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Net-aware Critical Area Extraction for Opens in VLSI Circuits via Higher-Order
Voronoi Diagrams

Evanthia Papadopoulou

Abstract—We address the problem of computing critical area
for open faults (opens) in a circuit layout in the presence of
multilayer loops and redundant interconnects. The extraction of
critical area is the main computational bottleneck in predicting
the yield loss of a VLSI design due to random manufacturing
defects. We first model the problem as a geometric graph
problem and we solve it efficiently by exploiting its geometric
nature. To model open faults we formulate a new geometric
version of the classic min-cut problem in graphs, termed the
geometric min-cut problem. Then the critical area extraction
problem gets reduced to the construction of a generalized Voronoi
diagram for open faults, based on concepts of higher order
Voronoi diagrams. The approach expands the Voronoi critical
area computation paradigm [1]–[7] with the ability to accurately
compute critical area for missing material defects even in the
presence of loops and redundant interconnects spanning over
multiple layers. The generalized Voronoi diagrams used in the
solution are combinatorial structures of independent interest.

Index Terms—Layout, Critical Area Analysis, Yield Prediction,
Design for Manufacturability, Open Faults, Voronoi Diagrams,
Geometric Min-Cuts, Computational Geometry.

I. INTRODUCTION

Catastrophic yield loss of integrated circuits is caused to
a large extent by random particle defects interfering with the
manufacturing process resulting in functional failures such as
open or short circuits. Yield loss due to random manufacturing
defects has been studied extensively in both industry and
academia and several yield models for random defects have
been proposed (see e.g., [8]–[10]). The focus of all models is
the concept of critical area, a measure reflecting the sensitivity
of a design to random defects during manufacturing. Reliable
critical area extraction is essential for today’s IC manufac-
turing especially when DFM (Design for Manufacturability)
initiatives are under consideration.

The critical area of a circuit layout on a layer A is defined
as

Ac =

∫ ∞
0

A(r)D(r)dr

where A(r) denotes the area in which the center of a defect of
radius r must fall in order to cause a circuit failure and D(r)
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is the density function of the defect size. The defect density
function has been estimated as follows [9]–[12]:

D(r) =

{
crq/rq+1

0 , 0 ≤ r ≤ r0
crp−10 /rp, r0 ≤ r ≤ ∞

(1)

where p, q are real numbers (typically p = 3, q = 1), c = (q+
1)(p−1)/(q+p), and r0 is some minimum optically resolvable
size. Using typical values for p, q, and c, the widely used defect
size distribution is derived, D(r) = r20/r

3. (r0 is typically
smaller than the minimum feature size thus, D(r) is ignored
for r < r0). Critical area analysis is typically performed on
a per layer basis and results are combined to estimate total
yield.

In this paper we focus on critical area extraction for open
faults (opens) resulting from broken interconnects. Open faults
are net-aware, that is, a defect causes a fault if and only
if it actually breaks a net leaving terminals disconnected.
A net is said to be broken if at least one of its terminals
gets disconnected. In order to increase design reliability and
reduce the potential for open circuits designers are introducing
redundant interconnects creating interconnect loops that may
be local or span over a number of layers (see e.g. [13]).
Redundant interconnects reduce the potential for open faults
at the expense of increasing the potential for shorts. Therefore,
the ability to perform trade-offs is important requiring accurate
critical area computation for both opens and shorts. A critical
area extraction tool that fails to take loops into consideration
would falsely penalize designs with redundant elements by
(erroneously) overestimating the actual critical area for opens
while (correctly) registering the increase in critical area for
shorts. The use of redundant elements is heavily discussed in
DFM, thus, the ability to correctly extract critical area, in the
presence of redundancy, is essential.

In previous work on critical area extraction for open faults
interconnects have been typically assumed acyclic, that is,
a defect breaking any path was considered a fault (see e.g.
[14], [2], [15]). An exception is [16] where loops were
being detected and treated as immune to open faults. In [16],
however, critical area was considered strictly over each layout
shape ignoring all critical regions expanding in the free space
or over other shapes, resulting in only a rough figure of critical
area that can be arbitrarily underestimated. Existing methods
for critical area extraction focus mostly on shorts while opens
have been typically treated as a dual problem. The methods
can be roughly grouped into the following categories:

1) Monte Carlo simulation, the oldest most widely used
technique for critical area extraction [17].

2) Iterative shape-shifting techniques that compute A(r) for
several different values of r independently and then use
these values to extract the total critical area integral, see
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e.g., [14]–[16], [18], [19]. Shape shifting techniques are
typically based on shape manipulation tools providing
operations such as expand-shape-by-r and find-area for
a given defect radius r (with the exception of [15], [16]
that are based on plane sweep and work strictly for
Manhattan geometries). For opens, the reverse process
shrink-shape-by-r is typically used, however, it fails
to capture realistically several aspects of open faults.
Layout sampling in combination with shape shifting
techniques were introduced in [20].

3) The Voronoi method [1], [2], [4], [6], [7], [21] which
is using analytical formulas to extract the entire critical
area integral after deriving a subdivision of the layout
into regions that reveal the critical radius (i.e., the
size of the smallest defect causing a fault) of every
point. The critical area integral is typically computed
with no error in a single pass of the layout using
O(n log n) type of scan line algorithms. In addition, the
Voronoi method can be combined effectively with layout
sampling techniques such as those in [20], [22], for a
fast critical area estimate at the chip level.

4) A grid based method introduced in [12] (time complexity
improved in [1]).

In this paper we focus on the Voronoi method and we
expand it with the ability to detect loops and report true open
faults that are net-aware. Loops are not assumed to be immune
to open faults as loops may still be broken by defects, and thus,
they can still contribute to critical area. To model open faults
we first model a VLSI net as a graph of geometric nature
and we introduce a geometric version of the classic min-cut
problem in graphs, termed the geometric min-cut problem. We
then solve the problem efficiently by exploiting its geometric
nature. We formulate a generalized Voronoi diagram for open
faults, termed the opens Voronoi diagram, which is based on
concepts of higher order and Hausdorff Voronoi diagrams
(see [4]). Once the opens Voronoi diagram on a given layer
is available the entire critical area integral can be computed
analytically, in linear time, using the formulas given in [1],
[2], [21].

The algorithms presented in this paper have been integrated
in the IBM Voronoi Critical Area Analysis tool (Voronoi
CAA) [6], [7], currently used in production mode by IBM
manufacturing. For results on the early industrial use of
Voronoi CAA and comparisons with previously available tools
see [23]. An important difference between the Voronoi method
and previous geometric approaches to critical area extraction
is that it can directly compute the entire critical area integral
for all possible defect radii without any repetition. Other
methods typically compute A(r) for a specific defect radius
r and then repeat for a number of radii until they extract
the critical area integral (see e.g. [14]–[16], [18], [19]). In
contrast the Voronoi method computes the critical area integral
directly, using analytical formulas, resulting in no integration
error and in a fast deterministic method. If in addition the
value of A(r), for some specific defect radius r, is desirable,
it can be extracted easily from the corresponding Voronoi
diagram, i.e., A(r) is readily available for any r. The time

complexity is typically considerably lower, for example, the
Voronoi method computes the entire critical area integral for
shorts in total O(n log n) time in a single pass of the layout,
while an efficient shape-expansion based method would take
O(n2 log n) time to compute A(r) for a single medium or
large r, as the number of intersections among the expanded
shapes can be Ω(n2). The Voronoi method, including the
net-aware opens variant presented in this paper, can be ap-
plied to separate layout windows of various sizes (including
large sizes) independently. It is thus adaptable for concurrent
computation or combination with layout sampling techniques,
either random [20] or deterministic [22], that sample a number
of windows over the layout applying the Voronoi critical area
extraction method to a fraction of the entire design.

