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a b s t r a c t

We propose a novel approach to improve the performance of speech enhancement systems by using mul-
tiple linear regression to improve the technique of estimating the speech presence uncertainty. Conven-
tional speech enhancement techniques use a fixed ratio Q of the a priori probability of speech presence
and speech absence, or determine the value of Q simply by comparing one particular parameter against
a threshold in deriving the speech absence probability (SAP) associated with the speech presence uncer-
tainty. To further improve the performance of the SAP, we attempt to adaptively change Q according to a
linear model consisting of the regression coefficients obtained by results from multiple linear regression
analysis and two principal parameters: a priori SNR and the ratio between the local energy of the noisy
speech and its derived minimum since these parameters correlate strongly with the value of Q. Distinct
values of Q for each frequency in each frame are consequently assigned in time which leads to improved
tracking performance of speech absence uncertainty and thus better performance of the proposed speech
enhancement compared to conventional approaches. The superiority of the proposed approach is con-
firmed through extensive objective and subjective evaluations under various noise conditions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Because ambient noise drastically degrades the performance of
speech processing systems, emerging applications in this field are
demanding increasing performance in terms of ambient noise
reduction in adverse environments. For example, the mobile phone
system is particularly sensitive to various ambient noise environ-
ments involving nonstationary noise and low input signal-to-noise
ratio (SNR). Early approaches based on the spectral weighting rule
have been developed to achieve speech enhancement. These
include Wiener filtering [1], minimum mean square error (MMSE)
estimation [2], soft decision estimation [3], and MMSE log-spectral
amplitude criteria [5]. These approaches are further developed by
using a soft decision scheme in which the speech absence probabil-
ity (SAP) is derived based on the likelihood ratio test (LRT) and
used for gain modification [4,6]. The SAP plays an important role
on the performance of speech processing systems. In practice, the
spectral gain for noise suppression is modified by the SAP, which
is estimated for each frequency bin in each frame on a Fourier
transform domain. Furthermore, the soft decision-based schemes
have been further improved by [4] called the global soft decision.

This method is performed globally: speech activity is determined
for each frame rather than for each frequency bin, thereby provid-
ing a robust estimation of the SAP. In the soft decision-based tech-
nique, the ratio Q of the a priori probability of speech presence and
speech absence is the crucial parameter in deriving the SAP since Q
must reflect the average ratio of speech presence and absence from
the initial frame until the current frame. However, in most of con-
ventional techniques for estimating the uncertainty of speech pres-
ence, the SAP is derived using a fixed Q for all frequency
components in every frame. For instance, Q was set to 1 in order
to address the worst-case in which speech and noise are equally
likely to occur in [1]. Also, Q was chosen as 0.2 based on the listen-
ing test as in [2], while the global soft decision method in [4]
adopted 0.0625 for the value of Q.

Some previous work has considered ways to estimate and
update Q. Malah et al. [6] derived an algorithm to assign distinct
values of Q to different frequency bins for each frame by comparing
the a posteriori SNR with the given threshold. However, the a pos-
teriori SNR is sensitive to outliers under the time-varying noise
condition. Soon et al. [7] proposed a method to update the a priori
probability of speech absence by comparing the conditional prob-
abilities of speech presence and speech absence. On the other hand,
Cohen [8] proposed the minima-controlled recursive averaging
(MCRA) approach, which is known to be the successful noise power
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estimation due to its robustness to the type and intensity of envi-
ronmental noises. In particular, the presence of speech in subbands
is determined by Cohen’s parameter ðSrÞ, which is the ratio
between the local energy of noisy speech and its derived mini-
mum. This algorithm is known to be computationally efficient,
but it is insensitive to temporal variation. Recently, a method to
track the a priori probability of speech absence was devised in
[9] by using Sr at the MCRA method instead of the a posteriori
SNR in Malah’s method. However, these conventional approaches
did not address how to incorporate spectral variation, which char-
acterizes the a priori speech evolution.

In this paper, we propose a novel approach to control Q based
on multiple linear regression analysis by using the a priori SNR
and the ratio Sr . Practically, the global soft decision-based speech
enhancement is considered to be a target platform in which the
SAP is derived based on Q as well as the statistical model, in which
the a priori SNR is estimated and is used to modify the spectral gain
and update the noise power. Firstly, through an in-depth linear
regression analysis, we investigate the extent to which Q is corre-
lated with the a priori SNR and Sr . This is achieved with the help of
the Pearson’s correlation coefficient test [10,11], which is known to
be efficient in estimating the correlation between two variables.
Secondly, in an off-line training step, we apply the method of least
squares to estimate the linear model’s regression coefficients of Q
on two parameters: a priori SNR and Sr . Finally, in an on-line pro-
cessing step, Q is adaptively determined and used to control the
SAP depending on the values of the a priori SNR and Sr to improve
the overall performance of the proposed speech enhancement
technique over conventional alternatives. We evaluate our pro-
posed algorithm through extensive objective and subjective qual-
ity tests, which demonstrate the algorithm’s improved
performance over conventional methods.

The rest of the paper is organized as follows. Section 2 gives a
brief review of the techniques used for speech presence uncer-
tainty estimation, and Section 3 presents the proposed method,
which uses multiple linear regression analysis. Section 4 describes
the experimental setup and results in detail; Section 5 presents
conclusions.

