
Chapter 2
A Combination Framework for Exploiting the
Symbiotic Aspects of Process and Operational
Data in Business Process Optimization

Sylvia Radeschütz, Holger Schwarz, Marko Vrhovnik,
and Bernhard Mitschang

Abstract A profound analysis of all relevant business data in a company is
necessary for optimizing business processes effectively. Current analyses typically
run either on business process execution data or on operational business data.
Correlations among the separate data sets have to be found manually under big
effort. However, to achieve a more informative analysis and to fully optimize a com-
pany’s business, an efficient consolidation of all major data sources is indispensable.
Recent matching algorithms are insufficient for this task since they are restricted
either to schema or to process matching. We present a new matching framework
to (semi-)automatically combine process data models and operational data models
for performing such a profound business analysis. We describe the algorithms and
basic matching rules underlying this approach as well as an experimental study that
shows the achieved high recall and precision.

Introduction

“Information integration is a vibrant field powered not only by engineering inno-
vation but also by evolution of the problem itself” [2]. The increasing number
of web services available within an organization raises a new integration task:
The warehousing and analysis of processes for fast adaption and optimization of
processes [25]. However, these methods usually fall short or require significant
manual labor [5] when it comes to integrating process data with related operational
data from other business applications such as ERP systems. For example, when
trying to optimize the process of a car rental company illustrated in Fig. 2.1, a highly
relevant question to a business analyst is: How do trainings and work experience

S. Radeschütz (�) � H. Schwarz �M. Vrhovnik � B. Mitschang
Universität Stuttgart (IPVS), Stuttgart, Germany
e-mail: sylvia.radeschutz@ipvs.uni-stuttgart.de; holger.schwarz@ipvs.uni-stuttgart.de;
marko.vrhovnik@ipvs.uni-stuttgart.de; bernhard.mitschang@ipvs.uni-stuttgart.de

T. Özyer et al. (eds.), Information Reuse and Integration in Academia and Industry,
DOI 10.1007/978-3-7091-1538-1 2, © Springer-Verlag Wien 2013

29

mailto:sylvia.radeschutz@ipvs.uni-stuttgart.de
mailto:holger.schwarz@ipvs.uni-stuttgart.de
mailto:marko.vrhovnik@ipvs.uni-stuttgart.de
mailto:bernhard.mitschang@ipvs.uni-stuttgart.de

30 S. Radeschütz et al.

Fig. 2.1 Combination of process and operational data

affect the execution time as well as the outcome of the rental process? Answering
this question requires both process data (execution data, paths taken) as well as
operational data related to the employee executing the ContractNegotiation activity
in the process (hire date, trainings). In such a situation, an effective integration
of ERP data with process data makes a valuable contribution by ensuring that all
relevant data is taken into account.

Our approach provides a solution to this matching problem combining process
data models with operational data models of a company. It is novel, because it
goes beyond mere schema or process matching. Instead, operational data models
are matched with process data models. Content and structure of process models
and audit trails that record process data significantly vary from operational data
models, which adds complexity to the matching task. Thus, typical schema matching
rules will fail. In order to distinguish our approach from these classical matching
rules, we call our approach “combination”. In particular, the main contributions of
this paper are:

• We introduce a combination framework for processes and operational data and
explain its processing pipeline covering pairing and filtering steps.

• We elaborate on the main steps of the processing pipeline and the used set of
combination rules. This includes rules that are specific to the combination steps
as they consider process structures (e.g. process variables as well as control and
data flow structures underlying a process) and schema structures.

• Our rules benefit from the technologies developed for semantic web services
and reuse their semantic annotations for variables. The fact that a standard for
annotating messages and services is available [24] emphasizes the pragmatics of
our approach.

• We discuss the benefits of the combination framework and describe a detailed
experimental evaluation. The evaluation shows that our technology provides both
high recall and high precision.

This paper extends the work presented in [16] regarding the following aspects:
More details related to the combination framework and the main steps of the
processing pipeline are presented. Concerning the pairing and the filtering phase,
the focus of this paper is on the algorithms that allow to efficiently apply the

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 31

combination rules. Furthermore, additional experimental results as well as a more
extensive discussion of related work are covered here.

The paper is organized as follows: In section “Related Work”, we discuss
related work. We introduce our combination framework in section “Combination
Framework” and illustrate main aspects by means of an extensive sample scenario.
Sections “Pairing” and “Filtering” introduce the rules and algorithms for the pairing
and filter phase. In section “Evaluation”, we discuss the benefits of the combi-
nation framework and present experimental results, before section “Conclusion”
concludes.

Related Work

The optimization of business processes plays a major role in many companies.
Business performance management [3,6,19,20] or process mining [1,18,21,22,27]
allow to analyze process data and to discover new workflow models out of the audit
logs. Related operational data sources are typically neglected. One of our previous
research work was concerned with the optimization of processes including SQL
statements in BPEL/SQL activities that were executed on operational data [23]. We
developed techniques to analyze and thus to understand control and data flow. This
provides one basis for reusing it here for combining process variables to related
operational data.

Finding combinations between process variables and operational data models
is closely related to many other matching problems. The highest similarity can
be found compared to schema matching or web service matching. The database
community considers the problem of automatically matching schemas [8–10, 17].
The work in this area has developed several methods that try to capture clues about
the semantics of the schemas and suggest matches based on them. Such methods
include linguistic analysis, structural analysis, the use of domain knowledge and
reuse techniques. However, the search for matching operational data with process
variables differs from schema matching in three significant ways. First, content
and structure of the input sources are different: our combination copes with
variables that are nested within other non-matchable process elements while in
pure schema matching all elements might be combinable. Furthermore, the audit
trails vary significantly from operational data storage. Secondly, not every variable
is combinable. It makes no sense to match technical parts of a variable with
operational data. Pure name matching produces misleading results. Thirdly, the
process variables are typically much more loosely related to each other than tables
in a schema, and each web service in isolation has less information than a schema.
Hence, we lose tremendous semantic preciseness if we only rely on techniques for
schema matching in this context.