The methods presented in this paper are applicable to
layouts of arbitrary geometry, and do not assume a Manhat-
tan layout. A Manhattan layout, however, would result in a
simpler implementation. For simplicity, figures are depicted
in Manhattan geometry. Our implementation of Voronoi CAA
assumes ortho-451 geometries in the layout. Throughout this
paper defects are modeled as squares, that is, a defect of size
r is modeled as a square of radius r, i.e., a square of side
2r. This corresponds to computing critical area in the L∞
metric2 instead of the standard Euclidean plane. Square defects
are among the most common simplifications found in critical
area literature. A formal worst case bound for critical area
estimation between the L∞ and the Euclidean metric, i.e.,
critical area estimation between square and circular defects,
is given in [2].

The paper is organized as follows. In Section II we review
basic concepts of Voronoi diagrams as related to the Voronoi
method for critical area extraction that are needed in subse-
quent sections. In Section III we show how to model a net as
a graph of geometric nature to facilitate the modeling of net-
aware opens and the extraction of critical area. In Section IV
we give formal definitions for a net-aware open and the opens
Voronoi diagram and define the geometric min-cut problem.
In Section V we model the opens Voronoi diagram as a special
higher order Voronoi diagram of segments. In Section VI we
discuss the algorithm to compute the opens Voronoi and give
practical simplifications. In Section VII we summarize the
method to extract the critical area integral Ac and A(r), for
a given r, from the the opens Voronoi diagram. Finally in
SectionVIII we provide experimental results.

II. REVIEW OF CONCEPTS OF VORONOI DIAGRAMS
RELATED TO MODELING OPENS

The Voronoi diagram of a set of polygonal sites in the plane
is a partitioning of the plane into regions, one for each site,
called Voronoi regions, such that the Voronoi region of a site
s is the locus of points closer to s than to any other site.
The Voronoi region of s is denoted as reg(s) and s is called
the owner of reg(s). The boundary that borders two Voronoi

1A layout is called ortho-45 if all geometrics are axis parallel or have slope
±1.

2The L∞ distance between two points p = (xp, yp) and q = (xq , yq) is
the maximum of the horizontal and the vertical distance between p and q i.e.,
d(p, q) = max {|xp − xq |, |yp − yq |}.
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Fig. 1. The regions of influence of the core elements of a core segment: two
endpoints and an open line segment. (a) an axis parallel core segment, (b) a
non axis parallel core segment.

regions is called a Voronoi edge, and consists of portions of
bisectors between the owners of the neighboring regions. The
bisector of two polygonal objects (such as points, segments,
polygons) is the locus of points equidistant from the two
objects. The point where three or more Voronoi edges meet
is called a Voronoi vertex. The combinatorial complexity of
the ordinary Voronoi diagram of polygonal sites is linear in
the number, more precisely the total combinatorial complexity,
of the sites. In the interior of a simple polygon the Voronoi
diagram is known as medial axis3 of the polygon. For more
information on Voronoi diagrams see e.g. [25].

Throughout this paper we use the L∞ metric. The L∞
distance between two points p = (xp, yp) and q = (xq, yq)
is d(p, q) = max {|xp − xq|, |yp − yq|}. In the presence of
additive weights, the (weighted) distance between p and q is
dw(p, q) = d(p, q) + w(p) + w(q), where w(p) and w(q)
denote the weights of points p, q respectively. In case of
a weighted line l, the (weighted) distance between a point
t and l is dw(t, l) = min{d(t, q) + w(q),∀q ∈ l}. The
(weighted) bisector between two polygonal elements si and
sj is b(si, sj) = {y | dw(si, y) = dw(sj , y)}. Using the
L∞ metric for critical area analysis corresponds to modeling
defects as squares.

In L∞, Voronoi edges and vertices can be treated as
additively weighted line segments. For brevity and in order
to differentiate with ordinary line segments we use the term
core segment or core element to denote any portion of interest
along an L∞ Voronoi edge or vertex. We also use the term
standard-45◦ edges to refer to Voronoi edges of slope ±1 that
correspond to bisectors of axis parallel lines. Fig. 1 illustrates
examples of core segments. The endpoints and the open line

3There is a minor difference in the definition which we ignore in this paper
(see [24]).

segment of a core segment are differentiated and they are
treated as distinct entities.

Let s be a core segment induced by the polygonal elements
el, er. Every point p along s is weighted with w(p) =
d(p, el) = d(p, er). The 45◦ rays4 emanating from the end-
points of s partition the plane into the regions of influence of
either the open core segment portion or the core endpoints. In
Fig. 1, in the regions indicated as N and S (resp. E and W) the
L∞ distance simplifies to a vertical (resp. horizontal) distance
as indicated by the straight-line arrows emanating from various
points t. The regions illustrated shaded are equidistant from
both the core endpoint and the open core segment and can be
assigned arbitrarily to one of the two. In the region of influence
of a core point p, distance is measured in the ordinary weighted
sense, that is, for any point t, dw(t, p) = d(t, p) + w(p). In
the region of influence of an open core segment s, distance,
in essence, is measured according to the farthest polygonal
element defining s, that is, dw(t, s) = d(t, ei), where ei is the
polygonal element at the opposite side of s than t, see e.g.
the small arrows in Fig. 1. In L∞ this is equivalent to the
ordinary weighted distance between t and s. In the regions
denoted SW, NE, which belong to the open portion of a non
axis-parallel open core segment, the L∞ distance is measured
by the side of a square touching ei as shown in Fig.1b.

The (weighted) bisector between two core elements can now
be defined in the ordinary way, always taking the weights of
the core elements into consideration. Similarly, the (weighted)
Voronoi diagram of a set of core elements can be defined
as given above, with the difference that distance between
a point t and a core element s is always measured in an
additive weighted sense, dw(t, s). The (weighted) Voronoi
diagram of core medial axis segments was first introduced
in [2] as a solution to the critical area computation problem
for a simpler notion of an open, called break, that was based
solely on geometric information. For Manhattan geometries,
core segments are simple (additively weighted) axis parallel
line segments and points.

An important variation of Voronoi diagrams is the so called
farthest Voronoi diagram. The farthest Voronoi diagram of a
set of polygonal sites is a partitioning of the plane into regions,
such that the farthest Voronoi region of a site s is the locus
of points farther away from s than from any other site. For
typical cases (e.g. points, line segments) the farthest Voronoi
diagram is a tree-like structure consisting only of unbounded
regions (see e.g. [25]–[27]). In the L∞ metric, when sites
are points or axis-parallel segments, the structure of the L∞
farthest Voronoi diagram is particularly simple, consisting of
exactly four regions. Figure 2 depicts the farthest Voronoi
diagram of two sets of axis parallel segments. In both cases the
farthest Voronoi diagram consists of an axis parallel segment
(that can degenerate to a point), shown in bold, and four 45◦-
rays, shown as dashed bold rays, that together partition the
plane into four regions. In each region, the L∞ distance to
the farthest element is measured as the vertical or horizontal
distance to an axis parallel line. In Figure 2 these axis parallel
lines are depicted as dashed lines marked by t, b, l, r, where

4A 45◦ ray is a ray of slope ±1.
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Fig. 2. The L∞ farthest Voronoi diagram of axis parallel segments.

t (resp. b) is the horizontal line through the topmost (resp.
bottommost) lower (resp. upper) endpoint of all core segments,
and l (resp. r) is the vertical line through the leftmost (resp.
rightmost) right (resp. left) endpoint of all core segments.
The thin arrows indicate the farthest L∞ distance of selected
points.

