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Abstract

Learning to produce spatiotemporal sequences is a common task that the brain has to

solve. The same neurons may be used to produce different sequential behaviours. The way

the brain learns and encodes such tasks remains unknown as current computational models

do not typically use realistic biologically-plausible learning. Here, we propose a model where

a spiking recurrent network of excitatory and inhibitory spiking neurons drives a read-out

layer: the dynamics of the driver recurrent network is trained to encode time which is then

mapped through the read-out neurons to encode another dimension, such as space or a

phase. Different spatiotemporal patterns can be learned and encoded through the synaptic

weights to the read-out neurons that follow common Hebbian learning rules. We demon-

strate that the model is able to learn spatiotemporal dynamics on time scales that are beha-

viourally relevant and we show that the learned sequences are robustly replayed during a

regime of spontaneous activity.

Author summary

The brain has the ability to learn flexible behaviours on a wide range of time scales.

Previous studies have successfully built spiking network models that learn a variety of

computational tasks, yet often the learning involved is not biologically plausible. Here,

we investigate a model that uses biological-plausible neurons and learning rules to

learn a specific computational task: the learning of spatiotemporal sequences (i.e., the

temporal evolution of an observable such as space, frequency or channel index). The

model architecture facilitates the learning by separating the temporal information

from the other dimension. The time component is encoded into a recurrent network

that exhibits sequential dynamics on a behavioural time scale, and this network is then

used as an engine to drive the read-out neurons that encode the spatial information

(i.e., the second dimension). We demonstrate that the model can learn complex spatio-

temporal spiking dynamics, such as the song of a bird, and replay the song robustly

spontaneously.
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Introduction

Neuronal networks perform flexible computations on a wide range of time scales. While indi-

vidual neurons operate on the millisecond time scale, behaviour time scales typically span

from a few milliseconds to hundreds of milliseconds and longer. Building functional models

that bridge this time gap is of increasing interest [1], especially now that the activity of many

neurons can be recorded simultaneously [2, 3]. Many tasks and behaviours in neuroscience

consist of learning and producing flexible spatiotemporal sequences, e.g. a 2-dimensional

pattern with time on the x-axis and any other observable on the y-axis which we denote here

in general terms as the “spatial information”. For example, songbirds produce their songs

through a specialized circuit: neurons in the HVC nucleus burst sparsely at very precise times

to drive the robust nucleus of the arcopallium which in its turn drives motor neurons [4, 5].

For different motor tasks, sequential neuronal activity is recorded in various brain regions [6–

10], and while the different tasks involve different sets of muscles, the underlying computation

on a more fundamental level might be similar [11].

Theoretical and computational studies have shown that synaptic weights of recurrent

networks can be set appropriately so that dynamics on a wide range of time scales is pro-

duced [12–14]. In general, these synaptic weights are engineered to generate a range of

interesting dynamics. In slow-switching dynamics, for instance, the wide range of time

scales is produced by having stochastic transitions between clusters of neurons [15].

Another example is sequential dynamics, where longer time scales are obtained by clusters

of neurons that activate each other in a sequence. This sequential dynamics can emerge by

a specific connectivity in the excitatory neurons [16, 17] or in the inhibitory neurons [18,

19]. However, it is unclear how the brain learns these dynamics, as most of the current

approaches use non biologically plausible ways to set or “train” the synaptic weights. For

example, FORCE training [20–22] or backpropagation through time [23] use non-local

information either in space or in time to update weights. Such information is not available

to the synaptic connection, which only has access to the presynaptic and postsynaptic vari-

ables at the current time.

