appropriate under this

condition. Even if data are assumed to be missing in a completely random fashion,

the proper analysis is complicated because the effects are no longer orthogonal.

Finally, valuable resources are wasted as a result of missing data. Time and funding

spent on subjects who subsequently leave a study and/or produce missing data

represents a loss. Such loss is a particular concern in longitudinal research, large

74

scale assessments and high-stake studies, and surveys that ask sensitive

information or target respondents who are not accustomed to responding to opinions

surveys.

Handling data with only partial information on some variables is a serious problem

for many large-scale surveys or panel studies, particularly when statistical

techniques whose methods are built on the assumption that data are complete were

intended to be used. Missing values may distort the results, imbalance the study

design and produce biased estimates. Various ways of handling missing values have

been extensively studied (Afifi and Elashoff, 1966; Hartley and Hocking, 1971; Beale

and Little, 1975; Rubin, 1976; Dempster et al., 1977; Kim and Curry, 1977; Everitt,

1984; Little and Rubin, 1987; Schaffer, 1997). These methods for handling data will

depend the amount of missing data; on why the data is missing (the mechanism);

what data are missing (pattern of missingness); the covariance between the

variables; and what particular function of the population parameters is being

estimated (producing sound estimates of the parameters of interest). However, the

two most common tasks when dealing with missing values are to investigate the

pattern of missingness to get an idea of the process that could have generated the

missing data and to produce sound estimates of the parameters of interest, despite

the fact that the data are incomplete. The law generating the missing values, Le.,

the missing data (values) mechanism, seems to be the most important task since it

facilitates how the missing values could be estimated more efficiently. Formally, this

law is the conditional distribution of the missing indicators, given all the variables

considered.

3.2 Types of Missing Data Mechanisms

Almost all techniques suggested in the literature assume that information is missing

randomly (Hartley and Hocking, 1971; Little and Rubin, 1987; Schafer, 1997). But

the simple dichotomy - random versus non-random is often not sufficient. The most

appropriate way to handle missing or incomplete data will depend on how data

points became missing. All the causes for missing data fit into different classes,

which are based on the relationship between the missing data mechanism and the

75

missing and observed values. These classes are important to understand because the

problems caused by missing data and the solutions to these problems are different

for the individual classes. We begin with the examination of various patterns of

data.

It is useful to consider the probability law generating the missing values or the

mechanism by which missing data arise. By missing mechanism we mean the

frequency distribution of different categories of missing patterns such as missing on

one variable, missing on two related variables, and so on. Rubin (1976), and Little

and Rubin (1987) distinguish missing data generating processes with respect to the

information they provide about the unobserved data. Formally, this missing

mechanism is the conditional distribution of the missing indicators, given all the

variables considered. The most important issue is whether the missingness is

related to the values of other variables. For example, whether information is missing

or not on a given variable say, Y:

a) may be unrelated to the values of that variable or to the values of other variables

in the data set (independent of all variables);

b) is dependent on the value of another variable, say, X;

c) is dependent on the values of itself, that is, 1';

d) may be determined by values not observed in the given data set;

e) is a product of a particular combination of two or more variables.

Little and Rubin (1987) view response as a random process and further define three

types of missing data mechanisms. The processes are that data are missing

completely at random (MeAR), missing at random (MAR), or informatively missing

(1M), which is also known as non-ignorable or not missing at random.

To discuss the effects of missing data, Little and Rubin (1987) introduced a missing­

data indicator matrix R, with (iJ)th element Ru where Ru = 1 if~ is observed and Rij

= 0 ifXij is missing. The three missing data mechanisms are therefore defined as:

76

MCAR the distribution ofR does not depend on the observed or missing values of

the variable's data, say, Y. MCAR is the strongest assumption that can be

made about the missing data mechanisms. It assumes a pure random

missingness. An example of MCAR is when subjects are absent from a

measurement session for reasons entirely unrelated to that variable or to

the values of other variables in the data set being measured. The key idea

is that missingness is unrelated to outcome, i.e. missing instances are no

different than non-missing instances, in terms of the analysis being

performed. Data that are missing because a researcher dropped test tubes

or survey participants accidentally skipped questions are likely to be

MCAR. Thus, these instances can be thought of as randomly missing from

the data and the only real penalty in failing to account for missing data is

loss of power. Simple approaches like mean imputation or regression­

based imputation are satisfactory only for data that is MCAR.

MAR the distribution of R depends on Y only through the observed values, but

is not related to the value that should have been observed for that data

point. It is a conditional MCAR or MCAR is a special type of MAR.

Accounting for the values which "cause" the missing data will produce

unbiased results in an analysis. Thus, it is a weaker assumption. An

example of MAR is a school-based study where the probability of

completing the questionnaire can be explained by grades. Another

example of this type can be found in a situation in which respondents are

asked if they voted in the previous elections but some were ineligible to

vote because of age. Full maximum likelihood and Bayesian approaches

can handle data that is MAR (and also MCAR).

1M the distribution of R depends on the unobserved values (and possibly the

observed); missingness depends on the value that should have been

observed at that data point. This type of mechanism is also known as

Non-Ignorable (NI) or not missing at random (NMAR) or missing not at

random (MNAR), and it is the most problematic and hardest to deal with.

Since the missing data depends on events or items which the researcher

77

has not measured, this is a damaging situation. An example of such a

mechanism is a study of risk behaviour where nonresponse is directly

related to behaviour or respondents with excessively higher income may

be reluctant to reveal their level of income. Approaches to dealing with 1M

data are an area of active current research.

The reader is referred to Table 3.1 for more detailed definitions of these concepts.

Table 3.1: Missing data hierarchy (Little and Rubin, 1987; Schafer, 1997)

1. Missing completely at random (MCAR):

p(Rly, q» = p(RIq» for all Y

2. Missing at random (MAR): (non-response mechanism is ignorable)

p(Rly, q» = p(RIYObserved ' cp) for all Y missing

3. Informatively missing (1M): (non-response mechanism is non-ignorable)

p(Rly, cp) depends upon Y missing possibly also YObserved

where, R = missing data indicator matrix

Y = data matrix

q> = unknown parameters

A key distinction is whether the mechanism is ignorable (i.e. MCAR or MAR) or non

ignorable (i.e. 1M). Ignorability is a desirable property, can be guaranteed in many

settings when the experimenter has control over data that is missing. There are

excellent techniques for handling ignorable missing data. However, non ignorable

missing data are more challenging and require a different approach. The statistics

literature has investigated a few techniques for directly handling non-ignorable

missingness, but the techniques are problem-specific and sensitive to prior

assumptions (Little and Rubin, 1987).

These distinctions are important because data that are MCAR produce unbiased

estimates even with rather primitive analysis methods. Data that are MAR will

produce unbiased estimates, if a model and estimation technique is used that

renders the missingness mechanisms ignorable. When data are 1M, an analysis

78

method must be used that includes both a model for the observed data, and a model

for the missingness mechanism. For data that are MCAR or MAR, general software

is available that produces unbiased estimates using all the available information.

For data that are 1M, there are usually no easy solutions.

There is no doubt that these concepts playa key role in the theory of missing data

adjustments (as evidenced by the number of papers where they are cited). For

example, complete-case analysis often (not always) makes an MCAR assumption,

and likelihood methods that ignore the missing data mechanism assume MAR.

These terms have turned out to be incredibly helpful both theoretically (to classify

the type of analyses that are needed) and practically (to show that nearly all ad hoc

methods implicitly assume MAR). These terms have also shown that there never is

any direct evidence against MAR in observed data. Thus, any 1M modeling will rely

on external (sometimes perfectly reasonable) assumptions. Making assumptions

underlying methods explicit seems to be very important, since prior to that people

carried out missing data adjustments without any awareness of what was being

implicitly assumed about the mechanism.

Data can provide evidence against MCAR (Little and Rubin, 1987). The data cannot

generally distinguish between MAR and 1M without distributional assumptions,

unless the mechanism is well understood (for example, right censoring is 1M but is

in some sense known). The term "right censored" implies that the event of interest,

i.e., the time-to-failure, is to the right of our data point. In other words, if the units

kept on operating, the failure would occur at some time after our data point (or to

the right on the time scale). It does imply that most analyses rely on un-testable

assumptions. There are methods that attempt to set up bounds for parameters that

make the fewest possible assumptions (for example, assuming all missing binary

outcomes are zero, or all are one) but such methods have the disadvantage of giving

equal credibility to extreme or more plausible models, and they can only be applied

in restrictive settings. We would say the only way to avoid assumptions in many

missing-data problems is not to have any missing data.

79

Graham and Donaldson (1993) referred to missing data mechanisms as "accessible"

and "inaccessible". An accessible mechanism is one where the cause of missingness

can be accounted for. The term accessible is related to the term ignorable, except

that accessible refers only to the missing data mechanism whereas ignorable refers

to the combination of the mechanism and the data analysis. These situations

encompass MCAR and most MAR circumstances. An inaccessible mechanism is one

where the missing data mechanism cannot be measured, i.e. the missingness is

dependent on an unobserved variable, and hence, the mechanism cannot be included

in the analysis. These situations include non-ignorable mechanisms and MAR

mechanisms where the missingness is known, but is not measured.

Hand (2000), introduces the high level and low level terminology, interchangeably,

as another type of missing value mechanism. High level refers to entire records

being missing, so that the sample distribution is biased relative to the population.

Low level refers to individual fields within the records being missing (Hand et ai.,

2001). So in a survey, high level missing would mean that some people answer no

questions at all. In fact, it is not even known that they were supposed to be in the

survey. Low level means some people refuse to answer some questions (for example,

they did not give their age, though they did answer other questions).

Knowledge of the missing data mechanism is the main element in determining a

treatment for missing data, and largely determines the performance of this

treatment. It is however impossible to verify the MCAR assumption and the causes

of missingness in practice without additional information. Still one can investigate

the missing data patterns in the data and use the available information to make

reasonable guesses about the mechanism.

It has been shown that the pattern and mechanism of missing data have greater

impact on research results than does the amount of data missing (Little and Rubin,

1987; Graham and Donaldson, 1993; Roth, 1994; Tabachnick and Fidell, 2001).

Hence, both are critical issues a researcher must address before choosing an

appropriate procedure to deal with missing data. Randomness of data has also been

80

shown to influence greatly the accuracy of missing data techniques (Roth, 1994;

Little and Rubin, 1987; Graham and Donaldson, 1993).

It is useful to distinguish the pattern of missing data and the missing data

mechanism. The pattern simply defines which values in the data are observed and

which are missing. Missingness confined to a single variable is an example of a

univariate pattern. Missing data mechanisms, on the other hand, concerns the

reasons why values are missing, and in particular the question whether the fact that

variables have missing values is related to the underlying values of the other

variables in the data set.

3.3 General Approaches to Dealing with
Missing Data

The history of the development of missing data techniques (MDTs) can be divided

into three periods (Schafer, 1997). In the first period, prior to 1980, most methods

dealing with incomplete data were ad hoc. In the second period, principled methods

such as the full information maximum likelihood (FIML) and the Expectation­

Maximization (EM) algorithm began to appear. The late development of MDTs

began in the late 80s and early 90s; it was characterised by the introduction of

multiple imputation methods to overcome the drawbacks of single imputation

methods. In this section, we will present a brief overview of existing methods for

dealing with missing data. These methods are divided into two categories: ignoring

and discarding data and imputation (which could either be single or multiple

imputation).

3.3.1 Ignoring and Discarding Data

3.3.1.1 Listwise Deletion

Incomplete data are often dealt with by using several general approaches, like,

deleting the cases with missing data (listwise or instancewise deletion methods)

which aim to modify up the data so that they can be analysed by methods designed

81

for complete data. Listwise or pairwise deletion methods have been used when it is

assumed (or the randomness tests show) that the pattern of missing data does not

deviate significantly from the random model (Kim and Curry, 1977; Muthen et al.,

1987; Arbuckle, 1996). Such an approach is ad hoc and has little theoretical

justification. Hence, the implementation of several new theory-based methods,

which tend to be more efficient (under a missing completely at random process) and

less biased (under missing at random process).

Basically, listwise deletion (LD) means that any individual with missing data on any

variable is deleted from the analysis under consideration. This approach can

drastically reduce the sample size since it can sacrifice a large amount of data

leading to a severe lack of statistical power (Roth, 1994). It can even lead to complete

case loss if many variables are involved. However, due to its simplicity and ease of

use, LD is the default in most statistical packages.

3.3.1.2 Pairwise Deletion

Pairwise deletion (PD) is a form of listwise data deletion but is used when

calculating any statistic that is based on pairs - such as a correlation. PD is different

to LD in the sense that more data is used. So, anyone missing data on a variable

involved in a pair is deleted. This means that elements in a correlation matrix may

be based on different instances and possibly different sample sizes. Interpreting the

correlation matrices can be difficult at times because different samples are used for

each statistic, which can result in mathematically inconsistent correlations or a

covariance matrix that is not positive definite (Kim and Curry, 1977). Both

approaches assume that the missing data are missing completely at random (Little

and Rubin, 1987) - a very stringent assumption that is difficult to defend.

For data that are missing completely at random (MCAR), PD and LD estimates are

consistent (Little and Schenker, 1995). However, under MCAR, PD was found to be

marginally more efficient than LD (Arbuckle, 1996). In other words, the residual

mean squared errors (RMSE's) of parameter estimates by PD did not appear to be

larger than those obtained under LD. Kaplan (1995) and Muthen et al. (1987) found

that under MCAR, the PD approach yielded unbiased estimates. If the data are

82

missing at random (MAR), PD and LD estimates can also be biased (Brown, 1994;

Little and Schenker, 1995). One final shortcoming of PD is that it does not provide

standard errors of parameter estimates or tests of model fit (Arbuckle, 1996). One

advantage of LD is its simplicity, because standard statistical analysis can be

applied without modification for incomplete data. Second, such an approach is non­

parametric, i.e., it makes no assumptions about the distribution of data. Thirdly, in

a few special cases, LD is the statistically optimal method and finally, LD has been

shown to yield correct (although perhaps not efficient) inferences under MCAR.

One of the limitations of LD is that it is inefficient and can also introduce biases if

missingness is not MCAR (Little and Rubin, 1987). Also, LD ignores possible

systematic differences between complete cases and incomplete cases. The standard

errors will generally be larger in the reduced sample because less information is

utilized. When using LD you can get biased estimates if the reduced sample is not a

random sub-sample of the required sample. Loss of information is another weakness

of instance deletion. For example, in discarding incomplete instances; one may

discard unacceptably a large portion of instances, especially in many variate

problems. Kim and Curry (1977) have shown how randomly deleting 10% of the data

from each variable in a matrix of five variables could easily lead to eliminating 41%

of instances from the analysis. It is also unclear which set of instances should be

used for a particular analysis. However, all the complete instances are used most of

the time. The LD approach has been implemented as the default method of handling

incomplete data by many statistical procedures in commonly used statistical

software such as SAS (SAS, 2000) and SPSS (SPSS, 2002). Pairwise data deletion is

also available in a number of SAS and SPSS statistical procedures.

3.3.1.3 Re-weighting

Re-weighting is another technique that has been used to handle missing values,

especially unit nonresponse in large national surveys (Little and Rubin, 1987; Little

and Vartivarian, 2003). The idea is to discard incomplete cases and reweight the

complete ones so that they more closely resemble the population with respect to

distribution of important characteristics. The simplest form of the weighting

83

approach is complete-case analysis, where the complete cases are all given the same

nonresponse weight. Typically, cases with all values present receive higher weights

to counterbalance cases with missing data (Little and Rubin, 1990). Nonresponse

weighting increases the weight of complete cases to represent the entire sample

irrespective of missingness. Weighting can be a useful tool to reduce bias which

arises from restricting analyses to complete cases and when missingness is not

missing completely at random (Schafer and Olsen, 1998). Despite its simplicity and

the advantage of correcting biases due to differential response that is related to the

variables used in the adjustment and not requiring models for data, weighting has

the limitation of being strictly applicable to only monotone patterns of data. The

technique is also inefficient because the exclusion of observed data from partially

complete observations reduces sample size. The derivation of appropriate standard

errors from the weighted analysis can also be a difficult task.

3.3.2 Imputation Techniques

Imputation has become one of the most popular and useful tools used to solve

missing value problems in survey data analysis, especially item nonresponse (or

partial nonresponse). There are several ways to "impute" missing values, most of

which are based on statistical procedures. The attraction of imputation is that once

the missing data are filled-in (imputed), all the statistical tools available for the

complete data may be applied.

Different categorisations of imputation can be distinguished. First, imputations may

be deterministic or random (stochastic). In the first case, imputations are

determined by the incomplete data table, and are the same if the method is applied

again. In the latter case, imputations are randomly drawn either from observed data

or from a predicted distribution. A second distinction is that between naIve and more

principled approaches. NaIve methods are quick options mainly based on analysing

complete cases whereas more principled approaches use models for both the

observed and missing data on which the imputations are based. Finally, imputation

may be based on explicit and implicit models (Little and Schenker, 1995). Explicit

models are the type of models usually discussed in mathematical statistics, for

84

example, normal linear regression models. Implicit models are models which

underlie procedures for fixing up data structures in practice and are often

nonparametric. Different kinds of information could be used to impute missing

values.

Most imputation procedures for missing data, including maximum likelihood

methods, are single imputation. This is probably the most common method for

handling item nonresponse in current survey practice. Such single imputation

procedures are further described.

3.3.2.1 Single Imputation Techniques
One approach to dealing with missing values is single imputation. Single imputation

refers to filling in a missing value with a single replacement value. There are two

general approaches: arbitrary methods and regression-based imputation. Different

kinds of information may be used to impute missing data. These are discussed

below.

3.3.2.1.1 Mean or mode imputation

Some researchers have used arbitrary methods like mean imputation (apparently

first mentioned by Wilks (1932» for addressing the missing value problem, i.e.,

replacing the missing values of a variable by the mean of its observed values. Mean

substitution also assumes a MCAR mechanism. The strength of mean imputation is

that it preserves the data and it is easy to use. However, mean imputation can be

misleading because it produces biased and inconsistent estimates of both coefficients

and standard errors (Tresp et at., 1994). Little and Rubin (1997) points out that

variance parameter estimates under mean imputation are generally negatively

biased. Also, substitution of the simple (grand) mean will reduce the variance of the

variable and its correlation with other variables. Somewhat better is substitution of

the group or global mean (or mode in the case of nominal data) for a grouping

variable known to correlate as highly as possible with the variable which has

missing values. We shall call this technique mean or mode single imputation

(MMSI).

85

3.3.2.1.2 Hot deck imputation

Non-parametric imputation methods like "hot deck" imputation (Ford, 1983; Sande,

1983) include replacing the missing value by a value observed in the data set. The

main principle of the hot deck method is using the current data (donors) to provide

imputed values for records with missing values. All observations are divided into

groups or classes with similar characteristics, i.e., identify the most similar case to

the case with a missing value and substitute the most similar case's, say, Y value for

the missing case's Y value. The procedure through which we find the donor that

matches the instance with missing values is different according to the particular

technique used. Creating a larger number of subgroups yield some improvement in

accuracy, but it can also lead to a very small sample size within some subgroups.

One advantage of hot decking is that, unlike arbitrary methods, it reflects both the

mean and variance of the underlying data. Other advantages of hot decking is that it

preserves the distribution of item values; permits the use of the same sample weight

for all items; and the results obtained from different analyses are consistent with

one another. The primary drawbacks of this method are the lack of guidance in

creating the subgroups and the possibility of creating subgroups with few

observations. Ernst (1980) found that in general hot deck procedures led to higher

variances but reductions in biasness. Also, hot deck imputation tends to be robust,

especially for small data sets. Hot deck imputation methods include sequential,

hierarchical, multivariate matching, record matching, predictive mean matching,

distance function matching or nearest neighbour imputation in which a

nonrespondent is assigned the item value of the nearest neighbour. Non-invasive

imputation (a procedure based on non-numeric rule based data analysis), which

aims to maximise consistency of imputation in known values) is another variation of

hot deck (Gediga and Dfultsch, 2003). The approach is non-invasive because it takes

all its information from the given data and makes no additional dependency or

distributional assumptions. When historical or older data is used the approach is

cold deck imputation. Cold deck imputation is appropriate for the imputation of

panel surveys (where people are interviewed several times). Also, cold deck is useful

for variables that are static, such as place of birth or gender.

86

3.3.2.1.3 Regression-based imputation

Regression-based imputation methods have also been used for handling missing

data by Buck (1960) and Afifi and Elashoff (1966). This technique is similar to hot­

decking, except it is somewhat more flexible. This type of technique estimates

(imputes) missing data values based on other variables in the data set. Regression

imputation comes in various forms. One form is the multiple regression strategy. For

this technique, one develops a regression equation based on complete case data for a

given variable, treating it as the outcome and using multiple other relevant

variables as predictors. Then, for cases where, say, Y is missing, plug the available

data into the regression equation as predictors and substitute the equation's

predicted Y value into the database for use in other analyses.

The proper regression model depends on the form of the dependent variable. A

probit or logit is used for binary variables, Poisson or other count models for integer­

values variables, and ordinary least squares (OLS) or related models for continuous

variables. This method can be often unsatisfactory for nonlinear data and biased if

modal misspecification occurs. Another shortcoming of applying estimation methods

is that variability in the imputed values is underestimated in comparison with

variability of non-imputed values, i.e., the uncertainty due to the missing data is not

taken into account with similar implications of standard errors of model parameters.

To solve this problem a random error term is added to the value fitted by the

regression estimator. The combination of regression-based imputation with the

addition of a random error term is known as stochastic (regression) imputation.

Another form of regression imputation is the stepwise or iterative regression

approaches. When using stepwise regression, only the key variables that contribute

to imputation are isolated. The iterative approach requires computation of an initial

correlation matrix, which is then used to compute some regression equations. The

new missing values are imputed and substituted in the data matrix. This process is

repeated until there is very little change noted in the regression weights.

87

3.3.2.1.4 Expectation maximization

Maximum Likelihood (ML) estimation is another approach to analysing missing

data by using all available data points in a database to construct the best possible

first and second order moment estimates under the missing at random (MAR)

assumption. ML methods are model-based. That is, they are implemented as part of

a fitted statistical model.

A very closely related method to ML is the classical Expectation Maximization (EM)

algorithm (Dempster et al., 1977; Little and Rubin, 1987) that has been used for

model-based imputation. EM is an iterative regression technique in which missing

variables are regressed on the available data and any additional variables provided

as inputs to the algorithm. First, a vector of means and covariance matrix are

calculated using all available data. The means are then imputed for missing values

in each variable. These imputed means serve as a starting value for the imputation.

Next, variables with missing values are regressed on all the other available

variables, and a residual term is added to each missing value to correct for random

variability lost in the imputation process. Naturally, a different regression is

performed for each pattern of missing data. The imputed values are then replaced

with estimates calculated from the regression equations. With the new imputations

in place, the means and covariances are recalculated. Regression equations and

imputations are iteratively calculated until the mean and covariance matrix values

converge (Wu, 1983; Schafer, 1997; Allison, 2001). In other words, the EM algorithm

is typically used to make imputations about missing data by capitalising on the

relationship between missing data and the unknown parameters of a data model.

There are two main applications of the EM algorithm. The first occurs when the

data has missing values. The other occurs in likelihood inference with mixed models,

whereby the likelihood function involves an analytically intractable integral with

respect to the random effects distribution. The latter application is more common in

the computational pattern recognition community.

Theoretical Derivation of EM algorithm is given below:

88

The EM algorithm is a general computational method of calculating maximum­

likelihood estimates through a two-step iteration: Expectation and Maximization.

Since it is simple and stable, the EM has been widely used to fit models from

incomplete data.

Given some data X = {Xl' ••• ' XN} and a model family parameterised bye, the goal of

EM is to fmd e such that the likelihood L(X I e) is maximised. We shall not be

giving the general description of the EM but of a special case, i.e., the EM for

mixtures. First, we find the maximum likelihood parameters of a mixture model

(Dempster et al., 1977; Everitt and Hand, 1981; McLachlan and Basford, 1988),

assuming that the data X is generated independently from a mixture density

(3.1)

where each component of the mixture is denoted by c j • From equation 3.1 we can

define the log likelihood function as:

L(e I x) = L logf(x) = L logL f(Xj lei; 9JP(cJ (3.2)
j i

which is hard to solve because of the log of a sum. The EM could be used for solving

this problem.

The core idea of the EM algorithm is to introduce some unobserved variables Z,

appropriate for the model under consideration, such that if Z were known the

optimal value of 8 could be computed easily. Then the complete conditional

probability density (including the missing variables) can be written as:

N M
L(a I X, Z) = L L zijlogf(xi I Zi; e)f(zi; e) (3.3)

i=l j=i

The usual approach is to regard Z as missing data and estimate it iteratively.

The intuition behind the EM algorithm is that we would like to maximise the

complete data likelihood but it cannot be utilised directly, so we maximise its

expectation, denoted by Q(e let), instead. As shown by Dempster et al. (1977),

89

LCO I X), the complete data likelihood can be maximised by iterating the following

steps:

1. Initialise parameters randomly. Set t = O.

2. E-step:

3. M-step:

Determine QCO I a(t» = E[LCO I X, Z) I X,O(t»]

Set e(t+l) = arg max {Qce I e(t»}
9

where e(l) are the current parameter estimates in time step t.

4. Iterate steps 2 and 3 until convergence

Assume that the data set X = {XI'"'' xN} is divided into an observed XObs and

missing Xmiss components, respectively. To handle missing values we can re-write

the EM algorithm as follows:

1. Initialise parameters randomly. Set t = 0

2. E-step:

3. M-step: Set e(I+I) = arg max {Q(e I e(I»} where e(l) are the current
9

parameter estimates in time step t.

4. Iterate steps 2 and 3 until convergence

The expectation (E) step computes the expected values for the sufficient statistics

given a model and values for model parameters 8, i.e., the expected value of the

complete data likelihood with respect to the missing data given the observed data

and the current parameter estimates. The maximisation (M) step estimates the

model parameters by maximising the likelihood using standard procedures, given

complete data. The procedure iterates through these two steps until convergence is

obtained. Convergence occurs when the change in parameter estimates from

iteration becomes negligible. An important part of the EM algorithm is restoring

error variability to the imputed values during the E-step. The SPSS Missing Values

Analysis (MV A) module employs the EM approach to missing data handling (SPSS,

1997).

90

The strength of the EM approach is that it has well-known statistical properties and

it generally outperforms popular ad hoc methods of incomplete data handling such

as listwise and pairwise deletion and mean substitution because it assumes

incomplete cases have data missing at random rather than missing completely at

random. Also, EM-imputations ignore any estimation error for the missing data,

which will, in tum, lead to negatively biased standard error estimates in any model

you run on complete data, overly significant p-values, variance parameter estimates

may also show some negative bias, and so on. Rubin (1987) calls this type of

imputation "improper" because the method does not adjust for the fact that the

mean squared error and the parameters used to produce the predicted values for all

cases including those with data missing are only estimates, not the true values.

The biggest drawback with EM is that it typically does not provide standard errors

(and confidence intervals) as a by-product of the parameter estimation. Thus,

although the parameter estimation itself is excellent with EM, it is not possible to do

hypothesis testing with the EM-based estimates unless one does a separate step

specifically for that purpose, such as bootstrapping (Efron, 1982). To use EM the

algorithm we have to specify the sample distribution in advance. Unfortunately, in

many data mining problems we do not know the probability density function in

advance. The EM algorithm has a linear convergence determined by the rates or

fraction of missing information in the data set. When the fraction of missing values

is large with one or more parameters missing, then convergence will require many

iterations and thus will be very slow. Furthermore, the material explaining the EM

algorithm is complex and requires a high level of technical expertise in the use of

programs.

3.3.2.1.5 Full information maximum likelihood

The method of full information maximum likelihood (FIML), which is also known as

raw maximum likelihood, is another theory-based approach to the treatment of

missing data. Hartley and Hocking (1971) did the original work ofFIML to cope with

missing data. The FIML approach uses maximum likelihood estimation for

incomplete data. FIML assumes multivariate normality, and maximises the

91

likelihood of the model given the observed data. This assumption implies two things:

All variables have normal distributions. Secondly, each variable can be represented

as a linear function of all the other variables, together with a normal, homescedastic

error term (Allison, 2001). All available data is used to generate maximum

likelihood sufficient statistics. Usually these consist of a covariance matrix of the

variables and a vector of means.

It is important to note EM and FIML are equivalent, i.e., they both give ML

estimates of the covariance matrix, but simply do so using different numeric

algorithms. However, unlike the EM approach, FIML allows for the direct

computation of appropriate standard errors and test statistics. These estimates of

standard errors (and confidence intervals) of regression model parameters are not

provided in EM and without additional analytic steps such s bootstrapping. As noted

by Graham et al., 1997, standard errors would be provided on computer output

when using the EM covariance matrix as input for further analyses (for example,

multiple regression), but these standard errors would be based on the wrong sample

size and thus are incorrect. Also, unlike EM, FIML can be employed in the context of

user-specified linear models, such as structural equation models, regression models,

Analysis of Variance (ANOVA) and Analysis of Covariance (ANCOVA) models.

FIML approach has the advantage of convenience or ease of use and well-known

statistical properties. It also produces unbiased parameter estimates and standard

errors under MCAR and MAR (Arbuckle, 1996a). Limitations of the FIML approach

include an assumption of joint multivariate normality of variables used in the

analysis and the lack of a raw data matrix produced by the analysis. Also, this

approach assumes that data are MAR. FIML is currently implemented in Mx (Neale,

1994) and AMOS (Arbuckle, 1996b; Byrne, 2001) structural equation modelling

packages. Other software packages that use the FIML approach to handle

incomplete data are the MIXED procedure in SAS (Latour et al., 1994). It is also

important to note that the FIML estimator does not impute or fill-in missing values

but directly estimates model parameters and standard errors using all available raw

data.

92

3.3.2.1.6 Other single imputation techniques

When a categorical variable has missing values it is common practice to add an

extra "missing value" category. However, this could be bad practice because the

impact of this strategy depends on how missing values are divided among the real

categories, and how the probability of a value being missing depends on other

variables. Also, very dissimilar classes could be lumped into one group.

Other data imputation techniques are used to replace the missing observations with

plausible values other than the mean, and then analyse the "complete" data set.

These include: using the most common value (mode), series mean, the mean or

median of nearby points, or linear interpolation between prior and subsequent

known points, or substitution of the linear trend value for that point. In some other

cases, the imputed values are based on previously observed values. This method is

referred to as Last-Value-Carried-Forward (LVCF) or Last-Observation-Carried­

Forward (LOCF) technique which is based on a very strong assumption of stability.

This method works best if the observation is expected to remain at some level or if

there are only a few missing values. However, this technique can only be used for

longitudinal variables with multiple time-points. Other arbitrary methods can be

created as well.

The main goal of all single imputation is to achieve complete data wherever possible

so that they can be analysed by methods designed for complete data. However, the

choice of technique is problem dependent. One of the strengths of single imputation

is that standard complete-data methods can be used once the missing values have

been imputed. Also, the single imputations created by the data collector can

incorporate their knowledge which could prove advantageous to the unsophisticated

end user who has to analyse the missing data. Despite its strengths, single

imputation has drawbacks. Imputation methods can be distinguished as model

based or parametric as opposed to being data based or non-parametric. Parametric

imputation methods include substituting the sample mean values for the available

cases for the missing values. This is an attractive idea but it has its own pitfalls. The

main one is that whenever the missing data are replaced by one set of imputed

93

values, later analyses will not reflect missing-data uncertainty, and thus overstate

precision, i.e., an analysis which ignores the uncertainty of missing data prediction

will lead to the sample size being overestimated, standard errors that are too small,

p-values that are artificially low, and rates of Type I error that are higher than

nominal level. Furthermore, when nonresponse is not really understood, no account

is being taken of uncertainty arising from not knowing which nonresponse models

for imputation are appropriate.

3.3.2.2 Multiple Imputation

A serious defect with imputation is that it seems to be inventing data. More

specifically, a single imputed value cannot represent all the uncertainty about which

value to impute, so the analyses that treat the imputed values just like observed

values generally underestimate uncertainty, even if nonresponse is modelled

correctly and random imputations are created. A replication method known as

multiple imputation (MI) is designed to address the inherent weaknesses of single

imputation while retaining their advantages (Rubin, 1976; Rubin and Schenker,

1986; Little and Rubin, 1987; Schafer and Olsen, 1998; Allison, 2001; Enders, 2001).

Instead of imputing a single set of draws from the missing values, multiple random

draws are simulated from the population. One approach of this simulation is to use

bootstrap methods. Creating multiple bootstrap datasets would (to an extent) be like

taking multiple draws from the population. Another approach is to simulate these

random draws with data augmentation (Tanner and Wong, 1987). The art of data

augmentation (DA) is discussed below.

DA is one iterative regression based or simulation-based approach that has strong

similarities in many ways to an EM approach. DA (Tanner and Wong, 1987; Schafer,

1997) has also been used to great advantage by the EM algorithm in solving

maximum likelihood problems. Both approaches view the observed data of a

statistical model as incomplete, augmenting the missing data, and making

inferences about the unknown parameters. However, DA does this in a stochastic or

random fashion. The result of DA is a predictive distribution of missing values that

is used to impute missing values.

94

DA follows the following process:

1. Initialise parameters randomly. Set t = 0

2. I-step:

3. P-step:

Given a current estimate 9(1), select a value of the missing data

from the conditional predictive distribution of

Conditioning on X miss (1+1), draw a new value of 9 from its

I d . 9(tTI) P(9 / X X (tTl» Th h comp ete ata posterIOr, - obs' miss . roug

an iterative process two distributions are obtained, P(9 / Xobs)

and P(Xmiss I XObs)' For a suitable large t, we can implement a

DA algorithm by Tanner and Wong (1987), which iterates

between sampling OtTl from P(O I Xobs) and sampling XmisS(t)

from P(Xmiss / XobJ.

4. Iterate steps 2 and 3 until convergence

The Imputation (l) step simulates a random imputation of missing data under

assumed values of the parameters. The Posterior (P) step draws new parameters

from a Bayesian posterior distribution based on the observed and imputed data. The

procedure of alternately simulating data and parameters creates a Markov Chain

(MC) X~ss' e(l), X~ss' e(2) ,... (Gilks et al., 1996), which eventually stabilises or

converges in distribution to P(Xmiss ' 9/ Xobs). The procedure iterates through these

two steps until convergence is obtained. The rate of convergence is related to the

fraction of missing information. DA can be thought of a small-sample refinement of

the EM algorithm using simulation, with the imputation step corresponding to the

E-step and the posterior step corresponding to the M-step.

Despite its desirable properties, DA has several limitations. First, it is only a local

and deterministic maximiser of the likelihood and its asymptotic behaviour depends

heavily on the starting values or initial conditions. More seriously, apart from some

simple models, the algorithm is far from easy to set up: namely the I-step as well as

95

the P-step - or both steps in even worse situations - can be intractable or numerically

inefficient. Also, alternating between these two steps to set up a Markov chain that

converges to a stationary distribution, the joint distribution of the missing data and

parameters given the observed data have heavy computational requirements.

The EM and DA approaches can be combined and used to generate imputations. The

parameter estimates from EM provide convenient starting values for DA. Moreover,

the convergence behavior of EM provides useful information on likely convergence

behavior of DA. If EM converges within a certain number of iterations, say 50, then

in nearly all situations it will be sufficient to allow 50 steps of DA between

successive imputations. There are two ways to calculate multiple imputations after

the k intervals of one long chain, or saving the final imputations from several

parallel chains using different starting values. Gelman and Rubin (1992)

recommended using the second approach and in doing so to use starting points

which are overdispersed relative to the observed data posterior using the starting

values.

MI is similar to the ML method except that MI generates actual raw data values

suitable for filling in gaps in an existing data base. Instead of filling in a single value

for each missing value, the MI procedure replaces each missing value with a set of

plausible values that represent the uncertainty about the right value to impute.

These mUltiple imputed data sets are then analysed by using standard procedures

for complete data and combining the results from these analyses into a single

summary finding. This results in statistically valid inferences that properly reflect

the uncertainty due to missing values. In other words, when multiple imputations

represent repeated random draws under one model for nonresponse, valid inferences

that reflect the additional variability due to the missing values under that model are

obtained in a straightforward manner. MI has two more advantages. First, when

imputations are randomly drawn in an attempt to represent the distribution of data,

MI increases the efficiency of the estimation. Finally, when repeated randomly

drawn imputations are created under more than one model, MI facilitates the

straightforward analysis of the sensitivity of inferences to various models for

nonresponse simply by repeatedly using complete-data methods (Rubin, 1987).

96

MI has several desirable features: 1) Introducing appropriate random error term

into the imputation process which makes it possible for the method to get

approximately unbiased estimates of all parameters, 2) Repeated imputation allows

one to get good estimates of standard errors; 3.) MI can be used with any kind of

data and any kind of analysis without specialized software, 4.) MI saves money,

since for the same statistical power, MI requires a smaller sample size than, say,

listwise deletion, and 5) Once imputations have been generated by a knowledgeable

user, researchers can use them for their own statistical analysis. However, certain

requirements must be met for MI to have these desirable features. First, the data

must be MAR. Second, the model used to generate the imputed values must be

'correct' in some sense. Lastly, the model used for the analysis must match up, in

some sense, with the model used in the imputation. The reader is referred to

(Schafer, 1997; Allison 2001) for a rigorous description of all these conditions.