III. A GRAPH REPRESENTATION FOR NETS

From a layout perspective a net N is a collection of
interconnected shapes spanning over a number of layers. The
portion of N on a given layer A, N ∩A, consists of a number
of connected components. Every connected component is a
collection of overlapping polygons that can be unioned into
a single shape (a simple one or one with holes). Some of
the shapes constituting net N are designated as terminal
shapes representing the entities that the net must interconnect.
Terminal shapes typically consist of power buses (collection
of shapes representing VDD or GND), gates (intersections
of polysilicon (PC) and diffusion (RX) shapes), Sources and
Drains of Transistors (portions of diffusion shapes as obtained
after subtracting regions overlapping with polysilicon), and
pins of macros. Terminal shapes can also be user defined
depending on user goals. A net remains functional as long as
all terminal shapes comprising the net remain interconnected.
Otherwise the net is said to be broken. Fig. 3(a) illustrates a
simple net N spanning over two metal layers, say M1 and M2,
where M2 is illustrated shaded. The two contacts illustrated
as black squares have been designated as terminal shapes.
In Fig. 3(b), defects that create opens are illustrated as dark
squares and defects that cause no fault are illustrated hollow
in dashed lines. Note that hollow defects do break wires of
layer M1, however, they do not create opens as no terminals
get disconnected.

We define a compact graph representation for N , denoted
G(N), as follows. There is a graph node for every connected
component of N on a conducting layer. A node containing
terminal shapes is designated as a terminal node. Two graph
nodes are connected by an edge if and only if there exists at
least one contact or via connecting the respective components
of N . To build G(N) some net extraction capability needs
to be available. We assume that such capability exists. If not
it is not hard to obtain one using a scan line approach that
detects intersections among shapes on same and neighboring
layers and maintains nets using a union-find data structure for

(b)(a)

Fig. 3. (a) A net N spanning over two layers. (b) Dark defects create opens
while transparent defects cause no faults.

(a) (b)

Fig. 4. The net graph of Fig. 3 before (a) and after (b) cleanup of trivial
parts.

efficiency. Net extraction is a well studied topic beyond the
scope of this paper. For the purposes of this paper we assume
that G(N) can be available for any net.

In practice, the information included in G(N) typically
depends on the portion of layout under consideration. Given
a layout window W of arbitrary size and a margin M
surrounding W , G(N) is typically built based on geometries
included within the augmented window W ∪M ; the intersec-
tions of the identified net geometries with the boundary of
the augmented window are treated as terminals. Clearly, the
larger the layout window and margin the more complete the
information of G(N). In the following, net-aware critical area
extraction is based on the net information provided by G(N),
independently of whether G(N) is complete or the way it has
been identified.

To perform critical area computation on a layer A we first
derive the extended graph of net N on layer A, denoted as
G(N,A), as obtained from G(N) by expanding all compo-
nents of N on layer A by their medial axis. For every via
or contact introduce an approximate point along the medial
axis representing that via or contact, referred to as a via-
point, and a graph edge connecting the via-point with the
corresponding node of of N . If a contact or via has been
designated as terminal shape, designate also the corresponding
via point as terminal. In the presence of via clusters we can
keep only one via point representing the entire cluster. Any
portion of the medial axis induced by edges of terminal shapes
is also identified as terminal. Fig. 4a illustrates G(N,A),
where A = M1, for the net of Fig. 3. Terminal points are
indicated by hollow circles. Dashed lines represent the original
M1 polygon and they are not part of G(N,A).

Given G(N,A) we can detect biconnected components,
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bridges and articulation points5 using depth-first search (DFS)
as described in [28], [29]. For our problem we only maintain
some additional terminal information to determine whether the
removal of a vertex or edge actually breaks G(N,A), i.e.,
whether it disconnects G(N,A) leaving terminals in at least
two different sides. For this purpose we chose the root of the
DFS tree to be a terminal node or terminal point and at every
node i of the DFS tree we keep a flag indicating whether the
subtree rooted at i contains a terminal point.

Any bridges or any articulation points whose removal does
not disconnect terminals of G(N,A) are called trivial. Any
biconnected component incident to only trivial articulation
points that contains no terminal points is called trivial. Trivial
bridges, trivial articulation points and trivial biconnected com-
ponents can be easily determined during the DFS and they
can be removed from the graph with no effect on the net
connectivity regarding opens. In the following we assume that
G(N,A) has been cleaned up from all trivial parts, and thus,
the removal of any bridge or any articulation point always
results in a fault. Fig. 4(b) illustrates the net graph of our
example after the cleaning of all trivial parts. Hollow circles
indicate terminal and articulation points; the graph has exactly
one bi-connected component.

Given G(N,A), cleaned from all trivial parts, the collection
of medial axis vertices and edges, excluding the standard-
45◦ edges6, is denoted as core(N,A) and it is referred to
as the core of net N on layer A; core(N,A) ⊆ G(N,A).
In Fig. 4b, all the depicted medial axis vertices and segments
constitute core(N,A). The core of net N induces a unique
decomposition of the portion of N on layer A into well defined
wire segments. In particular, any core element s induces a wire
segment R(s) = ∪p∈sR(p), where R(p) denotes the disk (i.e.,
the square in L∞) centered at core point p having radius w(p).
Those wire segments may overlap and their union reconstructs
all the non-trivial portions of N ∩A. Figure 5 illustrates some
wire segments as induced by some core segments and core
points.

The union of core(N,A) for all nets N on layer A is
denoted as core(A). Core elements in core(A) represent all
wire segments vulnerable to defects on layer A. Core seg-
ments are assumed to consist of three distinct core elements:
two endpoints and an open line segment. In the following,
opens are determined based on the connectivity information
of G(N,A) and the geometry information of core(N,A).

IV. MODELING NET-AWARE OPENS

In this section we formalize the intuitive definition of
an open that is net-aware and we give definitions for the
terminology used throughout this paper. A defect D breaks
a net N if D overlaps portions of N such that at least one
of its terminal shapes gets disconnected or if a terminal shape

5A biconnected component of a graph G is a maximal set of edges such
that any two edges in the set lie on a common simple cycle. An articulation
point (resp. bridge) of G is a vertex (resp. edge) whose removal disconnects
G.

6The term standard-45◦ refers to portions of bisectors of slope ±1 between
axis parallel lines.

Fig. 5. Wire segments as induced by core elements.

Fig. 6. Generators for strictly minimal opens.

itself gets destroyed. Such a defect is called an open. More
precisely we have the following definitions.

Definition 1: A minimal open is a defect D that breaks a
net N and D has minimal size, that is, if D is shrunk by
ε > 0 then D no longer breaks N . An open is any defect that
entirely overlaps a minimal open. A minimal open is called
strictly minimal if it contains no other open in its interior.

In Fig. 3 the dark shaded disks, other than the original via
and contact shapes, are strictly minimal opens.

Definition 2: The center point of an open D is called a
generator point for D and it is weighted with the radius of
D. The generator of a strictly minimal open is called critical.
A segment formed as a union of generator points is called a
generator segment or simply a generator.

Figure 6 illustrates the generators for strictly minimal opens
for the net graph of our example, thickened; the shaded squares
indicate strictly minimal opens. For brevity we shall say that a
defect D overlaps a core element c, c ∈ core(A), but we shall
mean that D overlaps the entire width of the wire segment
induced by c. Recall from Section III, that core(N,A) induces
a unique decomposition of N into wire segments that are
vulnerable to defects, and that the collection of core(N,A)
for all nets N is denoted as core(A).