Recent work for matching web services [4,12] proposes annotating web services
manually with additional semantic information, and then using these annotations
to compose new services automatically. But there, the goal is to ease the modeling

32 S. Radeschütz et al.

and monitoring of business processes by support of domain ontologies. In [7, 11],
non-annotated web services are combined. However, all approaches refer to web
services only. A combination of business process artifacts with operational data, as
we describe it here, has not been suggested so far. Furthermore, they only focus on
web service interfaces and not on the process itself, as we do. We consider process
semantics, since we go deeper into the process structure by looking into control and
data flow issues to find relationships.

Approaches in [5, 26] combine process and operational data models by hand.
However, this is very cumbersome and error-prone for such huge data amounts. We
think it is worthwhile to face the challenge of automatically combining this data and
developed a technology for exactly this.

Combination Framework

In this section, we briefly describe the pipeline approach of our combination
framework and present its input models, i.e., the process model, the operational
data model as well as the annotation model. We also define the combination results
of each step and the final combination result.

Pipeline and Processing Overview

The processing pipeline shown in Fig. 2.2 creates a set of combinations (COM)
between process variables (PV) and operational schema elements (S). Each step
requires a different fraction of input sets: partially-annotated process variables
(PV) and schema elements (S) or their annotated components (PVOnt, SOnt), the
annotation ontology (Ont), and the annotated (POnt) or partially-annotated process
context (P) of the variables.

In order to reflect the different input data, we distinguish two basic processing
pipelines: (i) partially-annotated Pairing ! structure-based Filtering ! manual
Filtering and (ii) annotated Pairing ! structure-based Filtering ! manual Filter-
ing. Partially-annotated pairing covers the pairing of partially annotated process
context, process variables and schema elements. If all elements involved in a pairing
step are annotated, we consider it as annotated pairing.

After being converted to the internal representation format of the framework, the
process models and schema models are traversed in the pairing phase to determine
at least one matching schema element for each process variable with a similarity
value between 0 and 1. If different rules estimate a combination, the highest value
is taken. One pairing step performs reasoning over Ont and annotated elements.
For this annotated pairing a reasoner determines an intermediate combination
result consisting of semantically annotated variables and corresponding semanti-
cally annotated schema elements with a similarity value. It applies combination

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 33

Fig. 2.2 The combination framework covers rules for annotated and partially-annotated pairing
and structure-based filtering. It provides combination triples that consist of combinations of process
variables and schema elements as well as a similarity value between 0 and 1

rules R1–R5. The partially-annotated pairing step finds combination results for
combinations of annotated and non-annotated elements. In R6, we exploit well-
known matching techniques using names of schema elements or process variables.
R7–R10 are essential to consider the ontology, the data flow or other process
features for combination. They are applied in both pairing steps. The framework
also supports an easy adaption of exiting rules and the extension with new rules.

In the structure-based filtering step the results from the pairing steps are refined
by considering element hierarchies in PV and S or process features contained in
P . It uses well-known structural matching techniques (shaded in dark-gray) with
features like the elements’ path or data types (R11, R14), but also needs novel rules
R12 and R13. The manual filtering step derives the final result by user interaction.
Process variables are visualized together with their proposed combinations for
changing them manually. For a pure automatic combination this step is skipped
or just serves as a visualization output.

Schema Annotation is executed when the process side is semantically annotated
but the operational data elements are not. This is quite often the case as the trend
goes towards semantic web services but database annotations are still not widely-
used. As our framework applies common schema matching algorithms to find
matches between ontology Ont and partially-annotated schema elements S , we do
not go into detail here. After matching, the results are stored as semantic annotations
into the operational metadata SOnt. Then annotated pairing is executed using these
annotations together with the given variable annotations PVOnt.

34 S. Radeschütz et al.

Input and Output Models

BPEL process models consist of various components, e.g. process variables PV that
are in the focus of our combination framework. They consist of XML schema types,
or their types are defined in a WSDL (Web Service Description Language) file. All
process variables and also their operations and interfaces in the WSDL description
of the process may be annotated by a given ontology Ont.

Other parts in the process also give valuable information for the combination.
This includes names of activities and both data flow and control flow aspects
modeled by these activities. The correlation set also supplies context information
with its name and structure. It is used for routing subsequent messages between
two web services to the correct process instance. How this process knowledge is
exploited in the framework is shown in the next sections.

We consider an operational data model S as a collection of relational tables and
views or a collection of XML elements and their attribute elements. Operational
data models can be available with their semantic annotations as described in [14].
The combination result COM is a set of combination triples of a process variable
element, an operational data element and a similarity value between 0 (dissimilar)
and 1 (very similar) indicating the plausibility of their correspondence.

Definition 1. Let COM D PV � S � sim be a set of combination triples. One triple
indicates that the process variable element vr 2 PV corresponds to the operational
schema element sj 2 S with a similarity value sim from an interval [0,1] of rational
numbers.