Here, we propose to learn a spatiotemporal task over biologically relevant time scales

using a spiking recurrent network driving a read-out layer where the neurons and synaptic

plasticity rules are biologically plausible. Specifically, all synapses are plastic under typical

spike-timing dependent Hebbian learning rules [12, 24]. Our model architecture decom-

poses the problem into two parts. First, we train a recurrent network to generate a sequential

activity which serves as a temporal backbone so that it operates as a ‘neuronal clock’ driving

the downstream learning. The sequential activity is generated by clusters of neurons acti-

vated one after the other: as clusters are highly recurrently connected, each cluster undergoes

reverberating activity that lasts longer than neural time scale so that the sequential cluster

activation is long enough to be behaviourally relevant. This construction allows us to bridge

the neural and the behavioural time scales. Second, we use Hebbian learning to encode the

target spatiotemporal dynamics in the read-out neurons. In this way, the recurrent network

encodes time and the read-out neurons encode ‘space’. As discussed above, we use the term

‘space’ to denote a temporally-dependent observable, be it spatial position, or phase, or

a time-dependent frequency, or a more abstract state-space. Similar to the liquid state-

machine, where the activity in a recurrent network is linearly read-out by a set of neurons,

we can learn different dynamics in parallel in different read-out populations [25]. We also

show that learning in the recurrent network is stable during spontaneous activity and that

the model is robust to synaptic failure.
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Results

Model architecture

The model consists of two separate modules: a recurrent network and a read-out layer (Fig

1A). Learning happens in two stages. In the first stage, we learn the weights of the recurrent

network so that the network exhibits a sequential dynamics. The ensuing recurrent neuronal

network (RNN) effectively serves as a temporal backbone driving the learning of the down-

stream read-out layer. In the second stage, a target sequence is learned in the read-out layer.

Architecture. The recurrent network is organized in C clusters of excitatory neurons

and a central cluster of inhibitory neurons. All excitatory neurons follow adaptive exponential

Fig 1. Model architecture. (A) The recurrent network consists of both inhibitory (in blue) and excitatory (in red) neurons. The connectivity is sparse

in the recurrent network. The temporal backbone is established in the recurrent network after a learning phase. Inset: zoom of recurrent network

showing the macroscopic recurrent structure after learning, here for 7 clusters. The excitatory neurons in the recurrent network project all-to-all to the

read-out neurons. The read-out neurons are not interconnected. (B) All excitatory to excitatory connections are plastic under the voltage-based STDP

rule (see Methods for details). The red lines are spikes of neuron j (top) and neuron i (bottom). When neurons j and i are very active together, they form

bidirectional connections strengthening both Wij and Wji. Connections Wij are unidirectionally strengthened when neuron j fires before neuron i. (C)

The incoming excitatory weights are L1 normalized in the recurrent network, i.e. the sum of all incoming excitatory weights is kept constant. (D)

Potentiation of the plastic read-out synapses is linearly dependent on the weight. This gives weights a soft upper bound.

https://doi.org/10.1371/journal.pcbi.1007606.g001
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integrate-and-fire dynamics [26] while all inhibitory neurons follow a leaky integrate-and-fire

dynamics. The inhibitory neurons in the RNN prevent pathological dynamics. The aim of this

module is to discretize time into C sequential intervals, associated with each of the C clusters.

This is achieved by learning the weights of the recurrent network. The neurons in the excit-

atory clusters then drive read-out neurons through all-to-all feedforward connections. The

read-out neurons are not interconnected. The target sequence is learned via the weights

between the driver RNN and the read-out neurons.

Plasticity. In previous models, the learning schemes are typically not biologically plausible

because the plasticity depends on non-local information. Here, however, we use the voltage-

based STDP plasticity rule in all the connections between excitatory neurons (Fig 1B). This is

paired with weight normalization in the recurrent network (Fig 1C) and weight dependent

potentiation in the read-out synapses (Fig 1D). Inhibitory plasticity [27] finds good parameters

aiding the sequential dynamics (S5 Fig).

Learning scheme. During the first stage of learning, all neurons in each cluster receive the

same input in a sequential manner. As a result of this learning stage, the recurrent spiking net-

work displays a sequential dynamics of the C clusters of excitatory neurons. Neurons within

each cluster spike over a time interval (while all neurons from other clusters are silent), with

the activity switching clusters at points t = [t0, t1, . . ., tC] so that cluster i is active during time

interval [ti−1, ti]. Thus, time is effectively discretized in the RNN.