This approach shall now be called Expectation-Maximization multiple imputation

(EMMI). However, if a missing value is replaced with only a single value, the

approach shall be called Expectation-Maximization single imputation (EMSI).

3.4 Decision Trees and Missing Data

Several methods have been proposed in the literature to treat missing data. Missing

values can cause problems at two points when using decision tress; 1) when deciding

on a splitting point (when growing the tree), and 2) when deciding into which

daughter node each instance goes (when classifying an unknown instance).

Methods for taking advantage of unlabelled classes can also be developed, although

we do not deal with them in this thesis, i.e., we are assuming that the class labels

are not missing.

Specific decision tree techniques for handling missing data are now going to be

discussed. These MDTs are divided into three categories: ignoring and discarding

data, imputation and machine learning. However, most of the techniques under

these categories have already been discussed in Section 3.4.1. Thus, they are not

covered in detail in this section.

97

3.4.1 Imputation Techniques

3.4.1.1 Single Imputation Techniques

3.4.1.1.1 Mean or mode imputation

MMSI has been used for handling incomplete data when using DTs; it consists of

replacing the missing attribute values by the means (for continuous attributes) or

the modal value or most common value (for nominal attributes). This is a strategy

whereby you replace the unknown values with the most common values for the

attribute found in the training set. The decision tree is then induced from the

completed data. This approach is based on the assumption that all "missings" are

somehow typical.

3.4.1.1.2 Conditioning on class imputation

Kononenko and Roscar (1984) follow a MMSI approach by conditioning that

particular attribute with missing value(s) to the class associated with the missing

value. For a continuous attribute, the mean value, OJ' of attribute A of the missing

value, given the class of the instance concerned is used. For a nominal attribute, the

most common value (mode), Qj , of attribute A is used to estimate the missing value.

This method shall now be called conditioning on class single imputation (CCSI).

CCSI has the limitation of being applicable only in the training case, where the class

variable is present and not in the testing case. The impact of this strategy also

depends on how missing values are divided among the classes.

3.4.1.1.3 ''New'' categorical value

This is an approach followed by Quinlan (1979; 1986; 1987), which models the

probability of missingness. "Missing" is treated as a distinct splitting value. In this

approach, if a missing value occurred at a nominal attribute that is used for

branching, it creates a new branch called unknown. For an ordinal attribute, the

missing values constitute a special value that is assigned in the ordering that yields

the best split. The place is generally different in different nodes of the tree. This

98

strategy is normally used when building a decision tree with incomplete data.

However, it could still be used for classification tasks.

This method has two advantages: no instances are dropped due to the missing

values, and unobserved similarities among instances with missing values will be

captured by the new term. The impact of this strategy depends on how missing

values are divided among the real categories, and how the probability of a value

being missing depends on other variables. In addition, treating "missing" as a

separate level is a good idea when the "missing" is informative and there are a lot of

instances in the training set. Missing values normally follow some basic missing

data mechanism. These mechanisms have already been discussed in Section 3.2.

Most of the time missing values are missing at random, and in these circumstances,

the new value ("unknown") would not have the same importance as a real attribute

value. Also, this method works well for categorical attributes but continuous

attributes cannot be modelled in this way without being discretized first before

applying learning algorithms (like DTs) to datasets. In addition, working with

discretized attributes often produces better results, or even work faster (Kebber,

1992; Fayyad and Irani, 1993; Frank an Witten, 1999). The strategy also works well

when missing values are indicative of certain target values. For example, people

with large incomes might be more reluctant to disclose their income than people

with ordinary incomes. If income were predictive of a target, then missing income

would be predictive of the target, and the missing values would be regarded as a

special large income value. Also, the strategy seems harmless when the distribution

of missing values is uncorrelated with the target because no choice of branch for the

missing values would help predict the target.

When two instances that have the same field empty are compared for equality, it is

not always clear whether the result of comparison for that attribute should be true

or missing. Hence, treating a missing value as an additional category for each

attribute can cause problems during analysis. If there is a missing value for an

attribute, a special value "unknown" is used as just another or additional new value

of that attribute and dealt with in the same way as other values. Hence, the number

of values is increased by one for each attribute that depicts the unknown value in

99

the training set. This can be a problem for methods that do multi-way splits due to

the increase in the number of levels. (Quinlan, 1986) suggests using only binary

splits to outwit this problem. This approach is also based on the assumption that

whatever the unknown value, it is the same for all cases with missing values. This

could be a problem as there can be more than one reason for a database field to be

missing.

3.4.1.1.4 Attribute value matching imputation

Bruha and Franek (1996) suggest matching complexes with instances that involve

unknown attribute values, both in learning and classification. Bruha and Franek

follow the most common value approach for both learning and classification purposes

using class-sensitive absolute frequencies and overall frequencies, respectively. An

unknown value V of an attribute A of an instance belonging to class C is replaced by

the class-sensitive common value which maximises the Laplacian formula

(Nr,j;n + l)/(Nn,j + R) over j for a given r and n where NrJ~ is the number of instances

belonging to class Cr exhibiting the value ~ for each attribute value An; N n,j is the

number of instances exhibiting the value ~ for each attribute value An; R is the

number of classes. The Laplacian criterion is used for expected accuracy for the class

Cr' If the maximum is reached for more than one value of the attribute then the

value with the greatest frequency N. is selected as the common value. For testing,
rJ~

the unknown value is replaced by the overall common value which maximises NnJ

over the subscriptj. This approach is appropriate for handling categorical attributes

with missing values.

3.4.1.1.5 All possible values imputation

Grzymala-Busse and Hu (2000)'s cautious imputation technique is similar to

Quinlan (1989) but in this method, an instance with a missing attribute value is

replaced by a set of new instances, in which the missing attribute value is replaced

by all possible values of the attribute. For example, if attribute A has a missing

value for instance I, and attribute A has r possible values, then I will be replaced by

r new instances t,]",.,.,l(m). When instance] has two unknown values of attributes

AI and A2 and there are r possible values of AI and c possible values of A2 , then I

100

will be replaced by r x c examples and so on. The rationale of the method is that

since the value of an attribute A for a given instance I is missing, every possible

value of A is considered, and every such value corresponds to a new instance. This

method produces inconsistent decision tables. The decision table is inconsistent

when it contains at least one pair of inconsistent instances, i.e., instances

characterised by the same values of all attributes yet with different values of a

decision. However, the problem of inconsistent decision tables is solved using rough

set theory (Pawlak, 1991), by producing two sets of rules: certain and possible.

Certain rules are categorical, while possible rules are supported by existing data,

although conflicting data may exist as well. For possible rules an estimate for the

worst case of error is presented. The presented approach may be combined with any

other approach to uncertainty when processing of possible rules is concerned.

3.4.1.1.6 Unordered decision tree imputation

The unordered attribute decision trees, which can also be considered a machine

learning technique as it uses a DT algorithm to impute missing values, is another

strategy that has been used for handling missing values in tree learning. This

technique was suggested by Shapiro (1987) and followed up by Quinlan (1987). The

method builds decision trees to determine the missing values of each attribute, and

then fills the missing values of each attribute by using its corresponding tree. The

strategy shall now be referred to as decision tree single imputation (DTSI). Separate

trees are built using a reduced training set for each attribute, Le., restricting your

analysis to only those instances that have known values. Hence, as many decision

trees as the attributes in the domain are constructed. The original class is treated as

another attribute, while the value of the attribute becomes the "class" to be

determined. The attributes used to grow the respective trees are unordered. These

trees are then used to determine the unknown values of that particular attribute.

The grown tree can then be used to classify a new instance in the reduced set with

the unknown value of that particular attribute determined. Although this method

could be more exact in filling in missing information, it significantly increases the

computational cost. Also, this method makes sense when building a decision tree

using only categorical attributes whereby a classification tree is used to estimate the

101

missing attribute values. For non-categorical attributes a regression tree could be

used instead. The approach is also suitable for domains in which strong relation

between attributes exist.

3.4.1.1. 7 Ordered decision tree imputation

Lobo and Numao (1999; 2000) follows-up Quinlan's DTSI approach but by first

ordering the attributes using mutual information before growing the tree. AB with

Quinlan's method, only those attributes with known values and low mutual

information with respect to class are included in the reduced training set. After

constructing a decision tree for filling the missing values of an attribute, it makes

sense to use the data with filled values in order to construct a decision tree for filling

the missing values of other attributes. Thus, the order followed when constructing

attribute trees and filling the missing values per attribute becomes important. The

special ordering on the attribute's trees construction was empirically found to

improve the accuracy of the decision tree learning algorithm, while keeping the

computational cost to a sustainable level (Lobo and Numao, 1999). Even though this

technique makes good use of all the information (the class and the attribute

variables take part in the estimation), it has a weakness of not performing well if the

same case has missing values in more than one attribute.

Single imputation is more efficient than instance deletion, particularly for item

nonresponse. However, it requires care to avoid data distortion. It also has the

drawback of not taking into account missing-data uncertainty when estimating the

missing values. The application of standard complete-data methods to single

imputed data set treats the missing values as if they were known (Schafer, 1997).

The Full Information Maximum Likelihood (FIML) and MUltiple Imputation (MI)

methods account for the uncertainty in estimating the missing data.

3.4.1.1.8 Bayesian imputation

The main idea of this strategy relies on a probabilistic framework and was proposed

by Cestnik et al., (1987). This more complex procedure assigns a probability to each

of the possible values of attribute A rather than simply assigning the most common

value to A(x). These probabilities are estimated based on the observed frequencies of

102

the various values for A among the examples at node n. The method works as

follows:

A model for the missing values is constructed. When learning the tree, estimation of

the conditional probabilities of right and left splits (of the missing value) given all

the observed information is used. Each example is split into a probability

distribution over leaves and estimated from the relative frequencies of the attribute

values among the training instances collected at the node.

The most usual thing to do is to associate an instance with a missing value for the

given node to all branches, weighted with the conditional probability of the

corresponding value given the class (for training instances) or unconditional

probability of the corresponding value (for testing instances). This is done as follows.

Suppose that the given instance (with the unknown value) belongs to a class C. Then

the probability of an attribute A having a value V is:

P(V I C) = P(V & C)
P(C)

(3.12)

where the calculation of P(V & C) and P(q are approximated with relative

frequencies from the set of instances in the current node of the tree.

When training a tree, a training instance with an unknown value for an attribute A

is split into a set of examples so that we have for each possible value V of A one

example weighted with the probability P(V I C).

With a testing instance you do not know the value of class. So, an object with a

missing value of an attribute A is classified by following the branches that

correspond to all possible values of A, weighted by the prior probabilities P(V) of the

corresponding values of A. All the branches for all values of the attribute A are

followed and the final decision (classification) is the class with the highest

probability. The method works well for categorical data but does not perform well

with non-categorical data.

103

3.4.1.2 Multiple Imputation

MI is a simulation approach to missing data that works with standard complete­

data analysis methods. MI means that the missing data are imputed a number of

times, typically 3 to 5 times, with a different randomly chosen error term added in

each imputation. In order to create imputed value we need to identify some model,

which will allow us to create values ("imputes") based on other variables in the data

set. By imputing missing values several times, a few augmented data sets are

created such that regular complete-case analyses can be easily performed. The

completed data sets are analysed using standard methods and the results are

combined using rules established by Rubin (1987). These rules allow the analyst to

produce one set of estimates like that produced in non-imputation analysis. The

parameters of interest, then, can be calculated by averaging the parameter

estimators from each augmented data set.

There are many implementations ofM!. An excellent option is Schafer's (1997) set pf

programs headed by the NORM program for MIL under the multivariate normal

model. NORM provides a parametric technique that uses a Bayesian procedure

known as 'data augmentation' to iterate between random imputations under a

specified set of parameter values and random draws from the posterior distribution

of the parameters (given the observed and imputed data). NORM assumes that the

data come from a multivariate normal distribution and are missing at random. The

program work with continuous data but it has been shown to perform well with

categorical data. Schafer (1997) has three other MI programs. PAN is available for

special longitudinal panel data situations and cluster data when there are many

clusters. CAT uses a saturated multinomial model and a constrained loglinear model

(Bishop et at., 1975) to impute categorical variables; MIX uses restricted and

unrestricted general location models (Olkin et al., 1961) to impute mixed variables

(include both categorical and continuous variables in one model). Details about these

models can be found in Schafer (1997).

There is also another Bayesian approach to imputation which has been presented by

Chiu and Sedransk (1986). The method makes use of the EM algorithm and is

104

similar to the MI procedure proposed by Rubin (1987). Its advantage lie in the fact

that it uses standard statistical procedures, does not require model assumptions,

permits a general specification of the response mechanism, and allows the input

prior information in a routine manner. The method is best suited when substantial

differences are expected between respondents and nonrespondents.

3.4.2 Machine Learning Techniques

Machine learning (ML) techniques are those that deal with missing values using

machine learning algorithms. ML techniques are generally more complex than

statistical techniques. This section will describe missing data imputation using two

supervised machine learning systems: surrogate variable splitting, fractioning of

cases and dynamic path generation. The rest of the section will describe other

methods that have been used for handling incomplete data using DTs.

3.4.2.1 Surrogate Variable Splitting

The greatest advantage of CART models is their ability to deal with missing values.

One sophisticated but refined method worthy of note and study is the surrogate

variable splitting (SVS), which has been used for the CART system and further

pursued by Therneau and Atkinson (1997) in RPART. CART handles missing values

in the database by substituting "surrogate splitters", Surrogate splitters are

predictor variables that are not as good at splitting a group as the primary splitter

but which yield similar splitting results; they mimic the splits produced by the

primary splitter; the second does second best, and so on. The surrogate splitter

contains information that is typically similar to that which would be found in the

primary splitter. The surrogates are used for tree nodes when there are values

missing. The surrogate splitter contains information that is typically similar to what

would be found in the primary splitter. Both values for the dependent variable

(response) and at least one of the independent variables (attributes) take part in the

modelling. The surrogate variable used is the one that has the highest correlation

with the original attribute (observed variable most similar to the missing variable or

a variable other than the optimal one that best predicts the optimal split). The

surrogates are ranked. Any observation missing on the split variable is then

105

classified using the first surrogate variable, or if missing that, the second is used,

and so on. The CART system only handles missing values in the testing case but

RP ART handles them on both the training and testing cases.

The basic idea is as follows:

When building a tree with incomplete vectors, at node t, find the best split s: on the

feature instance xm using all the training samples containing a value of Xm • Then

select the split s' which maximises the impurity reduction L\i(s:, t) at node t (See

Section 2.2.1). In other words, you choose a primary predictor and split point. A

primary splitter is the best splitter of a node. Then, you compose a list of surrogates

(surrogate predictors) and split points; surrogate splitters mimic the splits produced

by the primary splitter. The optimal split point for a surrogate maximizes the

association between the surrogate and the primary splitter.

When classifying a new instance, if at node t the best split s' is not defined because

of missing feature instances, proceed as follows. Examine all non-missing feature

instances for the test sample; find that feature instance, say xm ' with split t,
which is most similar to s' . Therefore, t is called a surrogate split of s' . Finally,

use t at node t to decide to traverse to node tL or tR . In other words, when sending

observations down the tree, use the primary predictor split first. If the value of the

primary split is missing, use the first surrogate. If the first surrogate is missing, use

the second, and so on. If an instance is missing all the surrogates the blind or

majority rule is used.

Surrogate splitters are similar to competitor splitters in the sense that they both

yield splits of benefit but are not as good as the primary splitter. Often, the same

variable will be listed as both a competitor and a surrogate. However, there is a

significant difference between the way variables are ranked as competitors and as

surrogates. Competitor splits are runners-up to the primary split: they are judged

the same way the primary splitter is judged by how much improvement they make

in reducing node impurity. Surrogate splitters are not ranked by the amount of

improvement they produce but rather by how closely mimic the split selected for the

106

primary splitter. The optimal split point for a surrogate maximizes the association

between the surrogate and the primary splitter; it does not necessarily maximize the

improvement. If you compare entries for the same variable in the competitor and

surrogate lists, you may see different split points selected and different values for

the improvement from the splits.

The idea of surrogate splits is conceptually excellent. Not only does it solve the

problem of missing values but it can help identify the nodes where masking or

disguise (when one attribute hides the importance of another attribute) of specific

attributes occurs. This is due to its ability to making use of all the available data,

i.e., involving all the attributes when there is any observation missing the split

attribute. By using surrogates, CART handles each instance individually, providing

a far more accurate analysis. Also, other incomplete data techniques treat all

instances with missing values as if the instances all had the same unknown value;

with that technique all such "missings" are assigned to the same bin. For surrogate

splitting, each instance is processed using data specific to that instance; and this

allows instances with different data patterns to be handled differently, which results

in a better characterisation of the data (Breiman et al., 1984).

However, practical difficulties can affect the way surrogate splitting is implemented.

Surrogate splitting ignores the quantity of missing values. For example, a variable

taking a unique value for exactly one case in each class and missing on all other

cases yields the largest decrease in impurity (Wei-Yin, 2001). Also, when using

linear combination splits, it is impractical to find at every node the best univariate

surrogate linear combination split for each possible superset of those in the original

split (CART computes only univariate splits regardless of the split option).

The idea of surrogate splitting is reasonable if high correlations among the predictor

variables exist. Since the "problem" attribute (the attribute with missing values) is

crucially dependent on the surrogate attribute in terms of a high correlation, when

the correlation between the "problem" attribute and the surrogate is low, surrogate

splitting becomes very clumsy and unsatisfactory. In other words, the method is

highly dependent on the magnitUde of the correlation between the original attribute

107

and its surrogate. Surrogate variable splitting relies on redundant attribute

variables. Also, it is usually safer for predicting new things to be somewhere

between two known possibilities. Surrogate splitting, however chooses one from the

two.

3.4.2.2. Fractioning of Cases

Quinlan (1993) borrows the probabilistic complex approach by Cestnik et al., (1987)

by "fractioning" instances or cases (FC) based on a priori probability of each value

determined from the instances at that node that have specified values. Quinlan

starts by penalising the information gain measure by the proportion of unknown

instances and then splits these instances to both subnodes as follows:

Suppose that T is the total number of cases at a particular node, and TmiS8 is the

number of cases with unknown values of attribute A. Let f = {T - Tmi •• }/T. The

definition of gain can now be defined as: Gain(A) = f x {Entropy(T) - Entropy(A)}

where Entropy (T) and Entropy (A) are calculated as before (see Section 2.8.1.1) but

only instances with known values of A are taken into account. Similarly, let A split

the non-missing cases T into subsets T., ... , Tn. Define the information value of the

attribute A as:

(3.13)

Th . t·· . d fi (Gain(A) e gam ra 10 IS agam e ned as: GR A) = .
JV(A)

The learning phase requires that the relative frequencies f above from the training

set be observed. Each instance x of class C with an unknown attribute value A is

substituted. The next step is to distribute the unknown examples according to the

proportion of occurrences in the known examples; treating an incomplete

observation as if it falls down all subsequent nodes. For example, if an internal node

t has ten known examples (six examples with tL and four with t R), then we would

say the probability of tL = 0.6, and the probability of tR is 0.4. Hence, a fraction of

108

0.6 of instance x is distributed down the branch for tL and a fraction 0.4 of instance

x to tR . This is carried out throughout the tree construction process. The evaluation

measure is weighted with the fraction of known values to take into account that the

information gained from that attribute will not always be available (but only in

those cases where the attribute value is known). During training, instance counts

used to calculate the evaluation heuristic include the fractional counts of instances

with missing values. Instances with multiple missing values can be fractioned

multiple times into numerous smaller and smaller "portions".

For classification, Quinlan (1993)'s technique is to explore all branches below the

node in question and then take into account that some branches are more probable

than others. Quinlan further borrows Cestnik et al.'s strategy of summing the

weights of the instance fragments classified in different ways at the leaf nodes of the

tree and then choosing the class with the highest probability or the most probable

classification. Basically, when a test attribute has been selected, the cases with

known values are divided on the branches corresponding to these values. The cases

with missing values are, in a way, passed down all branches, but with a weight that

corresponds to the relative frequency of the value assigned to a branch. Both

strategies for handling missing attribute values are used for the C4.5 system.

Despite its strengths, the fractional cases technique can be quite a slow,

computationally intensive process because several branches must do the calculation

simultaneously. So, if K branches do the calculation, then the central processing unit

(CPU) time spent is K times the individual branch calculation.

3.4.2.3 Dynamic Path Generation

Dynamic path generation (DPG) also known as lazy decision tree learning are

embedded methods that have been used for handling missing data. White (1987)

first described DPG as a method of handling missing values on the testing phase and

was further explored by Liu et al. (1997). The same principle is also known as Lazy

Evaluation, as subsequently described by Friedman et al. (1996). Basically, this

technique differs from the traditional approach such as C4.5 and CART of inducing a

tree from training data and then, as a separate step, applying it to the test data.

109

That is, only those variables that are non-missing for the test case under

consideration are considered for branching. Essentially, the two steps are collapsed

to a single operation, although the distinction between the training and test sets is

always maintained. With DPG, an actual tree is not built. What is done is to operate

on a database of training cases by generating just the path (or rule) necessary to

classify the single test case under current consideration. During classification, the

algorithm chooses the most informative attribute on which to branch. Any attribute

with a missing value is never branched on. Instead, the algorithm tries with the

second most informative attribute; if that attribute has a missing value as well it

tries the third most informative attribute; and so on. Note that this case-by-case

approach makes the technique particularly appropriate for use in conjunction with

n-fold (leaving-one-out) cross-validation but it can be computationally demanding.

Since in lazy learning you do not train a model until you know the test case, the

missingness in test case may 'shadow' values in the training set.

3.4.3 Other Methods
Friedman (1977), and later Quinlan (1989), follow the LD approach when handling

incomplete data using DTs. When using this approach, all the instances (cases) with

unknown attribute values are omitted from the analysis while forming the split, and

the tree is constructed from only those instances which have known attribute values,

Le. complete observation vectors. Evaluating a split using known information

improves credibility. Excluding instances with missing values is feasible with

univariate trees (trees that use splits based on a single attribute at each internal

node) because only observations missing on a single input are excluded at anyone

time. This compares favourably with other modelling techniques that exclude

observations missing any input value, which may leave very few usable

observations. Another probabilistic approach to handle missing attribute values is

called event-covering. Details about the method can be found in Chiu and Wong

(1986) and further described by Wong and Chiu (1987). Genetic programming (Koza,

1993) and thus Strongly Typed Generic Programming (STGP) has been used for

learning from examples with incomplete or missing data. Backer (1996)'s approach

is learning substituting computations based on input data for the missing values

110

using STGP. This is motivated by the thought that during the evolutionary process,

programs with appropriate substituting computations will have a higher fitness due

to their better behaviour on cases with missing values. The correlations between the

input data are also utilized by this approach. The resulting program can also work

on new cases with missing values. Incremental imputation through tree-based

methods is another method that has been used to deal with data presenting missing

values in many covariates (Conversano et aZ., 2002). This approach relies on the

assumption that the data is MCAR and uses lexicographic order to rank missing

values that occur in different variables and deal with them incrementally, i.e.,

augmenting the data by the previously filled in instances according to the defined

order. This approach overcomes the shortcomings of conditional mean imputation.

However, it struggles when data is linear.

111

Chapter 4

Experiments with Current Methods

4.1 Introduction
One of the major issues in DT learning is classification accuracy on novel instances.

Handling missing (incomplete) attribute values is an important issue for decision

tree learning, since missing values in either training or test data affect classification

accuracy. In fact, increases in missing data proportions would be expected to result

in increases in predictive error. In studies where missing data are present, it is

common for researchers to use ad hoc approaches such as LD or imputation to deal with

the missing data problem. Yet, on the one hand, deleting instances missing values can

drastically reduce the sample size, resulting in a severe lack of statistical power and

biased results. On the other hand, selecting the appropriate imputation technique can

also be a problematic and hard task. Caution should be applied when using imputation­

based approaches since these techniques require certain assumptions about the

underlying missing data mechanism (i.e. the probability law generating the missing

data) to be satisfied. Recently, missing data techniques which utilise machine learning

algorithms have been shown to outperform simple statistical methods like mean or mode

imputation algorithms, which are methods broadly used to treat missing values.

Furthermore, different techniques may work well under different situations.

This chapter is about a substantial comparative simulation study of the effect of

different MDTs on the predictive accuracy of the resulting DTs. However, before

embarking on that, related studies are briefly reviewed.

4.2 Related Work
Although the problem of incomplete data has been treated adequately in various real

world datasets, there are rather few published works or empirical studies concerning

the task of learning DTs from incomplete data. From the results of these studies, no

missing data technique has been found to be uniformly superior to the others.

112

Randomness of missing data has been shown to greatly influence the accuracy of

missing data techniques (Little and Rubin, 1987; Roth, 1994; Graham and Donaldson,

1993). For example, MeAR data has been shown to be easier to deal with compared with

MAR and 1M data. In fact, 1M data has been proven to be the most difficult to deal with

(Little and Rubin, 1987). Other factors influencing missing data techniques accuracy

include the pattern and the proportion of missing data. To our knowledge, no single

study has considered all of these factors combined. Also, to our knowledge no

comprehensive study has been conducted that empirically evaluated the multiple

imputation approach for handling incomplete data using decision trees.

An experiment to compare Fe, DTSI and MMSI was carried out by Quinlan (1985).

This comparison, according to Quinlan, gave unconvincing results even though it did

show how the performance of the methods was much worse when several values of

several attributes were missing. The DTSI method (which is closest to EMSI since it

uses all the attributes in the estimation process) performed better than both the FC

and MMSI methods. However, the difference in accuracy between the two methods

was quite small. Quinlan (1989) later compared LD, MMSI, FC and DTSI using

several datasets. Fe outperformed all the other methods so Quinlan decided to use it

as a strategy for handling missing values for the implementation of C4.5 (Quinlan,

1993).

Shavlik et al. (1991) compared the performance of backpropagation, perceptron and

ID3 in case of instances with missing values using four datasets. Their results

showed increases in proportion of missing values being associated with decreases in

predictive accuracy. Furthermore, backpropagation was shown to be able to handle

noise and missing feature values better than ID3 and perceptron do especially for

the dataset that had training examples containing only numeric values.

Bruha and Franek (1996) compared experimentally five methods for handling

incomplete data. These are: the LD, considering "missing" as an additional regular

value, MMSI, FC, and any value of the known attribute values that occur in the

training set. Of the five methods, the most successful were the imputation methods,

namely, MMSI and any value. This contradicts to some extent Quinlan (1989) which

113

indicated FC to be the one of the best techniques for handling missing values in ID3.

The worst method was found to be LD followed by MMSI.

Lobo and Numao (1999; 2000) evaluated the accuracy performance of DTSI (with

ordered attributes), MMSI and FC. For incomplete training and test data, DTSI

outperformed both methods with MMSI giving the worst performance. For

incomplete test data, no method performed better than the other.

Lakshminarayan et al. (1999) performed a simulation study comparing different

missing data techniques on industrial databases. Techniques considered were

machine learning methods for missing data imputation. The results showed that for

the single imputation task, the supervised machine learning algorithm, C4.5

(Quinlan, 1993) which uses the FC procedure performed better than the

unsupervised learning algorithm, Autoclass (Cheeseman et al., 1988) while for the

multiple imputation task, both methods performed comparably. Also, both methods

handled mixed data naturally.

Feelders (1999) experimentally compared the use of imputation (both EMSI and

EMMI) and SVS as methods for handling missing data using decision trees in data

mining. His results showed both EMMI and EMSI having a superior performance

than SVS in terms of predictive accuracy of the resulting models. However, the

differences in error rates between EMSI and SVS were found to be very small.

Overall, EMMI yielded the best results.

Strike et al. (2000) performed a comprehensive simulation study to evaluate three

missing data techniques in the context of software prediction. These techniques are

LD, MMSI and eight different types of hot-deck single imputation (HDS!). Three

missing data mechanisms (MCAR, MAR and 1M) were evaluated and two patterns of

missing data (univariate and monotone) were simulated. Their results showed LD as

not only having a severe impact on regression estimates but yielding a small bias as

well. However, the precision of LD worsened with increases in proportion of

missingness. Their results further showed that better performance would be

obtained from applying imputation techniques. The best performance was obtained

by using HOSI with Euclidean distance and a z-score standardization.

114

Nine different approaches to missing attribute values were compared by Grzymala

and Hu (2000). These methods were LD, FC, MMSI, CCSI, a method of assigning all

possible values of the attribute, method of assigning all possible values of the

attribute restricted to the given class variable or concept, an event covering method,

a method of treating missing attribute values as special values and a special LEM2

algorithm (Grzymala and Wang, 1997). Grzymala and Hu (2000) concluded that FC

and LD were the best methods among all nine approaches while MMSI achieved the

worst performance. In addition, FC outperformed LD on 60 percent of the ten

datasets that were used. Otherwise, the remaining methods did not differ

significantly from one another. The method of assigning to the missing attribute

value all possible values of the attribute and the method of assigning to the missing

attribute value all possible values restricted to the same class were found to be

excellent approaches. However, the authors argued that they did not have enough

evidence to support the claim that these approaches were superior.

Kalousis and Hilario (2000) evaluated seven classification algorithms with respect to

missing values: two rule inducers (C5.0-rules and Ripper), one nearest neighbour

method, one orthogonal (C5.0-tree), one oblique decision tree algorithm, a naIve

Bayes algorithm and a linear discriminant. Various patterns and mechanisms of

missingness (MCAR and MAR) in current complete datasets were simulated. This

was an excellent idea since the pattern and mechanism of missing values was an

important dimension in their study. Their results indicate that naIve Bayes (NB) is

most resilient to missing values while the k-nearest neighbour single imputation

(kNNSI) and FC are more sensitive to missing values. Their results further show

that for a given proportion of missing values, the distribution of missing values

among attributes is at least as important as the mechanism of missingness.

Another comparative study of missing data techniques in the context of software

prediction was carried out by Myrtveit et at. (2001). The four missing data

techniques were LD, mean imputation (ME!), similar response pattern imputation

(SRPl) and FIML. Their results showed FIML performing well for MCAR data. Also,

LD, MEl and SRPI were shown to yield biased results for other missing data

mechanisms other than MCAR. Their recommendations were to use FIML if one had

enough data and to use MEl or SRPI if one needed more data. A combination of LD

115

with a regression models was recommended for small datasets where FIML cannot

be used. In addition, they argued that LD should only be used for MCAR data.

Fujikawa and Ho (2002) evaluated theoretically several methods of dealing with

missing values. The methods evaluated were MMSI, linear regression, standard

deviation method, kNNSI, DTSI, auto-associative neural network, LD, lazy decision

tree, FC and SVS. kNNSI and DTSI showed good results. In terms of computation

cost, MMSI and Fe were found to be reasonably good.

Batista and Monard (2003) investigated the effects of four methods of handling

missing data at different proportions of missing values. There methods investigated

were kNNSI, MMSI, and internal algorithms used by FC and CN2 to treat missing

data. Missing values were artificially simulated in different rates and attributes into

the datasets. kNNSI imputation showed a superior performance compared with

MMSI when missing values were in one attribute. However, both methods compared

favourably when missing values were in more than one attribute. Otherwise, FC

achieved a performance as good as kNNSI.

The performance of kNNSI and MMSI was analysed by Cartwright et al. (2003)

using two small industrial datasets. Their results showed both methods yielding

good results with kNNSI providing a more robust and sensitive method for missing

value estimation than MMSI.

Farhangfar et al. (2004) compared five imputation methods; two of the methods are

based on statistical algorithms (MMSI and HDSI) while the remaining three are

based on machine learning algorithms (rule based, NB, FC). Missing data was

artificially generated in all attributes (including the class attribute) to model only

the MCAR mechanism. This was done for different proportions of missing data. FC

achieved the best overall performance, closely followed by NB. MMSI was found to

be stable, i.e. its performance degradation was the slowest compared to the other

methods. Their results further showed that the performance of methods like MMSI

and HDSI does not depend on the number of attributes, which conforms to the

procedure they use. MMSI was also found to be the fastest in terms of computational

time, followed by FC.

116

Song and Sheppered (2004) evaluated kNNSI imputation and CCSI for different

patterns and mechanisms of missing data. Their resuls showed kNNSI slightly

outperforming CCSI with the missing data mechanisms having no impact on either

of the two imputation methods.

Sentas et al. (2004) proposed using multinomial logistic regresslon imputation

(MLRI) as a new technique for handling missing categorical values. Their proposed

procedure was compared with LD, MMSI, EMSI and regression-based single

imputation (RBSI). Their results showed LD and MMSI as efficient when the

percentage of missing values is small while RBSI and MLRI outperformed both LD

and MEl as the amount of missing values increased. Overall, MLRI gave the best

results, especially for MCAR and 1M data. For MAR data, MLRI compared

favourably with RBSI.

In conclusion, we think that the available prior research supports a lot of the

questions we are targeting with our study. First, there are no substantial differences

in accuracy among MDTs at lower levels of missing data. However, the performance

of each MDT declines when the percentage of missing values increases. While ad hoc

methods such as LD and MMSI are easy to use and are more appropriate for MCAR

data, they seem to lack the accuracy for dealing with missing data more generally.

Model-based approaches such as FIML and the EM algorithm seem to be generally

superior to ad hoc methods in that they are statistically efficient. In addition, model­

based approaches to missing data estimation are expected to be much more powerful

and reliable than ad hoc methods because they utilize all the information and

relationships with the data matrix.

According to the above studies, among imputation techniques, the results are not so

clear. However, machine learning methods appear to achieve higher accuracy than

traditional statistical approaches because of their complicated processing. However,

they take much more time in processing than statistical methods do. In addition,

statistical methods appear to be more stable with respect to increasing amount of

missing data, Le., they show less deterioration in performance with increasing

amount of missing data compared to machine learning methods. Also, multiple

117

imputation, which overcomes limitations of single imputation seem not to have been

widely adopted by researchers even though it has been shown to be flexible and

software for creating multiple imputations is available. Finally, results from

previous studies suggest that results achieved using simulated data are very

sensitive to the MAR assumption. Hence, if there is a reason to believe that if the

MAR assumption does not hold, alternative methods should be used.

There are several very interesting ramifications of previous studies. Firstly, some

studies found LD (the default in many statistical programs) as equally accurate and

sometimes more efficient than machine learning methods such as FC and NB.

However, LD carried the penalty of a larger loss in statistical power (the ability of a

statistical test to detect a pattern in a dataset). The accuracy of LD probably stems

from the fact that deletion techniques result in data matrices that mirror the true

data structure. The superior performance of kNNSI to methods like Fe and NB on

small datasets is rather surprising. The kNNSI procedure should not be as effective

due to the fact that, for small data sets, one runs the risk of using the same donor

many times, thus resulting in a loss of precision in the imputed value. Even more

interesting is the good performance of RBSI for MAR data even though it is more

appropriate for MCAR data.

4.3 General Experimental Set-Up
One of the objectives of this thesis is to investigate the robustness and accuracy of

methods for tolerating incomplete data using tree-based models. This section

describes experiments that were carried out in order to compare the performance of

the different approaches previously proposed for handling missing values in both the

training set and test (unseen) set. The effects of different proportions of missing

values when building the tree (training) and when classifying new instances

(testing) are further examined, experimentally. Finally, the impact of the nature of

different missing data mechanisms on the classification accuracy of resulting trees is

examined. A combination of small and large datasets, with a mixture of both

nominal and numerical attribute variables, was used for these tasks. All datasets

118

have no missing values. The main reason for using datasets with no missing values

is to have total control over the missing data in each dataset.

The simulation study concentrates on performing experimental analysis of MDTs,

which range from simple statistical algorithms to machine learning algorithms.

These techniques are divided into the following categories: Ignoring and discarding

data (LD), imputation (CCSI, DTSI, EMSI, MMSI, EMMI) and machine learning

(FC, SVS). All eight MDTs were used as training methods, i.e., methods for building

trees from incomplete data with only seven approaches (LD, DTSI, EMSI, MMSI,

EMMI, SVS and FC) used as test methods, i.e., methods for classifying incomplete

vectors using DTs. Table 4.1 summarizes the MDTs to be investigated and the

section where each technique is discussed in the thesis.

Table 4.1 Missing data techniques to be investigated

Technique Acronym Section

Discarding or ignoring data:

Listwise deletion LD 3.3.1.1

Single imputation:

Expectation Maximization EMSI 3.3.2.1.4

Mean or Mode MMSI 3.4.1.1.1

Conditioning on Class CCSI 3.4.1.1.2

Decision Tree* DTSI 3.4.1.1.6

Multiple imputation:

Expectation Maximization EMMI 3.4.1.2

Machine learning:

Surrogate Variable Splitting SVS 3.4.2.1

Fractioning of Cases FC 3.4.2.2

* It can also be considered a machine learning technique

119

The class variable is always available in the training set but not in the test set. Two

of the above-mentioned methods rely on the class variable as a technique of handling

missing values. The CCSI method is one approach that relies heavily on the

conditioning of class and was considered as a method of handling missing values

when they are only in the training set. DTSI is another procedure that relies on the

class variable to estimate the missing value of a particular attribute using a decision

tree. For the test set, the "class" problem was dealt with by using all the available

attributes (and not the class variable) to estimate the missing values.