Combination triples cover directed combinations because the goal is to find
all match candidates for the variables of a process while accepting that schema
elements may remain unmatched. This goal is different to schema matching where
the elements of both sources aim to find a match partner. Without having to combine
all the schema elements, the combination problem is simplified, as the amount of
process variables is usually smaller than the set of schema elements. A combination
is an n:m-relation, because a variable may map to many schema elements and a
schema element may map to many variables. According to the combination pipeline
from Fig. 2.2, our framework applies various combination steps to determine the
following subsets of COM:

Definition 2. Let COMOnt D PVOnt � SOnt � simOnt be a relation whose domain is
the Cartesian product of PVOnt, SOnt and an interval that includes rational numbers
between 0 and 1. Then, the combination set COMOnt � COM contains combination
triples of annotated process variable nodes in PVOnt � PV and annotated schema
elements in SOnt � S and their similarity value simOnt. COMOnt is created by making
use of an ontology Ont.

Definition 3. Let COMPart D PV � S � simPart be a combination set ComPart �
COM. Then COMPart contains combination triples between process variable nodes
in PV and schema elements in S and their similarity value simPart.

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 35

Definition 4. Let COMStr D PVStr � SStr � simStr be a relation that refines the
combination sets COMOnt and COMPart that contain simOnt > 0 or simPart > 0

by estimating the structural similarity simStr of the nodes in ComOnt and ComPart

respectively. Then, the combination set COMStr D COMOnt [COMPart � COM
contains combination triples of process variable nodes in PVStr and schema elements
in SStr and their similarity value simStr .

COMOnt is the combination result of the annotated pairing step, whereas
partially-annotated pairing leads to the result COMPart. In the partially-annotated
pairing step the pairing rules do not require annotations of the variables and schema
elements, so it can be applied for S and PV . Structure-based filtering can be applied
to both result sets COMOnt and COMPart and leads to COMStr.

Definition 5. Let the value simi be a weighted mean of the similarity of simiP

received from the pairing step and simiStr received from the filtering step: simi D
wweight � simiP C .1 � wweight/ � simiStr , where the constant wweight is in the range of
0 to 1 and simiP is the maximum value of simOnt or simpart.

A final combination triple comi is created by calculating a weighted similarity
simi based on the similarity values from the pairing step and the filtering step.
Definition 5 defines this in analogy to [13]. We accept triples for a combination of
vr and sj where the calculated similarity value exceeds a certain threshold (simi >

threshold).

Sample Scenario

This section describes the input and output sets of the combination framework
for the sample scenario shown in Fig. 2.3. This fragment of a car rental process
describes the selection of a rental car. It is supposed to be optimized in a sense
that expensive long running process parts must be analyzed and revised. All process
variables are marked by # in Fig. 2.3. The process receives its input data by activity
CustomerData with information about a customer and his preferred car model and
checks in activity RentalService if it is available. If no car is available during the
desired rental period, an employee executes the human task ContractNegotiation to
prove if the customer would also accept another car class. The task is assigned to one
of the available roles. Thus, ContractNegotiation can be claimed and executed by all
agents from departments A, B or C. If the customer does not accept an alternative
car the process is canceled. Otherwise, the car is handed over to the customer by an
employee of department D in human task CarHandOver. The operational data in our
scenario (shown in tables Customer, Automobile and Employee) includes useful data
for optimization as well. Thus, these data models are combined with the elements
of the process data models: Element custID of variable inputData with CID of
Customer table (1), table Employee with the executing roles of ContractNegotiation
in TaskVar (2), and variable ServiceInfo with Model of table Automobile (3).

36 S. Radeschütz et al.

Fig. 2.3 RentalCarSelection scenario

Fig. 2.4 Input and output data models of sample scenario

All input and output sets of our combination pipeline are illustrated in Fig. 2.4.
In the left part of this figure, the process and its variables PV are shown. The
variables inputData, TaskVar and ServiceInfo are illustrated referring to activities in
the CarSelection process where they are used. The relevant components of a variable
for the combination procedure are marked in gray. Tree components are defined in
different sources: BPEL, WSDL and variable definitions in XML. On the right side,

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 37

a relational operational schema S is illustrated via a tree-structure with the columns
as leaves. Some components on both sides are annotated by Ont. The concepts
in Ont are represented as a graph and are connected via equivalent, subconcept
or object property relations. Ont further contains axioms like the definition of an
assignee as an employee that is entrusted with a task.

The bottom of Fig. 2.4 illustrates four output triples received by our combination
rules. Each triple comi shows a process variable element and an operational schema
element and their similarity value calculated by our rules. To calculate simi for all
comi , we choose a weight D 0.6 (Definition 5) and a threshold D 0.7.

Pairing

This section describes annotated and partially-annotated pairing. Depending on
whether there is an annotation on none, one or both process and schema input
models, different rules are applicable. Some of these rules are taken from other
matching approaches, some of them are applied to our case, and some are new.
Table 2.1 shows all pairing rules and the similarity value they calculate. Rules and
algorithms for annotated pairing (R1–R5) are further explained in the following two
sections, whereas non-annotated and partially-annotated pairing (R6–R10) is the
subject of sections “Partially-Annotated Pairing Rules” and “Partially-Annotated
Pairing Algorithm”.