Definition 3: A cut for a net N is a collection C of
core elements, C ⊂ core(N,A), such that G(N,A) \ C is
disconnected leaving non-trivial articulation or terminal points
in at least two different sides. Cut C is called minimal if
C\{c} is not a cut for any element c ∈ C. A defect of minimal
size that overlaps all elements of cut C is called a cut-inducing
defect. The centerpoint p of a cut-inducing defect that encloses
no other defect in its interior is called a generator point for cut
C. If in addition the cut-inducing defect is a strictly minimal
open then p is called critical. The collection of all generator
points of cut C is referred to as the generator(s) of C.
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The generator of a cut C can consist of critical and non-
critical portions. Critical portions correspond to generators
of strictly minimal opens. Non-critical portions correspond to
centers of cut-inducing disks that in addition to overlapping
C they may also overlap some additional cut on layer A, and
thus, although they break C, they do not correspond to strictly
minimal opens.

Definition 4: Generators of minimal cuts that consist of a
single core element are called first-order generators. Gen-
erators of minimal cuts that consist of more than one core
element are called higher-order generators. The set of all
critical generators on layer A is denoted as G(A).

In Fig. 6 first-order generators are illustrated as the thick-
ened core segments in the interior of polygons; the vertical
thick segment in the exterior of polygons is a higher order
generator that involves a pair of core elements. By definition
we have the following property.

Lemma 1: The set of first-order generators on layer A, de-
noted as G1(A), consists of all the bridges, terminal edges, ar-
ticulation points, and terminal points of G(N,A)∩core(N,A),
for all nets N . All first-order generators are critical.

The generator of a minimal cut C that consists of more
than one core element must be a subset of the L∞ farthest
Voronoi diagram of C, derived by ignoring the standard-45◦

edges of the diagram. For Manhattan geometries, the generator
of any cut is always a single axis-parallel segment (that can
degenerate to a point), see e.g., Fig. 2. Any generator point p
of a cut C is weighted with w(p) = max{dw(p, c),∀c ∈ C}.
The disk D centered at p of radius w(p) is clearly an open. If
in addition D is strictly minimal then p is a critical generator.

Definition 5: The Voronoi diagram for opens on layer A
is a subdivision of layer A into regions such that the critical
radius of any point t in a Voronoi region is determined by the
owner of the region. The critical radius of a point t, rc(t), is
the size (radius) of the smallest defect centered at t causing
an open.

Theorem 1: The Voronoi diagram for opens on layer A
corresponds to the (weighted) Voronoi diagram of the set G(A)
of all critical generators for strictly minimal opens on layer
A, denoted as V(G(A)).

Proof: Consider V(G(A)) and let t be a point in the
region of a generator g, t ∈ reg(g), g ∈ G(A). By definition,
the disk D(t) centered at t of radius dw(t, g), must entirely
overlap a disk D(p) centered along a point p on g of radius
w(p). Since p is a generator point for strictly minimal opens,
D(p) must be a strictly minimal open, and therefore, D(t)
must be an open. Since t ∈ reg(g), g must be the closest
generator to t (in a weighted sense). Thus, if D(t) is shrunk
by any positive amount ε it will no longer cause an open, as
otherwise there would exist some other generator point closer
to t than g i.e., t 6∈ reg(g). Hence, D(t) is the smallest defect
centered at t that causes an open, and thus, dw(t, g) is the
critical radius of t.

Figure 7 illustrates the opens Voronoi diagram for the net
of Figure 3. The shaded region illustrates the Voronoi region
of higher-order generator g, reg(g). Generator g is the critical
generator of a cut consisting of two core segments as indicated
by two small arrows. The critical radius of a sample point t

g

t

Fig. 7. The Voronoi diagram for open faults on layer A. The shaded region
illustrates the Voronoi region of the higher order generator g.

in reg(g) is indicated by the arrow emanating from t.
Corollary 1: Given the opens Voronoi diagram, the critical

radius of any point t in the region of a generator g, is rc(t) =
dw(t, g). If g is a higher order generator of cut C, then rc(t) =
dw(t, g) = max{dw(t, c),∀c ∈ C}.

The Voronoi diagram for opens provides a solution to the
following problem, termed the geometric min cut problem: We
are given a collection of geometric graphs that have portions
embedded on a plane A, such as the collection of the expanded
net graphs G(N,A). The embedded portions on plane A are
vulnerable to defects that may form cuts on the given graphs.
The size of a geometric cut C at a given point t is the size
of the smallest defect centered at t that overlaps all elements
in C (not the number of edges in C as in the classic min-cut
problem). Compute, for every point t on the vulnerable plane
A, the size of the minimum geometric cut at t. The size of
the minimum geometric cut at a point t is the critical radius
for opens at t.

In the following section, we formulate the Voronoi diagram
for opens as a special higher order Voronoi diagram of
elements in core(A).

V. A HIGHER ORDER VORONOI DIGRAM MODELING OPENS

Let V(A) denote the (weighted) Voronoi diagram of the set
core(A) of all core elements on layer A. If there were no
loops associated with layer A then V(A) would provide the
opens Voronoi diagram on A, and core(A) would be the set of
all critical generators. V(A) for Manhattan layouts has been
defined in detail in [2]. Fig. 8 illustrates V(A) for the net graph
of Fig. 3. The arrows in Fig. 8 illustrate several minimal radii
of defects that break a wire segment. Given a point t in the
region of generator s, dw(t, s) gives the radius of the smallest
defect centered at t that overlaps the wire segment induced by
s. Assuming no loops, dw(t, s) would be the critical radius of
t.

Once loops are taken into consideration, only bridges, artic-
ulation and terminal points, among the elements of core(A),
correspond to critical generators. Let us augment V(A) with
information reflecting critical generators. In particular, the
regions of first-order generators get colored red reflecting the
regions of critical generators. The critical radius of point t in a



7

Fig. 8. The L∞ Voronoi diagram of core(A) on layer A, V(A).

Fig. 9. The first order opens Voronoi diagram on layer A, V1(A). Shaded
regions belong to first-order generators and the critical radius of any point
within is determined by the region owner.

red region of owner s is rc(t) = dw(t, s). In Fig. 9 red regions
are shown shaded and critical generators are shown thickened.

Let us now define the order-k Voronoi diagram on layer A,
denoted as Vk(A). For k = 1, Vk(A) = V(A). Following the
standard definition of higher order Voronoi diagrams, a region
of Vk(A) corresponds to a maximal locus of points with the
same k nearest neighbors among the core elements in core(A).
The open portion of a core segment and its two endpoints
count as different entities. A kth order Voronoi region, k > 1,
belongs to a k-tuple C representing the k nearest neighbors
of any point in the region of C. The region of C is denoted
reg(C) and it is further subdivided into finer subregions by
the farthest Voronoi diagram of C. For any point t ∈ reg(C),
d(t, C) = max{d(t, c),∀c ∈ C}. If C constitutes a cut of a
net N then the region of C is colored red.

In order to appropriately model opens we slightly modify
the above standard definition and in certain cases we allow
fewer than k elements to own a Voronoi region of order k. In
particular we make the following modifications:
• A red region corresponds to a maximal locus of points

with the same r, 1 ≤ r ≤ k, nearest neighbors, C, among
the core elements in core(A), such that C constitutes a
minimal cut for some net N .

• Any time a core segment s and one of its endpoints p
participate in the same set C of nearest neighbors, s is
discarded from C; this is because d(t, p) ≥ d(t, s) ∀t ∈

Fig. 10. The 2nd order opens Voronoi diagram, V2(A). The darker shaded
region belongs to a pair of core segments forming a cut.

reg(C). Intuitively, a defect that destroys a core endpoint
automatically destroys also all incident core segments but
not vice versa.