To perform the experiments each dataset was split randomly into five mutually

exclusive parts (Part I, Part II, Part III, Part IV, and Part V) of equal (or

approximately equal) size. 5-fold cross validation was used for the experiment. For

each fold, four of the parts of the instances in each category were placed in the

training set, and the remaining one was placed in the corresponding test set as

shown in Table 4.2. The same splits of the data were used for all the methods for

handling incomplete data.

Since the distribution of missing values among attributes and the missing data

mechanism were two of the most important dimensions of this study, three suites of

data were created, corresponding to MCAR, MAR and 1M. In order to simulate

missing values on attributes, the original data bases are run using a random

generator (for MCAR) and an attribute pairs and percentile approach (for both MAR

and 1M, respectively). See below: both of these procedures have the same percentage

of missing values as their parameters. The random generator and the attribute pairs

and percentile procedures were run to get datasets with four levels of proportion of

missingness p, Le., 0%, 15%, 30% and 50% missing values.

To maintain a level of consistency with the proportion of missing values simulated,

only datasets whose percentage missings came out to be close to the nominal

percentage missing were simulated. Otherwise, those that were not close were

rejected and not considered in the analysis. To carry out this task, some form of

truncated binomial distribution was used, i.e., any percentage value that was

outside the original binomial and truncated binomial distribution regions was

120

rejected. Any value less than or greater than 0.5% to the specific level of missingness

being looked at was not considered in our analysis.

Table 4.2 Partitioning of dataset to training and test sets

Training Set Test Set

Fold 1 Part II + Part III + Part IV + Part V Part I

Fold 2 Part I + Part III + Part IV + Part V Part II

Fold 3 Part I + Part II + Part IV + Part V Part III

Fold 4 Part I + Part II + Part III + Part V Part IV

Fold 5 Part I + Part II + Part III + Part IV Part V

Each of these missingness proportions was obtained using each of the different

missing value mechanisms (MCAR, MAR and 1M). The experiment consists of

having three different combinations: having p% of data missing from both the

training and test sets; having p% of data missing from the training set and a

complete test set; and having p% missing in the test set and a complete training set.

This was carried out for each dataset and 5-fold cross validation was used.

The missing data mechanisms were constructed by generating a missing value

template (1= present, 0 = missing) for each attribute and multiplying that attribute

by a missing value template vector. Our assumption is that the observations or

instances are independent selections.

For each dataset, two suites were created. First, missing values were simulated on

only one attribute variable (univariate pattern); this was the attribute that was

most highly correlated with the class variable. Second, missing values were

introduced on all the attribute variables (arbitrary pattern with missingness was

evenly and uniformly distributed across all the attributes). This was the case for the

three missing data mechanisms, which from now shall be called MCARuniva,

121

MARuniva, IMuniva (for the former), on the one hand, and MCARunifo, MARunifo,

IMunifo (for the latter), on the other hand.

These procedures are described as follows:

MCAR

Each vector in the template (values of l's for non-missing and O's for missing) was

generated using a random number generator, utilising the Bernoulli distribution.

The missing value template is then multiplied by the attribute of interest, thereby

causing missing values to appear as zeros in the modified data.

MAR

Simulating MAR values was more difficult. As mentioned in the previous chapter,

the mechanism of MAR values depends only on other observed data and not at all on

unobserved or potential data, including the missing data themselves. So, since the

idea is to condition the generation of missing values based upon the distribution of

the observed values. Attributes of a dataset are separated into pairs, say, (Ax, Ay) ,

where Ay is the attribute into which missing values are introduced and Ax is the

attribute on the distribution of which the missing values of Ay is conditioned, i.e.,

P(Ay = miss I Ax = observed). Therefore, the first half of attributes would not have

missing values and on the second half the missing values of a given attribute would

be imputed based on the values of a specific attribute from the first half. Since we

wanted to keep the percentage of missing values at the same level overall, we had to

alter the percentage of missing values of the individual attributes. Thus, in the case

of k% of missing values over the whole dataset, 2k% of missing values were

simulated on Ay. For each of the Ax attributes its 4k percentile was estimated.

Then all the instances were examined and whenever Ax attribute has a value lower

than the 4k percentile a missing value on Ay is imputed with probability 0, and 1

otherwise. More formally, P(Ay = missl Ax < 4k) = 0 or P(Ay = miss I Ax > 4k) = 1.

This technique generates a missing value template which is then multiplied with

Ay • Once again, the attribute chosen to have missing values was the one most

122

highly correlated with the class variable. Here, the same levels of missing values are

kept.

1M

In contrast to the MAR situation outlined above where data missingness is

explainable by other measured variables in a study, 1M data arise due to the data

missingness mechanism being explainable, and only explainable by the very

variable(s) on which the data are missing. For conditions with data 1M, a procedure

identical to MAR was implemented. However, for the former, the missing values

template was created using the same attribute variable for which values are deleted

in different proportions.

For consistency, missing values were generated on the same variables for each of the

three missing data mechanisms. This was done for each dataset.

Methods used for handling missing values that had been generated using the above­

mentioned three missing data mechanisms shall now be looked at.

The LD, SVS and Fe procedures are the only three embedded methods that do not

estimate the missing value or are not based on "filling in" a value for each missing

datum when handling either incomplete training and test data or either of the two.

These three methods have already been discussed in Chapter 3. However, programs

and code that were used for the methods are briefly described below.

No software or code was used for LD. Instead, all instances with missing values on

that particular attribute were manually excluded or dropped, and the analysis was

applied only to the complete instances.

For the SVS method, a recursive partitioning (RP ART) routine, which implements

within S-PLUS many of the ideas found in the CART book and programs of Brei man

et al. (1984) was used for both training and testing decision trees. This programme,

which handles both incomplete training and test data, is by Therneau and Atkinson

(1997).

123

The decision tree learner C4.5 was used as a representative of the FC or

probabilistic technique for handling missing attribute values in both the training

and test samples. This technique is probabilistic in the sense that it constructs a

model of the missing values, which depends only on the prior distribution of the

attribute values for each attribute tested in a node of the tree. The main idea behind

the technique is to assign probability distributions at each node of the tree. These

probabilities are estimated based on the observed frequencies of the attribute values

among the training instances at that particular node.

The remaining five methods are pre-replacing methods, which use estimation as a

technique of handling missing values, i.e., the process of "filling in" missing values in

instances using some estimation procedure.

The DTSI method uses a decision tree for estimating the missing values of an

attribute and then uses the data with filled values to construct a decision tree for

estimating or filling in the missing values of other attributes. This method makes

sense when building a decision tree with incomplete data, the class variable (which

plays a major role in the estimation process) is always present. For classification

purposes (where the class variable is not present), first, imputation for one attribute

(the attribute highly correlated with class) was done using the mean (for numerical

attributes) or mode (for categorical attributes), and then the attribute was used to

impute missing values of the other attributes using the decision tree single

imputation technique. In other words, two single imputation techniques were used

to handle incomplete test data. An S-PLUS code that was used to estimate missing

attribute values using a decision tree for both incomplete training and test data was

developed.

The CCSI method conditions the particular attribute with missing valueCs) on class.

Again, some very simple S-PLUS code for this method was developed. The method

fills the missing values with the mean or mode, depending on the type of attribute

with the missing values, i.e. whether the attribute is nominal (whereby the class­

conditional mode is used) or continuous (whereby the class-conditional mean is

used). Notice that this method replaces each missing value with a single plausible

124

value (more like single imputation). This method can be used only for building trees

given incomplete data, especially in real world problems where classes to which the

instances to be classified belong are not known. The reader is referred to Section

3.5.1.1.2 for more details about this method.

S-PLUS code was also developed for the MMSI approach. The code was developed in

such a way that it replaced the missing data for a given attribute by the mean (for

numerical or quantitative attribute) or mode (for nominal or qualitative attribute) of

all known values of that attribute.

There are many implementations of MI. Schafer's (1997) set of algorithms (headed

by the NORM program) that use iterative Bayesian simulation to generate

imputations was an excellent option. NORM was used for datasets with only

continuous attributes. A program called MIX written is used for mixed categorical

and continuous data. MIX is an extension of the well-known general location model.

It combines a log-linear model for the categorical variables with a multivariate

normal regression for the continuous ones. For strictly categorical data, CAT was

used. All three programs are available as S-PLUS routines. Schafer (1997), and

Schafer and Olsen (1998) gives details of the general location model and other

models that could be used for imputation tasks.

Due to the limit of the dynamic memory in S-PLUS for Windows (S-PLUS, 2003)

when using the EM approach, all the big datasets were partitioned into subsets, and

S-PLUS run on one subset at a time. Our partitioning strategy was to put variables

with high correlations with close scales (for continuous attributes) into the same

subset. This strategy made the convergence criteria in the iterative methods easier

to set up and very likely to produce more accurate results. The number of attributes

in each subset depended on the number of instances and the number of free

parameters to be estimated in the model, which included cell probabilities, cell

means and variance-covariances. The number of attributes in each subset was

determined in such a way that the size of the data matrix and the dynamic memory

requirement was under the S-PLUS limitation and the number of instances was

large relative to the number of free parameters. Separate results from each subset

125

were then averaged to produce an approximate EM-based method which are

substituted for (and continue to call) EM in our investigation.

To measure the performance of methods, the training set/test set methodology is

employed. For each run, each dataset is split randomly into 80% training and 20%

testing, with different percentages of missing data (0%, 15%, 30%, and 50%) in the

covariates for both the training and testing sets.

Even though our experiment covers a wide range of separate and completely crossed

factors, the effects of certain specific combinations are looked at. Firstly, the

situation of having both incomplete training and test data and the effect this has on

resulting trees was looked at. Secondly, the situation of having incomplete training

data but complete test data was investigated. Lastly, the effect of having only

incomplete test data was considered. The combination of having incomplete training

data and complete test data was still considered even though one would expect test

data to be incomplete when training data are incomplete. In fact, it would be a rare

situation where the training data were incomplete but the test data were complete

(Hand,2000).

A classifier was built on the training data and the predicted accuracy is measured by

the smoothed error rate of the tree, and was estimated on the test data. This

procedure was repeated 5 times as described below. The reader is referred to Section

2.8.4 for the definition of smoothed error rate and the important reasons why such

an error rate was used for the experiments.

Trees on complete training data were grown using the Tree function in S-PLUS

(Becker et al., 1988, Venables and Ripley, 1994). The function uses the GINI index of

impurity (Breiman et ai., 1984) as a splitting rule and cross validation cost­

complexity pruning as pruning rule. Accuracy of the tree, in the form of a smoothed

error rate, was predicted using the test data.

For incomplete training data the eight training methods for handling incomplete

data, already described in previous sections, were used. Seven methods were used

for handling incomplete test data. For split selection, the impurity approach was

126

used. For quantitative (ordered) predictors the approach searches over all possible

values c for splits of the form {X ~ c} or {X> c}to define the left and right child

nodes, where c is a real number ranging over (-00,00). The training instances in the

partition based on the values of the attribute being considered for splitting are then

sorted. Let cp".,cn be the sorted values of a numeric attribute A. Investigate the

midpoint of each interval c j to CHI as a possible split point. For qualitative or

categorical predictors with attribute X taking values in {bp"" bL } , the search is over

all splits of the form {X E c} or {X ~ c} where c is a non-empty subset of {bJl'",bL }.

For detailed information about splits for numeric and categorical attributes,

individually, the reader is referred to Sub-Section 2.2.1.

For pruning, a combination of 10-fold cross validation cost complexity pruning and 1

Standard Error (l-SE) rule (Section 2.3.3) to determine the optimal value for the

complexity parameter was used. The same splitting and pruning rules when growing

the tree were carried out for each of the twenty one datasets.

It was reasoned that the condition with no missing data should be used as a baseline

and what should be analysed is not the error rate itself but the increase or excess

error induced by the combination of conditions under consideration. Therefore, for

each combination of method for handling incomplete data, the number of attributes

with missing values, proportion of missing values, and the error rate for all data

present was subtracted from each of the three different proportions of missingness.

This would be the justification for the use of differences in error rates analysed in

some of the experimental results.

Another point to note is the reason for using difference in error rates when making

comparisons between MDTs instead of, say, division or ratios of error rates. First,

differences are natural and understandable scale in this context, that is, people

would understand a ''p percentage point" worsening in error rate to mean a simple

addition of p%. Secondly, ratios of error rates would lead to statements like "A

increases error rate by p%" which would be misinterpreted as meaning a p%

127

difference in error rate. Finally, the ANOVA assumes the error rates to be on an

additive rather than multiplicative scale.

All statistical tests were conducted using the MINITAB statistical software program

(MINITAB, 2002). Analyses of variance, using the general linear model (GLM)

procedure (Kirk, 1982) were used to examine the main effects and their respective

interactions. This was done using a 4-way repeated measures designs (where each

effect was tested against its interaction with datasets). The fIxed effect factors were

the: missing data techniques; number of attributes with missing values (missing

data patterns); missing data proportions; and missing data mechanisms. A 1% level

of signifIcance was used because of the many number of effects. The twenty one

datasets used were used to estimate the smoothed error. Results were averaged

across fIve folds of the cross-validation process before carrying out the statistical

analysis. The averaging was done as a reduction in error variance benefIt.

A summary of all the main effects and their respective interactions are provided in

the Appendix in the form of Analysis of Variance (ANOVA) tables.

4.3.1 Datasets
This section describes the twenty one datasets that were used in the experiments to

explore the impact of missing values on the classifIcation accuracy of resulting

decision trees. All twenty one datasets were obtained from the Machine Learning

Repository maintained by the Department of Information and Computer Science at

the University of California at Irvine (Merz et al., 1996). They are summarized in

Table 4.3. The first eight involve datasets with only two classes and the last thirteen

involve datasets with more than two classes.

As shown in Table 4.3, the selected twenty one datasets cover a comprehensive

range for each of the following characteristics:

• the size of datasets, expressed in terms of the number of instances ranges

between 57 and 20000

• the number of attributes ranges between 4 and 60

128

• the number of classes ranges between 2 and 26

• the number of the type of attributes (numerical or nominal or both)

In general, the datasets were selected in order to assure reasonable

comprehensiveness of the results.

Table 4.3 Datasets used for the experiments

Dataset Instances
Attributes

Classes
Ordered Nominal

Two classes:
German 1000 7 13 2
glass (G2) 163 9 0 2
heart-statlog 270 13 0 2
Ionosphere 351 31 1 2
kr-vs-kp 3196 0 36 2
Labor 57 8 8 2
pima-indians 768 8 0 2
Sonar 208 60 0 2

More than two classes:
Balance scale 625 4 0 3
Iris 150 4 0 3
waveform 5000 40 0 3
lymphography 148 3 15 4
Vehicle 846 18 0 4
Anneal 898 6 32 5
Glass 214 9 0 6
satimage 6435 36 0 6
Image 2310 19 0 7
Zoo 101 1 15 7
LED 24 1500 0 24 10
Vowel 990 10 3 11
Letter 20000 16 0 26

A very brief description of each dataset is presented below:

anneal

This dataset consists of 898 instances with 6 numeric, 14 binary and 18 nominal

attributes. The task is to predict the steel annealing behaviour into 5 classes.

129

balance scale

This dataset was generated to model psychological experimental results. Each

instance is classified as having the balance tip to the right, tip to the left, or be

balanced. The attributes are left weight, the left distance, the right weight, and the

right distance. The correct way to find the class is the greater of left_distance x

left_weight and right_distance x righCweight. If they are equal, it is balanced. This

is the 3 class problem, with 625 instances and 4 numeric attributes.

german

This data set concerns credit applications. There are 1000 credit applicants

(instances) described by 20 attributes, which are a mixture of 7 continuous (for

example, age, credit amount, duration of account) and 13 nominal attributes (for

example, marital status and sex, job, reason for loan request) and two classes. This

data set represents the problem of predicting of a good or bad credit applicant.

glass

The task of this dataset is to identify a glass sample taken from the scene of an

accident as one of six types of glass. Each case consists of 9 chemical measurements

on one of 6 type of glass. There are 214 observations.

glass (G2)

This data set consists of 163 instances and it represents the problem of determining

if a given piece of glass is 'float processed' or 'non-float processed'. The input vector

consists of 9 continuous valued attributes where each attribute indicates the

concentration of a given element (Mg, Na, Al...) and one attribute indicates the

refractive index.

heart-statlog

The purpose of the data set is to predict the presence or absence of heart disease

given the results of various medical tests carried out on a patient. There are 2

classes, 13 numeric attributes and 270 instances.

130

image

The task for this domain is to predict 7 types of outdoor images. The images are

hand-segmented to create a classification for every pixel. Each of the 2310 instances

is a 3 x 3 region, described by 19 numerical features by 7 classes. The classes are

brickface, sky, foliage, cement, window, path and grass. The region-pixel-count

feature was found to be constant for all the 2310 instances, henceforth, was removed

from the analysis leaving 18 numerical features by 7 classes.

ionosphere

The radar data was collected by a system in Goose Bay, Labrador. This system

consists of a phased array of 16 high-frequency antennae with a total transmitted

power of the order of 6.4 kilowatts. The targets were free electrons in the ionosphere.

'Good' radar returns are those showing evidence of some type of structure in the

ionosphere. 'Bad' returns are those that do not; their signals pass through the

ionosphere. The data set has 351 instances described by 33 numerical attributes, 1

binary attribute and 2 classes.

iris

This is a complete data set with petal and sepal width, and petal and sepal length as

the attributes. There are 150 instances each described by 4 numeric features and

three classes. The classes are iris setosa, iris versicolar and iris virginica. For the

Iris data set, the task is to predict the type of iris plant.

kr-vs-kp

The task of this domain is to recognise illegal chess positions in the KRK chess end

game. The goal is to learn the concept of in illegal white-to-move position with only

white king, white rook and black king on the board. The domain contains a total of

3196 instances, 2 classes, 35 binary attributes and 1 nominal attribute.

labor

The data includes all collective agreements reached in the business and personal

services sector for locals with at least 500 members in Canada. The task of this

131

domain is to make final settlements in labor negotiations in a Canadian industry by

using a two-tiered approach with learning from positive and negative instances.

There are 2 classes (good or bad), 8 numeric attributes, 3 binary attributes, 5

nominal attributes and 57 instances.

LED24

Breiman et al. (1984) artificial data for the digit recognition problem consists of 10

classes representing which of the digits 0-9 is showing on an LED display. The

version we are using contains 24 nominal attributes, representing 24 light-emitting

diodes. Each of the attributes has a 10% probability of having its value inverted.

1500 cases were randomly generated.

letter

The objective of this dataset is to identify each of a large number of black-and-white

rectangular pixel displays as one of the 26 capital letters in the English alphabet.

The character images are based on 20 different fonts and each letter within these 20

fonts is randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus

is then converted into 16 primitive numerical attributes (statistical moments and

edge counts) which are then scaled to fit into a range of integer values from 0

through 15.

lymphography

The dataset was obtained from the University Medical Centre, Institute of Oncology,

lJubljana, Yugoslavia. The class of each instance indicates whether lymphography

was normal, metastasis, malign lymph or fibrosis. The data consists of 148 records, 3

numerical attributes, 9 binary attributes, 6 nominal attributes and 4 classes.

pima-indians

The Pima Indians data come from the National Institute of Diabetes and Digestive

and Kidney Diseases in Maryland, USA. Each of 768 instances is described in 8

numerical features and two classes. The classes are interpreted as testing positive or

132

negative for diabetes. The task is to decide whether a patient shows signs of diabetes

according to World Health Organisation criteria.

satimage

The database consists of the multi-spectral values of pixels in 3x3 neighbourhoods in

a satellite image, and the classification associated with the central pixel in each

neighbourhood. The aim is to predict this classification, given the multi-spectral

values. In the sample database, the class of a pixel is coded as a number. There are 6

classes, 36 numeric attributes and 6435 instances. The data set was used in the

Statlog project.

sonar

This is a data set used by Gorman and Sejnowski (1998) in their study of the

classification of sonar signals using a neural network. The dataset contains signals

obtained from a variety of different aspect angles spanning 90 degrees for metal

cylinder and 180 degrees for the rock. The task is to discriminate between sonar

signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.

This data set contains 208 instances, 60 continuous attributes and 2 classes.

vehicle

The dataset comes from the Turing Institute, Glasgow, Scotland, UK. The problem is

to classify a given silhouette as one of four types of vehicle, using a set of features

extracted from the silhouette. The vehicle may be viewed from one of many different

angles. The dataset has 4 classes, 18 numeric attributes and 846 observations.

vowel

The task is to recognize the eleven steady-state vowels of British English

independent of the speaker. There are 10 numeric attributes describing each vowel.

8 speakers were used to form a training set, and 7 different speakers were used to

form an independent test set. Each of the 15 speakers said each vowel six times

creating 528 instances in the training set and 462 in the test set. For runs using this

133

data set we retained the original training and test sets and therefore did not perform

a cross validation.

waveform

This is an artificial domain with 3 classes based on 3 waveforms. Each class consists

of a random convex combination of two of these waveforms and each instance is

generated by added random noise (mean 0, variance 1) in each attribute. It was

defined by Breiman et al. 1984. This dataset has two versions. The version used for

the experiments in the thesis is the one that contains 40 numerical attributes and

5000 records.

zoo

This is an artificial data set from Richard Forsyth described by 7 classes of animals,

1 numerical and 15 binary attributes. The data set has 101 records, each one a

different animal. The task is to identify animals at a zoo given their characteristics,

such as number of legs, whether the animal can fly, and so on.

4.4 Experimental Results

Experimental results on the effects of current methods for handling both incomplete

training and test data on predictive accuracy using DTs are described. The

behaviour of these methods is explored for different levels of missing values, and for

the MCAR, MAR and 1M mechanism of missing data.

The results are presented in three parts. The first part of this section compares the

performance of seven different approaches for both building (training) DTs and

classifying (testing) incomplete vectors using trees, and further looks at the overall

results of each method, averaged for all twenty one datasets. Experimental

comparison of training and testing methods on selected individual datasets with

purely numerical attributes, purely categorical attributes and mixed attributes,

individually, are also presented in this section.

134

Section 4.2.2 looks at the overall performance of the eight training methods (i.e.

when the test set is complete), averaged for all twenty one datasets. Finally, the

results of a simulation study looking at the impact of missing values when they

occur only in the test set are presented in Section 4.2.3. These overall results are of

each testing method, and averaged for all twenty one datasets.

Since the amount of experimental results is very large, to conserve space, only a

subset of all results have been reported. Otherwise, other results can be found in the

Appendix. Figures plot the classification error of the instances learned on each one

of the target domains, averaged over five-fold cross validation runs, by each one of

the methods. The same folds were used to evaluate each method.

4.4.1 Overall Results - Incomplete Training
and Test Data

Figure 4.1 summarises the error rates of each method against three amounts of

missing values. The error rates of each method of the introduced missing values are

averaged over the 21 datasets.

For MCARuniva data, EMMI has on average the best accuracy while LD exhibits

one of the biggest increases in error (Figure 4.1A). From Figure 4.1B, most of the

methods achieve slightly bigger error rate increases for MCARunifo data compared

with MCARuniva data. In the MARuniva suite, the behaviour of methods is not very

different from the one observed in the MCARuniva case (Figure 4.1C). From Figure

4.1D, the performance of methods for MARunifo data is very similar to the one

observed for MCARunifo data. Figure 4.1E shows bigger increases in error rates for

all the methods for IMuniva data compared with MCARuniva and MARuniva data,

individually. The performance of all the methods, on average, worsens for IMunifo

data. Once again, EMMI proves to be the best method at all levels of missing with

LD exhibiting the worst performance with an excess error rate of 23.9% at the 50%

level (Figure 4.1F).

135

,.
13
12
11

llJ

~ 7

~ ~
III

~

'I

MCARuniv.
(aver.ged ovn 21 domains)

30 50
%of missing vafues In training and test sets
___ lD

----Q--EMSI
-a-EMMI
-g-svs

--4--0TSl
-- - 0- --MMSI
-+-Fe

WARunlva
(averaged over 21 do"..lnI)

%of missing values In training and test sets
__ lD

----Q-- EMSI
-.-EMMI
-g-SVS

--.-.OTSI
•• ·0' - - MM SI
-+-FC

1M unlv.
(avenged over 21 do"..ln.)

O ~~~. __________________ __

o 15 30 50
%of missing values in training and test seta

_ CD
-;;t-EMSI
-.-EMMI
--u-svs

-6--0T5I
- _ ' o -·-t.tMSI
-+-FC

14

13
12
11

l lJ

~
16

5
~ 4

3
2
1

0

11
17
'6
15

l
,.
13
12

~ 11
lJ
9

~ 8
7

Ii! 6
5 •
~
1

0

MCARunifo
(.v.r.ged over 21 domain.)

0 15 30 50
%of missing values In training and test sets

___ CD
-.-OTSI

-o-EMSI · ' · o - --MM SI
-J:-EMMI -+_FC
-g-svs

MARunlto
(averaged ov.r 21 do,.. l n.)

o 'f) 30 SO
%of missing values In training and lest S8lS

___ CD

-o-EMSI
-lI-EMMI
-g-SVS

-..-.OT5I
.- · . ···MM SI
-+-FC

IMunlfo
(averaged over 21 dOmfllne)

~~

~ i

if~,.~~ __ _
o 15 30 60

%01 missing voluealn training and lesl l ets ___ lD

~EflllSI
-.-EMMI
-g-SVS

----.-DTSI
'·' O - - - MMSI
-+-FC

Fig. 4.1. Effects of missing values in training and test data on the excess
error for methods over the 21 domains. A) MCARuniva, B) MCARunifo, C)
MARuniva, D) MARunifo, E) IMuniva, F) IMunifo

Main Effects

As shown in Table 4.3 in the Appendix, all the main effects (training and testing

methods, number of attributes with missing values, missing data proportions and

missing data mechanisms) were found to be significant at the 1% level.

136

From Figure 4.2, EMMI represents a superior approach to missing data while LD is

substantially inferior to the other techniques. The second best method is FC, closely

followed by EMSI, DTSI, MMS and SVS, respectively. However, there appears no

clear 'winner' between DTSI, EMSI, MMSI, FC and SVS in terms of classification

accuracy.

--+---------+---------+---------+--------+------

(--*---)
(---* --)

(---*--)
(--*---)

(---*--)
(---*--)

(--*---) LD
DTSI
EMSI
MMSI
EMMI
Fe
SVS

--+---------+---------+---------+--------+------
0.055 0.096 0.112 0.128 0.144

(pooled standard deviation)

Fig. 4.2. Comparison for training and testing
methods: confidence intervals of mean error rates (*)

From Figure 4.3, it appears that missing values have a greater effect when they are

distributed among all the attributes compared with when missing values are on a

single attribute variable.

The results for proportion of missing values in both the training and test sets show

increases in missing data proportions being associated with increases in error rates

(Fig. 4.4). In fact, the error rate increase when 50% of values are missing in both the

training and test sets is about one and a half times as big as the error rate increase

when 15% of values are missing on both sets.

16

14

12

~ 10
e
Q; 8

'" :fl 6
'-'
~

o
ATTRuniva A TTRunifo

attributes with missing values

Pig. 4.3. Overall means for number of
attributes with missing values

137

16

14

12

~ 10
e
Q; 8

'" '" <I>
'-' ><
<I> 4

15 30 50

missing values in training and test sets (%)

Pig. 4.4. Overall means for mi sing data
prop ort ions

From the results presented in Figure 4.5, 1M values entail more serious

deterioration in predictive accuracy compared with randomly missing data (Le.

MCAR or MAR data). Overall, MCAR data have a lesser impact on classification

accuracy with an error rate increase difference of about 4% (when compared with

MAR data) and a much bigger difference of about 10% (when compared with 1M

data).

Interaction effects

18

16

14

~ 12

e t}
l;;
U) B
U)

~ 6
><
Q)

MCAR MAR 1M

missing data mechanism

Fig. 4.5. Overall means for miss ing data
mechanisms

The interaction effect between methods for handling incomplete training and test

data and the number of attributes with missing values is displayed in Figure 4.6.

From the figure, it follows that all methods perform differently from each other with

bigger error rate increases observed when missing values are in all the attributes

compared with when they are on a single attribute variable.

A severe impact of having missing values in only one attribute and having missing

values in all the attributes is observed for DTS1, LD and SVS, while for the

remaining methods the impact is not clear. Once again, the results show EMMI as

the best technique for handling incomplete training and test data while LD is the

most ineffective method.

From Figure 4.7, the performance by methods do not differ much at lower levels of

missing values but vary noticeably as the amount of missing values increases.

138

As observed earlier, all the methods are more severely impacted by 1M data

compared with MCAR or MAR data (Figure 4.8). In addition, all the methods are

more effective for dealing with MCAR data.

0 .20

0 .18

0.16
a;- 0 .14
~

0 .12
e 0 .10 1;;
en 0 .08 en
Q)
<.>
><

0.06
Q)

0.0 4

0 .02

000

••• • •• ' ATTRuniva ___ ATTRunifo

LO OTSI EMSI MMSI EMM I FC svs

methods

Fig. 4.6. Int eraction between methods

and number of at ribu tes wi th missing
values

0 .20

0.18

0 .16
a;- 0 .14
~

0.12
e 0 .10 1;;
en 0 .08 en
Q)
<.> 0 .06 ><
Q)

0.04

0 .02

0 .00

__ 15 · · · . ·· ·30 ---+-- SO

LO OTSI EMSI MM SI EMMI FC svs

methods

Fig. 4.7. In teraction between methods

and prop ort ion of missing values

The results of the interaction between the number of attributes with missing values

and missing data proportions show increases in missing data proportions being

associated with slightly greater increases in excess error rate (Figure 4.9). Once

again, missing values appear to have more impact when they are distributed in all

the attributes than when they are in only one attribute.

0.25

0.20

,'.
0.05

--MCAR "' . "'MAR ---+--IM

0.00 +---_-_-_-_-_~_~

LD DTS! EMS! M MSI EMMI FC SVS

methods

Fig.4.8 Interact ion between methods
Wld miss ing dat a mechWl isrns

139

0.11

0 .18

0 .14
Q)

~ 0 .12

~ 0 .1>

en
Kl

0 .08

<> 0 .06 ><
Q)

0 .04

0 .02

0 .00

~'
.

••• • •• 'ATTRlI1iva __ ATTRlI1ifo

15 30 50

% of missing values In mining set

Fig. 4.9. Interaction between number
of attribut es with missing values and

prop ort ion of missing values

4.4.1.1 Results for Individual Datasets - Incomplete
Training and Test Data

Based on the experimental results in the previous section, some knowledge was

generated about the behaviour of methods for handling incomplete data given

different database characteristics. Some methods depended not only on the number

of classes but on the number of instances for each class. Some methods were more

effective for handling numerical attributes while others achieved good results for

nominal attribute or mixed attributes. Some methods gave good results generally,

irrespective of the type of attribute. The results that illustrate specific deviations

from the overall results of the effectiveness of methods on different database

characteristics, mainly numerical, nominal and mixed datasets, are given below. The

chosen datasets are typical of their type from each of the three groups of datasets

(Le., numerical, nominal and mixed).

4.4.1.1.1 Results on a dataset with purely numerical
attributes: letter

From Figure 4.10A, the effect of the percentage of missing values in MCARuniva

data is clear. The best overall performance at lower levels of missing values is DTSI

while EMMI is most effective at higher levels. EMMI exhibits the smallest error rate

increases for MCARunifo (Figure 4.10B). Good performances are observed for EMMI

and DTSI while FC struggles with MARuniva data (Figure 4.10C). MMSI becomes

more effective as the percentage of missing values increases for MARunifo data

(Figure 4.10D).The impact of IMuniva data shows DTSI achieving the best overall

performance (Figure 4.lOE). From Figure 4.10F, the performance ofLD deteriorates

with increases in the amount of missing data while FC becomes more robust to

missing values.

140

26 M CARunlva 26 MCARunifo

2. 24

22 22

l 20 ~ 20
Q) ..
e 11 "@ 11

(!1 15 ~ 16 ..
14 14

12 12

1) 1)

0 15 30 50 0 15 30 50

% cA missing values in tmming and test set
% of missing values In training and test set

-+--LD .-..-.OTSI _ LD __ OTSl
----t:t-- EM 51 - -' 0 -- -MMSI

-Ta--EMSI · · · O·· -MMSI -x-BA M I --+_FC
-x-EM MI -+-FC --g--svs
---Q-- SVS

32
32

MARunlv.
30 30

28
28

26 26
~ 24 l 24
Q) 22

! 22 e!
20

~
20 g

15
16 ..

1)
11

14 14

12 12
1)

1)
0 15 30 50

15 30 50
% 0/ missing values In training end ISSt set % 0/ missing values in training Irld ISSt set

-+--LD .-.-.OTSI
--+-LD ----...- OTSI ----t:t--EM SI • · · . · ·· MMSI

----t:t-- EM 9 "' 0 - - -MMst -:a-EMM I --+-FC
- x - EM MI -+_ FC --g--SVS
--g--SVS

40 1M unl 40
38 38
36 36
3. 34
32 32

~ 30 l 30
28 28 ..
26 ~ 26 e! 24 24

~ 22 ~ 22
20 20
16 11
11 16
14 14
12 12
1) 10

15 30 50 0 15 30 50

% 0/ missing values in trainir>;J end ISSt set % 0/ missing v slues in nining end test set

--+-LD ---+-- DTSI --+-LD .-...-OT5I
_ EMSI · ··. ·· · MMSI ----t:t-- EM SI ··· . · ·· MMSt
- .-EMMI --+-FC - I -EMMI --+-FC
--g--svs --g--svs

Fig. 4.10. Comparative results of methods for the letter dataset. A)
MCARuniva, B) MCARunifo, C) MARuniva, D) MARunifo, E) IMuniva , F)
IMunifo

4.4.1.1.2 Results on a dataset

attributes: kr-vs-kp
with purely nominal

From Figure 4.1IA, it follows that EMMI and FC are the best techniques for

handling MCARuniva data. However, LD becomes more effective at higher levels of

missing values.

141

28 28 MCARunlto

26 28

24 24

l 22
~

22

~ 20 <I> 20
1!

~
11

~
11

'" 11 ..
14 14

12 12

1) 1)

'6 30 50 0 '6 30 50

% a missing values in training and leSt set % 01 missing values In training and test set
____ LO

----6-0TSI __ LO __ OTSl
-Q--EMSI ··· o - - -MMS.

-Q--EMSI • -'0' --MMSI -a-EMMI -+-FC
-J:-EMMI -+-Fe -g-sv. _ sv.

3. M ARu""va 34 MARunlfo .0
32 32
30 30
2. 28

~ 2. ~ 28
~ 2. .. 2. <I>

1! 22 1! 22

g 20 g 20 .. 1! <I> 11
11 11

" " 12 12

1) 1)

0 15 30 Sl 0 15 30 50

% 01 missing values in training and test sat % a missing values In training and test set
____ LD

----..-.OTSI __ LO

-.-..DTSI -Q--EMSI " · 0 " -MMSI
-Q--EM SI ••• • •• -MM$I -a-EMMI ---+ - FC
-Z-EMMI -+- FC -g-sv.
_ sv.

40 1M unl". 40
38 38
38 38
34 34
32 32

0- 30 ;:: 30
~ 28 28

~ 26 <I> 2.
24 1!! 24

~ 22 ~ 22
20 20
18 18 .. 1!

~ l " 12
1)

0 15 30 50 0 15 30 50

% of missing values in trairlng and test set % 01 missing values In training and tast set

__ LD
__ OTSI ____ LD

---+--DTSI
---t;t-EMSI ···. ···MMSI _EMSI •• •••• -MM SI
-.-EMMI ---+ - FC -a-EMMI ---+-FC
-g-sv. -g-svs

Fig.4.11. Comparative results of methods for the kr-vs-kp dataset. A)
MCARuniva, B) MCARunifo, C) MARuniva, D) MARunifo , E) IMuniua, F)
IMunifo

In the MARuniva suite, EMMI and FC show superior performances compared with

the other methods (Figure 4.11C). For MARunifo data FC outperforms EMMI,

especially at higher levels of missing values (Figure 4. llD). The worst overall

performance is by MMSI. For IMuniva data, the worst performance is by MMSI and

142

LD (Figure 4.11E). The behaviour of methods for IMunifo data displayed in Figure

4.11F show good performances by FC and DTSI.

41 MCARuniva

3.

l
37

., 35

e 33

~ 31 .,
29

27

25
0 ~ 30 50

% 01 missing values in raining and ~t data

__ LD
.-.-.OT5I

---t;t--EM'" ··- o ··-MM S!
-.-EMMI -+_FC
-g--&Js

45
MARunlva

43

41

~
39

., 37

e 35

~ 33

31

29

27

25
1j 30 50

% of missing vaJues in training and test data

__ LD
-tr--DTSI

---ta--EM'" .0 ' O"'MMSI
-I-EMMI -+-FC
-g--&Js

49 IMunln
47
45

43

~ 41
Q) 39
i!! 37

~ 35
33

31
29
27
25

0 1j 30 50

% of missing vaJues in trairOng and lest data

__ LD
---li-' OTSI

-g--EM'" ---0" 'MM$I
-I-EMMI -+-FC
-g--&Js

Fig. 4.12. Comparative results
MCARuniva, B) MCARunifo, C)

IMunifo

.,
3.