Annotated Pairing Rules

All combination rules for annotated pairing are based on reasoning over a given
annotation ontology Ont and calculate a similarity value between annotated ele-
ments. They adapt existing approaches [2, 13] that find matches between names
based on semantic relations defined in a lexicon. Our rules use an ontology instead
and the respective elements are explicitly annotated. Thus, these relations carry
even more weight. Rule R1 (sameConcept), rule R2 (equivalentConcept), rule R3
(subConcept) or rule R5 (union) combine those elements in PVOnt and SOnt that
are annotated by the same ontology concept or that have a synonym, sub Conept or
union relation modeled between their ontological concepts. In the sample scenario,
rule R2 combines custID with column CID, as they are annotated by equivalent
concepts in Ont (see com1 and arrows (a) C (e) in Fig. 2.4). Rule R4 (axiom-based)
makes use of axioms that are defined in the ontology using logical expressions. At
least one antecedent of the axiom may consist of a domain concepts cr while a
consequent consists of cj . If cr and cj are used for annotation like cr for vr and cj

for sj and if both atoms refer to the same parameter x, the elements are combined.
The similarity calculation uses the amount (#) of occurrences of concept cj and cr

in the domains of the axiom divided by the total amount of atoms. For com2, rule

38 S. Radeschütz et al.

Table 2.1 Rules for annotated pairing (R1–R5) and partially-annotated pairing (R6–R10)

Rule Rule name Novelty Similarity value

R1 sameConcept Adapted 1 (match found) or 0 (no match)

R2 equivalentConcept Adapted 1 (match found) or 0 (no match)

R3 subConcept Adapted
#ci in subconcept definitions of concept ck

#subconcepts of ck

R4 axiom-based New
#cr and #cj in domain of atoms in axiom at

#atoms in axiom at

R5 union Adapted 1 (match found) or 0 (no match)

R6 linguistic Old
2�Pt12vŒmaxt22s similarity.t1;t2/�

#tokenvC#tokens

R7 tokenOntology Adapted
2�Pt12c Œmaxt22sjv similarity.t1;t2/�

#tokencC#tokens=v

R8 elimination Adapted 0

R9 dataFlow New simi

R10 correlation New simi or cf. R6 or R7

R4 combines TaskVar.assignee annotated by (b) with Employee annotated by (d)
exploiting the given axiom in Ont. A third atom in the axiom models the relation
entrustedWithTask. The relation is based on the domain concept Employee. Thus,
rule R4 calculates sim D 3

3
as all atoms are based on one of the concepts used for

annotation.

Annotated Pairing Algorithm

Algorithm 1 illustrates the annotated pairing procedure. It gets annotated process
variables PVOnt, annotated operational schema models SOnt and the referred ontol-
ogy Ont as input. It finds all meaningful combinations and stores them together
with a similarity value in a triple set COMOnt as output. The concepts used for
annotation in PVOnt and SOnt must come from the same ontology to be able to apply
the following rules.

In a first step, the algorithm identifies all used concept groups (Groups) within
ontology Ont. Concept groups are sets of ontology concepts which are used for
annotation of one or more variables or models containing equivalent concepts in
one group. The algorithm calls function getEquivalentAndUnionConcepts in order
to find all concept groups for the given annotation sets with elements referring to
the equivalent or union concepts.

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 39

Algorithm 1: Annotated pairing
Input: AnnotationSet PVOnt, AnnotationSet SOnt, Ontology Ont
Output: CombinationTripleSet COMOnt

Groups getEquivalentAndUnionConcepts.PVOnt; SOnt; Ont/
for all concept in Ont do

cG findGroup.concept; Groups/
if jcGj is not empty then

COMOnt addSameUnionEquivalentTriples.cG/

COMOnt addSubConceptTriples.cG; Ont/
COMOnt addAxiomTriples.cG; Groups; Ont; COMOnt/

end if
end for

Then Ont is traversed. For this traversal, we build a spanning tree of the ontology
graph with view to its subconcept structure. The name of the ontology defines the
root. To obtain the tree we only use simple subconcept relationships, i.e., concepts
that are deduced only from one concept branch. Complex subconcepts (concepts
with more than one parent from different ontology branches) are allocated to the
first referred sub concept in the description.

Function findGroup estimates for each concept in Ont whether it belongs to a
concept group. If so, we store the concept group in cG and apply our rule set for cG.
This way, all combination triples are determined in an iterative way, until we have
processed all rules. First, combination triples in a concept group are searched (rules
R1 (sameConcept), R5 (union) and R2 (equivalentConcept)) with their similarity
value. If a concept group contains both variable and operational model annotation
sets, each variable is combined with each schema element in this group (addSame-
UnionEquivalentTriples). Afterwards function addSubConceptTriples finds triples
where the variable concept and the operational model concept are located in
different concept groups in the path from the leaf to the concept group cG in Ont. As
this algorithm works on models instead of data instances, we use simple subconcept
relations in rule R3. For complex relations, we mark these combination triples and
prove the combinability later in the cleansing phase on the instance data.

Function addAxiomTriples is based on rule R4 and parses all axioms in Ont.
Axioms create new relationships between concepts in an ontology with the use of
logical expressions. The function seeks axioms that have one of the concepts in
cG in the antecedents and a concept of the consequences in another concept group
and that are not yet in COMOnt. For simple axioms that consist only of different
concepts, compatible elements can be combined, if one concept is used in the
annotation set PVOnt and the other one in SOnt and if both axiom concepts contain
the same parameters. In complex axioms containing also properties, domain and
range concepts of the properties are extracted before concepts of different annotation
sets can be correlated if they refer to the same parameters in the axiom. In rule
R4, the results are also marked and validated on instance data in the cleansing
phase.

40 S. Radeschütz et al.

Partially-Annotated Pairing Rules

The partially-annotated pairing aims to find combinations between elements in
PV and S , which are not or only partially annotated. Rule R6 (linguistic) applies
common matching techniques to the names of the elements as discussed in other
papers. See [13] for the similarity calculation. Rule R7 (tokenOntology) adapts R6
and compares the element names with concept names that are associated with one
of these elements. This enables the usage of Ont for further derivations.