In the following, the term kth order Voronoi diagram will
imply the above modified version of the diagram.

Figs. 10 and 11 illustrate V2(A) and V3(A) respectively
for the net of our example. kth order Voronoi regions are
illustrated in solid lines; red regions are illustrated shaded. The
darker shaded region in V2(A) shows the 2nd order red region
of a pair of core segments that constitute a cut. The thick
dashed lines indicate the farthest Voronoi diagram subdividing
a kth order region. In a red region, the thick dashed lines
(excluding standard 45◦s) correspond to critical generators.
All critical generators are indicated thickened; solid ones are
first order generators and dashed ones in red regions are higher
order generators. All thin dashed lines in Figs. 9, 10, 11 can
be ignored. Due to our conventions, the Voronoi region of
any core endpoint p in V1(A) remains present in V2(A) and
expands into the regions of the core segments incident to p.

In L∞, the Voronoi subdivision is not unique but depends
on the conventions used on how to distribute regions that
are equidistant from collinear elements on axis parallel lines.
Critical area calculations are immune to such differences as
the numerical result of critical area remains the same no matter
how equidistant regions get distributed. Conventions regarding
equidistant regions, however, may have an effect on number
of iterations to compute the opens Voronoi diagram. We adopt
the convention that critical generators get priority over non-
critical ones and any region equidistant from a critical and a
non-critical generator it is assigned to the critical one and it
is colored red.

Theorem 2: The Voronoi diagram for opens on layer A
is the minimum order m Voronoi diagram of core(A),
Vm(A),m ≥ 1, such that all regions of Vm(A) are colored
red. Any region reg(H), where |H| > 1, is subdivided into
finer regions by the farthest Voronoi diagram of H . The critical
radius for any point t in reg(H) is rc(t) = dw(t,H) =
max{dw(t, h), h ∈ H}.

Proof: Let H be a tuple of core elements, |H| ≥ 1,
owning a region of Vm(A). By definition of a red region, H
corresponds to a cut of a biconnected component of G(N,A)
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Fig. 11. The 3rd order opens Voronoi diagram ,V3(A).

Fig. 12. The Voronoi diagram for open faults on layer A. Arrows illustrate
the critical radius of several points.

for some net N . For any point t in reg(H), H is the nearest
cut to t, where dw(t,H) = max{dw(t, h), h ∈ H}. By the
definition of critical radius, the critical radius at t must be
rc(t) = dw(t,H). If |H| > 1, let h be the element of H
farthest from t; then rc(t) = dw(t,H) = d(t, h).

Figure 12 illustrates the opens Voronoi diagram, for our
example; arrows indicate the critical radius of several points;
all critical generators are indicated in thick solid lines.

Corollary 2: The higher order critical generators on layer
A are exactly the farthest Voronoi edges and vertices, exclud-
ing the standard-45◦ Voronoi edges, constituting the farthest
Voronoi subdivisions in the interior of each region in Vm(A).
All higher order critical generators are encoded in the graph
structure of Vk(A), for some k, 1 ≤ k < m.

Let G(A) denote the set of all critical generators on
layer A, including first order and higher order generators.
Let us classify higher order critical generators according to
the minimum order-k Voronoi diagram they first appear in.
In particular, higher order generators encoded in Vk(A) are
classified as (k + 1)-order generators and they are denoted
as Gk+1(A), 1 ≤ k < m. Let G(A) = ∪1≤i≤mGi(A). By
Theorems 1 and 2, V(G(A)) and Vm(A) are identical.

Given any subset G′(A) of the set of critical generators
G(A), the (weighted) Voronoi diagram of G′(A) can be used
as an approximation to V(G(A)). Clearly, the more critical
generators included in G′(A), the more accurate the result.
In practice, we can derive G′(A) as ∪1≤i≤kGi(A), including

Fig. 13. V(G1(A)) as an approximate opens Voronoi diagram under the
(false) assumption that all loops are immune to open faults.

all ith order generators up to a small constant k. Because
the significance of critical generators reduces drastically with
the increase in their order, V(G′(A)) should be sufficient for
critical area computation for all practical purposes.

Corollary 3: Let G′(A) = ∪1≤i≤kGi(A) be a subset of
critical generators including all generators up to order k for a
given constant k. The (weighted) Voronoi diagram of G′(A),
V(G′(A)), can serve as an approximation to the opens Voronoi
diagram. If G′(A) = G(A), the two diagrams are equivalent.

Figure 13 illustrates the (weighted) Voronoi diagram of
G1(A). V(G1(A)) reveals critical radii for opens under the
(false) assumption that all loops are immune to open faults. In
Figure 13, solid arrows indicate selected critical radii as de-
rived by V(G1(A)) while dashed arrows indicate true critical
radii. Several critical radii can get overestimated in V(G1(A))
resulting in underestimating the total critical area for open
faults. As k increases, however, V(∪1≤i≤kGi(A)) converges
fast to V(G(A)) (see e.g., Section VIII for experimental
results). In our example, no loops of high connectivity are
present and V(G(A)) corresponds to V(G1(A) ∪ G2(A)). In
general terms, V(G1(A)∪G2(A)) offers an approximation to
the opens Voronoi diagram corresponding to the assumption
that loops of connectivity higher than two are immune to open
faults. In the next section we describe the algorithm to compute
V(G′(A)) and V(G(A)).

VI. COMPUTING THE OPENS VORONOI DIAGRAM

In this section we give algorithmic details on how to
compute Gk+1(A) and Vk+1(A), given Vk(A), for 1 ≤ k <
m. We also discuss how to compute V(∪1≤i≤mGi(A)) and
V(G(A)).

A. The iterative process to compute higher order generators
and higher order opens Voronoi diagrams.

Let’s first discuss how to identify the set Gk+1(A) of (k+
1)-order generators, given Vk(A), for k ≥ 1. We have the
following property.

Lemma 2: A Voronoi edge g that bounds two non-red
Voronoi regions reg(H) and reg(J) in Vk(A) corresponds to
a critical generator if and only if both the core elements h ∈ H
and j ∈ J that induce g (g ∈ b(h, j)) are part of the same
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biconnected component B and in addition, H ∪J corresponds
to a cut of B, i.e., removing H ∪ J from B disconnects B
leaving articulation points in at least two sides. No Voronoi
edge bounding a red region can be a critical generator.

Proof: Let g be a Voronoi edge, bounding two non-
red Voronoi regions reg(H) and reg(J) in Vk(A), where
g is portion of bisector b(h, j), h ∈ H, j ∈ J . Given our
conventions, H (resp. J) is an r-tuple, r ≤ k, of core elements
representing the k nearest neighbors of every point in reg(H)
(resp. reg(J)); for any core endpoint p in H (resp. J) all
incident core segments have been excluded from H (resp. J).
Then H \ J = {h} and J \H = {j} by properties of higher
order Voronoi diagrams; thus, H ∪ J = (H ∩ J) ∪ {h, j}. If
h, j belong to different biconnected components then clearly
H ∪J cannot form a cut for either of them. Otherwise, H ∪J
may be a cut for the biconnected component B of h and j. But
g must be portion of the farthest Voronoi diagram of H ∪ J .
Thus, g is a critical generator if and only if H ∪ J is a cut of
B.

If reg(H) has been colored red then H must be a cut and
H ∪ J can not be a minimal cut. As a result, no portion of
farthest Voronoi diagram of H ∪ J , including g, can be a
critical generator.