'"'"
37

~ 35

" e 33

~ 31
" 2.

27

25

45

43

.,
'"'"

39

e 37
Q)

i!! 35

~ 33

31

29

27

25

49
47
45

43

~ 41

" 39
i!! 37

~ 35
33
31
2.
27

25

o 15 30 so
'10 of missing values in ~airOng and ~I data

~LD ~DTSI
--i:t-"EMSI _. ·0·· -MM5I
-a-EMMI -+-FC
-g--svs

o 1; 30 50

% of missing vaJues In trairOng and IlSt data

~LO ---+--OT5I
---Q--EM SI .. - . -. -~.H.1S1
_J[_EMMI -+_FC
-g--&Js

o 15 30 50

% of missing vaJues In raining and test dais
__ LD

---t;t--EM'"
-x-EMMI
-g--svs

~DTSI

-- - o ---MMSI
---+-FC

of methods for the german dataset. A)
MARuniua, D) MARunifo, E) IMuniua , F)

143

4.4.1.1.3 Results on a dataset with mixed attributes:
german

From Figure 4.12A, LD exhibits the worst performance for MCARuniva data. SVS

exhibits one of the best performances for MCARunifo data (Figure 4. 12B). EMSI

appears to be less effective than it was for the MCARuniva suite (Figure 4.12C).

Results for MARunifo show FC's performance becoming less effective as the amount

of missing values increases (Figure 4.12D). From Figure 4.12E, EMMSI achieves one

of the best performances for IMuniva data. Results achieved by methods for IMunifo

data (Figure 4.12F) show SVS becoming more effective as the proportion of missing

values increases.

4.4.2 Overall Results - Incomplete Training
Data Only

The excess error rates of each training method against three amounts of missing

values are displayed in Figure 4.13. The excess error rates of each method of the

introduced missing values are averaged over the 21 datasets. For both the missing

data patterns and missing data mechanisms conditions, increases in error rates are

associated with increases in proportion of missing values.

For MCARuniva data, EMMI has on average the best accuracy throughout the

entire spectrum of amounts of missing values (Figure 4.13A). From Figure 4.13B, all

the methods achieve bigger error rate increases for MCARunifo data compared with

MCARuniva data. In contrast to the missing-on-single attribute case, DTSI also

achieves one of the biggest increases in error rate. In the MARuniva suite, the

behaviour of methods is not different from the one observed in the MCARuniva case

(Figure 4.13C). Figure 4.13D shows EMSI and FC achieving the second smallest

error rate increases. CCSI becomes less effective as the proportion of missingness

increases. The results in Figure 4.13E show bigger increases in error rates for all the

methods for IMuniva data. The results are otherwise nearly identical to those

observed for MCARuniva and MARuniva data. The performance of all the methods,

on average, worsens for IMunifo data (Figure 4. 13F).

144

M CARuniva MCARunifo
(averaged over 21 domains, (averaged over 21 dOrNlnl)

tl tl

~ 7 ~ 7

~
6 ~ 6

Iii

~ 4 ~
Iil ~

1

0
0 "6 30 5:J "6 30 5:J %of missing values In training set 'Yeo f missing values In training data

--+-LD .___CCSI
-+--LD ---6-CCSI

-.-DT~ ---ta-- EMSI
-..-OTSI --;;t-EMSI

-:l-EMM I -- - • . --MMSI -.-EMMI
.. , o" 'MMSI

--t-FC -g.--S>lS --+-FC -g.--SVS

MARuruva MARunlfo
(averaged over 21 domalnl) (Iveraged over 2 1 do"..lna)

"6
"6 14

" tl tl t1
t1 ~ 11

~ 11 tl tl

~ 9
~ 9 8 8

'" 7

'" 7

~ 8 !6 6
5 u 5 Ii! 4 li\ 4
3 3
2 2
1 1

0 0
0 "6 30 5:J "6 30 50

%of missing values in trainlrg data %of missing values in training set

-+--LD ~CCSl
--+-LD ~CCSl

-..-OTSI --;;t-EMSI --+-OT5I -t;t-EMSI
• . - 0 '- 'MM SI -:l-EMMI .•• • . '-MMSI _ a _EMMI

--+-FC -g.--SVS
-+_FC -O--SVS

IMunlva 1M unit 0
(averagad over 2 1 domain.) (avenged over 2 1 d omalnl)

20 ..
1 11

~
t

Z i '"
~ fl

i B 11

i 1)

§ 9

I ~
6 , 5 • 3 3
1 d 0

0 "6 30 50
"6 30 5:J %of missing values In training sel

%of missing va)ues In tmining data

-+--LD --..6- CCSI
____ LD ____ CCSl

-<>--OTSI --;;t-EMSI .-.-DTSI _EMSI
'·' 0 ' - . foAM S! -.-EM MI "' o "'MMSI - . -EMMI

-+-FC -g.-- S>lS
-+--FC -o--SVS

Fig. 4.13. Effects of missing values in training data on the excess error for
methods over the 21 domains. A) MCARuniva , B) MCARunifo , C) MARuniva,
D) MARunifo, E) IMuniva, F) IMunifo

Main Effects

All the main effects <training methods, number of attributes with missing values,

missing data proportions and missing data mechanisms), as displayed in Table 4.4

in the Appendix, were found to be significant at the 1% level of significance.

145

From Figure 4.14 it follows that EMMI is the overall best technique for handling

incomplete training data. LD is the least accurate approach. Figure also 4.14 shows

CCSI, DTSI, EMSI, MMSI, FC and SVS performing comparably among each other.

--------+---------+---------+---------+---------
(--*--) LD

(--*--) CCSI
(--*--) DTSI

(--*--) EMSI
(--*--) MMSI

(--*--) EMMI
(--*--) FC

(--*--) SVS

--------+---------+---------+--------+---------
0.046 0.064 0.080 0.096
(pooled standard deviation)

Fig. 4.14. Comparison for training methods:
confidence intervals of mean error rates (*)

From Figure 4.15, it appears that missing values have a greater effect when they are

distributed among all the attributes (with an error rate increase of about 9%)

compared with when they are distributed in only one attribute variable (with an

error rate increase of about 7%). The results for proportion of missing values in the

training set show increases in missing data proportions being associated with

increases in error rates (Fig. 4.16).

12

1)

2

o
A TTRuniva A TTRunifo

at1ributes w ilh missing values

Ag.4.15. Overall treans for nurrber
ofattnbutes with missing values in
training set

146

12

1)

~ 8
g
'" 6
~
~ 4

o
ti 30 ~

missing values in training set (%)

Ag. 4.16. OveralllT"Cans for mi sing
datB proportion (training trethods)

The results presented in Figure 4.17 show all the training methods performing

worse under the 1M condition than when data are MCAR or MAR. However, all the

methods were able to handle MCAR data better than MAR.

14

12

2

o

Interaction effects

MCAR MAR 1M

missing dala mechanism

Fig. 4.17. Overall rreans for missing
data Trechanisrrn (training rrethods)

The experimental results of the interaction effects for training methods follow a

similar pattern to previous results for training and testing methods. In fact, all the

two-way interaction effects that were statistically significant for training and testing

methods are also significant for training methods (with the exception of the two-way

interaction between the number of attributes with missing values and missing data

mechanisms which is significant for the latter, as displayed in Figure 4.18). The

interaction effect between the number of attributes with missing values and missing

data mechanism show missing values having more impact when they are 1M and are

distributed among all attributes compared with when they are MCAR or MAR

(Figure 4.18).
O.ll

0 .14

'.,' 0 .12

1!l
0 .1:>

~ 0 .08
(J)

~ 0 .06

~ 0 .04

0 .02

0 .00

• .'

..
• - - . - - -ATTR...-.Iv8 ___ ATTR...-.Ifo

MCAR MAR 1M

% of missing values in training set

Fig. 4.18. Interaction between number
of attributes with missing values and
proportion of missing values

147

4.4.3 Overall Results - Incomplete Test Data
Only

Figure 4.19 summarises the excess error rates of each testing method against three

amounts of missing values. The error rates of each method of the introduced missing

values are averaged over the 21 datasets.

MCARuniv8 MCARunifo
(averaged oyor 21 domains) (everaged over 21 dOmllns)

13 13
12 12

" " 13 10

l 9 ~ 9

~ • ~
8

Q) 7 7

<II 6 ~
6

Ie
u

!l !l

1
0

'15 30 50 '15 30 50

"0 of missing values in test set % of missing values in Est set

-+-LD ----.-OT5I
_LD -..-OTSI --Q--EMSI -- · .---MMSi
-Q--EMSI _ . - 0 - --MMSI -.-EMMI -+- FC
-z-EMMI --+-FC ---O-- SVS
---o-- SVS

WARunlv. MARunlfo

(neraged ov.r 21 domains)
,_",.raged 0 , 21 dOfnllna)

17
fl
i "

~
_ tl

13 !!. ~, 12

~ Jl ~ ~ 9
<II 8

N
8
7 Ie J • ~ 5 l! • 4 • ~ ,
2 1 1 0 0

'15 30 50 e 30 '" % of missing v aJues in lest set % of missing v Blues In leSt set

_LD --..--OTSI
-+-LD ---o-.OT5I

__ EM 5I
··· . ·· ·MM SI

-;;t-EMSI "·0· "MMSI .--a-EMMI _ + _ FC

-Z-EMMI

__ FC

~svs

---O--SVS

.N unlv. 1M unUo

(avaragad over 21 do~ln.) ,.",.raoed 0 ' 21 dOrTWIl,..,

3~ t -1 i- t
~i m ~
§ 1 ~ 1 ~

~ ~
a a e

0 '15 30 50 ° % of ml~slng v SIue's°ln IeSI set
.,

% of missing values in leSt sel
_ LD _LD ---..-DT9I

-+--OTSI ~EMSI ··· . · · · MM 8I
--;a--EM5I · · ·O · · · MMSI -a-EMMI ---+_FC
-S-EMMI -+-FC ~svs -Q-svs

Fig. 4.19. Effects of missing values in test data on the excess error for
methods over the 21 domains. A) MCARuniva, B) MCARunifo, C) MARuniva,

D) MARunifo, E) IMuniva, F) IMunifo

148

Once again, the error rate differences are relative to error rates at the control level

(when there are no missing values), especially at lower levels of missing values. The

performance of all the methods for handling incomplete test data only worsens

compared with the same methods used for handling incomplete training data, i.e.

the error rate increases for testing methods are a little bigger compared with error

rate increases for training methods.

Figure 4.19A shows that EMMI has on average the best accuracy throughout the

entire spectrum of amounts of missing values for MCARuniva data, closely followed

by DTSI. From Figure 4.19B, SVS appears to be more effective for handling

MCARunifo data compared with MCARuniva. For MARuniva data, FC and SVS

perform better than expected in particular situations compared with their

performance as training methods (Figure 4.19C). For MARunifo data, the pattern of

results is similar to the one observed in the MCARunifo suite (Figure 4.19D). Good

performances are achieved by EMSI and Fe while DTSI becomes less effective as

the proportion of missingness increases for IMuniva data (Figure 4.19E). EMMI is

the most effective method for handling IMunifo data (Figure 4.19F). The differences

in performance by methods appear to increase with increases in the proportion of

missingness.

Main effects

Once again, all the main effects (testing methods, number of attributes with missing

values, missing data proportions and missing data mechanisms) were found to be

significant at the 1% level of significant (See Table 4.5 in the Appendix).

As it was the case with the results of training methods, EMMI is the best technique

for handling incomplete test data (Figure 4.20). However, EMSI is replaced by FC as

the second best testing method. LD exhibits the worst performance, followed by

MMSI. All the methods (with the exception of LD and EMMI) appear to have on

average comparable classification accuracy as testing methods.

The results of the other main effects (i.e. the number of attributes with missing

values, proportion of missing values and missing data mechanisms) for testing

methods are identical to the results achieved by training methods. The only

149

difference is that predictive error rates achieved by testing methods are slightly

bigger than those achieved by training methods.

Interaction effects

--+---------+---------+---------+-------------+
(--*-) LD

(-*--)

(-*--)
(--*-)

(--*-)

(-*--)
(--*-)

DTSI
EMSI
MMSI
EMMI
SVS
Fe

--+---------+---------+---------+-------------+
0.080 0.100 0.120 0.140

(pooled standard deviation)

Fig. 4.20. Comparison for testing methods:
confidence intervals for mean error rates

All the two-way interaction effects that were found to be significant for training and

testing methods, and later training methods, are also significant for testing methods

at the 1% level. The key difference is that predictive accuracy rates achieved by

testing methods are bigger than those achieved by training methods. Also, the

interaction between the number of attributes with missing values and the

proportion of missing values is not significant for testing methods as it was the case

for training methods. The reader is referred to Table 4.5 in the Appendix for a

detailed ANOVA results.

4.4.3.1 Supplementary
Results

Experiment and

Based on previous experimental results, which generated some interesting results

with respect to some database characteristics (such as type of attributes, number of

attributes, number of instances, number of classes), a subsidiary analysis for

unbalanced data was carried out. The analysis was for assessing how each testing

method is impacted by missing values on specific type of attribute variabl s. As

regards to the type of datasets, a binary attribute variable which takes the value 1 if

and only if the number of nominal attributes exceeds the number of ordered

150

attributes, and 0 otherwise, was created. In other words, the 'binary variable' is used

to indicate whether or not the dataset is predominantly nominal. This was the case

for six datasets (german, kr-vs-kp, anneal, LED 24, lymphography, and zoo). An

additional complication is that the ANOVA is now non-orthogonal (unbalanced).

However, an ANOVA procedure which can analyze the variance of unbalanced data

was used for this analysis. The interested reader is referred to Miller (1997) and

Kitchenham (1998) for a discussion on ANOVA for unbalanced data. In addition,

only testing methods are considered for this experiment since previous results

showed methods as more severely impacted when missing values are in test data

than in training data.

All the main effects (testing methods, number of attributes with missing values,

missing data proportions, missing data mechanisms and the 'binary attribute' were

found to be significant at the 1% level of significance, as shown in Table 4.6 (a) in

the Appendix. However, the main output table is now largely irrelevant, except for

the binary attribute effect which was tested against the residual error. This is to

avoid anomalies arising from the non-orthogonality among the effects. For each of

the other effects, the appropriate error term from Table 4.6 (a) is used, involving an

interaction with dataset nested within 'binary' attribute, i.e. each effect and its

respective interaction with 'binary attribute' has its own error term. The results are

presented in Table 4.6 (b) in the Appendix. In addition, the only interaction effects

considered for this analysis were for each main effect against the 'binary attribute

variable'. All the interaction effects were found to be not significant at the 1% level

as shown in Table 4.6 (b) in the Appendix.

4.5 Discussion

The research questions asked which MDTs yielded the least amount of average error

when using tree-based models.

The results of the simulation study show that the proportion of missing data, the

miSSing data mechanism, the pattern of missing values, and the design of database

151

characteristics (especially the type of attributes) all have effects on the performance

of any MDT.

The effects of missing data have been found to adversely affect DT learning and

classification performance, and this effect is positively correlated with the increasing

fractions of missing data.

Another point of discussion is the significance of having missing values in only one

attribute, on the one hand, and allowing missing values in all the attributes, on the

other hand. The idea was to see the impact of pattern over mechanism, or vice versa,

at both lower levels and higher levels of missing values. Our results show the impact

on the performance of methods being caused by the pattern and mechanism of

missing values, especially at lower levels of missingness. However, as the proportion

of missing values increases the major determining factor on the performance of

methods is how the missing values are distributed among attributes. All methods

yield lower accuracy rates when missing values are distributed among all the

attributes (MCARunifo, MARunifo and IMunifo) compared with when missing

values are on a single attribute (MCARuniva, MARuniva and IMuniva).

The worse performance achieved by methods are for 1M data, followed by MAR and

MCAR data, respectively. This is in accordance with statistical theory which

considers MCAR easier to deal with and 1M data as very complex to deal with since

it requires assumptions that cannot be validated from the data at hand (Little and

Rubin, 1987). In addition, in many settings the MAR assumption is more reasonable

than the MCAR. In fact, an MAR method is valid if data are MCAR or MAR, but

MCAR methods are valid only if data are MCAR. This could have attributed to the

superior performance of EMMI (an MAR method) and the substantially inferior

performance ofLD (an MCAR method).

The results also show that the performance of methods depends on whether missing

values are in the test or training set or in both the training and test sets. Training

methods appear to achieve superior performances compared with testing methods.

An explanation for such behaviour will be given later in the section.

152

With this experimental set-up, it is easy to say with conviction that from the eight

current techniques investigated that EMMI is the overall best method for handling

both incomplete training and test data. However, there are competitors like FC and

DTSI which performed reasonably well. One important advantage of Fe over DTSI

is that it can handle missing values in both the training and test sets while DTSI

struggles as a technique for handling incomplete test data and when all attributes

have missing values. The heavily dependence of DTSI on strong correlations among

attributes might have attributed to its poor performance as correlations among

attributes for some of the datasets were not strong. However, DTSI performs better

when missing values are on a single attribute - a very serious restriction. The

results also indicate that LD is the worst method for handling incomplete data. In

general, it can be seen that model-based methods have better performance than ad

hoc methods. Furthermore, probabilistic methods seem to outperform non­

probabilistic methods.

There are several dimensions on which learning methods of handling incomplete

data using tree-based models can be compared. Also, combinations of methods for

handling incomplete data while varying the number of attributes with missing

values were not tried. However, prediction accuracy rates of estimation methods like

the EMMI were very impressive. The improvement in accuracy of EMMI over single

imputation methods (CCSI, DTSI, EMSI and MMSI) and other methods (LD, SVS

and FC) could be as a result of a reduction in variance resulting from averaging the

number of trees like is done in bagging (Breiman, 1996). Even though EMMI

emerges as the overall best of the eight techniques, it has come under fire by critics

claiming that proper imputations, necessary for valid inferences, are difficult to

produce, especially in data where multiple factors are deficient (Schafer, 1997), and

even then EMMI is biased in some cases (Robins and Wang, 2000). On other

argument against EMMI is that it is much more difficult to implement than some of

the techniques mentioned. One potential problem that was encountered in this

research is convergence of the EM algorithm (Wu, 1983), especially for big datasets

and datasets with more than 30 attribute variables.

153

The results also show that the performance of methods depends on whether missing

values are in the test or training set or in both the training and test sets. When

looking at the overall performance of methods, training methods appear to achieve

superior performances compared with testing methods. However, in terms of relative

performance, they seem to be about the same.

Each dataset might have more or less its own favourite techniques for processing

incomplete data. However, most of our dataset results are similar to one another.

Several factors contribute here: the methods used; the different types of datasets;

the distribution of missing values among attributes, the magnitude of noise,

distortion and source of missingness in each dataset.

There was evidence from our results that how well a method performs depends on

the dataset one is analysing. In fact, all methods were able to handle datasets with

numerical attributes better compared with datasets with only nominal or a mixture

of both nominal and numerical attributes.

For small datasets all the techniques seemed to work well with the estimation

methods, especially EMMI which performed better than both the other estimation

methods and machine learning methods. One the other hand, LD gave the worst

performance for small datasets. This seems to be logical since when using LD you

tend to lose a lot of information, especially at higher levels of missing values.

However, for bigger datasets, LD was equally effective compared with methods like

CCSI and MMSI and outperformed them in other situations. The effectiveness of LD

probably stems from the fact that deletion techniques result in data matrices that

mirror the true data structure. When data are systematically missing from a study,

the imputation techniques create a "reproduced" data matrix with a structure

somewhat different from that of the true data matrix.

Following EMMI as the second best overall method for handling both incomplete

training and test data is FC. In general it can be seen that probabilistic methods

have better performance than non probabilistic methods. However, one important

disadvantage of FC, just like EMMI, is that it takes a long time processing

(especially big trees) due to the way it handles missing values. Due to its reliance on

154

the number of branches to do the calculation simultaneously, if K branches do the

calculation, then the CPU time spent is K times the individual branch calculation.

Another good performance was by CCSI especially for datasets with only a few

classes and with a mixture of both numerical and qualitative attributes. The worse

performance by CCSI was observed for small datasets with many classes. Hence, our

results suggest that methods such as CCSI for handling incomplete data work better

for datasets where the response variable has a few number of classes and a few

attributes. However, these attributes should be highly correlated to the class

variable. One serious limitation of CCSI is that it can only handle incomplete

training data but not incomplete test data.

Of all the single imputation methods, EMSI seems to perform the best for datasets

with numerical attributes. However, despite its strengths, EMSI suffers (like all the

single imputation methods) from biased and sometimes inefficient estimates. DTSI

and MMSI achieved good results when missing values were on categorical

attributes. For DTSI, this was the case when the missing values were in only one

attribute while MMSI gave good results generally and in some cases was a good

method for datasets with mixed attributes. Overall, the differences in results

between single imputation methods are relatively small. The similarity of results

begs an important question: when and why should we choose one single imputation

method over the other?

Like DTSI, for all the datasets where the correlations among attributes were found

to be quite high, SVS (which relies heavily on strong concordance between a primary

splitter and its surrogate(s», achieved good results. However, SVS also struggles

when missing values are distributed among all the attributes. In fact, for a few

datasets SVS collapsed completely when an instance was missing all the surrogates.

However, some strategies when simulating the missingness among the attributes

were used when the technique collapsed. In addition, the performance of SVS

improves as a method for handling incomplete test data compared with handling

incomplete training data.

155

Another point of discussion is why missing values are more damaging when they are

in the test sample than training sample. If you have a lot of training data then

missing values do not make much impact on the parameter estimates but missing

data in the test set refers to only individual cases. That is, the training data yield

statistical summaries, but the test data are concerned with individuals. In other

words, missing data will tend to cancel each other out when training the model. On a

new test case, the investigator must still suffer accuracy affects though, inevitably.

What is really happening here is that the increased error in test cases is to be

expected and the significantly reduced error when training is a pleasant surprise

and this is due to the averaging.

Furthermore, it is worthwhile mentioning that the performance of some methods

could have been slightly affected by other factors like errors in some datasets. For

example, the Pima Indians diabetes database had quite a number of observations

with "zero" values, which are most likely to indicate missing values although the

data was described as being complete. Nonetheless, the prediction that the impact of

certain types of missing data mechanisms on both the testing and training cases

should differ by dataset, by mechanism and by the proportion of missing values is

confirmed.

Some results from Section 4.2 support previous findings in the literature and other

results extend the literature. The relative superiority of model-based methods over

ad hoc methods is consistent with past results (Kim and Curry, 1977; Little and

Rubin, 1987; Rubin, 1987).

Overall, the performance of each MDT under more complex forms of systematic

missingness is unknown and likely to be problematic (Little and Rubin, 1987).

Systematic missingness in this simulation was always based on the variables that

were in the model rather than unmeasured variables or combinations of variables.

In addition, it is impossible, in practice, to demonstrate whether data are MAR

versus 1M, because the values of the missing data are not available for comparison.

1M is still a problem for the methods reviewed here.

156

Chapter 5

More on the Problem of Building
Trees Using Incomplete Vectors and
Classifying Incomplete Vectors Using
Trees

5.1 Introduction

Learning with incomplete data has been a challenge in both the Machine Learning

and Statistics communities. In a situation when there are no missing values

(unknowns) in either the training set or test sets, the tree construction and

classification processes are carried out in the expected manner. However, if missing

attribute values exist in either the training set or test set or in both sets, the tree

building or classification processes are affected.

This chapter will outline the proposed procedure for constructing tree classifiers

using incomplete training vectors and classifying incomplete vectors, i.e. a technique

that can be used to handle missing attribute values in both training and test data is

developed. There are few techniques (especially those that utilises machine learning)

algorithms) that can handle missing attribute values in both training and test data.

There are several important aspects of handling incomplete training and test data

using DTs which the proposed procedure casts light on. Perhaps the most important

of these is the failure of existing methods to handle 1M data well, as shown in the

experiments in Chapter 4. The goal is to produce a technique that can be used to

handle any type of attribute with missing values and be able to deal with any of the

three missing data mechanisms effectively, especially 1M data. As with Quinlan's

approach, the proposed procedure regards "missing" as another category but the

analysis and resulting algorithms are different from those of Quinlan. The key

difference is that numeric or ordered attributes are not quantized or discretized first

157

before using this strategy. Instead, the missing values constitute special values that

are assigned a place in the ordering that yields the best split. The place is generally

different in different nodes of the tree. The method uses three prospective binary or

two-way splits; two of which accommodate the "missingness" of the data along with

actual values and one "missingness" and "non-missingness" of the data as a

dichotomy. In other words, the proposed procedure uses "missingness" as a pseudo

value which is incorporated with the other attribute values. The binary split that

maximises the impurity criterion that had been used to grow the tree is the one

chosen, thus, the best variable. This pseudo-value makes the proposed technique a

more practical and powerful approach.

The usefulness of the proposed procedure from the point of view of its effect or

tolerance to incomplete training and test data is investigated experimentally. In

particular, the focus is on the 15%, 30% and 50% levels of missing values, having

missing values on only one attribute variable and having missing values distributed

among all attributes, individually; and three different mechanisms of missing values

that are known to distort data (MeAR, MAR and 1M). In addition, it is expected that

the proposed method will handle 1M data more effectively compared with existing

methods since it considers "missingness" as important when determining the best

split when growing the tree or when classifying an unknown instance. In other

words, the proposed approach could be considered to be stronger on the philosophy

and foundations for anything we have that is 1M.

This remainder of this chapter is organised as follows: In Section 5.2 the proposed

method, against the background of the current techniques is introduced. In Section

5.3 the experimental methodology is briefly explained. Results of simulation studies

showing the performance of the proposed method against current techniques are

contained in Section 5.4. Some discussion of the results in Section 5.5 closes the

chapter.

158

5.2 Building Decision Trees Using
Incomplete Training Vectors and
Classifying Incomplete Vectors
Proposed Procedure

DTs are generally learned by means of a top down growth procedure, which starts

from the root node and greedily (picks the best attribute and never looks back to

consider earlier choices) chooses a split of the data that maximises some cost

function, usually a measure of the 'impurity' of the sub-samples implicitly defined by

the split. The estimation criterion in the decision tree algorithm is the selection of an

attribute to test at each internal node in the tree. The goal is to select the attribute

that is most useful for classifYing examples. The most common measure is the

statistical property called the information gain or transmitted information that

measures how well a given attribute separates training instances according to their

target classification (Quinlan, 1986; 1993). However, there have been a number of

alternative measures for selecting attributes (the reader is referred to Section 2.2).

For the purposes of the proposed technique, the GINI index of diversity (Breiman et

al., 1984), which measures the 'impurity' of an attribute with respect to the classes

shall be used. In fact, the GINI index was also used as the goodness-of-split criterion

for all experiments carried out in this thesis.

The proposed approach, which is now going to be called missingness-incorporated-in­

attributes (MIA), follows the following specific form.

5.2.1 Learning Phase

An unknown (missing) value is considered an additional attribute value. Hence the

number of values is increased by one for each attribute that depicts an unknown

value in the training or test set.

159

If Xn is an ordered or numeric attribute variable with unknown attribute values,

the proposed approach searches essentially over all possible values of xn for binary

splits of the following form:

(i) Split A: (Xn ~xn or X" ==missing) versus (X" >xn)

(ii) Split B: (X" ~ x,,) versus (X" > x" or X" =missing) (5.1)

(iii) Split C: (X" == missing) versus (X" = not missing).

The idea is to find the best split from the candidate set of splits given above, with

the goodness of split measured by how much it decreases the impurity of the sub­

samples.

If X" is a nominal attribute variable (i.e., a variable that takes values in an

unordered set), the search is over all splits of the form:

(i) Split A: (X" E y" or Xn ==missing) versus (Xn ~ y,,)

(ii) Split B: (X" E y,,) versus (X" ~ Y" or X" ==missing) (5.2)

(iii) Split C: (X" = missing) versus (Xn = is not missing)

where Y"is the splitting subset at node n.

When the training set did not have any missing values for some variables, the above

reduces to using a standard tree split for such variables, i.e., X ~ x" versus X n > x"

(for an ordered attribute variable) or X E Y versus X ~ Y (for a categorical n n n n

attribute variable).

The standard algorithm for feature selection and the proposed algorithm for feature

selection with unknown (missing) attribute values when using decision trees are

displayed in Figures 5.1 and 5.2, respectively.

160

Loop through all attribute variables

1. Loop through cut-off points

2. Choose best cut-offpoint

---- Choose best variable

Figure 5.1 Standard Algorithm for feature selection

Loop through all attribute variables

1. Loop through cut-off points + send Missing to the left
Choose best cut-off point

2. Loop through cut-off points + send Missing to the right
Choose best cut-offpoint

3. Loop through cut-off points + send Missing to the left and rest to the right

Choose the best split of I to 3

.... _-- Choose best variable

Figure 5.2 New Algorithm for feature selection with unkno\W attribute values

5.2.2 Classification Phase

The algorithm works in the same way to determine the outcome of the test when

classifying a new instance, and given that at that particular internal node there are

attribute values missing as it was the case with learning. If the unseen instance is

regular (without any unknown attribute value) then the classification is carried out

the traditional way. However, if an instance involves one or more unknown values,

then the algorithm tries in turn all the three binary splits and selects the best split.

The split chosen determines the number of instances branching on each path at a

particular node for which a value is missing.

161

5.2.3 Illustration

To further illustrate the operation of the proposed procedure, consider the learning

task represented by training instances with unknown (missing) attribute values

given as an artificial dataset in Table 5.1.

Table 5.1 Artificial dataset with missing values (?) on attributes Al and A3

Attribute 1 (Al) Attribute 2 (A2) Attribute 3 (A3) Class
? 9::tR ~ 1
1 1168 12 1
4 5117 27 1
1 ~ ? ~
4 1495 12 1
1 10623 ::iO 1
4 193fi ? ~
? 1424 12 1
1 Ji56B ? 1
4 1413 12 1
4 3074 9 1
? 3835 30 1
1 529a 27 ~
3 no.a ? 2
4 3342 ? 1
? Jl32 6 ~
1 ~ 1R 1
3 3913 36 1
? 3021 24 1
4 ~ 12 1
2 625 ? 1
1 12illl 12 ~
? ~ 12 1
4 ~ 24 1
? 4657 15 ~
4 26J.3 ? ~
2 W961 48 2
1 71165 12 2
4 1478 9 2
1 3149 ? 1
? A2.lQ 36 ~
4 2507 9 1
4 2141 12 ~
2 M6 ? 1
4 1544 18 1
1 1823 24 ~
? ~ 6 2
2 2767 ? 2
4 1291 12 1
? 2522 21 ~

162

Here the target attribute (also called class attribute), which can have values 1 or 2

for 40 instances, is to be predicted based on attributes (A" A 2 , A 3) of the class in

question. In instances 1, 8, 12, 16, 19, 23, 25, 31, 37 and 40, the available data has

missing values for attribute AI' while attribute A3 has missing values for instances

5,7, 9, 12, 15,20,26,30,35 and 40. In other words, each attribute has ten missing

values. A2 is the only attribute with non-missing values.

As mentioned earlier, the proposed algorithm differs from the other algorithms in

creation of this kind of DT in that it will always have one more choice per node. In

addition, the DT is constructed by allowing 'missing' to be a possible choice on the

decision tree.For an example, if split A from Equation 5.2 is considered as the best

split for AI and split C from Equation 5.1 as the best split for A3 then the resulting

DT constructed using the dataset presented in table 5.1 is illustrated in Figure 5.3A.

Figure 5.3B displays a decision tree constructed if split C is the chosen as the best

split for AI with split B chosen as the best split for A3 • Note that in some situations

the splitting criterion chosen could be the same for both the attributes with missing

values.

Note that the proposed procedure is different from Quinlan's approach of handling

unknown attributes values by considering 'missing' as another category. For

example, with two binary variables, adding 'missing' as another category takes them

up to trinary variables. Also, Quinlan's approach works well with categorical

attributes. Continuous attributes are first discretized or quantized.

For the proposed strategy, 'missingness' is used as a pseudo-value and then carry

out a binary splitting procedure to determine the best split at that particular node

with missing attribute values. The proposed missing value strategy reportedly works

fine for continuous attributes as well. Consider a fixed candidate split defined for

non-missing values of a continuous attribute. Suppose the split would create two (2)

branches. Missing values could be assigned to anyone of the two branches. If an

additional branch is allowed, the missing values could be assigned to a new branch

that would contain no non-missing values.

163

'Test based on Split A
from Fijuation S.2'

(2,3)

'Test based on Split C
from Fijuation 5.1'

(2, \)

'Test based on Spilt C
from Fijuation 5.2'

(9, 1)

'Test based on Split 8
from Fiju ation 5.1'

(5,4)

Figure 5.3. An artificial example of a simple binary decision tree which allows

'missing' to be a possible choice on the tree. A) Splitting criteria A and C from

Equations 5.2 and 5.1, respectively, are used, B) Splitting criteria C and B from

Equations 5.2 and 5.1, respectively are used

N ate: Figures in brackets are the number of instances in each terminal or leaf node

for class 1 and 2, respectively. Figures in italic represent training data instances

that branch either to the right or to the left of each internal node at each respective

cut-off point.

The proposed procedure evaluates each of these 2 or 2+1 revisions of the original

candidate split. If C candidate splits on non-missing values into 2 branches are

considered, then C times 2 (or 2+1) total splits are evaluated when including missing

values. In other words, the splitting rule could assign missing values to anyone of

the two branches. Cut-off candidates are done excluding the missing values.

However, evaluation of the cut-off points are done including the missing values.

Given a candidate cut-off, first try assigning missing values to the first branch, and

then try the second branch. Finally assign, all missing values to the first branch and

the non-missing values to the second branch.

164

5.3 Experimental Set-Up
In order to access the capabilities of each of the proposed and current methods, it is

important to test them on several datasets. This will also aid determining the

techniques strengths and weaknesses. Among the two current methods, EMMI (a

statistical algorithm) has been employed as a baseline procedure since it achieved

the highest accuracy rates in experimental results in the previous chapter. The Fe

strategy was also chosen as a comparator since not only did it achieve the second

best overall performance in our previous experiments but is one of the major

families of machine learning algorithms that can handle missing attribute values in

training data and test data.

Each method was run for the two conditions which involve the number of attributes

with missing values; four levels of missing data proportions in both the training and

test sets and three missing data mechanisms. All combinations were tested on 21

datasets (already described in Section 4.3.1), and the scenario has been executed five

times for each combination. Hence, the findings presented in this section are based

on a total of 5670 conditions. Otherwise, the experiments have the same details as in

the previous experimental section.

5.4 Experimental Results
Experimental results on the effects of current and proposed methods for handling

incomplete training data and test data on predictive accuracy using DTs are

described.

The results are presented in two parts. The first part compares the performance of

three different approaches for building trees from incomplete vectors and classifying

incomplete vectors using trees, looking at the overall results of each method,

averaged for all twenty one datasets. The performance of the three methods on

selected individual datasets is compared in the second part. These individual

datasets are those where some interesting trends and results achieved by the three

methods emerged.

165

5.4.1 Overall Results
Methods

Current Vs. New

Figure 5.4 summarises the overall excess error rates for current and proposed

training methods against three proportions of missing values. The excess error rates

of each method ofthe introduced missing values are averaged over the 21 datasets.

" " II

~
~
n

1)

~ • •
~

,
•

~ •

2,g
11
'6

~
15
14

~ H
if

U) 9

~ ,
Ii! 6

1
3 ,
0

MCARuni
(.venged ov.r 21 dOmllne)

~
/~

al------------__ ----~
o 15 30 5)

%of missing values In training and test data

-lI-~MI .-+-FC -irM'"

M ARunl
(ever.gad ov.r 21 dOfl'l8ln.)

I
i~

0 " 30 !Il
%ofmlsslng values in training andtesl data

-a-alMI -+-FC ~M'"

1M univ.
(.ver.ged over 21 dOm8ln.)

+~

r
15 30 00

%of missing values in training and test data

-:a-9.4'-11 -+-FC -irM'"

1)

9

~

~ 6

~
111

,
0

15
14
tl
12

~ n
1)

~ 9
8

~
7
6 • liI • 3
2 ,
0

MCARunif o
(.v.r.ged ov.r 2 1 dOlNlln.)

+~

L
~

0 15 30 00
%of missing vatues in tralningand teat datB

-lI-EMMI -+-FC -irM'"

.. ARunlto
(.v.r.gad ov.r 21 dow.lna)

+?
L~
0 " 30 00

%of missing values in training and test data

-x-EMMI -...-FC --g-MIA.

