

Review on Cloud Automation Tools

Varsha C L
4th year UG Student

Computer Science dept.

RV College of Engineering

Dr. Ashok Kumar A R
Associate Professor

Computer Science dept.

RV College of Engineering

Abstract— Traditionally enterprise workloads were deployed and

managed using manual process. It was time consuming because

of the repetitive tasks performed in terms of scaling, configuring

and provisioning of the clusters, virtual machines. The cloud

automation tools help us to speed the process. There are multiple

cloud automation tools, whilst there is no single tool suitable for

every situation. This paper summarizes the benefits offered by

various cloud automation tools.

Keywords—Cloud, Automation tools, Virtual Machine

I. INTRODUCTION

Cloud automation is a software solution which enables the

developers and the IT team to install, configure and manage

the cloud computing services. Thus, allows businesses to

choose the right amount of resources required for cloud

computing [1]. Providing services on demand is the main aim

of cloud computing. But in reality, someone has to create them,

keep monitoring them continuously and delete them when they

are no longer needed. This can require a huge manual effort.

Cloud automation largely revolves around the Infrastructure as

a code. Cloud automation processes and tools use the resource

pools from the cloud to create common configuration items

such as Virtual machines, virtual private networks and

containers. Instances can be created and deployed using these

configuration items [2]. For example, a specific number of

containers can be created using a cloud automation template

which can be used for a microservices application. Also used

for connecting a storage and a database, virtual network

configuration and creating load balancers [3].

Apart from the deployment cloud automation can be used for

workload management and monitor the performance of

application and workload.

II. CLOUD AUTOMATION TOOLS

A. AWS CloudFormation

The Amazon Web Services CloudFormation tools provide

administrators and developers with a simple method to build

set of related resources, supply and upgrade them in organized

and predictable manner. CloudFormation offers sample

templates, or we can build our templates to represent AWS

tools, relevant dependencies our device. Upon implementation

of the AWS tools, we can change and upgrade them in a

managed and consistent manner, effectively adding version

control for AWS infrastructure [4].

Features:

1. Authoring with familiar programming:

The cloud development kit of the AWS enables user to

define applications using familiar programming

languages like Typescript, Python, Java and .NET.

Additionally, it enables us to provide our infrastructure

using AWS CloudFormation directly from our IDE

2. Authoring with JSON/YAML:

Using AWS CloudFormation, an entire network can be

modelled in text. YAML or JSON file are used to define

resources required for configuring or building AWS .

3. Safety Controls:

The provisioning and updating an AWS infrastructure is

automated by AWS CloudFormation in a secured

manner. Rollback Triggers can be used to specify the

CloudWatch We can use Rollback Triggers to specify

the CloudWatch alarm monitored by the CloudFormation

and used for the introduction of slack and replace

process. If any of the alarms are breached, the whole

stack operation is preceded back to deployed state by

CloudFormation[5].

4. Dependency Management:

During stack management behavior AWS

CloudFormation automatically handles dependencies

between our resources. We don't have to worry about

specifying in which order the resource is generated,

modified, or deleted. The appropriate actions to be

performed for stack actions are determined by the

CloudFormation for each resource [5].

5. Managing of Cross-region Cross-Account:

AWS StackSets allows us to provide collection of tools

provided by AWS with a single CloudFormation

template across multiple accounts and regions. StackSets

guarantees that multiple accounts and regions stacks are

automatically and safely supplied, changed or removed

[5].

B. Kubernetes

Kubernetes is a containerized software running and managing

through a community of machines at its core stage. It has been

built with methods that allow predictability, scalability and

high availability for the life of containerized applications and

services. You will decide how your apps operate and how they

will communicate with other applications or the outside world

as a Kubernetes user. You can update or uninstall your

services, update gracefully, and transfer traffic between

various versions of your apps to check functionality or rollback

problems. Kubernetes provides primitive interfaces and

platform composable that enable high levels of flexibility,

power, and confidence to define and manage your application.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS050156
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 05, May-2020

479

www.ijert.org
www.ijert.org
www.ijert.org

Architecture:

Fig.1 Kubernetes Architecture

It is important to know how Kubernetes can have these

functionalities, how it is structured and organized at a high

level. Kubernetes can be regarded as a layer-built network,

with the complexity at the lower levels being resumed by any

higher layer [6].

1. Master Node:

The master node is the first and most critical part for

cluster management of Kubernetes. An administrative

gateway for activities of all kinds. In the cluster, fault

tolerance can be monitored by multiple master nodes.

There are many components to the master node such as

API Server, Scheduler, Controller Manager and ETCD.

API Server: Acts as entry point for all the commands

(REST) used in cluster.