Rules R8–R10 do not obey Definition 5, but have their own similarity calculation.
Rule R8 (elimination) discards defined elements like preposition and articles
[13]. We extend this idea to exclude variables with pure controlling purpose
from the result. All combinations containing such an element are eliminated, i.e.,
their similarity value is set to 0. Rule R9 (dataFlow) exploits data dependencies
considering assign activities that copy data from one variable vi to a variable vj .
From the found triples derived for vi , rule R9 copies an operational match partner
and similarity value simi to the variable vj . For com3 in Fig. 2.4, rule R9 uses com4

that was found by other combination rules. Rule R9 copies Automobile.Model and
the similarity 0.85 to ServiceInfo. . . request and receives com3, due to the assign
activity SetServiceData. Rule R10 (correlation) considers shared aliases referenced
in a correlation set of the process. The alias contains property labels for different
variables vi , vr . If vi is already in COM its matched element sj and simk are copied
to vr . Otherwise, the labels of the alias and the properties are tried to be matched to
all s 2 S . Finding a partner sj leads to the triples (vi , sj , simk) and (vr , sj , simk).

Partially-Annotated Pairing Algorithm

Algorithm 2 illustrates the partially-annotated pairing procedure based on a RuleSet
consisting of rules R6–R10. It gets process variables PV and operational schema
models S that contain also the annotated sets PVOnt and SOnt as input as well as
the referred ontology Ont and the process context in P . It finds all meaningful
combinations together with their similarity value and stores them in a triple set
COMPart as output.

We linearize the given variable and schema trees (function getList). Algorithm 2
traverses the given linearizations of the input set PV . We apply our rule set for each
variable and schema node. This way, all combination triples are determined in an
iterative way, until we have processed all rules.

First, it checks if the current node pv can be skipped by rule R8 (elimination).
Otherwise it traverses the linearizations of the input set S and the rules in the rule
set until a combination is found or all rules have been traversed. Once a rule can be
applied by function applyTokenRules, the combination triple is stored in COMPart

with its similarity value calculated by the rules. Finally, the rules R9 and R10 are
applied for all found combination triples in COMPart and—if we do not separate the

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 41

Algorithm 2: Partially-annotated pairing
Input: VariableSet PV , SchemaSet S , Ontology Ont, Process P

Output: CombinationTripleSet COMPart

COMPart ;
for all pv in getList(PV) do

if (R8(pv)) D false then
for all s in getList(S) do

repeat
rule getNextRule.RuleSet/
COMPart applyTokenRules.pv; s; rule; Ont/

until RuleSet fully traversed
end for
for all comi in COMOnt [COMPart do

COMPart applyR9.pv; P; COMOnt; COMPart/

COMPart applyR10.pv; P; COMOnt; COMPart/

end for
end if

end for

execution of both partially-annotated and annotated pairing rule sets—in COMOnt.
They evaluate the process context P if pv is able to be combined with a schema
element s that was used in comi .

Filtering

The filtering steps refine the received combination triples by taking the context of the
elements into account and allowing users to adjust false and missing combinations.
At the end, our framework calculates a weighted sim value (Definition 5) and returns
the final triple set COM.

Structure-Based Rules

The structure-based rules exploit the context of the variable and the operational
schema elements given in a combination triple to achieve higher accuracy for the
found triples in COM. By using the similarity values in Table 2.2, we define a
combined structure-based similarity value simstr D ˛ � simR11 C ˇ � simR12 C
� � simR13 C ı � simR14 with the weights ˛,ˇ,� ,ı � 0 and ˛ Cˇ C� C ı D 1. In the
sample scenario all these weights are equally set to 0.25. The rule R11 (path) and the
rule R14 (dataType) are based on [13]. R11 refines results in COM by considering
matches between their parent elements, e.g., between their parent names. Rule R14
inspects the similarity between elements by their data type category. Rule R12
(processStructure) looks for hints in the control flow. It considers e.g., the names

42 S. Radeschütz et al.

Table 2.2 Structure-based rules

Rule Rule name Novelty Similarity value

R11 path Old
combined sim of parent matches of vi and si

Min.#pathToRoot.vi /;#pathToRoot.si //

R12 processStructure New
combined sim of matches.controlflow.vi /; path.si //

#controlFlowParents.vi /

R13 WSDLAnnotation New
1

minDistance.cp; cs/
or 0 (if not annotated or simi > 1)

R14 dataType Old 1 (same datatype group) or 0 (different datatype)

of partner links or activities that work on the respective variable. Furthermore, it
estimates the similarity via matching the names of these process components to the
operational partner element or its parents. Rule R13 (WSDLAnnotation) exploits the
annotation cp of a process component that employs a variable vi of a combination
comi D .vi ; si ; simi /. It traverses the ontology subtree below concept cp to find the
minimum distance between the annotations cp and cs of si . simR13 calculates the
fraction using this distance between the concepts cp and cs .

In com1 of Fig. 2.4 structure-based similarities simR11D 1
2
, simR12D 1

2
, simR13D 1

3
,

and simR14D1 are combined to simStr1 D 7
12

. Rule R11 calculates the minimum
path (#pathToRoot(CID)D2) to root RentalSchema and summarizes the similarity
of parent matches, i.e., of Customer and RentalSchema with parent element names
of custID in the variable tree inputData and receives 1 (CustomerData matches
Customer). R12 counts three control flow parents that use custID: CustomerData,
CustomerInfoAquisition and CarSelection. As only the first two match with the
operational parent Customer, we get a combined sim D 1 C 1

2
C 0. Rule R13

results in 1
3
, as the distance in Ont from the concept ID of CID (e) and the concept

CarSelection that annotates the WSDL operation initiate (c) that uses custID, adds
up to 3. simR14 is 1, because both custID and CID have the same datatype integer.
The overall similarity sim1 results in 0:6 � 1 C 0:4 � 7

12
D 0:83.

Structure-Based Algorithm

Algorithm 3 illustrates the structure-based filtering procedure. It gets as input
the process P with its variables PV and an operational schema model S. Both
may contain annotated sets. Further inputs are the referred ontology Ont, the
annotation set of further process description elements POnt as well as already found
combination triples in COMOnt and COMPart.