IMunafo
(av.r.ged over 21 domains)

1 ~+
~ i +~
; l af ~ I

d --__ --____ --__ ----__
o 15 30 00

%of missing values In Imlnlrg Md te.t data

- a-aHA -+-FC -Q-MlA

Fig. 5.4. Effects of missing values in training and test data on excess

error for current and proposed testing methods. A) MCARuniva, B)
MCARunifo, C) MARuniva, D) MARunifo, E) IMuniva, F) IMunifo

166

From Figure 5.4A it is noticeable that when both training and test data are

incomplete due to the MCARuniva mechanism, EMMI performs better than MIA.

For MCARunifo data MIA achieves the best performance at most levels of missing

values (Figure 5.4B). The results displayed in Figure 5.4C show a poor performance

by FC. Results for MARunifo data follow a slightly similar pattern to the one

observed for MARuniva data (Figure 5.4D). In this suite of IMuniva experiments,

the best performance at all levels is by MIA (Figure 5.4E). In the IMunifo case, as

expected, MIA performs better than both EMMI and FC (Figure 5.4F).

Main Effects

All the main effects (existing and new training and testing methods, number of

attributes with missing values, missing data proportions and missing data

mechanism) were found to be significant at the 1% level as shown in Table 5.2 in the

Appendix. Results for overall means for the main affects are similar to results from

the previous experiments. That is, missing values have more impact when they are

distributed among all attributes than when they occur in only one attribute. Also,

increases in missing data are associated with increases in predictive error.

Furthermore, bigger error rates are achieved by methods for 1M data compared with

MCAR or MAR data.

The performance of existing and proposed methods for handling incomplete training

and test data is summarised in Figure 5.5. The best overall method for handling

incomplete training and test data using decision trees is EMMI, closely followed by

MIA and FC, respectively. However, the MIA and FC methods do not appear to be

significantly different.

-----+---------+---------+---------+-------------+
(-------*-------) EMMI

(--------*-------) Fe
(--------*-------) MIA

-----+---------+---------+---------+-------------+
0.04845 0.0960 0.1020 0.1080

(pooled standard deviation)

Fig. 5.5. Comparison for methods:
confidence intervals of mean error rates

167

Interaction Effects

All the two-way interactions that were found to be significant in previous

experiments for training and testing methods are also significant for this experiment

(with the exception of the interaction between attributes with missing values and

missing data mechanisms, which was not significant for the former). Figure 5.6 plots

the interaction effect between number of attributes with missing values and missing

data mechanisms which suggests that all the methods are severely impacted by

missing values when they are distributed among all the attributes and are

informatively missing than when they randomly missing. Also, the two lines for

MCAR and MAR are almost parallel indicating no method being particularly less or

more affected than others by these two missing data mechanisms.

O fT

0 .15

0 .13

~ 0 .11

~
0 .09

0 .07

0 .05

0 .03

0 .0 1

.. '
... .•

_ .. • - - -ATTRlSliva -+-ATTRlI'lIfo

M CAR M AR

melhods

1M

Fig. 5.6. Interaction bet ween number
of attributes with miss ing values and
miss ing data mechanisms

5.4.2. Results for Individual

Current Vs. New Methods
Datasets

Experimental results presented in this section illustrate specific deviations from the

overall results of the effectiveness of the proposed method against the current

methods for building and classifying unknown instances using trees and given

incomplete data on different database characteristics. As in previous experiments,

the accuracy of MIA is explored relative to that of EMMI and FC on individual

datasets with purely numerical attributes, purely nominal attributes, and mixed

attributes. The results report error rate of each method and are analyzed from the

perspective of each of the input data characteristics.

168

5.4.2.1 Results on a dataset with purely numerical
attributes: letter

For the letter data problem, the effects of missing values on classification accuracy

are summarised in Figure 5.7 A.
25
2'
23
22
21

l2:
~ :
~ :

'" 13
12
n
m ~--__ ----__ --__ --___

15 30

% of missing values in taining and test data

-.-EMMI -+-FC ~MIA

32 M ARunUo
31

B ~+

~~f 1+:2/ 1! 21

15 2~
5i ~

:
tl
12

~ ~----------------~ 15 30 '"
% of mISsing v alues In lrBining and tesl data

-.-EMM I -+-FC -Q-"" '"

IMunlfo

+~
+~

I
o 15 30 '"

% of missing v alues In IrBml1g and test data

-.-EMMI -+-rc -G-M IA

Fig. 5.7. Comparative results of current and proposed methods for the
letter dataset. A) MCARuniva, B) MCARunifo, C) MARuniva, D) MARunifo,
E) IMuniva, F) IMunifo

169

In terms of tolerating MCARuniva data, EMMI performs slightly better than both

MIA and FC. For MCARunifo data, MIA yields the best performance (Figure 5.7B).

Results for MARuniva data indicate EMMI and MIA exhibiting higher performances

(Figure 5.7C). EMMI exhibits a very good performance for MARunifo data (Figure

5.7D). The impact of IMuniva data shows MIA outperforming both EMMI and FC.

Also, the difference in performance between MIA and EMMI is now particularly

obvious, especially at higher levels of missing values. In this suite of IMunifo

experiments, the behaviour of the methods, shown in Figure 5.7F, is not different

from the one observed in the IMuniva case.

As expected, for this kind of dataset it appears that MIA handles this dataset quite

well, especially for 1M data (as expected) and MCAR (rather surprisingly). Also, the

superior performance of MIA to EMMI for MAR data is rather surprising since one

of the assumptions of EMMI requires that the data be MAR. In addition, this kind of

data has purely numerical attributes with a reasonable number of attributes, which

EMMI would normally handle quite well.

5.4.2.2 Results on a dataset with purely nominal
attributes: kr-vs-kp

From Figure 5.8A the overall best performance for MCARuniva data is by MIA, with

EMMI achieving lower accuracy rates. Results for the MCARunifo data show MIA

yielding the best performances (Figure 5.8B). Once again, EMMI is less effective for

this condition. In the MARuniva suite, EMMI starts becomes more effective as the

percentage of missing values increases (Figure 5.8C). The results for the MARunifo

suite, reported in Figure 5.8D, are almost similar to the one already observed in the

MCARunifo suite. The behaviour of methods in the IMuniva suite shows MIA

outperforming both EMMI and FC (Figure 5.8E). In the IMunifo case, the behaviour

of methods is similar to the one observed for IMuniva data (Figure 5.8F). However,

all the methods exhibit bigger error rates for the IMunifo data compared with

IMuniva data.

170

25 MCARunl •• ~ 25 M CA Runito ~
2. " 23 23

~~ 22

/--
22

l 2' l
21

20 20 /~ Q)
19 Q) 11 i!! 11 e ..

~ f7 ~ 17

'" 11 " 11 a 15 a
14 " tl tl

12 12

11 30 50 15 30 50

% of missing vafues in !raining and test dala % 01 missing values i1 raining and test dam

-::I-EMMI -+-FC -g-MIA
- a -BAMI -t-FC

__ MIA

30 .. "Runl 30 MAR unlfo
2. 2.

~
28 +7 28
27 27
26 26
25 25

l 2' ? ~
2.

/ 23 23

~
22 .. 22
21 e 21

20

~
20

~ 11 19
11 11
f7 f7 11 11 15 15 a
" 14 tl tl 12 12

" 30 50
15 30 50

% 01 missing values in !raining and test data % of missing values in taiIw1g and leSt dala

-.-EMMI -+-FC
__ MIA - z -EMMI -t-FC

__ MIA

ff 'Nunl

« IMunli. ~

r
?~

l 3ft zll j? u
~ ~l

~
3~ ~ ~ l' ~ J E
~ a
B B .. 30 50 .. 30 50

% of missing values In raining and leSt data % of missing vatues In lrain<ng and IIlStdata

- a -EMMI -t-FC
__ MIA -.-EMMI -+-FC

__ "'IA

Fig. 5.8. Comparative results of current and proposed methods for the kr­
vs-kp dataset. A) MCARuniua, B) MCARunifo, C) MARuniua, D) MARunifo,
E)lMuniua, F) IMunifo

5.4.2.3 Results on a dataset with mixed attributes:
german

From Figure 5.9A it appears that for the MCARuniua mechanism, MIA performs

slightly better than the other methods. For MCARunifo data, the results show MIA,

once again, achieving the best results (Figure 5.9B). From Figure 5.9C, results

achieved by methods for MARuniua data are similar to results for MCARuniva data.

171

'0 MCARuniva '0 "CARunUo +
3.

~+
3. ~ 38 3.

r 37 37
36

/~
36

~
35

~
35

34 3' .. 33 .. 33 1!! 32 1!! 32

~ 31 ; 31
30 30
2. a 2. a
2. 2.
27 27
26 2.
25 2.

0 .. 30 '"
0 .. 30 '"

% of missing values in taining and test data % of missing v aloes in raining and test data

-.-BAMI -+-FC -0-"" -a-EMMI -+-FC -0-.....

'2 MARunlv. '2

r
" 41
'0 '0

3. 39
38

r
3.

37 37 ::---x
l 36 '" l 36

35 36 .,
3. CI> 34 E 33 1!! 33

~ 32 i 32
31 31
30 30 a 29 29
28 28
27 27
26 2.
25 2. .. 30 50 15 30 50

% of missing vaJues in ~alning and test data % 0/ mISsing values In IJ'airjng and last data

-z-EMMI -+-FC -0-"" -.-EMMI ~_FC -0-""

<7
1M unlv.

'7
1M unlfo

45 45

~
43 + 43

l " 1i~/a .,
3. ~ 39

fJ 37

/
CI> 37 1!!

i 35 i 35

33 33

31 31

2. 2. Q

27 27

25 25

15 30 ro 15 30 50

% 0/ missing values in raining and last data
.,. of missing v Blues in raining and test data

-Z-EMMI -+-FC ~"IA
- . -EMMI --+_ FC -G- "IA

Fig. 5.9. Comparative results of current and proposed methods for the

german 24 dataset. A) MCARuniva, B) MCARunifo, C) MARuniva, D)
MARunifo, E) IMuniva, F) IMunifo

EMMI achieves higher accuracy for MARunifo data while MIA's performance

appears to improve as the percentage of missing data increases (Figure 5.9D). In

this suite of IMuniva experiments, the results slightly are identical to results

observed for MARuniva data (Figure 5.9E). In the IMunifo case, MIA exhibits

another good performance (Figure 5.9F).

172

5.4.3 Current and New Methods: Processing
Time

The two most important issues of Machine Learning algorithms or models are

predictive accuracy and speed and scalability. Speed and scalability involves the

time spent to construct the model (growing the tree and pruning it) and the time

spent to use the model (classifying a new instance using the tree). The training sets

are processed until the learning algorithms terminate and then the classification

accuracy is measured on the corresponding test sets.

For EMMI, the imputation processing time for EMMI depends on the size of the data

matrix and the number of iterations specified for the iterative algorithm. For MIA,

three different binary splits which accommodate 'missing' are explored. In fact, the

algorithm searches for a good split on all the attributes with missing values, one at a

time, and then selects the attribute with the best split. This procedure is carried out

individually, i.e., when building the tree and when using the tree to classify an

unknown instance.

The processing times (a combination of training and classification times) of the

proposed technique against two current methods on three datasets is illustrated. For

small datasets, computation time is not a major factor, however if an algorithm

needs to be run many times, then it can become an issue. However, the three

datasets considered for this exercise are the biggest in the simulation experiments

and they encompass purely numerical attributes, purely nominal attributes and

mixed attributes, respectively. The idea was to demonstrate experimentally how the

proposed technique compares with current methods for handling incomplete training

and testing data in terms of computational speed. The only missing data mechanism

considered for the exercise is 1M (a strong condition) and the 50% proportion of

missing values for this condition. Furthermore, the situation when missing values

are distributed among all the attributes is considered.

173

Table 5.4 Processing time (in seconds) for current and proposed methods for selected datasets

Approximate time Approximate time
Approximate time on

on a dataset with on a dataset with
Method

purely numerical purely nominal
a dataset with mixed Description
attributes (s)

attributes (s) attributes (s)

initial parameter estimates by EM algorithm;
EMMI 31500 (4500) 7100 (1100) 4900 (500) iterative simulation; imputation of the missing

values

exploration of all branches; summing of weights of
Fe 16300 (2300) 4300 (500) 3900 (400) instance fragments classified in different ways at

leaf nodes

search through all attributes

1. search through split points and send 'missing'
to the left and choose the best split;

MIA 21600 (3600) 5250 (750) 3300(300) 2. search through split points and send 'missing'
to the right and choose the best split;

3. search through split points and send 'missing'
to the left and the rest to the right

choose the best split of 1 to 3 and best attribute
- -

Table 5.2 displays the approximate running time (given in seconds) for current and

proposed methods on datasets with purely numerical attributes (letter); purely

categorical attributes (kr-vs-kp); and mixed attributes (german). The processing

time given is for both training and testing. Figures in parentheses are for testing

only. In addition, the boldface font in the table indicates that a method is better

than the others.

The quickest method for processing a dataset with purely numerical attributes is Fe

which is 1.3 times quicker than MIA and about twice as quicker than EMMI. EMMI

is also about 1.5 times slower than the proposed technique.

Once again, the results shown in Table 5.2 also show EMMI achieving the slowest

running time for handling a dataset with purely nominal attributes, with the

proposed technique comparing favourably with Fe. In fact the proposed method is

not much worse (on average about 1.2 times slower) than Fe. However, even though

Fe is slower than the proposed method it is still about 1.4 times quicker than

EMMI.

Results for the dataset with mixed attributes show EMMI achieving the slowest

running time, followed by Fe (Table 5.2). The quickest running time is by MIA

which is about 1.5 times quicker than EMMI and about 1.2 times quicker than Fe.

5.5 Discussion
In this chapter a new technique for handling unknown attribute values in both

training data and test data has been introduced and its performance compared

experimentally against current techniques for handling unknown attribute values

on twenty one datasets. The previously proposed methods for handling the

incomplete training and test data problems that were used for these experiments are

EMMI and Fe, while the proposed method is MIA.

The proposed procedure uses three binary splits (whereby each split considers the

missingness of the data) in which one chooses the split which maximised the

175

impurity criterion (the GINI index). The key to making MIA work is the introduction

of pseudo value for the missing data. In other words, 'missing' is associated with

values of other attributes that are non-missing in the data. This choice of pseudo

value allows us to derive an algorithm that can be applied in any kind of dataset and

with any kind of attributes.

It appears that the main determinant factor for missing values techniques,

especially for smaller percentages of missing values, is the missing data mechanism.

However, as the proportion of missing values increases, the distribution of missing

values among attributes becomes very important.

The different behaviour of methods according to various missing data mechanisms

and missing proportions is remarkable. When examining robustness of missing data

techniques for tolerating missing values, FC generally did not perform as well as the

other techniques. This is not to say that this technique is without merit, but rather

pointing out that there are other techniques that can outperform it. EMMI has the

best overall performance. Several statistical theory aspects of EMMI could

contribute to explain the apparent advantage conferred by the performance of this

method. However, it is interesting to see that for some datasets MIA was more

robust to MCAR or MAR data than were EMMI. This is surprising since the one of

the assumptions of EMMI algorithm requires that the data be MAR. As expected,

MIA consistently performs as well as or significantly better than EMMI for 1M data.

This conclusion is valid for number of attributes with missing values, different

amount of missing values, and missing data mechanisms. As it turns out, there are

situations where MIA

One of the strongest arguments against EMMI is that it is much more difficult to

implement than some of the other techniques mentioned. One potential problem that

was encountered for the EMMI algorithm was convergence. As it turns out, the

processing cost of missing values varies for EMMI and MIA with considerable

savings in computational time by the latter. EMMI is computationally expensive

because it is a greedy search algorithm and can only provide an approximation to

the optimal result. The greater the desired accuracy, the greater the computational

176

cost because of the iterative nature of the algorithm. In fact, for the biggest dataset

in the experiment, EMMI took us about one and a half times more to run compared

with MIA, even though FC was the quickest of the three methods. Since datasets in

the real world are getting bigger by the day, reducing processing cost is one of the

most important problems in the machine learning and statistics field. Thus, not only

does the proposed technique deal with missing values as well as EMMI it handles

incomplete training and test data at a lower cost.

MIA is suitable for a wide range of datasets as it does not make representational

assumptions or presupposes other model constraints.

The datasets used in our experiment have also provided a valuable insight into the

limitations of the missing data techniques. Each dataset appears more or less to

have its own 'favourite' technique for handling unknown attribute values. However,

this depends on random variation, the magnitude of missing values and the source

of missingness in each dataset.

It has also been found that miSSIng values have more impact when data is

informatively missing than when it is missing at random or missing completely at

random, i.e., 1M values entail deterioration in predictive accuracy compared with

MCAR and MAR. This is somehow in accordance with missing data theory, which

suggests that non-randomly missing parameters are subject to bias. In other words,

1M data is difficult to deal with. However, the proposed method appears to handle

1M data slightly better compared with the other methods.

177

Chapter 6

More on the Problem of Classifying
Incomplete Vectors Using Trees

6.1 Introduction

One of the central tasks of supervised learning algorithms is classifying instances

from some domain of application, i.e., determining whether a particular instance

belongs to a specified class, given a description of that instance. Virtually all

research on supervised learning addresses the task of learning to classifY complete

domain instances. However, in many real world situations we often have to classify

instances given incomplete vectors.

The task of learning an accurate incomplete data classifier from instances raises a

number of new issues which have not been addressed by traditional supervised

learning research. First, the types of processes that can cause an instance to have

missing attribute values have to be considered. For example, whether this omission

is randomly missing, uninformative, partially informative, or even misleading.

Second, training on incomplete data versus training on the artificially completed

instances can also be considered. Intuitively, complete data give the learner more

information about each instance, and hence, should make learning easier.

Although the task of learning DTs for incomplete data has been considered in a few

empirical studies, the results of these studies have invariably been mixed: a number

of techniques for handling incomplete test data have been investigated, but none has

been found to be uniformly superior to the others. Part of the problem is that this

learning task has yet to receive the same degree of theoretical treatment as learning

from complete data. So, there is no explanation of this phenomenon. However, the

178

results of the experiments carried out in chapter 4 gives an indication of which

technique is best under specific circumstances.

The results and experience obtained in the chapter 4 suggested to us to come up

with simple but efficient solutions for handling unknown (undetermined) attribute

values in the test set. According to results of the previous experiments, missing

values appeared to have more impact when they occur in the test set. Also,

probabilistic methods showed very good results. In fact, it is easy to say that

methods like EMMI and Fe can have high performance in missing values problems

but are open to improvements. Hence, algorithms based on a probabilistic approach

for handling incomplete test data were of significant practical interest.

The purpose of this chapter is to develop probabilistic methods for classifying

incomplete vectors using decision trees, i.e. methods that could be used to handle

incomplete test data. This approach is based on the a priori probability of each value

determined from the instances at that node that have specified values. The missing

attribute values can be either continuous or nominal. The proposed method follows

the total probability and Bayes' theorems (Press, 1989; Bernardo and Smith, 1994)

and it has three versions. The behaviour of the proposed approach is explored by a

simulation study. The effects offive methods of handling missing attribute values in

test (unseen) data are experimentally investigated by comparing two of the best

current methods (from the results of our previous experiments) with the three

proposed probabilistic methods from the point of view of their effects or tolerance of

incomplete test data.

With this approach, a test instance being classified is passed down all the possible

branches of the tree corresponding to the value of the attribute. This process is

repeated at each node on this branch and so on until a leaf node is reached. After the

new instance is passed down to all the possible leaves, the class probabilities of these

leaves are combined and finally the test instance is assigned with the biggest

probability. Thus, the main idea of the proposed approach is to estimate the

probabilities that are used for predicting membership of a particular class given that

179

there are unknown or missing attribute values in test data. These probabilities are

estimated with respect to each class as given below:

First, these probabilities were estimated by using instances from the training set

(TSPE). Secondly, the probabilities were predicted using the instances from the

decision tree (DTPE). Finally, an attempt was made to improve the prediction of

each class membership, thus classification accuracy, by applying some type of

'smoothing' procedure to estimate the conditional probabilities involving the class

variable and the other attribute variables. The procedure was carried out utilising

either the binary or multinomial logit models, depending on the class variable

distribution of that particular dataset. The binary logit model was used for the

datasets with only two classes while the multinomiallogit model was used for those

datasets with more than two classes for the response variable. This approach shall

now be called logistic probability estimation (LPE)

The remainder of this chapter is organized as follows. In the next section, the

framework of the proposed probabilistic method is introduced and described.

Experiments exhibiting the performance of the proposed method and existing

methods are presented in Section 6.3, and the results are analyzed in Section 6.4.

The chapter concludes with a brief discussion.

6.2 Classifying Incomplete Vectors Using
Trees - Proposed Procedure

The proposed probabilistic approach to missing attribute values follows both

branches from each node if the value of the attribute being branched on is not

known.

Given n mutually exclusive events XI'"'' Xn whose probabilities sum to unity, then

n

P(Y) = L P(Y I Xj)P(Xj)'

where Y is an arbitrary event, and P(Y I Xi) is the conditional probability of Y

assuming X j • This is the theorem of total probability.

180

(6.1)

The total probability theorem and the definition of conditional probability

(introducing an arbitrary event Z) may be used to derive

n

P(Y I Z) = L P(Y I Z, X;)P(Xj I Z)
;=1

The missing value problem addressed in this thesis can be defined as follows:

(6.2)

Given: A decision tree, a complete set of training data, and a set of instances for

testing, described with attributes and their values. Some of the attribute values in

the test instances are unknown.

Find: A classification rule for a new instance using the tree structure given that it

has an unknown attribute value and by using the known attribute values.

Let A be the attribute associated with a particular node of the tree that could either

be discrete or numerical. A discrete attribute has a certain number of possible values

J and a continuous attribute may attain any value from a continuous interval. Each

node is split into two sons (left and right sons). Hence, a new instance could either go

to the left (L) or to the right (R) of each internal node. Further, let V be the

binarised value for attribute A. Let C denote a class and let there be k classes,

j=l, ... ,k.

The total probability theorem is used to predict class membership of an unknown

attribute value by computing the conditional probability of a class C given the

evidence of known attribute values.

For individualj, divide the attributes in the tree into classes for both K (the known

attribute values) and M (the missing attribute values). Then

(6.3)

where the sum is over all possible combinations of values that branch to the left (L)

or right (R) at each respective internal node, taken by the vector of the missing

attribute values M. For the unknown attribute values, the unit probability may be

distributed across the various leaves to which the new instance could belong. These

181

probabilities are going to be estimated in three ways as explained in the following

example.

For illustration purposes, suppose that from Figure 6.1 the values for Al

(categorical attribute) and A3 (numerical attribute) are missing, and A2 is the only

numeric attribute with non-missing values. The tree is constructed using artificial

data given in Table 6.1. This dataset is identical to the one used for the illustrative

example in Chapter 5 but it has no missing attribute values.

From the example, it appears from Figure 6.1 that all the attributes with no missing

values would be used when estimating the probabilities. However, this does not have

to be the case. The attributes that are used are determined by where the instance

branches at a particular internal node. For example, say, attribute Al was not

missing. For any instance branching to the left of Al that would mean non­

utilisation of attribute A 2 , which is connected to the right branch of AI.

First Case: Class membership for a new instance is predicted given that it will

branch to the left of the internal node A2 (A;), given that both AJ and A3 have

unknown attribute values.

The probability that the predicted class membership will be class 1 given that it

branches to the left at internal attribute 2 (P(C I I A;» can be defined by:

Similarly,

P(CI , A;) = P(CI , A;, A~, A~)P(A~, A~ , Ai)

+ P(CI 'ALA~,A~)P(A~,A~ 'A;)

+ P(CI , A;, A~, A~)P(A~, A~ 'A;)

+P(CI'A;,A~,A~)P(A~,A~ 'A;)

P(C2 , A;) = P(C 2 , A;,A~,A~)P(A~,A~ ,Ai)

+P(C2'A;,A~,A~)P(A~,A~ ,Ai)

+ P(C2 , A; ,A~, A~)P(A~, A; 'A;)

+ P(C2 'A;,A~ ,A~)P(A~ ,Af 'A;)

= 1 - P(C J , A;)

182

(6.4)

(6.5)

Table 6.1 Artificial dataset

AI A2 A3 Class

4 936 9 1
1 1168 12 1

4 5117 27 1
1 902 12 2

4 1495 12 1
1 10623 30 1
4 1935 12 1
2 1424 12 1
1 6568 24 1
4 1413 12 1
4 3074 9 1
4 3835 36 1
1 5293 27 2
3 1908 30 2
4 3342 36 1
2 932 6 1

1 3104 18 1
3 3913 36 1
1 3021 24 1
4 1364 10 1
2 625 12 1
1 1200 12 1
4 707 12 1
4 2978 24 1
4 4657 15 1
4 2613 36 1
2 10961 48 2
1 7865 12 2
4 1478 9 2
1 3149 24 1
3 4210 36 2
4 2507 9 1
4 2141 12 1
2 866 18 1
4 1544 4 1
1 1823 24 2
2 14555 6 2
2 2767 21 2
4 1291 12 1
1 2522 30 1

Figure 6:1

183

(4,2) (7,2)

Example of a binary decision

tree from a set of 40 training

in tances that are represented by

three attributes and

accompanied by two classes

Note: Figures in brackets arc the

number of instances in each

terminal node for class I and 2,

respectively. Figures in italic

represent training data in tance

that branch to the right or the

left of each internal node at each

respective cut-off point.

We will use the following two methods of estimating the above probabilities.

6.2.1 The Full Estimation of Probabilities
from Training Set

From Table 6.1, there are 1 class 1 individual associated with A; (A 2 > 4061.5),

A~ (A 1 > 3.5), A~ (A 3 > 21.5), 1 class 1 individual with A~, Ai ,A~ and so on. In

addition one of the 7 A~ individuals (with A2 > 4061.5) has A~, A~ , another 1 has

A~ , A: , and so on. Therefore, the estimated probability of membership of class 1 is

given by:

= 0.444.

Following from (6.6), P(C2 I Ai) = 1- P(C1 I Ai) = 0.556 where P(C. I Ai) and

P(C 2 I A~) are both estimated from the proportion of instances in the training set

for which this is true, respectively. The assumption is that there is "exchangeability"

between all the instances in the training and test data.

For this method the unknown instance will be classified as belonging to class 2 as it

has the highest probability.

From Table 6.1, the estimated probability of membership of class 1 is given by:

184

Following from (6.6), P(C 2 I A~) = 1- P(C, I A~) = 0.161 where P(C, I A~) and

P(C2 I A~) are both estimated from the proportion of instances in the training set

for which this is true, respectively.

6.2.2 Approximation of Probabilities by
Related Probabilities Estimated from
Decision Tree

We shall now approximate the same probabilities for each respective class given the

known attribute values by using the instances given from the decision tree only (Fig.

6.1) instead of using the training data instances used for the first method. These

probabilities are used to predict class membership for an unknown test instance.

From formula (6.4), the probabilities can be approximated using the decision tree

shown in Figure 6.1 by:

P(C, I A;) == P(CI I A;,A~)P(A~ 'A;) + P(C, I A;,A~)P(A~ I A;)
== P(CI I A~)P(A~) + P(CI I A~, A~)P(A~)

= C~X~~)+(~X!~) (6.8)

163
=-

280
= 0.582.

185

P(C2 I A~) = 1- P(CI I A~)
= 0.418.

Hence, the unknown instance will be classified as belonging to class 1.

(6.9)

The probabilities P(CI I A~, A~) and P(CI I A~, A~) are estimated by

P(CI I A~)and P(CI I A~), respectively. Also, P(A~ I A;) and P(A~ I A;)

approximated by P(A~) and P(A~)respectively. P(A~) is the probability that the

new instance will branch to the right of attribute Al . To summarise, it could be said

that conditioning is not taking place on A;.

It is easy to notice from formula (6.7) that any conditional probability involving A3

has not been considered for this particular method. This is because whenever an

instance branches to the left of A 2 , A3 would automatically not take part in the

classification stage, hence, being left out of all the calculations.

Second Case: Class membership for a new instance given that it will branch to the

right of the internal node A2 (A~) is predicted, given that both Al and A3 have

unknown attribute values. The class with the biggest probability is selected.

We can define the probability that the predicted class membership will be class 1

given that it branches to the right of internal attribute 2 (P(CI I A~)) by:

Similarly,

P(CIIA~)=P(CIIA~,A~,A~)P(A~,A~ IA~)

+P(CII A~,A~,A~)P(A~,A~ IA~)

+ P(CI I A~ ,A~ ,A~)P(A~ ,A~ I A~)

+ P(CI I A~ ,A~ ,A~)P(A~, A~ I A~)

186

(6.10)

P(C2IA~)=P(C2IA~,A~,A~)P(A~,A~ IA~)

+ P(C2 I A~ , A~, A~)P(A~, A~ I A~)

+ P(C2 I A~, A~,A;)P(A~ ,A; I A~)

+ P(C2 I A~ ,A~ ,A~)P(A~ ,A~ I A~)

= 1 - P(C I I A~)

We will use the following two methods of estimating the above probabilities.

(6.11)

From Figure 6.1, the estimated probability of membership of class 1 is given by:

where P(CIIA~,A~)=P(CIIA~,A~,A;)P(A; IA~,A~)

+P(CIIA~,A~,A~)P(A; IA~,A~)

11
=-

15

Therefore, P(C I A R) == (~)(22) + (!2.)(.!!) = 497 = 0.828.
I 2 15 40 18 40 600

Using (6.12),

P(C2IA~)=P(C2IA~,A~)P(A~ IA~)+P(C2IA~,A~)P(A~ IA~)

=l-P(CIIA~)

= 0.172.

(6.12)

(6.13)

AB with the first case, the probabilities P(C
I
I A; , A ~) and P(C I I A ~ , A ~) are

estimated by P(C] I A~) and P(C] I A~), respectively. Also, P(A~ I A~),

P(A~ I A~) P(A~, A; I A~) and P(A~, A~ I A~) approximated from the tree

shown in Figure 6.1 by P(A~), P(A~), P(A~) and P(A~)respectively. To

summarise, it could be said that conditioning is not taking place on A~ .

187

In the first case, where a given new instance will branch to the left of the internal

node given that there are unknown attribute values, class 2 will be selected by the

first method and class 1 selected by the second method. They both have the highest

probabilities of 0.556 and 0.585, respectively. For the second case, where a given new

instance will branch to the right of the internal node given that there are unknown

attribute values, class 1 will be selected for both methods, which have much more

clear-cut 'bigger' probabilities of 0.839 and 0.828, respectively.

6.2.3 The Full Estimation of Probabilities
from Training Set Using Binary and
Multinomial Logit Models

In this sub-section the estimation of probabilities for the proposed probabilistic

method are improved by using logistic regression (Agresti, 1990; McCullagh and

NeIder, 1990; Collett, 1991) and multinomiallogit techniques (Hosmer et al., 1989;

Agresti, 1990; Long, 1997), individually. The binary logit model (BLM) is used to

estimate probabilities for those datasets that have two classes with the latter used to

estimate probabilities for datasets with more than two classes.

For example, Suppose that there are two classes, 1 and 2, (CI and C2) and v

attribute variables AI'"'' Av' Then the probability that an object with values

a l , .. ·, av belongs to class 1 as a logistic function of the Ai''''' Av could be modelled:

(6.14)

and then estimate the unknown parameters pj from the training data on objects

with known classifications.

BLMs, like logistic regression, describe the relationship between a dichotomous

response variable and a set of explanatory variables of any type. The explanatory

variables may be continuous or categorical variables. Binary logit tries to model the

188

logarithmic odds-ratio for the classification (dependent variable C) as a linear

~

function of the v 'input' or attribute variables A = Apo .. , Av .

For purposes of this thesis, the BLM was not used to estimate probabilities based on

all the attributes given in the dataset, but to estimate only the unknown

probabilities of the given attributes specifically related to the problem. For each

specific attribute, the values of the instances were made binary in accordance to the

branching of that particular value at the internal node of the tree, i.e., whether the

value branched to the left or to the right at the internal node. For example, if the

value branched to the left of the internal node of interest, it was recorded as 1.

Otherwise, it was recorded as 2.

For the two-class example discussed in Section 6.1, the conditional probabilities

involving only the class given in equations 6.4 and 6.5 (p(e. I A~,A~,A;),

peel I A~ ,A~ ,A~), p(el I A~ ,A~ , A;) and p(el I Ai ,A~ ,A~), for class 1, and

and

P(C2 I A; , A~ ,A~), for class 2), could be estimated by the binary logit model in

terms of the log odds ratio in the form:

(6.15)

~

where P is the k dimensional coefficient vector. The odds ratio is a factor of how

many times the event (Cl) is more likely to happen than event (C2), given the

knowledge of A.

For an example P(C, I A~ , A~ ,A;) is estimated by:

189

Although binary logit model finds the best 'fitting' equation just as the linear

regression does, the principles on which it does so are different. Instead of using the

least-squares deviations criterion for the best fit, it uses a maximum likelihood

method, which maximises the probability of getting the observed results given the

fitted regression coefficients.

A model that could be used for a dependent variable that has only two possible

categories or two classes for the example has been discussed. However, logistic

regression could be extended to accommodate an analysis of dependent variables

that have more than two possible categories, which could either be ordered or

unordered. In other words, an approach that would be able to handle a problem with

three or more classes. This type of logistic regression approach is known as the

multinomiallogit model (MLM) and has the following form: for k+l classes:

-+T -+

p(e.) = exp(p j X)
J k+l -+T -+

for j = 1, ... , k+l (6.16)

Lexp(p j X)
j=l

which will automatically yield probabilities that sum to unity.

In order to identify the parameters of the model, Pk+l is set to 0 (a zero vector) as a

normalisation procedure and thus:

(6.17)

In the MLM model the assumption is that the log-odds of each response follow a

linear model. Thus, the/'logit has the following form:

(6.18)

where Pj is a vector of regression coefficients for j = 1, ... , k . This model is analogous

to the LR model, except that the probability distribution of the response is

multinomial instead of binomial and there are k equations instead of one. The k

190

multinomiallogit equations contrast each of categories j = 1, ... ,k with category k+l,

whereas a single logistic regression equation is a contrast between successes and

failures. If k = 1 the multinomiallogit model reduces to the usual binary logit model.

The multinomiallogit model is in fact equivalent to running a series ofBLMs.

The reader is referred to Section 2.1.1.3 for the calculation of probabilities.

Once again, for more details about the MLM and how the logits and probabilities are

modelled, the reader is referred to (Hosmer et al., 1989; Agresti, 1990; Long, 1997).

For all datasets with more than two classes, the conditional probabilities used to

predict a class for a new instance were modelled using the MLM.

There are similarities between the proposed method and FC (Quinlan, 1993). For

example, when classifying a new instance with an unknown value for the attribute

being tested, all branches are explored and the results are combined to reflect

relative probabilities of different outcomes. Also, the processing time of both

methods grows exponentially as a function of the number of missing feature values

and becomes intractable for large datasets with large numbers of missing values.

However, there are differences between the proposed method and Fe on how these

probabilities are estimated. FC "fraction' instances based on the a priori probability

of each value determined from the instances at that node that have specified values.

A test instance is fractioned according to the training instances at nodes that test

features which it is missing. For example, given a Boolean attribute A2 , if node n

contains 7 known instances with Ai and 15 with A~, then the probability that Ai =

0.318, and the probability that A~ =0.682. A fraction 0.318 of instance x is now

distributed down the branch for A; and a fractional 0.682 of x down the other

branch. Each fraction is classified down a leaf (possible being fractioned again) and

then the total fraction of the instance assigned to each category summed and the

instance is finally assigned to the category with the overall largest fraction. In other

words, the classification of the new instance is simply the most probable

classification, computed by following all branches at any node for which a value is

191

missing, multiplying and summing the weights of the instance fragments classified

in different ways at the leaf nodes of the tree.

For example, using Figure 6.1 (given that Al and A3 are missing, i.e., [n, A2 , n]).

The probability of membership of class 1 is given by:

and

p(CI I ??,A2 , n) = p(CI I ??,A~, n)

18 (22)(15)(6) (22XI5)(9) = 40 + 40 22 Is + 40 22 Is
33

=-
40

p(C2 I ??,A2 , n) = p(C2 I ??,A~, n)

= J..- [or 1- p(CI I ??,A~, ??)J
40

Hence, the new instance would finally be classified as class 1.

Notice that whereas the proposed procedure considers only those instances

belonging to that particular class for which an unknown instance would be

classified, FC considers all the instances branching to that particular leaf node

whose class is being predicted, and which would be given at the particular leaf node.

For example, when classifying that an unknown instance would be class 2, at the

internal node A~, FC takes all the 7 instances branching to the leaf node in its

probability distribution while for the proposed approach only the 5 instances related

to class 2 in the distributions are considered.

6.3 Experimental Set-Up
In this section the behaviour of the three proposed procedures against two

approaches that have previously been proposed for handling unknown attribute

values in test data when using decision trees are explored. The two current methods

selected (EMMI and FC) are the ones which provided very good results in the

experiments carried out in Chapter 4. Since the main objective is to compare the

performance of the proposed method with current approaches to deal with the

192

problem of incomplete test data. The performances of TSPE, DTPE and LPE, on the

one hand, against FC and EMMI, on the other hand, are experimentally compared.