To determine if Voronoi edge g is a critical generator we
need to pose a connectivity query to biconnected component
B after removing H ∪ J . To perform connectivity queries
efficiently we can use the fully dynamic connectivity data
structures of [30] that support edge insertion and deletions
in O(log2n) time, while they can answer connectivity queries
fast. For simplicity in our implementation, we did not employ
any dynamic connectivity data structures; instead we used a
very simple (almost brute force) algorithm as follows: Remove
the elements of H from B and determine new non-trivial
bridges, articulation points and biconnected components of
B \ H . For any Voronoi edge g bounding reg(H), where g
is portion of b(h, j), h ∈ H, j ∈ J , g is a critical generator if
and only if j is a new non-trivial bridge or articulation point
of B \H . Generator g gets associated with the tuple of core
elements H ∪J , simplified, in case j or h are core endpoints,
by removing any core segment incident to j, h.

The above process can be considerably simplified in the
special case where the biconnected component B is a simple
cycle. In this case a simple coloring scheme in the DFS
tree of B can efficiently identify all cuts of B that may be
associated with a second order generator. The time complexity
of determining Gk+1(A) given Vk(A) is summarized in the
following lemma. Note that the size of Vk(A) is O(k(n−k))
(see [24]).

Lemma 3: The (k+ 1)-order generators can be determined
from Vk(A) in time O(kn log2 n) using the dynamic con-
nectivity data structures of [30] or in time O(kn2) using
the simple algorithm presented above. In case of biconnected
components forming simple cycles, second order generators
can be determined from V(A) in O(n) time.

Let us now discuss how to obtain Vk+1(A) from Vk(A),
k ≥ 1. The following is an adaptation of the iterative process
to compute higher order Voronoi diagrams of points [24], to
the case of (weighted) segments. Let reg(H) be a non-red

region of Vk(A). Let N(H) denote the set of all core elements
that induce a Voronoi edge bounding reg(H) in Vk(A).

1) Compute the (weighted) L∞ Voronoi diagram of N(H)
and truncate it within the interior of reg(H); this gives
the (k+1)-order subdivision within reg(H). Each (k+
1)-order subregion of reg(H) is attributed to a tuple
J = H ∪ {c}, c ∈ N(H). In case c is a core endpoint
incident to a core segment s in H , J simplifies to J =
H \ {s} ∪ {c}. In case c is part of a cut C owning a
neighboring red region of Vk(A), the subregion of J
gets colored red and gets as owner the cut C.

2) Once the (k + 1)-order subdivision within all non-red
regions neighboring reg(H) has been performed, merge
any incident (k+ 1)-order subregions that belong to the
same tuple of owners J into a maximal (k + 1)-order
region, reg(J). The edges of Vk(A) included within
reg(J) constitute the finner subdivision of reg(J) by
its farthest Voronoi diagram. All (k + 1)-order red
subregions get merged into the neighboring red regions
of Vk(A) forming the maximal red regions of Vk+1(A).

Using established bounds for higher order Voronoi diagrams
of points (see e.g. [24]) we conclude the following.

Lemma 4: Vk+1(A) can be computed from Vk(A) in time
O(k(n−k) log n), plus the time T (k, n) to determine the (k+
1)-order generators, where T (k, n) is as given in Lemma 3.

B. Computing the opens Voronoi diagram from critical gen-
erators.

The iterative process of Section VI-A can continue until
all regions are colored red and the complete opens Voronoi
diagram is guaranteed to be available. In practice, however,
this would be unnecessarily inefficient. Note that the iterative
process may continue for several rounds without any new
critical generators being identified, only the regions of existing
critical generators keep enlarging into neighboring non-red
regions. Note also that as the number of iterations k increases,
the weight of order-k critical generators (if any) increases
as well and their contribution to total critical area drastically
reduces. In practice, we can restrict the number of iterations
to a small predetermined constant k, or to a small number
determined adaptively, and compute only a sufficient set of
critical generators G′(A) = ∪1≤i≤kGi(A). We can then use
Theorem 1 to report V(G′(A)) as an approximate opens
Voronoi diagram. The overall algorithm can be broken into
two independent parts:
• Part I: Compute the set of critical generators G′(A) =
∪1≤i≤kGi(A), up to a given (or adaptively determined)
order k.

• Part II: Compute the (weighted) Voronoi diagram of
G′(A), V(G′(A)), as the opens Voronoi diagram.

Part I can be performed using the iterative process of Section
VI-A. Experimental results in Section VIII suggest that k = 2
is often adequate and no k > 4 is ever needed. Alternatively,
k can be determined adaptively, e.g., to the first round such
that no new critical generators are determined. Part II can
be performed using the plane sweep algorithm for computing
V(A). Critical generators have similar properties to the core
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elements of core(A), and the same plane sweep algorithm can
be used to compute either (see [2], [21]). The computations
of Parts I and II can be synchronized: once a generator is
discovered in Part I, it can be immediately scheduled for
processing in Part II. We thus conclude:

Theorem 3: Assuming G(N) available for all nets under
consideration and a small constant k, the approximate opens
Voronoi diagram V(G′(A)), G′(A) = ∪1≤i≤kGi(A) can
be computed in time O(n log n) plus the time to answer
connectivity queries which can be done in time O(n log2 n).

In the remaining subsection we review the basic concepts of
the plane sweep construction of Voronoi diagrams. For more
details see [2], [21]. Imagine a vertical scan line L sweeping
layer A from left to right. Associated with a plane-sweep
algorithm there are two major components: a sweep-line status,
maintaining the status of the sweeping process, and an event
list, containing the events where the combinatorial structure of
the sweep-line status may change, ordered in increasing order
of priority. The priority of a generator point p corresponds
to the rightmost coordinate of a square centered at p having
radius w(p). The priority of any Voronoi point p is defined
in the same way, where w(p) is the (weighted) distance of p
from its defining elements. Throughout the sweeping process,
a partial Voronoi diagram so far of all generators that have
priority less or equal to the current position of the scan
line, including the scan line, is maintained. The collection of
Voronoi edges (portions of bisectors) bounding the Voronoi
cell of the scan line is called the wavefront. As the scan line
moves to the right, the wavefront as well as the endpoints
of incident bisectors also move to the right. Any Voronoi
point enters the wavefront at the time of its priority. The
sweep-line status maintains the combinatorial structure of the
wavefront, implemented as a height-balanced tree (see e.g.
[25]). At every event, the wavefront and the Voronoi diagram
so far get updated, and new events may get generated. Once
the handling of an event is complete, the scanline proceeds to
the next event in the event list. When all events are processed
the construction of the Voronoi diagram is complete.

C. Synchronizing Part I and Part II

An important advantage of the plane sweep approach to the
construction of Voronoi diagrams and the extraction of critical
area has been locality: The entire Voronoi diagram need never
be kept in memory in order to perform critical area extraction;
once an appropriate Voronoi region has been computed critical
area computation can be directly performed in that region and
the corresponding Voronoi region can be discarded. We would
like to synchronize the plane sweeps of Parts I and II so that
the locality property is maintained. We discuss the simpler case
of k = 2 considering only first and second order generators.

Let LI and LII denote the scanlines for Parts I and II
respectively. At every event of LI where a new Voronoi edge
or a new bisector touching the wavefront, say g, is determined,
we can check whether g is a critical generator as described
in Section VI-A (Lemma 2). If so, a new generator event is
created and fed to LII having as priority the current position
of LI . LI need only maintain its wavefront; every time an

element of V(A) leaves the wavefront it can be directly
discarded. LII computes V (G1(A) ∪ G2(A)) following the
algorithm of [2], [21] with the difference that it receives events
regarding second order generators on the fly from LI . LII

need never keep in memory the entire V (G1(A) ∪ G2(A));
once a Voronoi cell leaves the wavefront, critical area extrac-
tion can be directly performed in that cell (see [2]) and the
Voronoi cell can be discarded. LII maintains Voronoi cells
while they are incident to the wavefront, and thus, it preserves
the locality property.