The goal of the algorithm is to receive a refinement of these combinations as
output COMStr . It traverses the given combinations in COMOnt [COMPart found
by Algorithms 1 and 2. First, it extracts the variable node pv by function getPV
and the schema node s by function getSValue of the combination triple comi with

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 43

Algorithm 3: Structure-based filtering
Input: Process P , VariableSet PV, SchemaSet S , COMOnt, COMPart,

Ontology Ont, AnnotationSet Pont, weights ˛, ˇ, � , ı

Output: CombinationTripleSet COMStr

COMStr ;
for all comi in (COMOnt [COMPart) do

if simi > 0 then
pv getPV.comi /

s getSValue.comi /

psim applyPathRule.pv; s; P; S/

csim applyProcessStructureRule.pv; s; P; S/

osim applyWSDLAnnotationRule.pv; s; S; Ont; POnt/

dsim getDatatypeSimilarity.pv; s; simStr/

simStr getSimValue.psim; osim; dsmin; ˛; ˇ; �; ı/

COMStr mergeSimilarity.comi ; COMStr; simStr/

end if
end for

simi > 0. For each triple, all structure-based rules are applied and a similarity
value is calculated in all rules: psim (R11), csim (R12) and osim (R13). Csim
is estimated by applyProcessStructureRule between pv and s using their related
process P and schema set S to find relationships between further process parts and
schema elements. Psim is estimated by the function applyPathRule. The more levels
there are in the two tree paths, the more valuable becomes this rule.

Function applyWSDLAnnotationRule is illustrated in Algorithm 4. It returns osim
by extracting all annotated description elements in POnt that use pv via function
getDescriptionElements and stores them in POntjpv. Function getSchemaParents
extracts all parents of the given schema element s. For each description element
pi annotated by ck and all parents in sParent searchOntologyMatches aims to
find the nearest concept cj that annotates sParent. If it is successful (cj ¤ ;),
calculateOntologySimilarity estimates osim as distance between cj and ck . Function
getDatatypeSimilarity applies R14 to determine the correspondence of the datatypes
of the found combination elements.

At the end of Algorithm 3, function getSimValue calculates the similarity simStr

of the current triple comi combining all received structural similarity values using
the given weights alpha, beta, gamma and delta. Then function mergeSimilarity
estimates the combination triple set ComStr by merging comi in conjunction with
simStr with all triples in ComStr watching that one (variable – schema) combination
exists only once, namely the combination with the highest similarity value.

Manual Filtering

Given the fact that no fully automatic solution is possible, a user-friendly interface
is essential for the practicability of a match system. The graphical user interface
of the editor described in [15] provides the user with many ways to influence the

44 S. Radeschütz et al.

Algorithm 4: applyWSDLAnnotationRule
Input: VariableNode pv, SchemaElement s, SchemaSet SOnt, Ontology Ont, AnnotationSet

POnt

Output: osim
osimD 0
POntjpv getDescriptionElements.pv; POnt/

for all pi .ck/ in POntjpv) do
sParent getSchemaParents.s; SOnt/

cj searchOntologyMatches.sParent; ck; Ont/
if cj ¤ ; then

osim calculateOntologySimilarity.cj ; ck; Ont/
end if

end for

match process. It allows to configure the reasoners before combination, to iteratively
refine the proposed correspondences during combination, as well as to manipulate
the obtained match results after combination. To provide feedback, the user can
remove false matches or add missing ones. The manually added combinations are
automatically provided with the highest similarity 1 and are stored in COM.

Evaluation

In this section, we discuss the benefits of the combination framework and analyze
the effectiveness of the combination rules.

Benefits of the Combination Framework

Pure schema matching would not find any matches at all if we apply it to the
raw source process without extracting the XML variables from the BPEL process.
In our sample scenario, standard schema matching would perhaps be able to find
com1, if it is able to work on ontology mappings. However, com2 and com3 would
not be found, as user-defined ontology axioms and process context are usually not
considered during schema matching. Instead, we would find a wrong match between
TaskVar.title and Customer.title. Rule R8 excludes this combination.

Applying the pairing and structure-based algorithms to the sample scenario
reveals multiple combination triples shown in Fig. 2.4 that turn out to describe the
useful relations marked in Fig. 2.3. We may discover in (1) a correlation between
the assets of customers (type of credit card) and canceled processes. In order to
win wealthy customers, they should be routed to special services. The performance
of ContractNegotiation in (2) depends on the employee and his skills. To increase

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 45

the number of accepted tasks, a reorganization of these roles is needed. In (3), an
adequate provisioning of resources is needed for cars with certain features.

While for non-annotated attributes our framework provides partially-annotated
combination rules, for annotated process and operational data it critically depends
on ontologies and annotations. At the moment we still have an overhead of
annotating this data. However, more and more web services will be provided with
annotations for enabling a semantic service detection at runtime. So our framework
will also benefit from these ambitions.

Experimental Setup

The experimental setup consists of the data models of the business processes,
the operational database schema and an ontology for semantic annotation. For
evaluation, we used 20 different BPEL processes averaging 10 variables each with
4–10 matchable elements and one schema with about 400 attributes. Processes and
schemas come from the car rental domain. The ontology was modeled in WSML
and contained all concepts needed for annotation.