Once again, EMMI is used as a baseline as it was clearly 'the winner' in previous

experiments in Chapter 4. In addition, since the proposed algorithm is superficially

similar to FC (one of the most well known machine learning algorithm), it was of

important to explore how accurate it is relative to FC.

The five methods were run at different proportions of missingness using different

missing data mechanisms. All combinations were tested on all twenty one datasets

and executed five times for each combination. The experiment is similar to that

described in previous experimental sections. Hence, detailed experimental methods

are not included but only a subset of the experiment.

6.4 Experimental Results

Experimental results on the effects of current and proposed methods for handling

incomplete test data on predictive accuracy using trees are described. The behaviour

of these methods is explored for two conditions determining the number of attributes

with missing value, four different levels of missing values in test data, and for the

MCAR, MAR and 1M patterns of missing values. The results are presented in two

parts. The first section compares the performance of five different approaches for

classifying incomplete vectors using decision trees, looking at the overall results of

each method, averaged over all twenty one datasets. The second section compares

the performance of the five methods on individual datasets, especially the datasets

where some interesting trends achieved by the pr()posed and current methods

emerged.

6.4.1 Overall Results
Testing Methods

Current Vs. New

Figure 6.2 summarises the overall excess error rates for current and new testing

methods against three amounts of missing values. The error rates of each method of

dealing with the introduced missing values are averaged over the 21 datasets.

193

MCARunifo
M CARunlva (averagad ova, 21 do".ln,)

(avenged over 21 domain.)
1)

1)

~ 7

~ 7

~ 6 ~ 6

~ , # ... ~
<.>

3 + 11\

• " 3. 50 15 3. 50
0/0 of missing values in lest set '10 of missing values In lest set

__ TSPE
_DTPE

__ TSf'E __ DTl'E

--ta--LPE "'o" - EMMI --ta--LPE ··· o ···EMMI

--+-FC _-Fe
MARunlva MAR"mifo

(averaged over 21 dotraln.) (avenged over 21 domains)
14 14
13 t3
12 12

" ~ " ~ 1) 1)

!5 • ~ •
&i 8 •

7 7

~ 8 i! 6
<.> 5 <.> 5
Ii! 11\ ,

3
2

1
1

0 •
" 3. 50

15 3. 50 0/0 of missing values In test set 0/0 of missing values in lest set
__ TSPE

.-.-OTPE __ TSI'E
----0-- DTPE

--ta--LPE ··· .· ·· Et.4MI
--ta--LPE ",o "'EMMI -+-FC
--.-FC

IMunlva IMunlfo
(averaGad over 21 dotraln.) (avenGad ovar 21 domaIn.)

20 2.
'II 'II

~ 11
f1

11 11

l ~ ~
15

" tl tl

~ 12

~
12

11 11
1) 1)

~ • ~ 9
8

~ ~ 7
~ '" 6 6

5 5
4 4
3

~ 2
1 1 0 0

15 30 50 ti 30 ro
% of missing values in lest set % of missing values In Ilst set

__ TSFE
_ 0Tl'E __ TSI'E _DTPE

--ta--LPE .• ' 0' "EMMI --ta--LPE ··· . ···EMMI
-+-FC --+-FC

Fig. 6.2. Effects of missing values m test data on excess error for current

and proposed testing methods. A) MCARuniva, B) MCARunifo, C) MARuniva,

D) MARunifo, E) IMuniva, F) IMunifo

From Figure 6.2A, both EMMI and LPE are more robust to MCARuniva data while

TSPE shows more deterioration in performance with increasing amount of missing

data. Figure 6.2B presents error rates of methods for MCARunifo data which are

similar to results for the MCARuniva suite. The results in Figure 6.3C show TSPE

as more effective as a method for handling MARuniva data than MCARuniva data.

Results for MARunifo data, shows a similar pattern of results to the one observed for

MCARunifo data (Figure 6.2D). The results in Figure 6.2E show poor performances

194

by TSPE and DTPE for IMuniva data. It can be seen from Figure 6.2F that results

yielded by methods for IMunifo data are identical to results achieved by methods for

MARunifo data.

It seems that the overall performance of LPE is rather effective on average

compared with TSPE and DTPE, and also gives EMMI serious competition. This is

the case for all the three missing data mechanisms. The slightly better performance

of DTPE compared with TSPE in some situations, especially at higher levels of

missing values, is rather surprising. This is considering the fact that for this

technique the probabilities are not estimated in the correct way but by using the

information given on the tree.

Main Effects

To determine how many of the main individual factors and the respective

interactions are significant, the ANOVA was carried out. The experimental results

given in Table 6.2 in the Appendix suggest that the existing and new methods for

handling incomplete test data, the proportion of incomplete test data and the

missing data mechanisms are statistically significant in classification performance

at the 1% level.

The performance of the missing data methods is summarised in Figure 6.3. The best

method for handling incomplete test data using decision trees is EMMI, followed by

LPE, FC, TSPE and DTPE, respectively. There also appears to be small differences

in error rate between TSPE and DTPE, on the one hand, and LPE and EMMI, on the

other hand (Figure 6.3).

-------+---------+---------+---------+-------------+

(---*---)
(--*---)

(--*---)
(---*---)

(---*---)

TSPE
DTPE
LPE
EMMI
Fe

-------+---------+---------+---------+-------------+
0.084 0.096 0.108

(pooled standard deviation)

Fig. 6.3. Comparison for current and proposed testing
methods: confidence intervals of mean error rates (*)

195

Notice that the relative effects of number of attributes with missing values,

proportion of missing values and the effect of different missing data mechanisms are

just as they were for the different collection of methods in Chapters 4 and 5.

Interaction Effects

Three two-way and one three-way interactions were found to be statistically

significant at the 1 % level (See Table 6.2 in the Appendix). Only two of the two-way

interactions that were significant for current testing methods in previous

experiments are also significant for this experiment. The significant three way

interaction is between testing methods, missing data proportions and missing data

mechanisms. The results of the experiment are once again in accord with previous

experiments in chapters 4 and 5 and they are not discussed (to avoid repetition

between chapters).

6.4.2 Results for Individual Datasets
Current Vs. New Testing Methods

As it was the case in previous chapters, the results that illustrate specific deviations

from the overall results of the effectiveness of the proposed method against the

current methods for classifying incomplete vectors on different database

characteristics, especially on datasets with purely nominal attributes and mixed

attributes are presented. The results for the letter dataset problem (with purely

numerical attributes) follow a similar pattern to results obtained for the same

dataset in chapter 5 and are not covered in this section.

6.4.2.1 Results on a Dataset with Purely Nominal
Attributes: kr-vs-kp

For the kr-vs-kp data problem, the effects of missing values on classification

accuracy for MARuniva data are summarised in Figure 6.4A. Good performances

are observed for EMMI and LPE. The results achieved by methods for MCARunifo

data are identical to results obtained for MCARuniua data (Figure 6.4B). For

MARuniva data, FC's performance improves with increasing amount of missing data

196

(Figure 6.4C). For MARunifo data, both EMMI and LPE are as effective as shown in

Figure 6.4D. The impact of IMuniva data on classification accuracy is shown in

Figure 6.4E with DTPE achieving the worst performance (Figure 6.4E). In this suite

of IMunifo experiments, the behaviour of the methods shown in Figure 6.4F is not

different from the one observed in the MARunifo case.

2. MCARunf..,. 2. M CAR unifo

2. 2<

~
22

~ 22

., 20
~ e! 20

~
1l

~ 1l
1l

... 1l

12 14

'6 30 '"
'6 30 50

0/, of missing values in test set % of missing valoos in test set

_TSPE _ DTFE _ TSf'E _ DTFE

•• -)C o·-lPE _ EMM I •• -)C o'-LPE -.-EMMI

---+-FC --+-FC

32 MARunlva 32 MAR unlfo

30

~
30

28 2.

l
26 26

2< l 2' ., /7 ., e 22 i!! 22

~ 20 g 20 .,
1l

.,
11

11 11 + + 14

" 12 12
15 30 50 0 15 30 50

% of missing vafues in test set % 01 missing values in test set

-+--TSPE .-.-OTPE _ TSI'E -<>---DTFE

• • -)C - --LPE -a-EMMI . - -x -· -L.PE - It-EMMI

-+-FC -+-FC

36 1M unl
36

IMunlfo

34 3'
32

.?~
32

30 30

~ 28 l 28 .. 26

~
26 1l! 2' 2'

i 22
~ 22

20 20
11 18
11 + 11
14 14
12 12

11 30 50 15 30 50

% of miSSing values in test set "I. of missing vafoes in test •• t

_ TSPE _ DTFE _ TSPE .--.-OTPE
. - -x- -- lPE - a -EMMI •• - J(_·-lPE - a -EMMI
-+-FC -+-FC

Fig. 6.4. Comparative results of current and proposed testing methods for the kr­
vs-kp data. A) MCARuniva , B) MCARunifo, C) MARuniva, D) MARunifo, E)
IMuniva, F) IMunifo

197

6.4.2.2 Results on Dataset with Mixed Attributes:
german

From Figure 6.5A, the overall best performance for MCARuniva data is by LPE

while biggest error rates are achieved by TSPE.

39

37

l 35

i 33

g 31 .,
29

21

M CARunlva

/ + ~
2.~--__ --____________ __

41

39

l
31

0>
35

1! 33

~ 31 0>

29

27

25

41

45

43

41

l 39
0> 37
1l!

35

~ 33

31

29

27

2.

15 30 50

% of missing values in lest data

--+--TSPE .--.-DTFE
•• -)C -' - lPE -.-EMUI

-+-FC

MARuniva

/ +

15 30 50

% cI missing values in lest data

--.-TSPE -..--OTPE

.. -x -' -lPE -I-84MI

-+-FC

1M unlv.

30 50

% cI miSSing values In lest data

-+--TSPE ---..-.OTPE
... -LPE -a:-EMMI

-+-FC

~ 35

~ 33

~ 31

29

39

/
+

MCARunlfo

31

21

25 ~--__ ----__ --__ ----~

41

39

37

l 35

~ 33
b
~ 31

29

27

15 30 50

% of missing valoes In lest data

.... TSPE __a_DTPE

.. -x o ' -LPE -x-EMMI

-+-FC

MA Runifo +

~

~ +

25 l---__ ----__ ----~--~

41

45

43

41

~ ,.
Q) 31
i! 3.
~ 33

31

29

21

2.

15 30

% cI missing values in lest data

_____ TSPE ----..-. OTPE

• • - 1(- - -lPE - . -EMMI

-+-FC

1M unU o

~
-~

+~ .. . "" .. "

+

15 30 m

% of missing values" lest data

--+--T~ --+--DT~

"-)(" - LPE - . -CMMI

-+-FC

Fig. 6.5. Comparative results of current and new testing methods for

the german data. A) MCARuniva , B) MCARunifo, C) MARuniva , D)

MARunifo , E) IMuniva , F) IMunifo

198

Results for the MCARunifo suite show bigger increases in error rates compared with

MCARuniva data (Figure 6.5B). In the MARuniva suite, EMMI shows a slightly

superior overall performance compared with LPE while FC appears to be more

robust to MARuniva data than MCARuniva data (Figure 6.5C). The results for the

MARunifo suite (Figure 6.5D) are similar to the ones already observed in the

MCARunifo suite. For the IMuniva suite, the results illustrated in Figure 6.5E show

a relatively superior performance by LPE over EMMI. FC becomes more affective

with increases in proportion of missingness. In the IMunifo case, LPE's overall

performance improves with increases in proportion of missingness (Figure 6.5F).

LPE is more robust to missing values for this kind of dataset, especially for 1M data.

Also, the performance ofLPE seems to be better on average when missing values are

distributed among all attributes. However, the competitive performance of LPE to

methods like EMMI for MAR data is rather surprising. Another surprising result is

the poor performance of FC to methods like TSPE and DTPE, especially when

missing values are distributed among all attributes. As expected, TSPE outperforms

DTPE since this is a reasonably big datasets. with a reasonable number of instances

in the training set that are used for estimating the probabilities

6.4.3 Current and New Testing Methods:
Processing Time

The two major issues in inductive learning are time spent learning and the

classification of novel instances. The training sets are processed until the learning

algorithms terminate and then the classification accuracy is measured on the

corresponding test sets.

For EMMI, the imputation processing time depends on size of the data matrix, and

the number of iterations specified for the iterative algorithm. For the probabilistic

methods (TSPE, DTPE, LPE and FC), all branches are explored and the results are

combined to reflect the relative probabilities of the different outcomes. Furthermore,

for the probabilistic methods, the processing time grows exponentially as a function

199

of the number of missing attribute values and becomes intractable for large datasets

with large amounts of missing data.

The results are based on four datasets; three of the datasets are the largest in the

experiments and they encompass purely numerical attributes, purely nominal

attributes and mixed attributes, respectively; the fourth dataset is a dataset with

mixed attributes whose results were discussed in sub section 6.4.2.2. Only the 1M

mechanism (a strong condition) and 50% level of missing values combination is

considered. Also, only the condition when missing values are distributed in all the

attributes is considered. In addition, the testing time is for a whole collection of

classifications (depending on the size of the test data) not just one classification.

Table 6.2 shows the approximate running time for current and new testing methods

datasets with purely numerical attributes (letter); purely categorical attributes (kr­

vs-kp data); and mixed attributes (german and zoo). In addition, the boldface font

in the table indicates that a method is better than the others.

The quickest method for processing the letter dataset is DTPE, closely followed by

TSPE and Fe. EMMI has the slowest running time. LPE is about 1.6 times slower

than Fe but approximately 1.3 times faster than EMMI.

Results for the kr-vs-kp data problem show EMMI, once again, achieving the slowest

running time. The quickest running time it now by TSPE which is about 1.3 times

quicker than Fe and about 3 times quicker than EMMI. EMMI is now 1.6 times

slower than LPE while Fe is 1.4 times quicker than LPE.

The results in Table 6.2 also show EMMI achieving the slowest running time for the

german data problem. Once again, the quickest running time is by TSPE which is 5

times quicker than EMMI. LPE is 1.7 times faster than EMMI and about 1.3 times

faster than Fe.

Table 6.2 shows TSPE being the quickest method for testing the zoo dataset. Fe is

two times slower to run compared with DTPE but is 1.2 times faster than LPE. Even

though LPE is slower than Fe, it is still 1.25 times faster than EMMI.

200

Table 6.2 Processing time (in seconds) for new and current testing methods for selected datasets

Approximate
Approximate Approximate Approximate

time on a
time on a time on a time on a

Method
dataset with

dataset with dataset with dataset with Description
purely

purely nominal mixed mixed
numerical

attributes (s) attributes (s) attributes (s)
attributes (s)

initial parameter estimates by EM
EMMI 4500 1100 500 90 algorithm; iterative simulation;

imputation of the missing values

exploration of all branches; summing of
Fe 2300 500 400 60 weights of instance fragments classified in

different ways at leaf nodes

TSPE 3000 400 100 18
exploration of all branches; estimation of
probabilities using training data

exploration of all branches; estimation of
DTPE 2000 600 200 30 probabilities using information on decision

tree

exploration of all branches; estimation of
LPE 3600 700 300 82 probabilities using binary or multinomial

logit models

6.5. Discussion
The main objective on this chapter was to develop a new technique for handling

unknown values in the test data and experimentally compare or evaluate the new

method with various current methods for handling unknown attribute values using

tree-based models. The two current methods previously proposed to deal with the

missing value problem are EMMI and Fe. The proposed probabilistic methods are

TSPE, DTPE and LPE. Hence, the problem stated in Section 6.1 has been solved as

shown in Section 6.4.1 and Section 6.4.2, where an algorithm capable of handling

missing values in the classification stage in reasonable time has been developed. The

principal mechanism needed is one that would improve the estimation of

probabilities.

Results of the experiments have already been presented in Figures 6.2 - 6.5. The

performance criterion used for the experiments was the classification accuracy

required from testing sets.

The comparison with current methods yielded a few interesting results. The

experiments showed a model-based approach used for handling incomplete data or

unknown attribute values when using decision trees performing better than three

probabilistic approaches, especially for datasets with numerical attributes. For

datasets with mixed attributes, one of the probabilistic methods was a serious

competitor to the model-based approach. In fact, it slightly outperformed the model­

based approach in some of the datasets. This is true for all the missing data

mechanisms and at different missing value proportions.

Once again, it appears that the main determining factor for missing values

techniques, especially for smaller percentages of missing values, is the missing data

mechanism. In other words, in datasets with small proportion of instances with

missing values there is not much difference between the missing data techniques.

However, as the proportion of missing values increases, the distribution of missing

values among attributes becomes very important. All the current and proposed

methods exhibit bigger error rates when missing values are distributed among all

202

attributes compared with when the missing values are in only one attribute

variable.

When examining to robustness of missing data techniques for tolerating missing

values, DTSE is evidently the worst overall method for handling incomplete test

data while EMMI has the best overall performance with serious competition from

LPE. Fe is the third most effective missing data technique. This conclusion is valid

for number of attributes with missing values, different amount of missing values,

and missing data mechanisms. However, there are some slight differences in

performances between some of the current and proposed methods at the 15% level of

missing values.

We have shown that estimating the probabilities using the instances in the training

data uses much more information than when you are estimating the probabilities

using the information taken directly from the decision tree. However, there was a

possibility of the latter method performing better since is uses less conditioning on

the data. Also, even though you are estimating the 'wrong' probabilities, their

estimates are based on more data, and hence are better quality estimates. This is

despite the fact that the former is considered to be the correct and 'proper' way of

estimating the probabilities but shown not to work very well. The use of less

information implies that for the first method to work well you need a lot of training

data instances.

An attempt was therefore made to improve the prediction of probabilities, hence,

classification accuracy for each method and for each dataset. The binary and

multinomiallogit models were used to predict these probabilities. The type of model

used depended on the class variable of that particular dataset. This was some form

of smoothing procedure, hence, probabilistic 'smoothing' method.

The introduction of the binary logit and multinomial logit models to estimate

probabilities that are eventually used to predict membership of a class yielded

interesting and promising results. First, there was a significant improvement in the

results with the LPE method outperforming almost all the other methods with very

good accuracy rates (with the exception of the EMMI method). This was the case on

203

about half of the datasets that had decision trees with large depths (i.e., with many

splits and terminal nodes). Secondly, for those datasets with a few splits the method

still performed quite comparably to EMMI. This further shows that conditioning of

the probabilities, and thus using the training data to predict the probabilities, does

have an impact on classification accuracy.

Despite its superior overall performance, EMMI has one very important limitation

compared to LPE and the other methods: it is very computer intensive. In the

experiments the speed of LPE was found to be about twice as quick to run as EMMI,

especially for big datasets and for datasets with a lot of nominal attributes. Thus,

not only does the proposed technique deal with missing values almost as well as

EMMI it handles incomplete test data at a lower cost.

Also, in contrast to EMMI, the proposed approach does not make representational

assumptions or presupposes other models constraints. Therefore, it is suitable for a

wide variety of datasets. In the experiments the speed of LPE was found not to be

much worse (on average, 1.1 times slower) than Fe. Furthermore, from the

experimental results of this thesis, the proposed method is recommended to handle

incomplete test data for datasets with mixed attributes. The proposed method is also

good for dealing with missing values on categorical attributes.

The proposed approach to handling the missing value problem using decision trees is

different to other methods. When estimating the probabilities, which are eventually

used for predicting a class membership of an instance, all the possible routes that

the instance might branch along the decision tree to any respective leaf or terminal

node are consulted and considered. Then the probabilities related to each and every

route that an instance branches on are calculated at once. Hence, even when another

new instance that needs to be classified comes along, one need not repeat the same

process of determining the probabilities but just uses the already available

information to predict the class of that new instance. This saves a lot of

computational time, which is the main strength of this technique.

A quicker algorithm for classifYing incomplete vectors by considering two cases has

been developed: That either a new instance will branch to the left (first case) or to

204

the right (second case) of an internal node with non-missing attribute values. For

each case three methods that could be used when classifying incomplete vectors

using decision trees were proposed. For all methods the main idea is to predict

(using basic probability calculations) the class membership for a particular new

instance given that there are missing values among some of the attributes. Since the

main idea is to predict probabilities that are thus used for predicting the class

membership of a particular instance, three approaches to the problem were

developed to carry out this task. One approach uses the training data instances to

estimate these probabilities; the second uses the information given in the decision

tree; and the third uses binary or multinomial logit models to estimate the

probabilities.

205

PAGE

NUMBERING

AS ORIGINAL

Chapter 7

Ensemble Missing Data Methods and
Decision Trees

7.1 Introduction

Many works in machine learning and statistics have shown that combining

(ensemble) individual classifiers is an effective technique for improving accuracy of

classification (Breiman, 1996, Freund et al., 1996, Bauer and Kohavi, 1999). There

are different ways in which ensembles can be generated, and the resulting output

combined to classify new instances (Dietterich, 2000a). The popular approaches to

creating ensembles include changing the instances used for training through

techniques such as Bagging (Breiman 1996), Boosting (Freund and Schapire, 1996),

and pasting (Breiman 1996), changing the features used in training (Ho 1995), and

introducing randomness in the classifier itself (Dietterich 2000b).

This strategy is investigated in the context of decision trees and incomplete data.

The basic idea is that an assembly of experts tends to predict better than a single

one does. It can be assumed that better performances could be expected as each

technique of the ensemble make errors "in different ways II. In other words, as an

individual missing data technique makes a mistake the other can correct it.

This work proposes a novel ensemble method to improve the robustness and

accuracy of tree classifiers when data is incomplete. Combination of class predictions

achieved by decision trees using two missing data techniques (EMMI and MIA) that

have proven very effective in previous experiments in this thesis are utilised. The

new method shall be called EMIMIA (for Ensemble Multiple Imputation and

Missing Incorporated in Attributes) and its extended version REMIMIA (for

ResampIing Ensemble Multiple Imputation and Missing Incorporated in Attributes).

207

The details of EMIMIA and REMIMIA are presented in Section 7.2. Sections 7.3 and

7.4 present the experimental setup and then the results which show that EMIMIA

outperforms both EMMI and MIA, individually, while REMIMIA compares

favourably with EMMI and MIA. In addition, not only does REMIMIA appear to

have a computational advantage over EMIMIA in terms computational costs,

especially for large datasets, it grows smaller trees which are more interpretable.

7.2 Combining Missing Data Techniques
Within the Mechanism of Growing
and Testing Decision Trees

7.2.1 EMIMIA Technique

Given the experimental results in Chapters 5 and 6 a simple new ensemble method

in decision trees and incomplete data is proposed. The new method makes use of all

data available and utilises a systematic patterns of classification results based on

two methods for handling incomplete training and test data. The new generalized

algorithm is summarised in Figure 7.1.

The following example demonstrates the mechanics of the proposed procedure (Table

7.1). Suppose that there are two methods used to handle incomplete data when

growing decision trees, resulting in two trees. Also, there are only two classes in the

data: 1 and 2. Using the predicted probabilities, there are four possible classification

patterns from the training data such as (1, 1), (1, 2), (2, 1) (2, 2). The first element in

each pair denotes the class predictions by DT. and the second by DT2 • If the

instance has predictions (1, 1) for both methods, it is simply assigned class 1

anyway. However, if the instance has predictions (1, 2) it is assigned to the class

with the higher overall probability which in this case happens to be 2. And so on.

208

1. Let T be the incomplete training sample.

2. Construct decision trees on Tusing EMMI and MIA and call them DT[and

DT2, respectively. D'I; and DT2 are generated by different algorithms,

thus different.

3. Predict a future instance (which could have missing attribute values) based

on D'I; and DT2.

4. When there is a tie in the predicted probabilities, choose the class with the

highest probability or else use a random choice when the probabilities

between the two methods are equal.

Fig. 7.1. The EMIMIA algorithm

Table 7.1 An example pattern table

Predicted Probabilities Predicted Class Predicted Class

(for each method) (for each method) (combining methods)

{(O.G, 0.4); (0.7, 0.3)} (1, 1) 1

{(O.G, 0.4); (0.3, 0.7)} (1,2) 2

{(0.4, O.G); (0.7, 0.3)} (2,1) 1

{(0.4, 0.6); (0.3, 0.7)} (2,2) 2

7.2.2 REMIMIA Technique

It is possible to construct many variations of the basic EMIMIA algorithm given that

such a technique has the potential of producing large ensembles which may not only

be difficult to understand but computationally expensive.

209

In this section the idea of learning the tree is extended by focusing on ensembles of

decision trees that are created with a randomized procedure based on sampling.

Randomization can be introduced by using random samples of the training data (as

in bagging) and running a tree building algorithm or by randomizing the induction

algorithm itself given incomplete data.

The new ensemble method consists of three important components. The first

component is the selection of re-sampling technique. The missing data techniques

used for building the tree is the second, and the combining method to get predictions

is the third. The three components of the new method are presented below.

First, dataset is divided into two training sets of equal size and then grow decision

trees using the two different missing data techniques. Testing is carried out using by

utilizing systematic patterns of predictions from the tree in each training sample.

The new generalised algorithm is summarised in Figure 7.2.

The performance of the proposed ensemble method that utilises resampling of the

training data (REMIMIA) will be compared empirically with the other methods,

mainly, EMIMIA.

1. Let T be the incomplete training sample and T, and T2 be two random

halves ofT.

2. Construct decision trees on T, and T2 using EMMI and MIA, respectively,

and call them 01; and OT2 , respectively. OT, and OT2 are generated by

different algorithms on different data, thus different.

3. Predict a future instance (which could have missing attribute values) based

on OT, and DT2 •

4. When there is a tie in the predicted probabilities, choose the class with the

highest probability or else use a random choice when the probabilities

between the two methods are equal.

Fig. 7.2. The REMIMIA algorithm

210

For illustration purposes, the reader is once again referred to Table 7.1.

7.3 Experimental Set-Up
In order to empirically evaluate the performance of EMIMIA and REMIMIA with

respect to EMMI and MIA, an experiment is used on the same twenty one datasets

used in the experiments in previous chapters. The execution time of the two new

ensemble methods against the current and new methods for handling incomplete

training and test data is further investigated. In fact, the experiments reported in

the previous chapters are repeated with exactly the same experimental settings. A

low computational cost when using REMIMIA in terms of the reduced training

sample when building the tree using incomplete data is expected.

7.4 Experimental Results
In this section a performance of the empirical study of the two new ensemble

methods in comparison to the performance conducted by EMMI and MIA,

individually, is reported. The behaviour of these methods is explored for two

conditions determining the number of attributes with missing values, four different

levels of missing values in training and test sets, and for the MCAR, MAR and 1M

patterns of missing values.

7.4.1 Overall Results - Ensemble Vs. Current
and New Missing Data Techniques

Figure 7.3 lists the comparison results which show the average increase in error

rates of the four methods averaged over 21 domains as a function of the percentage

of missing attribute values. From the analysis of results displayed in Figure 7.3A,

the overall best method for handling MCARuniva data is EMIMIA. However,

REMIMIA performs almost as well as EMIMIA. Also, the average error of EMIMIA

and REMIMIA in the 21 domains increases linearly with the growth of missing data

proportions.

211

1)

,

M CARuN"a
(a"erage d o "er 21 domain.)

O ~-O~ __ --____ ----____ __

15 ,.
13
12

i i
~ j

3
2 ,

15 30 50
% of missing values In lrain.ng and test data

-K-EMMI ~"'IA

--+-EN 1M LA.

MARuniva
(ave raged o ve r 21 do",,'n.)

O ~-o.--________________ -,
o 15 30 50

%of missing values In training and test data

- ll -EMMI

-+-EMIMIA

1M UN".
(a"era g e d 0"1r 21 domain.)

lS 30 :50
%of missing values in tralr1ng and test data

- ll -EMMI

-+-EM 1M IA

1)

,
o

15 ,.
13
12

l: "
~ 1

7

~ ~
Ii! •

3
2 ,

M CARunlfo
(a"eraged o"e r 2 1 dOfNI ln.)

o·~-----------------
o 15 30 50

%of missing valoes in training and test data

- K-EMMI

-+-EMIMIA -+-REMIMIA

M ARunlfo
(a"era"ed O"1r 21 do"..' n.)

O~~ ____ --~----__ --___
30 50

%of missing values in training and IMt data

-x-EMMI

-+-EMIMlA ~REMIMIA

IMunlfo
(avera"ed o v.r 2 1 domains)

%of missing valUM In tmlnlng BOd lesl data

- a -EMMI ~"'IA

-+_EMIMIA

Fig. 7.3. Effects of missing values in training and test data on the excess
error for ensemble and missing data methods over the 21 domains. A)
MCARuniva, B) MCARunifo, C) MARuniva , D) MARunifo , E) IMuniva, F)

IMunifo

The performance of REMIMIA declines with increasing amount of MCARu.nifo da ta

(Figure 7.3B). EMIMIA and REMIMIA are the best methods for handling MARu niva

data (Figure 7.3C). From Figure 7.3D, the performance of EMIMIA and REMIMIA

for MARunifo data is very similar to the one observed for MARuniva data and

212

MCARuniva. Figure 7.3E present results of methods for IMuniva data which shows

a poor performance by REMIMIA. The results by methods for IMunifo data exhibit a

similar behaviour to the one observed for IMuniva data (Figure 7.3F).

Main Effects

All the main effects (methods, number of attributes with missing values, missing

data proportions and missing mechanism) were found to be significant at the 1%

level of significance as shown in Table 7.2 in the Appendix. Figure 7.4 shows the

sarne trends as Figure 7.3, indicating that the new ensemble method (EMIMIA) has

the best level of robustness for tolerating missing values in terms of overall error.

EMIMIA is closely followed by EMMI, REMIMIA and MIA, respectively.

Interaction Effects

EMMI MIA EMIMIA REMIMIA

methods

Fig. 7.4. Overall means for current,
new and ensemble methods

Five two-way interactions were found to be statistically significant at the 1% level

(See Table 7.2 in the Appendix) and are, once again, mostly in line with previous

results.

7.4.2 Current, New and Ensembles of Missing
Data Techniques: Processing Time

The execution time for the two ensemble methods and the current and new methods

for handling incomplete training and test data are presented in Table 7.2. Figures in

213

bold indicate the lowest computational cost by each method and for each dataset. In

addition, figures in parentheses indicate execution time for testing.

As expected, EMIMIA suffers from high computational cost compared with the other

methods. When growing and testing using the tree, EMMI is about 1.7 and 2.5 times

slower to run compared to EMMI and MIA, respectively. This is the case for all the

datasets.

When using the tree (testing), the execution times by methods vary by dataset. In

fact, the execution time required by EMIMIA is low for the dataset with purely

numerical attributes and high for the dataset with mixed attributes.

First, compared with EMIMIA, EMMI and MIA are about 2.9 and 4.8 times faster to

run, respectively. This is for the dataset with mixed attributes. Second, for the

dataset with purely numerical attributes EMIMIA is about 1.3 and 1.7 times slower

compared with EMI and MIA, respectively. Finally, EMIMIA has the slowest

running time for the datasets with purely nominal attributes.

Consistent with the re-sampling of the training set technique discussed in Section

7.2, the execution time required by REMIMIA is indeed lower than EMIMIA for all

the datasets. In fact, EMIMIA requires about 1.5 times more execution time than

REMIMIA for the dataset with purely nominal attributes. Also, REMIMIA is not

much worse than EMMI in terms of computational cost.

For the datasets with purely numerical and mixed attributes, REMIMIA is about 1.2

and 1.4 times quicker than EMIMIA, respectively. Also, the execution time for

testing when using trees is shorter for REMIMIA than EMIMIA for all the datasets.

EMIMIA is about 1.6 times slower to run for the datasets with purely nominal

attributes and about 1.2 and 1.3 times slower to run for the datasets with mixed and

purely numerical attributes. For both datasets, REMIMIA is slower than EMMI

alone.

For the dataset with purely numerical attributes, both REMIMIA and EMMI

achieve the same execution time when testing.

214

Table 7.2

Method

EMMI

MIA

EMIMIA

REMIMIA

Processing time (in seconds) of growing and testing trees for current, new and ensemble methods for selected
datasets

Approximate time Approximate time
Approximate time

on a dataset with on a dataset with
on a dataset with Description

purely numerical purely nominal
mixed attributes (8)

attributes (s) attributes (s)

initial parameter estimates by EM algorithm;
31500 (4500) 7100 (1100) 4900 (500) iterative simulation; imputation of the missing

values
search through all attributes

1. search through split points and send 'missing'
to the left and choose the best split;

21600 (3600) 5250 (750) 3300 (300)
2. search through split points and send 'missing'
to the right and choose the best split;

3. search through split points and send 'missing'
to the left and the rest to the right

choose the best split of 1 to 3 and best attribute

Combination of EMMI and MIA descriptions
53100 (6000) 12350 (2400) 8200 (1440) (without resampling oftraining data)

Combination of EMMI and MIA descriptions
46000(4500) 8300 (1500) 6000 (1200) (with resampling of training data)

7.5. Discussion

In this chapter, two novel ensemble approaches for handling incomplete data in

the learning and application phases of tree-based modelling are proposed. These

new methods utilize systematic patterns of predictions from decision trees built

and used from incomplete data. However, while one of the methods grows the

decision trees from the whole training data, the other re-samples the training

data before growing the trees. The developed algorithms were compared with two

missing data methods using real-world datasets.

Experimental results shown in Figures 7.4 and 7.5 indicate that EMIMIA

handles missing attribute values better than EMI and MIA and with improved

classification performance. The results also indicate that REMIMIA is as good as

EMMI, at least when missing values are only in one attribute.

Comparison between EMIMIA and REMIMIA shows a more consistent

performance for the former. The improved performance is probably due to the

fact that EMIMIA uses all the training data for each missing data method when

growing the trees and the combining of probabilities reduces the variance that

would arise in a single method. Another reason follows from the fact that larger

samples normally yield consistent results or much more stable model

specifications (Godfrey, 1988). In addition, splitting of the training data into two

sets by REMIMIA reduces the sample size on which each tree is grown, hence,

each tree losing its classification accuracy.

Despite its strengths, EMIMIA consistently takes more time to train and test,

especially for large datasets. Furthermore, EMIMIA produces more complex

ensembles (in the form of larger trees). However, by using REMIMIA the

computational cost was kept low and the trees grown were much smaller and

more interpretable. These are two important advantages of REMIMIA over

EMIMIA. In addition, for the datasets with purely nominal and mixed attributes,

REMIMIA is not much worse than EMMI in terms of computational cost.

Another important trend shows that increasing the number of attributes with

missing values seems to have more impact on the ensemble methods than on

individual missing data methods. Also, given that the classification performance

216

of each method varies by mechanism of missing data, it appears that the

treatment of missing values not only heavily depends on the missing data

proportions but on the nature of the missing data pattern.

We have proposed two simple, novel and yet effective ensemble methods for

building and testing decision trees using incomplete data. The proposed methods

combine the advantages of EM! and MIA for classification improvement when

using decision trees. These methods which appear to give good results are easier

to understand even for people without previous exposure to advanced machine

learning and statistics topics.

217

ChapterS

Concluding Remarks
In this last chapter the major problem considered at the beginning of the thesis -

the problem of missing data and decision trees is reviewed. Some of the work and

results of the analysis presented in this thesis are summarised. In addition, major

contributions of new knowledge of this work in the area of machine learning and

statistics are summarised. Furthermore, the main conclusions in the study are

presented.

Several current and efficient methods to learn a Decision Tree (DT) from data were

looked at. However, these methods were often limited to the assumption that data

are complete. The objective underlying this thesis was to develop and evaluate

alternative techniques for handling incomplete data in the learning and application

phases of tree based modelling. This was carried out on twenty one data sets, for two

different patterns of missing data, for three different missing data mechanisms and

at various proportions of missing values. Information about the similarities and

differences among the methods in their conclusions should be useful to researchers

struggling to handle missing values in the case of DTs.

The experimental results in Chapters 4 through 7 allow us to draw conclusions and

recommendations about growing and testing decision trees using incomplete data.

These are given in the next sections.

8.1 Research Findings

8.1.1. Current Methods

Based on the findings in Chapter 4.2 most of the statistical methods performed

reasonably well on all data sets. In fact, there are no clear differences in predictive

accuracy between methods for small proportions of missing values. However, as the

proportion of miSSing values increases, the differences in accuracy between methods

218

begin to appear. In addition, higher levels of missing values are associated with

higher classification error rates, and vice versa. Hence, lower levels of missing data

(usually 5% or less) are seldom problematic and might not require a great deal of

attention by researchers.

As it turns out, EMMI performed better than expected as a method for handling

both training and test data in almost every situation. However, this is not to say

that EMMI is a silver bullet, but rather a versatile approach. The superior

performance ofEMMI could have been attributed to the profit it gets from averaging

the resulting trees which causes a reduction in variance.

If the sample size is small and massively missing, EMSI and EMMI are highly

recommended. EMMI is also highly recommended for the creation of imputed

samples and aggregate results from each imputed data set.

Clearly, LD is one of the worst methods for handling incomplete data using decision

trees but could still be used for MCAR data especially if the sample size is large. The

worst performance of the LD method is quite expected due to the loss of information

in discarding incomplete cases, i.e., dropping all the instances with missing

observations from the computations. It is possible that the omitted instances carry

important information on the relation between the attributes, which the missing

value mechanism allows us to use.