2. Scheduler:

The programmer running node functions. Stores

information about the usage of resources by each node.

The company shall divide the workload.

It also lets you monitor how cluster nodes use the

working load. It helps you to position the workload on

the available resources and to accept the workload.

3. Master/Slave Node:

These are the worker nodes that play an important role in

providing the necessary services for networking and

collaboration between containers, allowing you to allocate

resources to scheduled containers. worker nodes are also

important.

Kubelet: gets an API server Pod setup and ensures the

containers listed are up and running.

Docker Container: These Containers run on worker's

nodes that operates on the Kube-proxy (the cube-proxy

helps in balancing the load and network proxy for the

output of a single working node) pods that are

configured.

Kubernetes essentially binds multiple individual virtual and/or

physical machines in cluster that is linked to each server

through a common network. This cluster is the physical

framework for configuring all the modules, functions and

workloads of Kubernetes.

In the Kubernetes ecosystem, the machines in each cluster

have a particular function. The master machine acts as a

machine (or as a small community in highly accessible

installations). API is provided to users and customers, safety

checks on the other servers, how best to disperse and delegate

work ("scheduling") and orchestrate coordination with other

components, as the brain for the cluster. The server serves as a

portal and brain. The master server serves as the main point of

contact with the cluster and mainly supports the centralized

logic provided by Kubernetes [7].

Certain computers in the cluster are known as nodes: servers

with local and external resources for workload acceptability

and operation. The software and services are made to run in

containers to help with isolation, flexibility and management

so that node is fitted with the runtime of its container (e.g.

Docker).The containers are either created or destroyed based

on the instructions received by the node from the master.

Network rules are changed according to traffic routes and

transit

C. Puppet

An open sourced configuration management tool, used for

private , public and hybrid clouds. It provides its own

configuration language Puppet DSL (Domain -specific

language). The system configurations and infrastructure as

code are defined using a DSL. Puppet enterprise orchestrates

the task-based multi-device management and command

execution. It provides the GUI console to classify and manage

all the deployed cloud machines [8].

Architecture:

Puppet is based on master-slave architecture. The client and

server are interconnected by the secure socket layer. The

puppet architecture has following components [9]:

Fig. 2: Simple Puppet architecture

1. Puppet Master:

Puppet master is a Linux based system which handles all

the configuration related process in the form of puppet

codes. The SSL certificates are checked and marked by

the master.

2. Puppet Slave:

Puppet Slave are working systems used by the client.

Puppet master maintains and manages the slave. The

Puppet agent daemon service runs inside the slave.

3. Repository:

Repository stores the node and server related

configuration. Puppet keeps the official bundle archives

of operating systems. Puppet collections help in gathering

the majority of software required for the utilitarian Puppet

deployment.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS050156
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 05, May-2020

480

www.ijert.org
www.ijert.org
www.ijert.org

4. Catalog:

The compiled format of configuration and manifest files

written in Puppet are called as catalog. It defines the state

and dependency data for all the assets that ought to be

overseen by hub in a specific request.

5. Facts:

The Facts are the key-value pair that contain the

information about the node and master machine. Facts are

used for determining the state of any slave as facts

represent the client states such as operating systems, IP,

network interface.

Features

1. Idempotency:

Puppet supports idempotency, thus same set of

configurations can be run multiple times on the same

machine[10]. Puppet basically checks for the current

status of the target machine and makes changes only if

there is change in configuration

2. Cross-platform:

Puppet helps configuring a the system. Implementation

details is not taken into consideration as it is handled with

the help of Resource Abstraction Layer.

D. Terraform

A tool created by HashiCorp, helps in provisioning the

infrastructure as code. HashiCorp configuration Language is

used to provision a datacenter infrastructure. Used a tool for

versioning, building, and changing infrastructure efficiently.

Many existing service providers are managed by Terraform

with the help of custom in-house solutions [11]

Features:

1. Infrastructure as Code:

The infrastructure can be described using high-level

which is configurable and reusable

It allows us to create a blue-print of infrastructure which

can be versioned too.

2. Execution Plans:

Terraform provides as step named as planning step which

allows user to know the complete details of execution

when the apply is called.

3. Resource Graph:

The resources which can created or modified

independently are parallelized in Terraform by building

graphs. This help the terraform to build the infrastructure

faster and efficiently.

4. Change Automation:

 Terraform uses the execution plan and the resource graph

to make a complex change. Thus, allowing a complex

modification with minimum human errors and interaction.

How Terraform Works

Terraform architecture which is plugin-based , allows the

developers to extend Terraform by either writing new plugins

or modify the existing one. Terraform has two main parts: Core

and Plugins [12].