To evaluate the quality of our rules, we compared the manually determined real
combinations R with the combinations T returned by our tool. We determined the
correctly identified combinations C. Based on the cardinalities of these sets, two
quality measures are computed (cf. [8]): PrecisionD jC jjT j estimates the reliability of

the combination predictions, recallD jC jjRj specifies the share of real combinations that
is found. Because of sparse element interrelations in the variables, the structural
results are lower weighted as the rest and wweight (see Definition 5) is set to 0.6. Our
tool determines T by applying our rules with a threshold of 0.7 that was set based
on a significant number of test runs.

Results

In a first set of experiments, we focused on the annotated pairing rules and
the structure-based rules applied to annotated elements. Figure 2.5(a) shows the
combination results. As expected, the recall is very high because all models are
correctly annotated. A detailed analysis reveals that the missing 5 % comes from
some axioms defined in the ontology that contain five predicates and some even
more in their antecedents resulting in a similarity value below the threshold. The
precision results are almost just as well, but some wrong combination results have
been found. Due to the missing check via instance data, the rules R3, R4 and R13
found combinations that cannot be validated with concrete data values. A later
cleansing phase could improve this result.

46 S. Radeschütz et al.

-

a Annotated Pairing
 & Structure-b. Rules

b Partially-an. Pairing & Structure-b. Rules

(1)
R6+R7

(2)
all except R8

(3)
all rules

0.9

0.8

0.7

0.6

0

0.1

0.2

0.3

0.4

0.5

recall
precision

all rules

Fig. 2.5 The evaluation of
combination rules compares
precision and recall for using
(a) all annotated paring rules
and all structure-based rules,
and (b) subsets of the
partially-annotated pairing
rules and all structure-based
rules

The second set of experiments addresses the significance of rules R8–R10 that
exploit process knowledge. It provides the results of partially-annotated-pairing
and structure-based rules applied to non-annotated elements. Figure 2.5(b) shows
combinations obtained by these rules in three different scenarios: (1) shows the
results obtained with rule R6 (linguistic) and rule R7 (tokenOntology) as the only
pairing rules, (2) is based on all partially-annotated-pairing rules except rule R8
(elimination) and in the last one (3) all partially-annotated-pairing rules are applied.
Comparing recall and precision results of (1) and (2), there is only a small impact
of rule R9 and rule R10. Due to our precondition of qualified element names and
lexicon definitions, rules R9 and R10 promise an improvement only in few cases
where the elements are ambiguous and, thus, have been incorrectly matched before.

In (3), the precision value rises due to the application of rule R8. Wrong
combinations with elements in human task variables, e.g., their human task titles,
are deleted from the result set. The rules R6 and R7 reveal some problems, since
they only find tokens with clear separation hints in the name like underscore or
capitalization leading to a still low precision rate. Some other wrong combinations
originate from tokens that appear very often in the variables of the rental domain,
e.g., the token car. This leads to wrong combinations of elements containing this
token, e.g., CarInsuranceID and CarSaleID. A workaround would be to declare car
and other frequent words as stop word. In some cases, the path rule failed to find
structural matches because in flat hierarchies as in operational data models, e.g. of
type relational, there are only two possible levels in the path (table and columns).

Comparing the results in Fig. 2.5(a) and (b3) with the results of well-known
rules R6 and R7 in Fig. 2.5(b1) shows a big gap in precision. That verifies our
claim that the new rules raise precision of the combination. They focus on semantic
annotations (Fig. 2.5(a)) as well as on process-specific issues (elimination, data flow,
correlation in Fig. 2.5(b3)) that have not been taken into account by well-known
rules.

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 47

a Annotated Pairing &
 Structure-based Rules

b Partially-annot. Pairing
 & Structure-based Rules

1

similarity values similarity values
0

0,2

0,4

0,6

0,8

0,2 0,4 0,5 0,6 0,8-1 0,2 0,3 0,5 0,7 0,8-1

precision precision

Fig. 2.6 Evaluation of the
precision of calculated
similarity values. (a)
Annotated pairing &
structure-based rules. (b)
Partially-annot. pairing &
structure-based rules

Faulty calculated similarity values also take effects on precision and recall.
The tool finds true combinations in fact, but might exclude them in some cases
again due to a low, but wrongly calculated similarity value. Thus, we evaluated
the whole result set of all combinations with respect to their precision. Figure 2.6a
calculates the precision for each similarity group for all combinations that were
found by annotated pairing rules. Figure 2.6b illustrates the same calculations
for the partially-annotated pairing rules. In both tables, the precision results for
combinations the tool found with a similarity value below 0.7 are very low.
In contrast most combinations found with similarity value above 0.7 are correct
combinations (high precision). This is why we set the threshold to 0.7 during the
experiments. Amongst others, the correct setting of the threshold depends on the
complexity of the rules. Further experiments and analysis revealed that in other
settings, e.g., if the combinations are basically derived by the dataFlow rule using
complex assignment activities, the similarity threshold should be adjusted to a lower
value.

Conclusion

We have shown a promising approach to combine business process variables
with operational schemas. It adds another level of combination on top of well-
known schema matching approaches by considering the impact of business process
features. Based on a prototype and a case study, we have evaluated that our approach
derives significant combination results that previous approaches have not found.
In future work, we will extend our combination framework with respect to input
models and well-known matching rules.