CCSI can be recommended for datasets with few classes but only for building trees

from incomplete data. Having many classes reduces the sample on which you are

imputing and this could be the reason why CCSI struggles with datasets that have

many classes for the response variable. MMSI is a good method when missingness

occurs in the majority class with the attribute taking on some m~or value and may

be a good method for handling mixed attributes. In fact, for data sets with mainly

nominal attributes and with many missing values, MMSI is a reasonable choice to

use.

219

DTSI is recommended when dealing with nominal attributes and when missing

values are not in all attributes. DTSI could also be suitable in domains where the

lowering in classification error is worth the increase in computational cost.

SVS seems to be effective as a method for handling incomplete test data and for data

sets where the correlations between attributes are high. If the missing attributes

often occur in the majority class, and the seen features imply a different class that

the instances fall into, FC is recommended.

Machine learning methods (FC, DTSI and SVS) are expected to achieve higher

accuracy than statistical methods because of their complicated processing. However,

only Fe showed a somewhat better predictive performance in the experiments even

though it is a computationally more demanding approach, i.e., it took more time in

processing than most of the statistical methods (with the exception of EM MI).

Some authors (Little and Rubin, 1987; Graham and Donaldson, 1993; Roth, 1994;

Tabachnick and Fidell, 2001) have argued that the performance of any missing data

technique depends heavily on the mechanisms that lead to missing values. In this

work the major role the pattern and mechanism of missing data (how and why the

data are missing) plays in the performance of a tree algorithm has been observed.

There was sufficient evidence to show that the 1M mechanism has more severe

impact on predictive performance than the other two mechanisms when both the

training and test data have missing values. As the experiments suggest, the MCAR

mechanism appears to have less impact on performance than both the MAR and 1M

mechanisms. The difference in performance between the MCAR and MAR conditions

was small, which may explain why the MAR condition is often considered a 'special

case' of MCAR. Also, missing values appear to have more impact on classification

accuracy when they are distributed among all attributes than when they are only in

one attribute.

Also, it was observed that the impact of missing values depends not just upon

whether or not a method is for handling incomplete training or test data

(individually) but upon a combination of the two. Therefore, neither can be

considered in isolation.

220

The missing data techniques tend to yield high accuracy rates for data sets with few

classes compared with data sets with many classes.

8.1.2 Current Vs. New Methods

As stated in Chapter 5, an algorithm, MIA, which is capable of handling both

incomplete training and test data in a reasonable time using decision trees, was

proposed. The method involves using a set of binary splits whereby each respective

split treats the 'missingness' of the data as an important aspect for feature selection.

The principal mechanism needed in the improved binary splitting idea was being

able to determine the cut-off points among the missingness of the data for each of

the three binary splits. Each of the three splits accommodates 'missingness' in the

branching; two of them accommodate the missingness of the data along with actual

values and one missingness and non-missingness of the data as a dichotomy. Its

performance is experimentally tested on twenty one datasets and compared with

other different approaches previously proposed to deal with the problem.

When examining the robustness of missing data techniques for tolerating missing

values, the proposed procedure shows promise by giving EMMI serious competition

in most of the datasets and some of the time outperforming EMMI especially on

datasets with purely nominal attributes and mixed attributes. Also, the new

algorithm greatly improves its accuracy on 1M data when both the training and test

data contains a large proportion of missing values.

It was shown experimentally that in general, the new method is much superior to

FC. Furthermore, the computational speed of the new method was found not to be

much worse (on average 1.2 times slower) than Fe but had a computational

advantage over EMMI, especially for big datasets and when the fraction of missing

data was large. Since data sets in the real world are getting bigger by the day,

reducing processing cost is one of the most important problems in the machine

learning and statistics field. Thus, not only does the new technique deal with

missing values as well and complicated as EMMI, it handles incomplete training

and test data at a lower cost.

221

8.1.3 A Further Idea for Classifying
Incomplete Vectors Using Trees

Missing values were found to have more impact when they occur in the test set.

Hence, developing a technique that could be used for classifying incomplete test

vectors using decision trees based on complete data was another aim of this thesis.

Chapter 6 focussed on developing such a technique.

The principal mechanism behind the algorithm is probability theory, and has three

approaches to the problem. These approaches are prediction of probabilities using

training data (TSPE), estimation of probabilities using decision trees (DTPE), and

prediction of probabilities using binomial and multinomiallogit models (LPE).

The use of less information implies that for TSPE to work well a lot of training data

instances are needed whereas for DTPE the information given is always enough.

Hence, the strength of the latter method lies in its ability to use as much

information as possible when estimating the probabilities that are used when

classifying a new instance. But, the new method, particularly DTPE, initially

produced unsatisfactory results. However, the results improved considerably after

modification of the technique. Binary and multinomial logit models were used as

procedures for predicting class membership of an unknown instance. This was

particularly the case on the datasets with mixed attributes and purely nominal

attributes and datasets that had decision trees with large depths (i.e., with many

number of splits and terminal nodes). Also, for those data sets with a few splits the

method still performed quite comparably to EMMI. This further shows that

conditioning of the probabilities, and thus using the training data to predict the

probabilities, does have an impact on classification accuracy.

Although the new approach to handling the missing value problem using decision

trees is superficially similar to Quinlan (1993)'s FC approach, there are some slight

but very crucial differences which are given in Chapter 5. For an example, during

the process of classifying a new instance, FC exploits the first valid path/rule while

the proposed procedure considers all the valid paths/rules and then deduces a more

222

consensual result. This saves a lot of computational time, which is one of the main

strengths of this technique. Also, the new method is much superior to FC, especially

for test sets with larger percentages of missing attribute values.

Once again, despite its superior overall performance, EMMI has one very important

limitation compared to LPE: it is very computer intensive. In fact, LPE is about

twice as fast to run as EMMI, especially for big data sets and with a lot of missing

values.

8.1.4 Ensemble Methods

On the classification accuracy improvement of decision trees when using current and

new methods for handling incomplete data, two new ensemble methods that are

based on resampling and non- resampling of the training data, respectively, were

proposed in Chapter 7. The algorithms take boosting (without resampling) and

bagging (with resampling) style ensemble approaches by combining two missing

data techniques (EMMI and MIA) to engender performance improvement over one

technique.

Experimental results on 21 real-world datasets show the ensemble method without

re-sampling of the training data (EMIMIA) as performing best and yielding

improved accuracy mean classification rates compared with effective individual

methods for handling missing data and the ensemble method with resampling.

According to the experiments, the computational disadvantage of the ensemble

method without re-sampling was identified, especially when dealing with larger

datasets. This led to the development of the second ensemble method (REMIMIA)

that is based on resampling the training data. It was found that splitting the

training data into two sets and then growing a decision tree from each set using the

two missing data techniques played a key role in time efficiency while maintaining

comparable accuracy with EMMI and MIA.

223

8.2 Summary of Contributions

The contributions of this research pertain specifically to incomplete data and

decision trees. Some original demonstrations and ideas in the thesis are given below:

1. The first contribution made by this thesis was the addressing of a very important

topic in machine learning and statistics: missing data and tree-based models.

Both research communities are beginning to recognize the criticality of

developing techniques for handling incomplete data when using decision trees.

2. The second contribution was the development of a new technique for handling

both incomplete training and test data. This technique exploits the properties of

split selection measures by using 'missing' as a pseudo value. While this

technique did not always outperform other techniques, it has been shown that

considering 'missingness' as an important factor can yield very good results,

especially for 1M data. Given that 1M data is difficult to deal with, this provides a

base for further research in the area.

3. A much quicker method with three approaches for handling incomplete test data

has been developed. The use of basic probability calculations for handling

incomplete test data has been demonstrated experimentally.

4. A fourth contribution of the thesis is two simple, novel, yet effective ensemble

techniques for building and testing decision trees using incomplete data. The

proposed methods combine the advantages of EMI and MIA, taking bagging and

boosting-style ensemble approaches. While the ensemble method without

resampling of the training data led to significant performance gains in most of

the experiments it was computationally expensive compared with the ensemble

method with resampling.

5. This research has also applied current techniques for handling unknown

attribute values when using trees. This is the biggest comparative study of the

performance of the different approaches previously proposed to deal with the

missing (unknown) attribute values problem for tree-based models on

224

classification accuracy to be carried out. Prior to this, little to no research

suggesting the use of these techniques has been published.

6. Lastly, this research compared these different techniques and made several

applications based recommendations for the implementation of these methods.

One of these recommendations is to exert efforts to collect data to the fullest

extent and of highest quality. By so doing researchers keep missing data to a

minimum and therefore reduce bias and distortion in estimating population

parameters or testing pertinent hypothesis. Also, researchers must determine

whether the cause and pattern of missing data will seriously impair the quality

of inferences derived and which procedure, if any, is most appropriate for

handling missing data. A careful examination of factors causing missing data

and missing data pattern allows researchers to decide if and how best to deal

with missing data in a study.

In sum, this thesis provides the beginnings of a better understanding of the relative

strengths and weaknesses of techniques for extracting decision trees from possibly

incomplete databases. It is hoped that it will motivate future theoretical and

empirical investigations into missing data and decision trees.

225

References

Arbuckle, J.L. (1996a) Full information estimation in the presence of incomplete

data. In: G.A. Marcoulides & RE. Schumacker (Eds.) Advances structural

equation modelling. Mahwah, NJ: Lawrence Erlbaum Publishers

Arbuckle, J. (1996b). Amos Users Guide: Version 3.6. Small Waters Corp., Chicago.

Agrawal, R, Imielinski, T., and Swami, A. (1993). Mining association rules between

sets of items in large databases. In Proc. of the ACM SIGMOD Conference on

Management Data, Washington, D.C.

Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley.

Aha, D.W., Kibler, D., and Albert, M.K (1991). Instance-based learning algorithms,

Machine Learning, 24, 173-202.

Afifi, A. and Elashoff, R.M. (1966). Missing observations in multivariate statistics I.

Review of the literature, Journal of the American Statistical Association, 61, 595-
604.

Allison, P.D. (2001). Missing Data. Thousand Oaks, CA: Sage.

Backer, G. (1996). Learning with missing data using Genetic Programming. The 1"

online Workshop on Software Computing (WSC1), 19-30, Nogaya, Japan.

Bandyopadhyay, S., Murthy, C.A., and Pal, S.K. (1995). Pattern classification with

genetic algorithms, Pattern Recognition Letters, 16, 801-808.

Batista, G. and Monard, M.C. (2003). An Analysis of Four Missing Data Treatment

Methods for Supervised Learning, Applied Artificial Intelligence, 17, 519-533.

Bauer, E., and Kohavi, R (1999). An empirical comparison of voting classification

algorithms: Bagging, boosting and variants. Machine Learning, 86, 112, 105-139.

Beale, E.M.L. and Little, RJ.A. (1975). Missing values in multivariate analysis.

Journal of the Royal Statistical Society, 87 (Series B), 129-145.

226

Becker, R., Chambers, J., and Wilks, A. (1988). The New S Language. Wadsworth

International Group.

Bernado, J. and Smith, A. (1994). Bayesian Theory. Chichester: John Wiley.

Bishop, Y.M.M., Fienberg, S.E., and, Holland, P.W. (1975). Discrete multivariate

analysis: theory and practice. MIT Press, Cambridge, Massachusetts.

Biggs, D., de Ville, B., and Suen, E. (1991). A method for choosing multiway

partitions for classification and decision trees. Journal of Applied Statistics, 18,

49-62.

Blake, C., Keogh, E., and Merz, C.J. (1999). UCI respiratory of machine learning

databases. University of California, Irvine, Department of Information and

Computer Sciences. http://www.ics.uci.edul-mlearnlMLRepository.html.

Bohanec, M., and Bratko, I. (1994). Trading accuracy for simplicity in decision trees.

Machine Learning, 15, 223-250.

Bratko, I. and Kononenko, I. (1986). Learning diagnostic rules from incomplete and

noisy data. AI Methods in Statistics, UNICOM Seminar, London, December 1986.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and
Regression Trees, Wadsworth.

Breiman, L. (1996). Bagging predictors. Machine Learning, 26 (2), 123-140.

Brodley, C.E., and Utgoff, P.E. (1995). Multivariate Decision Trees. Machine

Learning, 19, 45-77.

Brown, R.L. (1994). Efficacy of the indirect approach for estimating structural

equation model with missing data: A comparison of methods. Structural Equation

Modelling: A Multidisciplinary Journal, 1,287-316.

Bruha, I. and Franek, F. (1996). Comparison of various routines for unknown

attribute value processing: the covering paradigm. International Journal of

Pattern Recognition and Artificial Intelligence. 10 (8), 939·955.

Buck, S.F. (1960). A method of estimation of missing values in multivariate data

suitable for use with an electronic computer. Journal of the Royal Statistical
Society, B, 22, 302-307.

227

Buntine, W. (1990). A Theory of Learning Classification Rules. PhD dissertation,

University of Sydney, Australia.

Buntine, W. (1991). Classifiers: A theoretical and empirical study: In International

Joint Conference on Artificial Intelligence, Sydney, Morgan Kaufmann, 638-644.

Buntine, W.L. (1992). Learning Classification Trees, Statistics and Computing, 2,
63-73.

Buntine, W. (1994). Operations for Learning with Graphical Models. In Journal of

Artificial Intelligence Research, 2, 638-644.

Buntine, W. and Niblett, T (1992). A further comparison of Splitting Rules for

Decision Tree Induction. Machine Leaning, 8, 75-85.

Burges, C.J.C. (1998). A Tutorial on Support Vector Machines for Pattern

Recognition. Data Mining and Knowledge Discovery. Kluwer Academic
Publishers.

Byrne, B. N. (2001). Structural Equation Modelling with AMOS. Rahwah, NJ:
Lawrence Erlbaum Associates.

Cartwright, M., Shepperd, M.J., and Song, Q. (2003). Dealing with Missing Software

Project Data. In Proceedings of the rJ" International Symposium on Software
Metrics 2003,154-165.

Cestnik., B., Kononenko, I. and Bratko, I (1987). Assistant 86: a knowledge­

elicitation tool for sophisticated users. In I. Bratko and N. Lavrac, editors,

European Working Session on Learning - EWSL87. Sigma Press, Wimslow,
England,1987.

Cestnik., B., and Bratko, I (1991). On estimating probabilities in tree pruning. In

Proceedings of the st" European Workshop Session on Learning. 138-150. Porto,
Portugal: Springer-Verlag.

Chipman, H., George, E.!., and MuCulloch, R.E. (1998a). Bayesian CART Model

Search (with discussion). Journal of the American Statistical Association, 98, 985-
960.

228

Chipman, H., George, E.I., and MuCulloch, R.E. (1998b). Hierarchical Priors for

Bayesian CART Shrinkage, Working Paper 98-03, Dept. of Statistics and

Actuarial Science, University of Waterloo.

Chiu, D.K Y. and Wong, A.KC. (1986). Synthesizing knowledge: A cluster analysis

approach using event covering, IEEE Transactions on Systems, Man and

Cybernetics, 16 (2), 251-259.

Chiu, H.Y. and Sedransk, J (1986). A Bayesian procedure for imputing missing

values in sample surveys. Journal of the American Statistical Association, 81
(395), 667-675.

Chou, P. (1991). Optimal Partitioning for Classification and Regression Trees. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 13 (4) 340-354.

Clark, P. and Niblett, T. (1989). The CN2 Induction algorithm. Machine Learning, 3,
261-283.

Clark, P. and Boswell, R. (1991). Rule Induction with CN2: Some recent

improvements. In Proceedings of the Sixth European Workshop Session on

Learning, (151-163). Porto, Portugal: Springer Verlag

Clark, L., and Pregibon, D. (1991). Tree-Based Models. In Statistical models in S, J.
Chambers and T Hastie, Eds., Wadsworth, 377-420.

Cohen, W.W. (1995). Fast effective rule induction. In Proceedings of the Twelfth

International Conference on Machine Learning. Lake Tahoe, California.

Cohen, J. and Cohen, P. (1983). Applied multiple regression/correlation analysis for

the bahavioral sciences (2M Ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Cohen, P.R. and Jensen, D. (1997). Overfltting explained. In Proceedings of the ff"
International Conference on Machine Learning, (115-123). Tahoe City, CA:
Morgan Kauffman.

Cohen, J. and Martin. F. (1997). Numerical Taxonomy on data: experimental results.

In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, (410-417). New Orleans, LA.

Collett, D. (1991). Modelling Binary Data. Chapman and Hall.

229

Conversano, C. and Siciliano, R. (2002). Tree Based Classifiers for Conditional

Incremental Missing Data Imputation. A Conference for dealing with erroneous

and missing data. Jyvaskyla, Finland.

Cooper, G.F. (1990). The computational complexity of probabilistic inference using

Bayesian belief networks. Artificial Intelligence, 42, 393-405.

Cooper, G., and Herskovitz, E. (1992). A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 9, 309-347.

Cover, T.M., and Hart, P.E. (1967). Nearest neighbour pattern classification. IEEE

Transactions on Information Theory, 13, 1,21-27.

Cox, D.R. (1966). Some procedures associated with the logistic qualitative response

curve. In Research papers in Statistics: Festschrift for J. Neyman (ed. F.N. David),
Wiley, New York, 55-71

Cox, D R., and Wermuth, N. (1966). Multivariate Dependencies. Chapman and Hall,
London.

Cox, L.A., Qui, Y., and Kuehner, W (1989). Heuristic least-cost computation of

discrete classification functions with uncertain argument values. Annals of

Operations Research, 21 (1), 1-30.

Crawford, S.L. (1989). Extensions to the CART algorithm. International Journal of
Man-Machine Studies, 31 (2), 197-217.

Dasrathy, B.V. (1980). Nosing around Neighbourhood: A New System Structure and

Classification Rule for Recognition in Partially Exposed Environments. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2, 1,67-71.

Dasrathy, B.V. (1991). Nearest Neighbour (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society Press, Los Alamitos, California.

Day, N.E. and Kerridge, D.F. (1967). A general maximum likelihood discriminant.
Biometrics, 23,313-323.

Dempster, A.P., Laird, N.M., and Rubin, n.B. (1977). Maximum likelihood

estimation from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society, Series B, 39, 1-38.

230

Denison, D.G.T., Mallick, B.K, and Smith, A.F.M. (1998). A Bayesian CART

Algorithm. Biometrika, 86 (2), 363-377.

Dillon, W. and Goldstein, M. (1984). Multivariate Analysis, Methods and

Applications. New York: John Wiley.

Dietterich, T. (2000a). Ensemble methods in machine learning. In Proceedings of the

First International Workshop on Multiple Classifier Systems, Springer Verlag, 1-

15.

Dietterich, T. (2000b). An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting, and randomization.

Machine Learning, 40 (2), 139-158.

Dixon, W. J., Brown, M.B., Engelman, L., Frane, J.W., Hill, M.A., Jennrich, R.I., and

Toporek, J.D. (1983). BMDP Statistical software. Berkeley: University of
California Press.

Domingos, P and Pazzani, M. (1996). Beyond independence: conditions for the

optimality of the simple Bayesian classifier. In Proceedings of the 1:fh

International Conference on Machine Learning, (105-112), Bari, Italy.

Duda, R., and Hart, P. (1973). Pattern Classification and Scene Analysis. New York:
John Wiley.

Edwards, D. (1995). Introduction to Graphical Modelling. Springer-Verlag, New
York.

Efron, B. (1982). The jacknife, the bootstrap and other resampling plans.

Philadelphia: Society for Industrial and Applied Mathematics.

Enders C.K (2001). The Performance of the Full Information Maximum Likelihood

Estimator in Multiple Regression Models With Missing Data. Educational and

Psychological Measurement, 61 (5), 713-740.

Ernst, L.R. (1980). Variance of the estimated mean for several imputation

procedures. Proceedings of the Survey Research Section, American Statistical
Association, 716-720.

231

Esposito, F., Malerba, D., and Semeraro (1993). Decision tree pruning as a search in

the state space. In P. Brazil, editor, Machine Learning: ECML-93. LNAI 667,
Springer Verlag.

Esposito, F., Malerba, D., and Semeraro (1995). A further study of pruning methods

in decision tree induction. In Proceedings of the 5''' International Workshop on

Artificial Intelligence and Statistics, (211-218). Ft. Lauderdale, FL.

Esposito, F., Malerba, D., and Semeraro (1997). A comparative analysis of methods

for pruning decision trees. Transactions on Pattern Analysis and Machine

Intelligence. 19 (5),476-491.

Everitt, B.S. (1984). An Introduction to Latent variable models. Chapman and Hall.

Everitt, B.S. and Hand, D.J. (1981). Finite Mixture Distributions. Chapman and
Hall, London.

Everitt, B.S. and Dunn, G. (1991). Applied Multivariate Data Analysis. Edward
Arnold Publishers.

Farhangfar, A., KUrgan, L. and Pedrycz, W. (2004). Experimental Analysis of

Methods for Handling Missing Values in Databases, Intelligent Computing:

Theory and Applications II Conference, held in conjunction with the SPIE Defense

and Security Symposium (formerly AeroSense), Orlando, FL.

Fayyad, U.M. (1991). On the Induction of Decision Trees for Multiple Concept

Learning. PhD dissertation, EECS Dept., The University of Michigan.

Fayyad, U.M. and Irani, K.B. (1991). A Machine Learning Algorithm (GI03*) for

Automated Knowledge Acquisition: Improvements and Extensions. General
Motors Report CS-634. Warren, MI: GM Research Labs.

Fayyad, U.M. and Irani, K. B. (1993). Multi-interval discretization of continuous­

valued attributes for classification learning. In Proceedings of the lau'
International Joint Conference on Artificial Intelligence, 1022-1027. Morgan
Kaufmann.

232

Feelders, AJ. (1999). Handling Missing Data in Trees: Surrogate Splits or

Statistical Imputation? In Proceedings of the 3ni European conference on principles

and practice of knowledge discovery in data bases (PKDD99), (329-334). Springer
Verlag.

Fisher, R.A (1936). The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7, 179-188.

Ford, B.M. (1983). An Overview of Hot Deck Procedures. Incomplete Data in Sample

Surveys. 2. New York: Academic Press.

Forsyth, R. and Rada, R. (1986). Machine Learning: Applications in expert systems

and information retrieval. Sellis Horwood Limited, Chichester.

Forsyth, R.S., Clarke, D.D., and Wright, R.L. (1994). Overfitting revisited: an

information-theoretic approach to simplifying discrimination trees. Journal of

Experimental and Theoretical Artificial Intelligence, 6 (3), 289-302.

Frank, E. and Witten, I.H. (1999). Making Better Use of Global Discretization,

Proceedings of the Sixteenth International Conference on Machine Learning, 115-
123.

Friedman, F.H. (1977). A recursive partitioning decision rule for non-parametric

classification. IEEE Transactions on Computers, 404-408.

Freund, Y. and Schapire, R. (1996). Experiments with a new boosting algorithm. In
Machine Learning: Proceedings of the Thirteenth International Conference, 148-
156.

Friedman, F.H., Kohavi, Rand Yun, Y. (1996). Lazy decision trees. In Proceedings of

the 13
th

National Conference on Artificial Intelligence, (717-724), AAI, Press/MIT
Press.

Fujikawa, Y., Ho, T.B. (2002). Cluster-based Algorithms for Filling Missing Values,

6th Pacific-Asia Conf. Knowledge Discovery and Data Mining, Taiwan, 6-9 May,

Lecture Notes in Artificial Intelligence 2336, Springer Verlag, 549-554.

Gammerman, A, Lou, Z., Aitken, C.G.G. and Brewer, M.J. (1995). Exact and

approximate algorithms and their implementation in mixed graphical models. In
Gammerman, 33-55.

233

Gediga, G. and Duntsch, I. (2003). Maximum Consistency of Incomplete Data via

Non-Invasive Imputation. Artificial Intelligence Review, 19 (1),93-107.

Gelfand, S.B., Ravishankar, C.S. and Delp, E.J. (1991). An iterative growing and

pruning algorithm for classification tree design. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 13, 163-74.

Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using

multiple sequences. Statistical Science, 7 (4),457-472.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions and the

Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 6, 721-741.

Gersho, A. and Gray, R.M. (1991). Vector Quantization and Signal Compression.
Kluwer Academic Pub.

Gilks, W.R., Richardson, S., and Spiegelhalter D. J. (1996). Markov Chain Monte

Carlo in practice. Chapman and Hall, London.

Gillo, M.W. (1972). MAID: A Honeywell 600 program for an automatised survey

analysis. Behavioral Science, 17, 251-252.

GIeser, M.A. and Collen, M.F. (1972). Towards automated medical decisions. Compo

and Biomedical Research. 5 (2), 180-189.

Godfrey, L., Misspecification Tests in Econometrics, Cambridge University Press,
1988.

Gordon, A.D. (1981). Classification. New York: John Wiley and Sons.

Gorman, R. P. and Sejnowski, T. J. (1988). Analysis of Hidden Units in a Layered

Network Trained to Classify Sonar Targets in Neural Networks, 1, 75-89.

Gower, J.C. (1998). Classification Overview, In Encyclopaedia of Biostatistics, 2,
656-667, Wiley.

Graham, J.W. and Donaldson, S.1. (1993). Evaluating interventions with differential

attrition: the importance of nonresponse mechanisms and use at follow up data.

Journal of Applied Psychology, 78,119-118.

234

Graham, J. W., Hofer, S. M., Donaldson, S. I., MacKinnon, D. P., and Schafer, J. L.

(1997). Analysis with missing data in prevention research. In K J. Bryant, M. W.

Windle, and S. J. West (Eds.). The science of prevention: Methodological advances

from alcohol and substance abuse research (325-366). Washington, DC: American

Psychological Association.

Grefenstette, J. J. (1991). Strategy acquisition with genetic algorithms. In Handbook

of Genetic Algorithms, L. D. Davis (Ed.), Boston: Van Nostrand Reinhold.

Grzymala-Busse, J.W. (1991). On the unknown attribute values in learning from

examples. In Proceedings of the ISMIS-91, ff' International Symposium on

methodologies for Intelligent Systems, Charlotte, North Carolina, October 16-19,

(368-377), Lecture notes in Artificial Intelligence, Vol. 542, Springer Verlag,

Berlin, Heidelberg, New York.

Grzymala-Busse, J.W. and Hu, M. (2000). A Comparison of Several Approaches to

Missing Attribute Values in Data Mining. In RSCTC <2000, 340-347, Banff,
California.

Hand, D.J. (1981). Discrimination and Classification. New York: John Wiley and
Sons.

Hand, D.J. (1982). Kernel Discriminant Analysis. Chichester, UK: Research Studies

Press (John Wiley and Sons).

Hand, D.J. (1997). Construction and Assessment of Classification Rules. John Wiley
and Sons, Chichester.

Hand, D.J. (2000). Private communication.

Hand, D.J., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT
Press.

Hand, D.J., Blunt, G., Kelly, M.G., and Adams, N.M. (2000). Data mining for fun

and profit. Statistical Science, 15, 111-131.

Hart, A.E. (1984). Experience in the Use of an Inductive Learning System in

Knowledge Engineering: In Brammer, Max (ed.) Research & Development in

Expert Systems: Cambridge: Cambridge University Press.

235

Hartley, H.O. and Hocking, R.R. (1971). The analysis of incomplete data. Biometrics,

27, 783-823.

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant

learning. Artificial Intelligence, 36 (2): 177-222.

Hyafil, L. and Rivest, R.L. (1976). Constructing optimal binary trees in NP-complete.

Information Processing Letters, 5 (1),15-17.

Hayishi, T., Bastian, A., and Jain, L.C. (1998). Generation of fuzzy decision trees by

fuzzy ID3 with adjustments of AND/OR operators. In Proceedings of the 1998

International Conference on Fuzzy Systems (FUZZ-IEEE 98), (681-685). NJ: IEEE
Press.

Heckerman, D. (1996). A tutorial on learning Bayesian networks. Technical Report

MSR-TR-95-06, Microsoft, Redmond, WA Revised January 1996.

Heckerman, D., Geiger, D., and Chickering, D.M. (1994). Learning Bayesian

Networks: The combination of knowledge and statistical data. In Proceedings of

the Id" conference on uncertainty in artificial intelligence, (Ed. R. L. de MAntaras
and D. Poole), 292-301.

Ho, T. K (1995). Random decision forests. In Proceedings of the 3rrl International

Conference on Document Analysis and Recognition, 278-282.

Holder, L. B. (1995). Intermediate Decision Trees. In Proceedings of the 14110

International Joint Conference on Artificial Intelligence, 1056-1062.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, MI.

Holve, R. (1997). Rule generation for hierarchical fuzzy systems. In Proceedings of
the Annual Conference of the North American Fuzzy Information Processing
Society, 444-449.

Hosmer, D.W. and Lameshow, S. (1989). Applied Logistic Regression. New York:
Wiley.

Janikow, C.Z. (1998). Fuzzy decision trees: Issues and methods. IEEE Trans. Syst.

Man and Cyb. Part B: Cybernetics, 28, 1-14.

236

Jensen, F.V. (1996). An introduction to Bayesian Networks. University College

London Press, London.

Jordan, M.I. (1994). A Statistical Approach to Decision Tree Modelling, In M.

Warmuth (Ed.), Proceedings of the 1h Annual ACM Conference on Computational

Learning Theory. New York: ACM Press.

Kalles, D. and Monis, T. (1996). Efficient incremental induction of decision trees.

Machine Learning, 24, 231-242.

Kalousis, A. and Hilario, M. (2000). Supervised knowledge discovery from

incomplete data. In Proceedings of the 2nd International Conference on Data

Mining 2000. Cambridge, England. July 2000.WlT Press.

Kaplan, D. (1995). The impact of Bm spiralling-induced missing data patterns on

goodness-of-fit tests in factor analysis. Journal of Educational and Behavioral
Statistics, 20, 69-82.

Kass, G.V. (1980). An exploratory technique for investigating large quantities of

categorical data. Applied Statistics, 29, 119-127.

Kendall, M. (1980). Multivariate Analysis. Charles Grifim & Company Ltd, London.

Keprta, S. (1996). Non-binary classification trees, Statistics and Computing, 6, 231-
243.

Kerber, R. (1992). Discretization of numeric attributes. In Proceedings of the 15th

International Conference on Machine Learning, (144-151). San Francisco, CA:
Morgan Kauffman.

Kim, J.-O. and Curry, J. (1977). The treatment of missing data in multivariate

analysis. Sociological Methods and Research, 6,215-240.

Kirk, R.E. (1982). Experimental design (2nd Ed.). Monterey, CA: Brooks, Cole
Publishing Company.

Kitchenham, B.A. (1996). A procedure for analysing unbalanced datasets, Keele

University, Dept of Computer Science Technical Report TRIO, ISSN 1353-7776.

Klir, G.J., and Folger, T.A. (1988). Fuzzy Sets, Uncertainty, and Information.

Prentice-Hall, Englewood Cliffs, N.J.

237

Klockars, AJ., Hancock, G.R., and McAweeney, M.J. (1995). Power of unweighted

and weighted versions of simultaneous and sequential multiple-comparison

procedures. Psychological Bulletin, 118,300-307.

Kohavi, R. and Kunz, C. (1997). Option Decision Trees with majority votes. In D.

Fisher, editor, Machine Leaning Proceedings of the 14th International Conference.

Morgan Kaufmann.

Kononenko, Bratko, I., and Roscar, E. (1984). Experiments in automatic learning of

medical diagnostic rules. (Technical report) Jozef Stefan Institute, Ljubljana,
Yugoslavia.

Kononenko, I. (1991). Semi-naive Bayesian classifier. In Proceedings of European

Conference on Artificial Intelligence, 206-219.

Koza, J.R. (1992). Advances in Genetic Programming. MIT Press, Cambridge, MA.

Krzanowski, W.J. (1990). Principles of Multivariate Analysis. Oxford, UK: Clarendon
Press.

Lakshminarayan, K, Harp, S.A, Samad, T. (1999). Imputation of Missing Data in

Industrial Databases. Applied Intelligence, 11, 259-275.

Langley, P. (1993). Induction of recursive Bayesian classifiers. In Proc. European

ConI. on Machine Learning, (153-164). Springer Verlag.

Langley, P. (1996). Element of Machine Learning. Morgan Kauffman Publisher, Inc.,
San Francisco, California.

Langley, P., Tha, W. and Thompson, K. (1992). An analysis of Bayesian classifiers. In

Tenth National Conference on Artificial Intelligence, (223-228). San Jose,
California.

Langley, P. and Sage, S (1994). Induction of selective Bayesian classifiers. In Proc.

ConI. on Uncertainty in AI, Morgan Kauffmann.

Latour, D., Latour, K., and Wolfinger, R.D. (1994). Get-Started with PROC MIXED,

Software Sales and Marketing Department, SAS Institute Inc., Cary, NC.

Li, X. and Dubes, R.C. (1986). Tree classifier design with permutation statistic.

Pattern Recognition, 16, 69-80.

238

Little, R.J.A and Rubin, D.B. (1987). Statistical Analysis with missing data. New

York: Wiley.

Little, RJ.A and Rubin, D. B. (1990). The analysis of social science data with

missing values. In J. Fox and J.S. Long (Eds.), Modern Methods of Data Analysis

(375-409). London: Sage.

Little, R.J.A and Schenker, N (1995). The analysis of social science data with

missing values. Social Methods and Research, 18, 292-326.

Little, R.J.A and Vartivarian, S. (2003). On weighting the rates in nonresponse

weights. Statistics and Medicine, 22, 1589-1599.

Liu, W.Z., White, AP., Thompson, S.G., and Bramer, M.A (1997). Techniques for

dealing with missing values in classification. In Advances in Intelligent Data

Analysis; Lecture Notes in Artificial Intelligence, edited by X. Liu, P. Cohen and
M. Berthold, 527-536.

Lobo, 0.0. and Numao, M. (1999) Ordered Estimation of Missing Values. In

Proceedings of the 3rd Pacific-Asia Conference on Knowledge Discovery and Data

Mining, Lecture Notes in Computer Science, 1574, 274-278.

Lobo O. O. and Numao, M. (2000). On the Applicability of a Machine Learning

Method for Estimating Missing Values. IMLC 2000, Palo Alto, California.

Loh, W.-Y. and Vanichsetakul, N. (1988). Tree-structured classification via

Generalised Discriminant Analysis. Journal of the American Statistical

AsSOCiation, 83, 715-728.

Loh, W.-Y. and Shih, Y.-S. (1997). Split selection methods for classification trees.
Statistica Sinica, 7, 815-840.

L6pez de Mantaras (1991). A Distance-Based Attribute Selection Measure for

Decision Tree induction Machine Learning, 6, 81-92.

Luzowski, A (1996). Crisp rule extraction from perceptron network classifiers. In

Volume of Plenary: Panel and Special Session. International Conference on
Neural Networks, Washington DC.

239

Mardia, K V., Kent, J.T., and Bibby, J.M. (1979). Multivariate Analysis. Harcourt

Brace & Company, London.

McCullagh, P., and NeIder, J.A. (1990). Generalised Linear Models, 2nd Edition,

Chapman and Hall, London, England.

McFadden, D. (1976). A Comment on Discriminant Analysis 'Versus' Logit Analysis,

Annals of Economic and Social Measurement, 5, 511-523.

McKee, T.E. (1995). Predicting Bankruptcy via Induction. Journal of Information

Technology, 10,26-36.

McLachlan, G.J. (1992). Discriminant Analysis and Statistical Pattern Recognition.
New York: John Wiley.

McLachlan, G.J. and Basford, KE. (1988). Mixture Models: Inference and

Applications to Clustering. New York: Marcel Dekker.

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. New York: John Wiley.

Menard, S. (1995). Applied Logistic Regression. Sage Publications, Inc, Thousand
Oaks,CA.

Meng, X. L. and Rubin, D.B. (1991). IPF for contingency tables with missing data via

the ECM algorithm. Proceedings of the Statistical Computing Section, American
Statistical Association, 244-247.

Miller, R.G. 1997. Beyond ANOVA. Chapman & Hall

Mingers, J. (1986). Expert Systems - experiments with rule induction. Journal of

the Operational Research Society, 37, 1031-1037

Mingers, J. (1989a). An empirical comparison of Pruning Methods for Decision-Tree

Induction. Machine Learning, 3, 227-243.

Mingers, J. (1989b). An empirical comparison of Selection Measures for Decision­

Tree Induction. Machine Learning, 3, 319-342.

240

Michalski, R.S., Mozetic, I., Hong, J., and Lavrac, N. (1986). The multi-purpose

incremental learning system AQ15 and its testing application to three medical

domains. In Proceedings of the 5th National Conference on Artificial Intelligence,

(1041-1045). Philadelphia, PA: AAAI Press.

Michie, D., Spiegelhalter, D., and Taylor, C. (1994). Machine Learning, Neural and

Statistical Classification. Ellis Horwood.

Mitchell, T.M. (1997). Machine Learning, McGraw Hill.

MINITAB. (2002). MINITAB Statistical Software for Windows 9.0. MINITAB, Inc.,
PA, USA.

Monago, M.M. and Kodratoff, Y. (1987). Noise and knowledge acquisition. In J.

McDermott editor, IJCAI-B7, (348-354). Kaufmann, CA.