Terraform Core:

GO programming based command line tool. It helps in creating

infrastructure as code, resource state management, resource

graph construction, execution of plan and communication over

RPC with plugins.

Terraform Plugins:

Invoked by the Terraform core over Remote Procedure call as

binaries which are executable. Terraform plugins are used for

authentication, defining resources and make API calls required

for libraries initialization.

E. SaltStack

A cloud automation tool that uses the Infrastructure as code for

configuration and deployment automation. It is open-source

and python-based software used for remote execution,

configuration management and cloud control. Salt supports

multiple cloud providers such as Azure, AWS, OpenStack,

IBM Cloud and VMware. Salt Stack provisions server and

infrastructure with help of central repository.

Architecture:

SaltStack has highly modular design configured to work with

multiple servers ranging from network system in local to data

centers deployment. It has a simple client-server model with

multiple daemons working in co-ordination. Salt architecture

composes of following components:

1. SaltMaster:

A Master daemon that sends various commands and

configuration to slave daemons.

2. SaltMinions:

A slave daemon that receives commands and

configuration from the master daemon.

3. Execution:

Monitoring in real time using the adhoc and module

commands executed against the slave daemons.

4. Formulas:

These are the states used for various tasks such as

starting a service, monitoring permissions and

installing packages.

5. Grains:

System used for detecting various information and

storing in RAM.

6. SaltCloud:

 Cloud hosts are monitored by the salt cloud

7. SaltSSH:

Used to SSH on systems and execute various

commands.

8. Runners: Applications on the master end used using

the run command of salt.

Fig 3: Simple architecture of SaltStack.

Features:

1. Scalable and fault tolerant:

Salt stack has high fault tolerance, it can connect to

multiple masters at once and used YAML to configure for

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS050156
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 05, May-2020

481

www.ijert.org
www.ijert.org
www.ijert.org

all the masters at once. Salt master can handle around ten

thousand minions.

2. Python API:

Salt is a python based and provides a modular, extensible

programming interface to configure and monitor

applications.

3. Authentication:

Salt provides and secure SSH key pairs used for

authentication.

4. Execution model:

Salt provides tool which can run commands in remote

systems parallelly.

III. CONCLUSION

This paper discussion the features, architecture for each of the

cloud automation tool, also defines the importance of same.

The future work involves the creation of infrastructure in each

of the tool discussed and deploy them. Also analyse the

performance, reliability and scalability of the deployed system.

IV. REFERENCE

[1] Cloud automation [Online]:

https://searchcloudcomputing.techtarget.com/definition/cloud-
automation

[2] R. Zhang, Y. Shang and S. Zhang, "An Automatic Deployment

Mechanism on Cloud Computing Platform," 2016 IEEE 6th
International Conference on Cloud Computing Technology and

Science, Singapore, 2016, pp. 511-518.

[3] S. Callanan, D. O'Shea and E. O'Regan, "Automated Environment
Migration to the Cloud," 2016 27th Irish Signals and Systems

Conference (ISSC), Londonderry, 2016, pp. 1-6.

[4] Amazon Web services white paper on Infrastructure as
code:https://d0.awsstatic.com/whitepapers/DevOps/infrastructure-as-

code.pdf

[5] CloudFormation details [Online]:
https://www.aws.amazon.com/cloudformation/.

[6] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploying

Microservice Based Applications with Kubernetes: Experiments and
Lessons Learned,” in 2018 IEEE 11th International Conference on

Cloud Computing (CLOUD), 2018, pp. 970–973.

[7] “Documentation on Kubernetes, https://kubernetes.io/docs/home/.
[8] J. Hintsch, C. Görling and K. Turowski, "Modularization of Software

as a Service Products: A Case Study of the Configuration

Management Tool Puppet," 2015 International Conference on
Enterprise Systems (ES), Basel, 2015, pp. 184-191.

[9] Puppet architecture documentation

https://puppet.com/docs/puppet/latest/architecture.html
[10] Puppet features documentation:

https://puppet.com/docs/pe/2018.1/pe_new_features.html

[11] Terraform https://www.terraform.io/intro/index.html
[12] Terraform Architecture [Online]:

https://www.terraform.io/docs/enterprise/before-installing/reference-

architecture/index.html
[13] SaltStack [Online]: https://www.saltstack.com/

[14] SaltStack architecture: https://www.saltstack.com/blog/salt-air-25-

overview-salt-architecture/
[15] J. O. Benson, J. J. Prevost and P. Rad, "Survey of automated software

deployment for computational and engineering research," 2016

Annual IEEE Systems Conference (SysCon), Orlando, FL, 2016, pp.
1-6.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS050156
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 05, May-2020

482

www.ijert.org
www.ijert.org
www.ijert.org