2. Review of speech absence uncertainty estimation techniques

We first briefly review the notion of the soft decision-based
method for estimating speech absence uncertainty. It is assumed
that a noise signal dðtÞ is added to a speech signal xðtÞ, with their
sum being denoted as the noisy speech signal yðtÞ. By taking the
discrete Fourier transform (DFT) of the noisy signal yðtÞ, we then
have the following in the time-frequency domain:

Yðk;nÞ ¼ Xðk;nÞ þ Dðk;nÞ; ð1Þ

where kð¼ 0;1; . . . ;K � 1Þ is the frequency bin and n is the frame
index. Given two hypotheses, H0 and H1 which indicate speech
absence and presence, respectively, it is assumed that:

H0 : Yðk;nÞ ¼ Dðk;nÞ;
H1 : Yðk;nÞ ¼ Xðk;nÞ þ Dðk;nÞ: ð2Þ

Based on the complex Gaussian probability distribution
assumption of the clean speech and noise spectra, the probability
density functions (PDFs) conditioned on the two hypotheses H0

and H1 are given by [4]

pðYðk;nÞjH0Þ ¼
1

pkdðk;nÞ
exp � jYðk;nÞj

2

kdðk; nÞ

( )
; ð3Þ

pðYðk;nÞjH1Þ¼
1

p kxðk;nÞ þ kdðk; nÞð Þ exp � jYðk; nÞj2

kxðk;nÞ þ kdðk;nÞ

( )
; ð4Þ

where kxðk;nÞ and kdðk;nÞ denote the variances of the clean speech
and noise, respectively. If the spectral component of each frequency
bin is assumed to be statistically independent, the SAP PðH0jYðk;nÞÞ,
which is conditioned on the current observation, is derived such
that [1,4]:

PðH0jYðk;nÞÞ ¼
pðYðk;nÞjH0ÞPðH0Þ

pðYðk;nÞÞ

¼ pðYðk;nÞjH0ÞPðH0Þ
pðYðk;nÞjH0ÞPðH0Þ þ pðYðk;nÞjH1ÞPðH1Þ

¼ 1
1þ PðH1Þ

PðH0Þ
KðYðk;nÞÞ

; ð5Þ

where PðH0Þ ¼ 1� PðH1Þ is the a priori probability of speech absence.
Substituting (3) and (4) into (5), the likelihood ratio KðYðk;nÞÞ at the
kth frequency is expressed as follows [4]:

KðYðk;nÞÞ ¼ pðYðk;nÞjH1Þ
pðYðk;nÞjH0Þ

¼ 1
1þ nðk;nÞ exp

cðk;nÞnðk;nÞ
1þ nðk;nÞ

� �
; ð6Þ

where

nðk;nÞ � kxðk;nÞ
kdðk;nÞ

; ð7Þ

cðk;nÞ � jYðk;nÞj
2

kdðk;nÞ
; ð8Þ

where nðk;nÞ and cðk;nÞ are called the a priori SNR and the a poste-
riori SNR, respectively. Also, PðH1Þ=PðH0Þ , Q in (5) is defined as the
ratio of the a priori probability of speech presence and absence [4].
By using the SAP mentioned above, the spectrum of enhanced
speech signal, bXðk; nÞ, can be obtained by applying a parametric
gain to each spectral component of the noisy speech signal. Here,
we employ the minimum mean square error (MMSE) estimator
based on SAP as follows:bXðk;nÞ ¼ ð1� PðH0jYðk;nÞÞÞGMMSEðn̂ðk;nÞ; ĉðk;nÞÞYðk;nÞ; ð9Þ

where GMMSE is the gain function of the MMSE estimator given in
[2,4]. Also, estimate of the a priori SNR n̂ðk;nÞ and a posteriori SNR
ĉðk;nÞ are obtained by using the decision-directed method [2] with
aDDð¼ 0:99Þ and long-term smoothing with fkd

ð¼ 0:98Þ, respec-
tively, as follows [4]:

n̂ðk;nÞ ¼ aDD
jbXðk;n� 1Þj2

kdðk;n� 1Þ þ ð1� aDDÞU½cðk;nÞ � 1�; ð10Þ

ĉðk;nÞ ¼ jYðk;nÞj
2

k̂dðk;nÞ
; ð11Þ

where

k̂dðk;nÞ ¼ fkd
k̂dðk;n� 1Þ þ ð1� fkd

ÞjYðk;nÞj2; ð12Þ

when the speech signal is not present, and U½z� ¼ z if z P 0 and
U½z� ¼ 0 otherwise.

As mentioned above, some approaches assigned a fixed value of
Q [1–4], but Q can be differently determined for each frequency bin
in each frame in the method of Malah et al. [6] by comparing the a
posteriori SNR with a given threshold. Also, Q can be adaptively
determined by the ratio of the local energy of noisy speech and
its derived minimum in [8]. Indeed, this method is inherently
based on the MCRA approach, in which the decision rule for the
presence of speech is derived as

Srðk;nÞ ?
Iðk;nÞ¼1

Iðk;nÞ¼0
d; ð13Þ

where d is a given threshold and Iðk;nÞ is an indicator function.
Srðk;nÞ is actually derived by jYðk;nÞj2=Sminðk;nÞ in which Smin¼min
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