48 S. Radeschütz et al.

References

1. Agrawal R et al (1998) Mining process models from workflow logs. In: Schek H-J, Saltor F,
Ramos I, Alonso G (eds) 6th international conference on extending database technology,
advances in database technology – EDBT’98, Valencia, 23–27 Mar 1998

2. Bernstein PA, Haas LM (2008) Information integration in the enterprise. Commun ACM
51(9):72–79

3. Bruckner RM, List B, Schiefer J (2002) Striving towards near real-time data integration for data
warehouses. In: 4th international conference on data warehousing and knowledge discovery,
DaWaK 2002, Aix-en-Provence, 4–6 Sept 2002

4. Cardoso J, Sheth AP (2006) Semantic web services, processes and applications. Springer,
New York

5. Casati F et al (2007) A generic solution for warehousing business process data. In: Koch C et al
(eds) Proceedings of the 33rd international conference on very large data bases, University of
Vienna, Vienna, 23–27 Sept 2007

6. Castellanos M, Casati F, Dayal U, Shan M-C (2004) A comprehensive and automated approach
to intelligent business processes execution analysis. Distrib Parallel Databases 16(3):239–273

7. Corrales JC et al (2008) BeMatch: a platform for matchmaking service behavior models. In:
Kemper A et al (eds) 11th international conference on extending database technology EDBT
2008, Nantes, 25–29 Mar 2008

8. Do H, Melnik S, Rahm E (2003) Comparison of schema matching evaluations. In: Web, web-
services, and database systems. Springer, Berlin/Heidelberg/New York

9. Do H, Rahm E (2002) COMA – a system for flexible combination of schema matching
approaches. In: Proceedings of 28th international conference on very large data bases VLDB
2002, Hong Kong, 20–23 Aug 2002

10. Doan A et al (2004) Ontology matching: a machine learning approach. In: Handbook on
ontologies (International Handbook on Information Systems). Springer, Berlin/Heidelberg

11. Dong X et al (2004) Similarity search for web services. In: Nascimento MA et al (eds)
(e)Proceedings of the thirtieth international conference on very large data bases, Toronto, 31
Aug–3 Sept 2004

12. Hepp M et al (2005) Semantic business process management: a vision towards using semantic
web services for business process management. In: Lau FCM, Lei H, Meng X, Wang M (eds)
2005 IEEE international conference on e-business engineering, ICEBE 2005, Beijing, 18–21
Oct 2005

13. Madhavan J, Bernstein PA, Rahm E (2001) Generic schema matching with Cupid. Technical
report, Microsoft Research

14. Radeschütz S, Mitschang B (2008) An annotation approach for the matching of process
variables and operational business data models. In: Harris FC Jr (ed) Proceedings of the ISCA
21st international conference on computer applications in industry and engineering, CAINE
2008, Honolulu, 12–14 Nov 2008

15. Radeschütz S et al (2010) BIAEditor – matching process and operational data for a business
impact analysis. In: Manolescu I et al (eds) 13th international conference on extending database
technology EDBT 2010, Lausanne, 22–26 Mar 2010

16. Radeschütz S, Vrhovnik M, Schwarz H, Mitschang B (2011) Exploiting the symbiotic aspects
of process and operational data for optimizing business processes. In: Proceedings of the IEEE
international conference on information reuse and integration, IRI 2011, Las Vegas, 3–5 Aug
2011. IEEE Systems, Man, and Cybernetics Society

17. Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB
J 10(4):334–350

18. Rubin V et al (2007) Process mining framework for software processes. In: Wang Q, Pfahl D,
Raffo DM (eds) International conference on software process, software process dynamics and
agility ICSP 2007, Minneapolis, 19–20 May 2007

2 A Combination Framework for Exploiting the Symbiotic Aspects of . . . 49

19. Sayal M, Casati F, Dayal U, Shan M-C (2002) Business process cockpit. In: Proceedings of
28th international conference on very large data bases VLDB 2002, Hong Kong, 20–23 Aug
2002

20. Schiefer J, Jeng J-J, Bruckner RM (2003) Real-time workflow audit data integration into data
warehouse systems. In: Ciborra CU et al (eds) Proceedings of the 11th European conference
on information systems, ECIS 2003, Naples, 16–21 June 2003

21. van der Aalst WMP (2001) Re-engineering knock-out processes. Decis Support Syst
30(4):451–468

22. van der Aalst WMP (2011) Process mining: discovery, conformance and enhancement of
business processes. Springer, Berlin/Heidelberg/New York

23. Vrhovnik M et al (2007) An approach to optimize data processing in business processes. In:
Koch C et al (eds) Proceedings of the 33rd international conference on very large data bases,
University of Vienna, Vienna, 23–27 Sept 2007

24. W3C (2007) Semantic annotations for WSDL and XML schema. Available: http://www.w3.
org/TR/sawsdl/

25. Weerawarana S et al (2005) Web services platform architecture. Prentice Hall, Upper Saddle
River

26. zur Muehlen M (2004) Workflow-based process controlling. Logos, Berlin
27. zur Muehlen M, Shapiro R (2009) Business process analytics. In: Handbook on business

process management, vol 2. Springer, Berlin

http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/

http://www.springer.com/978-3-7091-1537-4

	2 A Combination Framework for Exploiting the Symbiotic Aspects of Process and Operational Data in Business Process Optimization
	Introduction
	Related Work
	Combination Framework
	Pipeline and Processing Overview
	Input and Output Models
	Sample Scenario

	Pairing
	Annotated Pairing Rules
	Annotated Pairing Algorithm
	Partially-Annotated Pairing Rules
	Partially-Annotated Pairing Algorithm

	Filtering
	Structure-Based Rules
	Structure-Based Algorithm
	Manual Filtering

	Evaluation
	Benefits of the Combination Framework
	Experimental Setup
	Results

	Conclusion
	References