Morgan, J.N. and Sonquist, J.A. (1963). Problems in the analysis of survey data and

a proposal. Journal of the American Statistical Association, 58, 415-434.

Morgan, J.N. and Messenger, R.C. (1973). THAID- a sequential analysis program for

the analysis of nominal scale dependent variables. Survey Research Center,
University of Michigan.

Muller, W. and Wysotzki, F. (1994). Automatic Construction of Decision Trees for

Classification. Annals of Operations Research, 231-247.

MUller, W. and Wysotzki, F. (1996). The Decision Tree Algorithm CAL5 Based on a

Statistical Approach to its Splitting Algorithm Automatic Construction of

Decision Trees for Classification. In Makhaeizadeh, G. and Taylor, C.C. (Eds.).

Machine Learning and Statistics. The Interface. John Wiley and Sons. New York.

Murphy, O.J. and McCraw, R.L. (1991). Designing storage efficient decision trees.

IEEE Transactions on Computing, 40 (3): 315-319.

Murthy, S.K and Salzberg, S. (1992). Lookahead and pathology in decision tree

induction. In Proceedings of the 14th International Joint Conference on Artificial

Intelligence, (309-347). Montreal, Canada: Morgan Kauffman.

241

Murthy, S., Kasif, S., and Biegel, R. (1993). OC1: Randomised induction of oblique

decisions trees. In Proceedings of the 11th National Conference on Artificial

Intelligence, 322-327.

Murthy, S., Kasif, S., and Salzberg, S. (1994). A system for induction of oblique

decision trees. Journal of Artificial Intelligence Research, 2, 1-32.

Muthen, B.O., Kaplan, D., and Hollis, M. (1987). On structural equation modelling

with data that are not missing completely at random. Psychometrika, 62,431-462.

Myrtveit, I., Stensrud, E., and Olsson, U. (2001). Analyzing Data Sets with Missing

Data: An Empirical Evaluation of Imputation Methods and Likelihood-Based

Methods. IEEE Transactions on Software Engineering, 27 (11), 1999-1013.

Niblett, T. (1987). Constructing decision trees in noisy domains. Proceedings of the

Second European Working Session on Learning, 67-78. Bled. Yugoslavia: Sigma.

Niblett, T. and Bratko, I. (1986). Learning decision rules in noisy domains. In

Proceedings of Expert Systems, (25-34). Cambridge, England: Cambridge
University Press.

Oates, T and Jensen, D. (1998). Large datasets lead to overly complex models: an

explanation and solution. In Proc Fourth International Conference on Knowledge

Discovery and Data Mining, (294-298). AAI Press. New York City, New York.

Oliver, J.J., and Hand, D.J. (1993). On pruning and averaging decision trees. In

Proceedings of the 12th International Machine Learning Conference, (430-437).

Tahoe City, CA: Morgan Kauffman.

OIkin, I. and Tate, R.F. (1961). Multivariate correlation models with mixed discrete

and continuous variables. Annals of Mathematical Statistics, 32, 448-465.

Pagallo, G. and Haussler, D. (1990). Boolean feature discovery in empirical learning.
Machine Learning, 6, 71-100.

Patterson, D.W. (1996). Artificial Neural Network: Theory and Practices. Prentice­
Hall, Singapore.

Pawlak, Z. (1991). Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer

Academic Publishers, Dordretch, Boston, London.

242

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kauffman, San Mateo, CA.

Pearl, J. (1994). Causal diagrams for empirical research (with discussion).

Biometrika, 82, 669-710.

Pedrycz, W. (1996). Data mining and fuzzy modelling. In Proceedings of 1996

Biennale Conference of the Northern American Fuzzy Information Processing

Society (NAFIS), 263-267.

Pinder, J.P. (1996). Decision Analysis Using Multinomial Logit Models: Mortgage

Portfolio Valuation. Journal of Economics and Business, 48,66-77.

Press, S. (1989). Bayesian Statistics. New York, Wiley.

Pyle, D. (1999). Data Preparation for Data Mining. Morgan Kauffman, San
Francisco.

Quinlan, J.R. (1979). Induction over Large Databases: Report HPP-79-14, Stanford
University.

Quinlan, J.R. (1983). Learning efficient classification procedures and their

application to chess and games. In RS Michalski, JG Carbonelli, and TM Mitchell

(Eds.), Machine Learning: An Artificial Intelligence approach. Los Altos: Morgan
Kauffman.

Quinlan, J.R. (1985). Decision tress and multi-level attributes. Machine Intelligence.

Vol. 11, (Eds.). J. Hayes and D. Michie. Chichester England: Ellis Horwood.

Quinlan, J.R. (1986). Induction of decision trees, Machine Learning, 1, 81-106.

Quinlan, J.R. (1987). Simplifying decision trees, International Journal of Man·

Machine Studies, 27, 221-234.

Quinlan, J.R. (1988). Decision trees and multi-valued attributes, Machine
Intelligence, 11, 305-318.

Quinlan, J.R. (1989). Unknown attribute values in induction. In Proceedings of the

(flo International Machine Learning Workshop, (164-168). Ithaca, NY.

243

Quinlan, J.R. (1993). C.4.5: Programs for machine learning. Los Altos, California:

Morgan Kauffman Publishers, INC.

Quinlan, J.R. (2002) http://www.ruleguest.comlsee5-comparison.html

Quinlan, JR. and Rivest, R.L. (1989). Inferring decision trees using minimum

description length principle. Information and Computation Machine Learning, 80

(3),227-248.

Ripley, B.n. (1992). Pattern Recognition and Neural Networks. Cambridge

University Press, New York: John Wiley.

Ripley, B.D. (1994). Neural networks and related methods for classification. Journal

of the Royal Statistical Society, Series B 56 (3), 409-437.

Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge:
Cambridge University Press.

Robins, n.B. and Wang, N. (2000). Inference for imputation estimators. Biometrika,

87, 113-124.

Roth, P.L. (1994). Missing data: A conceptual overview for applied psychologists.

Personnel Psychology, 47,537-560.

Rounds, E. (1980). A combined non-parametric approach to feature selection and

binary decision tree pattern, Pattern Recognition, 12,313-317.

Rubin, n.B. (1976). Inference and missing data. Biometrika, 61, 581-592.

Rubin, n.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York:
John Wiley and Sons.

Rubin, n.B. and Little, R.J.A. (1986). Statistical Analysis with Missing Data.

Chichester: John Wiley and Sons.

Rubin, n.B. and Schenker, N. (1986). Multiple Imputation for Interval Estimation

From Simple Random Samples With Ignorable Nonresponse. Journal of the

American Statistical Association, 81 (394),366-374.

244

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning international

representation by error propagation. In D.E. Rumelhart and J.L. McClelland

(Eds.), Parallel distributed processing: Explorations in the microstructure of

cognition. Volume 1: Foundations. Cambridge, MA: MIT Press.

Safavian, S.R. and Landgrebe, D. (1991). A survey of decision tree classifiers. IEEE

Transactions on Systems, Man and Cybernetics, 21,660-74.

Sande, lG. (1983). Hot-Deck Imputation Procedures. Incomplete Data in Sample

Surveys. 3. New York: Academic Press.

Schaffer, C (1993). Overfitting avoidance as Bias. Machine Learning, 10, 153-178.

Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall,
London.

Schafer, J.L. and Olsen, M.K. (1998). Multiple Imputation for multivariate missing

data problems: a data analyst's perspective. Multivariate Behavioral Research, 83
(4), 545-571.

Schlimmer, J.C. and Fisher, D. (1986). A case study of incremental concept
induction. In Proceedings of the Sh National Conference on Artificial Intelligence,
(496-501). San Mateo, CA: Morgan Kauffman.

Sentas, P., Lefteris, A., and Stamelos, 1. (2004). Multiple Logistic Regression as

Imputation method Applied on Software Effort prediction. In Proc. of the 1ff'

International Symposium on Software Metrics, Chicago, 14-16 September 2004.

Shannon, C.E. (1948a). A mathematical theory of communication. Bell Syst. Tech. J,
27, 379-423.

Shannon, C.E. (1948b). A mathematical theory of communication, Part 2. Bell Syst.
Tech. J, 27, 623-656.

Shannon, W. (1998). Averaging Classification Tree Models. In Proceedings of the 3(jh

Symposium on the Interface.

Shannon, W., and Banks, D. (1998). Combining Classification Trees Using MLE.
Statistics and Medicine, In Press.

245

Shapiro, A. (1987). Structured Induction in Expert Systems. Addison Wesley,

London.

Shavlik., J.W., Mooney, R.J., and Towell, G.G. (1991). Symbolic and Neural Network

Learning Algorithms: An Experimental Comparison. Machine Learning, 6, 111-
143.

Shih, Y-S. (1999). Families of splitting criteria for classification trees. Statistics and

Computing, 9, 309-315.

Silverman, B. (1986). Density Estimation for Statistics and Data Analysis. Chapman

and Hall, New York.

Singh, M. (1997). Learning Bayesian Networks from incomplete data. In AAAI '97,
27-31.

Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., and Johannes, R.S.

(1988). Using ADAP learning algorithm to forecast the onset of diabetes mellitus.

In Proceedings of the Symposium on Computer Applications and Medical Care

(261-265). IEEE Computer Society Press.

Song, Q. and Sheppered, M. (2004). A Short Note on Safest Default Missingness

Mechanism Assumptions. In Empirical Software Engineering. (Accepted for
publication in 2004).

Strike, K., EI-Emam, K.E., Madhavji, N. (2001). Software Cost Estimation with

Incomplete Data. IEEE Transaction on Software Engineering, 27 (10), 890-908.

Stutz, J. and Cheeseman, P. (1995) AutoClass - a Bayesian Approach to

Classification. In Maximum Entropy and Bayesian Methods, Cambridge 1994,

John Skilling & Sibusiso Sibisi, Eds. Kluwer Academic Publishers, Dordrecht.

Sokal, R. and Rohlf, F. (1981). Biometry. San Francisco: Freeman.

SAS (2000). SAS Version 8.0 for Windows. SAS Institute, Inc., North Carolina, USA.

SPSS. (1997). SPSS Missing Values Analysis 7.5. Chicago: SPSS, Inc.

SPSS. (2002). SPSS for Windows 11.0. SPSS, Inc., Chicago, USA.

246

S-PLUS. (2003). S-PLUS 6.2 for Windows. MathSoft, Inc., Seattle, Washington,

USA.

Tabachnick, B.G. and Fidell, L.S. (2001). Using multivariate statistics (4tb Ed.).

Needham Heights, MA: Allyn and Bacon.

Talmon, J.L. (1986). A multi-class non-parametric partitioning algorithm. Pattern

Recognition Letters, 4, 31-38.

Tanner, M.A. and Wong, W.H. (1987). The calculation of Posterior Distributions by

Data Augmentation (with discussion). Journal of the American Statistical

Association, 82, 528-550

Taylor, P.C. and Silverman, B.W. (1993). Block diagrams and splitting criteria for

classification trees. Statistics and Computing, 3 (4), 147-161.

Therneau, T.M., and Atkinson, E.J. (1997). An Introduction to Recursive

Partitioning Using the RPART Routines. Technical Report, Mayo Foundation.

Tresp, V., Neuneier, R., and Ahmad, S. (1995). Efficient Methods for Dealing with

Missing Data in Supervised Learning. Advances in Neural Information processing

Systems 7 (Eds. Tesauro, G., Touretzky, D.S., and Leen, T.K.), MIT Press,
Cambridge, MA.

Utgofi, P. (1986). Machine Learning of Inductive Bias. lOuwer Academic Publishers.

Utgofi, P. (1991). Incremental induction of decision trees. Machine Learning, 4, 161-
186.

Vadera, S. and Nechab, S. (1994). Id3, its children and their safety. BCS Specialist

Group on Expert Systems Newsletter, 31,11-21.

Vach, W. (1995). Classification Trees. Computational Statistics, 10,9-14.

Van de Merckt, T. (1993). Decision trees in numerical attribute spaces. In

Proceedings of the 1:rn IJCAI, (1016-1021). Chambery, France.

Vapkin, V.N. (1995). The Nature of Statistical Learning Theory. Springer - Verlag,
New York.

247

Venables, W.N. and Ripley, B.D. (1994). Modem Applied Statistics with S-PLUS.

New York: Springer.

Wallace, C.S. and Patrick, J.D. (1993) Coding decision tress. Machine Learning, 7,

279-292.

Wallace, C.S. (1998) Intrinsic classification of spatially correlated data, in C J van

Rijsbergen (ed), Computer Journal, Vol. 41, No 8, Oxford University Press, UK,

ISSN: 0010-4620, 602-611

Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing. London: Chapman and Hall.

Weiss, S., Galen, R. and Tadepelli, P. (1990). Maximizing the predictive rule of

production rules. Artificial Intelligence. 45, 47-71.

White, AP. (1987). Probabilistic Induction by dynamic path generation in virtual

trees: In Brammer, Max (ed.) Research & Development in Expert Systems:

Cambridge: Cambridge University Press.

White, A.P. (2001). Private communication.

White, A.P. and Liu, W.Z. (1994). Bias in information-based measures in decision

tree induction. Machine Leaning, 15, 321-329.

Wilks, S.S. (1932). Moments and distributions of estimates of population parameters

from fragmentary samples. Annals of Mathematical Statistics, 3, 163-195.

Winston, P. (1992). Artificial Intelligence. Addison-Wesley, third edition. Part II:

Learning and regularity Recognition.

Wishart, D. (1999). Clustering methods for Large Data Problems. In Bulletin of the

International Statistical Institute, Proceedings, Book 1, 437-440.

Wong, A.KC. and Chiu, D.KY. (1987). An event- covering method for effective

probabilistic inference. Pattern Recognition, 20, 2, 245-255.

Wu, C.F.J. (1983). On the convergence of the EM algorithm. The Annals of Statistics,
11,95-103.

Yun, S.Q. and Fu, KS. (1983). A method for the design of binary tree classifiers.

Proc. ~ Symp. Machine Processing of Remotely Sensed Data, Purdue Univ.

248

Zadeh, L.A. (1965). Fuzzy sets. Information control, 8,338-353.

Zadeh, L.A. (1994). Soft computing and fuzzy logic. IEEE Software, 48-56.

Zhang, H. (1998). Classification Trees for Multiple Binary Responses. Journal of the

American Statistical Association, 93, 441,180-193.

Zheng, Z. and Webb, G.I. (1997). Lazy Bayesian Trees. Technical Report (TR

C97/07). Deakin University, Australia.

Zheng, Z. and Low, B.T. (1999). Classifying Unseen Cases with Many Missing

Values. Technical Report (TR C90/02). Deakin University, Australia.

249

Appendix

APPENDIX - ANALYSIS OF VARIANCE TABLES

Table 4.3 Analysis of Variance for significance tests for existing training and
testing methods

Source of variation Sum of Degrees Mean-Square F-ratio p -value
Squares of

freedom

M,lia §.iB.cts:

A 0.450932 6 0.075155 76.07 0.000

B 0.147939 1 0.147939 10.85 0.004

C 1.058058 2 0.529029 671.26 0.000

D 4.403085 2 2.201542 619.45 0.000

E 1.128079 20 0.056404 3.42 0.001

Xwo-wqy
iatcr(Ktions:
AB 0.039702 6 0.006617 8.81 0.000

AC 0.003633 12 0.000303 3.32 0.000

AD 0.016058 12 0.001338 3.80 0.000

AE 0.118562 120 0.000988 1.23 0.131

BC 0.003828 2 0.001914 7.60 0.002

BD 0.004593 2 0.002296 1.78 0.181

BE 0.272686 20 0.013634 7.75 0.000

CD 0.000415 4 0.000104 0.31 0.869

CE 0.031524 40 0.000788 2.11 0.011

DE 0.142162 40 0.003554 2.47 0.002

Three-wqy
iate.ractmlH:
ABC 0.000214 12 0.000018 0.23 0.997

ABD 0.003027 12 0.000252 0.82 0.629

ABE 0.090102 120 0.000751 2.37 0.000

ACD 0.001968 24 0.000082 1.08 0.363

250

Table 4.3 Analysis of Variance for significance tests for existing training and
testing methods continued

Xllre~-wQl!

il!t.fU:.fEtions:

ACE 0.021911 240 0.000091 1.07 0.317

ADE 0.084522 240 0.000352 1.12 0.195

BCD 0.000561 4 0.000140 0.65 0.628

BCE 0.010076 40 0.000252 1.12 0.326

BDE 0.051507 40 0.001288 2.83 0.000

CDE 0.026534 80 0.000332 1.49 0.038

Four-way
il!teractions:

ABCD 0.001281 24 0.000053 0.78 0.762

ABCE 0.018586 240 0.000077 1.13 0.129

ABDE 0.073783 240 0.000307 4.50 0.000

ACDE 0.036461 480 0.000076 1.11 0.125

BCDE 0.017244 80 0.000216 0.06 0.000

Five-way
int.eractions:

ABCDE

Total

Note:

0.0.32818 480 0.000068

8.291848 2645

A = training and testing methods (repeated measures factor with 7
levels)

B = number of attributes with missing values (repeated measures factor
with 2 levels)

C = missing data proportions (repeated measures factor with 3 levels)

D = missing data mechanisms (repeated measures factor with 3 levels)

E = datasets (random effects with 21 levels)

p-values below 0.01 indicate statistically significant effects at the 1%
significance level.

251

Table 4.4 Analysis of Variance for significance tests for existing training methods

Source of variation Sum of Degrees Mean-Square F-ratio p -value
Squares of

freedom

Mgil1 §.iB.cts:

A 0.479026 7 0.068432 82.63 0.000

B 0.261300 1 0.261300 96.34 0.000

C 1.014373 2 0.507187 611.28 0.000

D 3.948964 2 1.974482 540.47 0.000

E 0.474797 20 0.023740 4.41

Two-way
il1tf!.ractions:

AB 0.040945 7 0.005849 5.28 0.000

AC 0.006552 14 0.000468 6.02 0.000

AD 0.013805 14 0.000986 4.65 0.000

AE 0.115948 140 0.000828 0.72 0.974

BC 0.008107 2 0.004054 8.86 0.001

BD 0.018664 2 0.009332 13.55 0.000

BE 0.054247 20 0.002712 1.42 0.122

CD 0.001321 4 0.000330 0.66 0.621

CE 0.033189 40 0.000830 1.03 0.453

DE 0.146130 40 0.003653 3.43 0.000

Three-way
int.eractions:

ABC 0.001184 14 0.000085 1.28 0.220

ABD 0.004249 14 0.000303 1.71 0.053

ABE 0.155147 140 0.001108 5.80 0.000

ACD 0.001939 28 0.000069 1.21 0.212

ACE 0.021751 280 0.000078 1.09 0.256

ADE 0.059381 280 0.000212 1.16 0.105

BCD 0.001341 4 0.000335 2.17 0.080

BCE 0.018307 40 0.000458 2.72 0.000

252

Table 4.4 Analysis of Variance for significance tests for existing training methods
continued

Xl!l:@~-Wfll!

int.~ractiolH:

BDE 0.027556 40 0.000689 2.46 0.000

CDE 0.039955 80 0.000499 3.13 0.000

Four-wqy
interll&.tiol1s;

ABCD 0.002378 28 0.000085 1.63 0.023

ABCE 0.018516 280 0.000066 1.27 0.010

ABDE 0.049621 280 0.000177 3.40 0.000

ACDE 0.032029 560 0.000057 1.10 0.140

BCDE 0.012370 80 0.000155 2.96 0.000

Five-way
i:at.eraction:

ABCDE

Total

Note:

0.029228 560 0.000052

7.092320 3023

A = training methods (repeated measures factor with 8 levels)

B = number of attributes with missing values (repeated measures
factor with 2 levels)

C = missing data proportions (repeated measures factor with 3 levels)

D = missing data mechanisms (repeated measures factor with 3 levels)

E = datasets (random effects with 21 levels)

p-values below 0.01 indicate statistically significant effects at the 1%
significance level.

253

Table 4.5 Analysis of Variance for significance tests for existing testing methods

Source of variation Sum of Degrees Mean-Square F-ratio p -value
Squares of

freedom

M(lia effects:

A 0.536685 6 0.089447 81.28 0.000

B 0.139581 1 0.139581 73.92 0.000

C 1.028421 2 0.514211 722.59 0.000

D 3.584060 2 1.792030 546.29 0.000

E 0.784423 20 0.0.9221 7.89 0.000

Two-way

illteractions:

AB 0.020471 6 0.003412 5.79 0.000

AC 0.004935 12 0.000411 4.63 0.000

AD 0.013375 12 0.001115 5.81 0.000

AE 0.132060 120 0.001100 1.73 0.001

BC 0.007683 2 0.003842 8.78 0.001

BD 0.002380 2 0.001190 1.81 0.177

BE 0.037765 20 0.001888 1.39 0.147

CD 0.001417 4 0.000354 0.80 0.531

CE 0.028465 40 0.000712 1.02 0.460

DE 0.131214 40 0.003280 3.34 0.000

Three-way
int§.ra&tiolls:

ABC 0.000572 12 0.000048 0.55 0.883

ABD 0.002085 12 0.000174 1.37 0.180

ABE 0.070712 120 0.000589 3.71 0.000

ACD 0.002492 24 0.000104 1.36 0.122

ACE 0.021316 240 0.000089 0.82 0.940

ADE 0.046081 240 0.000192 1.30 0.020

BCD 0.000292 4 0.000073 0.44 0.781

BeE 0.017493 40 0.000437 2.20 0.001

254

Table 4.5 Analysis of Variance for significance tests for existing testing methods
continued

Xlll:lf!-l@Q!
in"f!ractions:

BDE 0.026347 40 0.000659 2.76 0.000

CDE 0.035612 80 0.000445 2.37 0.000

FOllr-wqy
interactions:

ABCD 0.002218 24 0.000092 1.68 0.024

ABCE 0.002218 240 0.000092 1.58 0.000

ABDE 0.002218 240 0.000092 2.30 0.000

ACDE 0.002218 480 0.000092 1.39 0.000

BCDE 0.002218 80 0.000092 3.02 0.000

Fiver-wqy
intf!raction;

ABCDE

Total

Note:

0.002218 480 0.000092

60806048 2645

A = testing methods (repeated measures factor with 7 levels)

B = number of attributes with missing values (repeated measures
factor with 2 levels)

C = missing data proportions (repeated measures factor with 3 levels)

D = missing data mechanisms (repeated measures factor with 3 levels)

E = datasets (random effects with 21 levels)

p-values below 0.01 indicate statistically significant effects at the 1%
significance level.

255

Table 4.6 (a) Analysis of Variance for significance tests for existing testing
methods (for unbalanced data)

Source of variation Adjusted Degrees Adjusted F-ratio p -value
Sum of of Mean-Square
Squares freedom

Mgin eflicts:

A 0.424224 6 0.070704 419.62 0.000

B 0.119643 1 0.119643 710.07 0.000

C 0.854400 2 0.427200 2535.40 0.000

D 2.697587 2 1.384794 8005.00 0.000

N 0.037574 1 0.037574 223.00 0.000

E(N) 0.746849 19 0.039308 233.29 0.000

Two-way
inmrgQtions:

AN

BN

CN

DN

AE(N)

BE(N)

CE(N)

DE(N)

Residual

Total

Note:

0.009559 6 0.001593 9.46 0.000

0.000379 1 0.000379 2.25 0.000

0.000363 2 0.000182 1.08 0.340

0.028265 2 0.014132 83.87 0.000

0.122501 114 0.001075 6.38 0.000

0.037386 19 0.001968 11.68 0.000

0.028101 38 0.000740 4.39 0.000

0.102949 38 0.002709 16.08 0.000

0.403374 2394 0.000168

5.613154 2645

A = testing methods (repeated measures factor with 7 levels)

B = number of attributes with missing values (repeated measures factor
with 2 levels)

C = missing data proportions (repeated measures factor with 3 levels)

D = missing data mechanisms (repeated measures factor with 3 levels)

N = binary attribute (repeated factor with 2 levels)

E(N) = dataset nested within binary attribute variable

p-values below 0.01 indicate statistically significant effects at the 1%
significance level.

256

Table 4.6 (b) Analysis of Variance for significance tests for existing testing

methods (for unbalanced data)

Source of variation Adjusted Degrees Adjusted F-ratio p -value
Sum of of
Squares freedom

Mgill e.f&cts:

A 0.424224

B 0.119643

C 0.854400

D 2.697587

Two-wGY
int.e.CfY1.tionB:

AN

BN

CN

DN

Residual

AE(N)"

BEW

CE(N)"

DE(N/

Note:

0.009559

0.000379

0.000363

0.028265

0.122501

0.037386

0.028101

0.102949

* = error term for A and AN

+ = error term for B and BN

x = error term for C and CN

= error term for D and DN

6

1

2

2

6

1

2

2

114

19

38

38

Mean-Square

0.070704 65.80 0.000

0.119643 60.80 0.000

0.427200 577.68 0.000

1.384794 497.86 0.000

0.001593 1.48 0.190

0.000379 0.19 0.666

0.000182 0.25 0.783

0.014132 5.22 0.010

0.001075

0.001968

0.000740

0.002709

p-values below 0.01 indicate statistically significant effects at the 1%
significance level.

257

Table 5.2 Analysis of V ariance for significance tests for existing and new training

and testing methods

Source of variation Sum of Degrees of Mean-Square F-ratio p -value
Squares freedom

Main effects:

A 0.028279 2 0.014139 8.00 0.001

B 0.043457 1 0.043457 14.70 0.001

C 0.391570 2 0.795785 686.72 0.000

D 1.523519 2 0.761760 654.93 0.000

E 0.359481 20 0.017974 3.56 0.000

Two-way
il1t~ractionB:

AB 0.007878 2 0.003939 6.16 0.005

AC 0.002653 4 0.000663 7.22 0.000

AD 0.010129 4 0.002532 10.72 0.000

AE 0.070681 40 0.007167 2.35 0.002

BC 0.002322 2 0.001161 19.36 0.000

BD 0.006586 2 0.003293 12.61 0.000

BE 0.059138 20 0.002957 4.13 0.000

CD 0.000648 4 0.000162 1.14 0.343

CE 0.011404 40 0.000285 2.10 0.020

DE 0.046525 40 0.001163 2.90 0.000

Tl!r~-I£Dl!

iateract,ions:

ABC 0.000075 4 0.000019 0.29 0.882

ABD 0.000570 4 0.000142 0.99 0.421

ABE 0.025568 40 0.000639 4.06 0.000

ACD 0.000769 8 0.000096 1.65 0.113

ACE 0.007347 80 0.000092 1.29 0.153

ADE 0.018898 80 0.000236 1.56 0.026

BCD 0.000144 4 0.000036 0.41 0.798

BCE 0.002399 40 0.00060 0.60 0.956

258

Table 5.2 Analysis of Variance for significance tests for existing and new training
and testing methods continued

Three-way
int.eractions:

BDE 0.010450 40 0.000261 1.45 0.077

CDE 0.011355 80 0.000142 1.51 0.042

Four-way
inter9£.tions:

ABCD 0.000259 8 0.000032 0.64 0.747

ABCE 0.005115 80 0.000064 1.25 0.116

ABDE 0.011571 80 0.000145 2.83 0.000

ACDE 0.009291 160 0.000058 1.14 0.208

BeDE 0.006965 80 0.000087 1.71 0.002

Five-way
int.erg&tionB:

ABCDE 0.008168 160 0.000051

Total 2.683216 1133

Note: A = existing and new training and testing methods (repeated measures
factor with 3 levels)

B = number of attributes with missing values (repeated measures factor
with 2 levels)

C = missing data proportions (repeated measures factor with 3 levels)

D = missing data mechanisms (repeated measures factor with 3 levels)

E = datasets (random effects with 21 levels)

p-values below 0.01 indicate statistically significant effects at the 1%
significance level.

259

Table 6.2 Analysis of Variance for significance tests for existing and new testing
methods

Source of variation Sum of Degrees Mean-Square F-ratio p -value
Squares of

freedom

Main effects:

A 0.252642 4 0.063160 43.58 0.000

B 0.065968 1 0.065968 36.41 0.000

C 0.695467 2 0.347733 701.64 0.000

D 2.270073 2 1.135037 633.93 0.000

E 0.584567 20 0.029228 7.18 0.000

TwO-WRY

iat§.ractig.'l!s:

AB 0.004742 4 0.001186 2.04 0.096

AC 0.002076 8 0.000260 3.75 0.000

AD 0.008282 8 0.001035 3.22 0.002

AE 0.115938 80 0.001449 2.38 0.000

BC 0.002447 2 0.001224 4.99 0.012

BD 0.000497 2 0.000248 0.50 0.612

BE 0.036232 20 0.001812 2.01 0.019

CD 0.007870 4 0.001968 8.11 0.000

CE 0.019824 40 0.000496 1.39 0.134

DE 0.071619 40 0.001790 2.75 0.000

Thne-wqy
ilJ:t.§.r~ti2nl:

ABC 0.000146 8 0.000018 0.26 0.977

ABD 0.002570 8 0.000321 1.14 0.337

ABE 0.046415 80 0.000580 1.91 0.000

ACD 0.002997 16 0.000187 3.27 0.000

ACE 0.011082 160 0.000069 0.87 0.811

ADE 0.051386 160 0.000321 1.10 0.270

BCD 0.000125 4 0.000031 0.26 0.902

BCE 0.009809 40 0.000245 1.72 0.017

260

Table 6.2 Analysis of Variance for significance tests for existing and new testing
methods continued

T.lJOl.e-mu
interactions:

BDE 0.019998 40 0.000500 1.41 0.067

CDE 0.019410 80 0.000243 1.86 0.002

Four-way
;'nter{l£.tions:

ABCD 0.000888 16 0.000055 1.19 0.273

ABCE 0.011083 160 0.000069 1.49 0.002

ABDE 0.044954 160 0.000281 6.03 0.000

ACDE 0.018358 320 0.000057 1.23 0.032

BCDE 0.009583 80 0.000120 2.57 0.000

Five-way
interactifl.ns;

ABCDE

Total

Note:

0.014909 320 0.000047

A = existing and new testing methods (repeated measures factor with 5
levels)

B = number of attributes with missing values (repeated measures factor
with 2 levels)

C = missing data proportions (repeated measures factor with 3 levels)

D = missing data mechanisms (repeated measures factor with 3 levels)

E = datasets (random effects with 21 levels)

p-values below 0.01 indicate statistically significant effects at the 1%
significance level.

261

Table 7.2 Analysis of Variance for significance tests for ensemble and missing

data methods

Source of variation Sum of Degrees Mean-Square F-ratio p-value
Squares of

freedom

Main effects:

A 0.044556 3 0.014852 7.13 0.000

B 0.111257 1 0.111257 74.03 0.000

C 0.527178 2 0.263589 1061.86 0.000

D 1.915321 2 0.957661 750.31 0.000

E 0.369428 20 0.018471 5.11 0.000

Two-wqy
interg&tionB:

AB 0.011480 3 0.003827 4.08 0.010

AC 0.002627 6 0.000438 3.27 0.005

AD 0.006761 6 0.001127 4.77 0.000

AE 0.124956 . 60 0.002083 2.00 0.003

BC 0.002988 2 0.001494 9.44 0.000

BD 0.004389 2 0.002195 10.79 0.000

BE 0.030057 20 0.001503 1.45 0.134

CD 0.002779 4 0.000695 4.21 0.004

CE 0.009929 40 0.000248 0.84 0.724

DE 0.051054 40 0.001276 3.52 0.000

Three-19M'

il1t.f.ractiol1l:

ABC 0.000516 6 0.000086 0.91 0.487

ABD 0.001787 6 0.000298 1.70 0.126

ABE 0.056220 60 0.000937 4.93 0.000

ACD 0.001098 12 0.000092 1.19 0.293

ACE 0.016071 120 0.000134 1.45 0.046

ADE 0.028362 120 0.000236 1.36 0.056

BCD 0.000451 4 0.000113 1.64 0.173

BCE 0.006331 40 0.000158 1.89 0.020

262

Table 7.2 Analysis of V ariance for significance tests for ensemble and missing
data methods continued

x.l!ree.YZQ!
illtCractiolHi

BDE 0.008139 40 0.000203 1.23 0.211

CDE 0.013213 80 0.000165 2.46 0.001

Four-yzqy

illtCractionBi

ABCD 0.000592 12 0.000049 0.63 0.820

ABCE 0.011279 120 0.000094 1.19 0.129

ABDE 0.020999 120 0.000175 2.22 0.000

ACDE 0.018515 240 0.000077 0.98 0.570

BCDE 0.005503 80 0.000069 0.87 0.762

Five.yzay

illtfJ:.G!J.tions:

ABCDE 0.018942 240 0.000079

Total

Note: A = existing and ensemble missing data methods (repeated measures
factor with 4 levels)

B = number of attributes with missing values (repeated measures factor
with 2 levels)

C = missing data proportions (repeated measures factor with 3 levels)

D = missing data mechanisms (repeated measures factor with 3 levels)

E = datasets (random effects with 21 levels)

p-values below 0.01 indicate statistically significant effects at the 1%
significance level.

263

	418465_001
	418465_002
	418465_003
	418465_004
	418465_005
	418465_006
	418465_007
	418465_008
	418465_009
	418465_010
	418465_011
	418465_012
	418465_013
	418465_014
	418465_015
	418465_016
	418465_017
	418465_018
	418465_019
	418465_020
	418465_021
	418465_022
	418465_023
	418465_024
	418465_025
	418465_026
	418465_027
	418465_028
	418465_029
	418465_030
	418465_031
	418465_032
	418465_033
	418465_034
	418465_035
	418465_036
	418465_037
	418465_038
	418465_039
	418465_040
	418465_041
	418465_042
	418465_043
	418465_044
	418465_045
	418465_046
	418465_047
	418465_048
	418465_049
	418465_050
	418465_051
	418465_052
	418465_053
	418465_054
	418465_055
	418465_056
	418465_057
	418465_058
	418465_059
	418465_060
	418465_061
	418465_062
	418465_063
	418465_064
	418465_065
	418465_066
	418465_067
	418465_068
	418465_069
	418465_070
	418465_071
	418465_072
	418465_073
	418465_074
	418465_075
	418465_076
	418465_077
	418465_078
	418465_079
	418465_080
	418465_081
	418465_082
	418465_083
	418465_084
	418465_085
	418465_086
	418465_087
	418465_088
	418465_089
	418465_090
	418465_091
	418465_092
	418465_093
	418465_094
	418465_095
	418465_096
	418465_097
	418465_098
	418465_099
	418465_100
	418465_101
	418465_102
	418465_103
	418465_104
	418465_105
	418465_106
	418465_107
	418465_108
	418465_109
	418465_110
	418465_111
	418465_112
	418465_113
	418465_114
	418465_115
	418465_116
	418465_117
	418465_118
	418465_119
	418465_120
	418465_121
	418465_122
	418465_123
	418465_124
	418465_125
	418465_126
	418465_127
	418465_128
	418465_129
	418465_130
	418465_131
	418465_132
	418465_133
	418465_134
	418465_135
	418465_136
	418465_137
	418465_138
	418465_139
	418465_140
	418465_141
	418465_142
	418465_143
	418465_144
	418465_145
	418465_146
	418465_147
	418465_148
	418465_149
	418465_150
	418465_151
	418465_152
	418465_153
	418465_154
	418465_155
	418465_156
	418465_157
	418465_158
	418465_159
	418465_160
	418465_161
	418465_162
	418465_163
	418465_164
	418465_165
	418465_166
	418465_167
	418465_168
	418465_169
	418465_170
	418465_171
	418465_172
	418465_173
	418465_174
	418465_175
	418465_176
	418465_177
	418465_178
	418465_179
	418465_180
	418465_181
	418465_182
	418465_183
	418465_184
	418465_185
	418465_186
	418465_187
	418465_188
	418465_189
	418465_190
	418465_191
	418465_192
	418465_193
	418465_194
	418465_195
	418465_196
	418465_197
	418465_198
	418465_199
	418465_200
	418465_201
	418465_202
	418465_203
	418465_204
	418465_205
	418465_206
	418465_207
	418465_208
	418465_209
	418465_210
	418465_211
	418465_212
	418465_213
	418465_214
	418465_215
	418465_216
	418465_217
	418465_218
	418465_219
	418465_220
	418465_221
	418465_222
	418465_223
	418465_224
	418465_225
	418465_226
	418465_227
	418465_228
	418465_229
	418465_230
	418465_231
	418465_232
	418465_233
	418465_234
	418465_235
	418465_236
	418465_237
	418465_238
	418465_239
	418465_240
	418465_241
	418465_242
	418465_243
	418465_244
	418465_245
	418465_246
	418465_247
	418465_248
	418465_249
	418465_250
	418465_251
	418465_252
	418465_253
	418465_254
	418465_255
	418465_256
	418465_257
	418465_258
	418465_259
	418465_260
	418465_261
	418465_262
	418465_263
	418465_264
	418465_265
	418465_266
	418465_267
	418465_268
	418465_269
	418465_270
	418465_271
	418465_272
	418465_273
	418465_274
	418465_275
	418465_276
	418465_277
	418465_278
	418465_279
	418465_280
	418465_281
	418465_282