The synchronization of the two sweeps for Parts I and II can
generalize to k > 2, if desirable. The generalization is practical
only for small values of k, k ≤ 4. For any higher value we
would recommend the approach described in Section VI-D.
In practice, it is highly unlikely that any larger k could be
needed.

D. Original implementation

Our original implementation, whose experimental results are
reported in Section VIII, used a slightly different approach
in order to guarantee accuracy while the locality property
was preserved. Namely, the iterative process of Section VI-A
was applied to each biconnected component independently.
The advantage of considering each biconnected component
independently was locality as well as the ability to run the
process on each individual component to completion and thus,
guarantee the accuracy. The disadvantage is that generators
produced in this manner, G′′(A), need not all be critical.
Including non-critical generators complicates the algorithm of
Part II. For modifications of the plane sweep in the presence
on non-critical generators see [2], [3]. V(G′′(A)) corresponds
to the Hausdorff Voronoi diagram of cuts on layer A. For
information on Hausdorff Voronoi diagrams the interested
reader is referred to [3], [4], [31], [32].

VII. COMPUTING CRITICAL AREA

Critical area computation is performed within a bounding
box of the layout, and in the case of a layout window
W , within the bounding box of W . In the latter case, the
Voronoi diagram is computed based on geometries in an
augmented window W∪M , however, critical area computation
is performed strictly within W , after truncating the Voronoi
diagram by the boundary of W . This allows for the partitioning
of a large layout into sizable windows, as needed, and the in-
dependent computation of critical area within each. Assuming
non-overlapping windows, the total critical area is obtained
as the summation of each window critical area. In case of
overlapping windows, the critical area of the overlapping area
must be subtracted.

Let us now assume that the opens Voronoi diagram
V(G(A)) (or its approximation V(G′(A))) in its fine form7

within a bounding box B is available. Then the critical radius
for any point within B is known allowing for fast critical area
integration as shown in [2], [21]. For completeness we give a

7V(G(A)) is assumed to include all critical generators and the 45◦-rays
emanating from their endpoints as shown in Figure 12, including the dashed
45◦-lines.
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brief overview as tailored for the case of the opens Voronoi
diagram. Given the fine V(G(A)), each Voronoi region reg(g)
is a simple cycle such that exactly one edge or vertex on the
cycle is the critical generator g that owns the region. Voronoi
edges bounding reg(g) are classified into red, blue, or neutral
as follows:

1) Generator g is colored red.
2) A 45◦ Voronoi edge such that the underlying line forms

an obtuse (resp. acute) angle with the line through g (as
seen from the interior of reg(g)) is colored red (resp.
blue).

3) All other Voronoi edges are colored blue. Boundary
edges are colored blue, unless they are perpendicular
to the line through g in which case they are colored
neutral.

Red edges contribute a positive factor to critical area, while
blue edges contribute a negative factor, and neutral edges are
ignored. In the presence of degeneracies a Voronoi edge may
receive different coloring with respect to its two neighboring
Voronoi cells in which case the contribution of the edge
cancels out and it is assumed neutral. Terms for critical area
are proportional to l/re, where l is the length of the edge and
re is its critical radius, while for 45◦ Voronoi edges the term is
proportional to ln(rmax/rmin), where rmax, rmin denote the
maximum and minimum critical radius of the Voronoi edge.
For non-Manhattan geometries terms also involve the slopes
of Voronoi edges and their owners. For the exact formulas see
[2], [21]. The total critical area integral is the summation of
all terms derived from Voronoi (including boundary) edges in
the fine V(G(A)).

In addition to the total critical area integral Ac, it is often
desirable to know the area of the critical region A(r) for a
specific defect radius r. Given V(G(A)), A(r) can be easily
computed in linear time by summing up A(r) ∩ reg(g) for
every Voronoi region reg(g). Let R(g) denote the union of
all disks (squares) centered along the points p of a critical
generator g, each one of radius r−w(p), where w(p) denotes
the weight, i.e., the critical radius, of p. For Manhattan geome-
tries R(g) is a rectangle. Clearly, the area of R(g) ∩ reg(g)
is the portion of A(r) within reg(g) and it can be easily
determined in time upper bounded by the number of edges
bounding reg(g). Since Voronoi regions are disjoint, A(r) is
the summation of A(r) ∩ reg(g) for all Voronoi regions in
V(G(A)). Thus, given V(G(A)) (or V(G′(A))), A(r) can be
determined in linear time for any radius r. Figure 14 illustrates
A(r) shaded for a defect radius r.

VIII. EXPERIMENTAL RESULTS

The algorithms presented in this paper have been imple-
mented as part of the net-aware opens capability of the IBM
Voronoi Critical Area Analysis (CAA) tool [6]. The original
tool is currently distributed by Cadence [7] providing critical
area analysis for shorts, opens, via-blocks, and combination
faults, via Voronoi diagrams. For results on the use of an
early version of the tool at IBM, without the net-aware opens
capability, see [23].

We ran the net-aware capability of the IBM Voronoi CAA
tool on a number of blocks from IBM 65nm and 45nm

r

Fig. 14. A(r) for a given defect radius r.

silicon-on-insulator (SOI) microprocessor designs. The sizes
of some blocks are summarized in Table I given in square
microns and number of transistors. Table II summarizes the
results of the runs and reports the Probability of Fault (POF)
as computed for an increasing number of iterations k to
compute the opens Voronoi diagram. For each k = 1, 2, 3, . . .
the POF value reported is determined by V(G′(A)), where
G′(A) = ∪1≤i≤kGi(A), as described in SectionVII. As
expected the POF converges very fast to its final value that
remains unchanged although k is allowed to increase up to a
large value. This final value is the POF obtained by the full
opens Voronoi diagram, V(G(A)). To guarantee accuracy, our
experiments were run allowing much larger values of k than
those reported in Table II, however, no further improvement
to POF was reported, allowing us to conclude that the full
opens Voronoi diagram V(G(A)) was obtained at rather small
values of k. The algorithm followed the variant reported in
Section VI-D.

Block ID square microns # of transistors
B1 13631 22608
B3 9661 17935
B4 4161 10988
S1 5639 11482
S2 13926 30360
F1 30470 39923
F2 22550 34467

TABLE I
SAMPLE BLOCK SIZES FROM TABLE II IN SQUARE MICRONS AND NUMBER

OF TRANSISTORS.

Given the experimental results in Table II we observe that
there is hardly any need to compute kth order generators
for opens for any k > 4. Only in one case (see block F2-
M2) the total POF kept on slightly increasing until iteration
k = 8, which implied that loops of high connectivity were
found vulnerable to open faults, contributing small amounts
to total critical area as generators of higher order k kept on
being discovered. Even in this case, however, the important
increase happens early for k ≤ 3. The plain numeric values
of POF as reported in Table II may not seem informative
stand alone. The importance of CAA lies more in the ability
to perform comparisons in a reliable manner rather than the
absolute values of the POF standalone.

Given the experimental results, we recommend to compute



12

Block ID k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

45nm SOI
B1-M1 0.02341480 0.02350720 0.02401760 0.02401770 0.02401770 0.02401770 0.02401770
B1-M2 0.02640390 0.02662630 0.02663450 0.02663830 0.02663830 0.02663830 0.02663830
B1-M3 0.06894250 0.06900620 0.06900880 0.06900880 0.06900880 0.06900880 0.06900880
B1-PC 0.00372151 0.00438500 0.00438500 0.00438500 0.00438500 0.00438500 0.00438500
B2-M1 0.00559925 0.00562743 0.00563807 0.00563856 0.00563905 0.00563905 0.00563905
B2-M2 0.00945846 0.00950235 0.00950272 0.00950272 0.00950272 0.00950272 0.00950272
B2-M3 N/A 0.01757380 0.01757380 0.01757380 0.01757380 0.01757380 0.01757380
B2-PC 0.00278295 0.00278295 0.00278295 0.00278295 0.00278295 0.00278295 0.00278295
B3-M1 0.02342090 0.02355120 0.02426700 0.02426700 0.02426700 0.02426700 0.02426700
B3-M2 0.02686700 0.02714910 0.02717070 0.02717400 0.02717400 0.02717400 0.02717400
B3-M3 0.07530690 0.07539750 0.07540190 0.07540190 0.07540190 0.07540190 0.07540190
B3-PC 0.00314780 0.00360734 0.00360734 0.00360734 0.00360734 0.00360734 0.00360734
B4-M1 0.06903250 0.06933660 0.06944170 0.06944170 0.06944170 0.06944170 0.06944170
B4-M2 0.07679910 0.07752170 0.07753360 0.07753860 0.07753860 0.07753860 0.07753860
B4-M3 0.07013570 0.07032030 0.07032270 0.07032270 0.07032270 0.07032270 0.07032270
B4-PC 0.00494624 0.00556126 0.00556126 0.00556126 0.00556126 0.00556126 0.00556126
S1-M1 0.05102740 0.05150460 0.05221020 0.05221020 0.05221020 0.05221020 0.05221020
S1-M2 0.08669180 0.08724550 0.08727970 0.08729350 0.08731620 0.08731620 0.08731620
S1-M3 0.05813100 0.05816990 0.05817110 0.05817110 0.05817150 0.05817150 0.05817150
S1-PC 0.00165505 0.00165505 0.00165505 0.00165505 0.00165505 0.00165505 0.00165505
S2-M1 0.04333750 0.04370110 0.04404340 0.04405340 0.04405340 0.04405340 0.04405340
S2-M2 0.07599400 0.07686370 0.07704780 0.07705310 0.07705310 0.07705310 0.07705310
S2-M3 0.06442370 0.06452310 0.06452380 0.06452490 0.06452490 0.06452490 0.06452490
S2-PC 0.00170875 0.00170875 0.00170875 0.00170875 0.00170875 0.00170875 0.00170875

65nm SOI
F1-M1 0.03083600 0.03086650 0.03088090 0.03088090 0.03088090 0.03088090 0.03088090
F1-M2 0.02325990 0.02416790 0.02430430 0.02430440 0.02430440 0.02430440 0.02430440
F1-M3 0.02496010 0.02504540 0.02504570 0.02504570 0.02504570 0.02504570 0.02504570
F1-PC 0.00225416 0.00225416 0.00225416 0.00225416 0.00225416 0.00225416 0.00225416
F2-M1 0.02090210 0.02094040 0.02095310 0.02095370 0.02095370 0.02095430 0.02095430
F2-M2 0.03266590 0.03304950 0.03305970 0.03306080 0.03308010 0.03308150 0.03308180 0.03308200
F2-M3 0.00986754 0.00987918 0.00987979 0.00987979 0.00987979 0.00987979 0.00987979
F2-PC 0.00104983 0.00105527 0.00105537 0.00105856 0.00105922 0.00105922 0.00105922
F3-M1 0.00206703 0.00207091 0.00208208 0.00208208 0.00208208 0.00208208 0.00208208
F3-M2 0.00342026 0.00342420 0.00342420 0.00342420 0.00342420 0.00342420 0.00342420
F3-M3 0.00017472 0.00017472 0.00017472 0.00017472 0.00017472 0.00017472 0.00017472
F3-PC 0.00211915 0.00211915 0.00242553 0.00242553 0.00242553 0.00242553 0.00242553
F4-M1 0.01103590 0.01104400 0.01105820 0.01105820 0.01105820 0.01105820 0.01105820
F4-M2 0.02046730 0.02059360 0.02059780 0.02059780 0.02059780 0.02059780 0.02059780
F4-M3 0.01085790 0.01086880 0.01086880 0.01086880 0.01086880 0.01086880 0.01086880
F4-PC 0.00617254 0.00617254 0.00617254 0.00617254 0.00617254 0.00617254 0.00617254

TABLE II
PROBABILITY OF FAULT (POF) FOR OPENS VERSUS MAXIMUM ORDER k OF CRITICAL GENERATORS IN V(G′(A)) ON VARIOUS IBM MICROPROCESSOR

BLOCKS.

Critical Area using the simplified opens Voronoi diagram
obtained by V(G1(A)∪G2(A)) that can be derived in a simple
manner, avoiding any iteration, as detailed in Section VI-C.
Alternatively, V(G1(A) ∪ G2(A) ∪ G3(A)) seems accurate
enough for most practical purposes.

Figure 15 illustrates charts of some sample results of
Table II. Each chart plots the Probability of Fault (POF) for
opens on a given layer (M1, M2, M3, PC8) of a block, given
on the Y-axis, versus the maximum number k of higher order
generators allowed, given on the X-axis. The POF is derived
from V(G′(A)), where G′(A) = ∪1≤i≤kGi(A), for any layer
A = M1,M2,M3, PC. Note that the largest improvement
typically takes place as k increases from 1 to 2 and in some
cases from 2 to 3. Any value of k above 4 is hardly ever
needed.

8PC stands for the polysilicon layer.

IX. CONCLUSION

In this paper we modeled the critical area computation
problem for open faults in the presence of redundancy and re-
duced the problem into generalizations of higher order Voronoi
diagrams of line-segments. The approach extends the Voronoi
based method for critical area extraction with the ability
to accurately compute critical area in a net-aware fashion
even in the presence of multilayer loops. As a byproduct we
introduced the geometric min cut problem, a geometric version
of the classic min-cut problems in graphs. We also general-
ized the iterative approach to compute higher order Voronoi
diagrams in the case of line segments and augmented it with
special features to adequately model open faults. Surprisingly,
higher order Voronoi diagrams of line segments had not been
addressed in the computational geometry literature.

Our early algorithms have been integrated in the IBM
Voronoi Critical Area Analysis (CAA) tool that is currently
used in production mode by IBM manufacturing. Using the
net-aware opens capability of this tool we provided experi-
mental results that verify the ability to simplify the method in
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Fig. 15. Plotted results of some of the entries from Table II: POF as a function of maximum number of iterations k to derive G′(A) = ∪1≤i≤kGi(A).
Each plot shows the POF for a particular layer of a block; e.g., F2-x, where x = M1,M2,M3, PC. The POF converges fast to its final value.

practice without compromising on accuracy. For completeness
we presented the full method that can guarantee the accuracy
but we also presented several practical simplifications.

In summary, the Voronoi method to extract critical area
for various types of faults computes the entire critical area
integral for all possible defect sizes in an analytical manner
after establishing an appropriate subdivision of the layout. If
in addition the critical area for a specific defect size r is
desirable it can be extracted easily for any defect size. The
Voronoi method can be used stand alone, for fast and accurate
critical area extraction on rather large layout blocks, or it can
be combined with layout sampling techniques (see [20], [22])
for fast critical area estimation at the chip level. The Voronoi
approach to critical area extraction has been developed into a
successful industrial tool that is currently used in production
mode by IBM Microelectronics for the prediction of yield.
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