During the second stage of learning, the read-out neurons receive input from a set of excit-

atory supervisor neurons. The discretization of time enables Hebbian plasticity to form strong

connections from the neurons in the relevant time bin to the read-out neurons. For instance, if

we want to learn a signal which is ‘on’ during [ti−1, ti] and ‘off’ otherwise, a supervisor neuron

can activate the read-out neuron during that time interval so that connections from cluster i to

the read-out neuron are potentiated through activity (who fires together, wires together). This

means that, after learning, the read-out neuron will be activated when cluster i is activated. In

general, the read-out layer learns a multivariate signal of time, i.e., the neurons in the read-out

layer encode the D different dimensions of the target signal: t! ϕ(t) = [ϕ1(t), ϕ2(t), . . ., ϕD(t)].

A recurrent network that encodes discrete time

We give here further details of the first learning stage, where a recurrent network is trained to

produce a sequential dynamics. To this end, we initialize the weight matrix so that each synap-

tic weight between two neurons is non-zero with probability p. The weights that are zero

remain zero at all times, i.e. the topology is fixed. We set the initial values of the non-zero

weights in the recurrent network such that the dynamics is irregular and asynchronous (i.e., a

balanced network, see Methods for details).

We stimulate the C clusters with an external input in a sequential manner (Fig 2A): neurons

in cluster i each receive external Poisson spike trains (rate of 18 kHz for 10 ms, assuming a

large input population). After this, there is a time gap where no clusters receive input (5 ms).
This is followed by a stimulation of cluster i + 1. This continues until the last cluster is reached

and then it links back to the first cluster (i.e. a circular boundary condition). During the stimu-

lation, neurons in the same cluster fire spikes together strengthening the intra-cluster connec-

tions bidirectionally through the voltage-based STDP rule [24, 28]. Additionally, there is a pre/

post pairing between adjacent clusters. Neurons in cluster i + 1 fire after neurons in cluster i.
The weights from cluster i to cluster i + 1 strengthen unidirectionally (Fig 2B). If the time

gap between sequential stimulations is increased during the training phase, so that the gap

becomes too long with respect to the STDP time window, then there is no pre/post pairing

between clusters and the ensuing dynamics loses its sequential nature and becomes a slow-
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Fig 2. Learning a sequential dynamics stably under plasticity. (A) The excitatory neurons receive sequential clustered inputs. Excitatory

neurons are grouped in 30 disjoint clusters of 80 neurons each. (7 clusters shown in the cartoon for simplicity) (B) The weight matrix after

training (only the first five clusters shown) exhibits the learned connectivity structure, e.g., neurons within cluster 1 are highly interconnected

and also project to neurons in cluster 2, same for cluster 2 to cluster 3, etc. The spectrum of the full weight matrix after training shows most

eigenvalues in a circle in the complex plane (as in a random graph) with two other eigenvalues signifying the balancing of the network, and a
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switching dynamics [12, 15] (S1 Fig). In slow-switching dynamics, clusters of neurons are

active over long time scales, but both the length of activation and the switching between clus-

ters is random. This is because the outgoing connections from cluster i to all other clusters

are the same in a slow-switching network. To summarize, a connectivity structure emerges

through biophysically plausible potentiation by sequentially stimulating the clusters of excit-

atory neurons in the recurrent network. When the gap between activation intervals is suffi-

ciently small compared to the STDP window, the connectivity structure is such that intra-

cluster weights and the weights from successive clusters i! i + 1 are strong.

After the synaptic weights have converged, the external sequential input is shut-down and

spontaneous dynamics is simulated so that external excitatory Poisson spike trains without

spatial or temporal structure drive the RNN. Under such random drive, the sequence of clus-

ters reactivates spontaneously and ensures that both the intra-cluster and the connections

from cluster i to cluster i + 1 remain strong. In general, the interaction between plasticity,

connectivity and spontaneous dynamics can degrade the learned connectivity and lead to

unstable dynamics [29]. To test the stability of the learned connectivity, we track the changes

in the off-diagonal weights (i.e. the connections from cluster i to cluster i + 1). After the

external sequential input is shut-down, we copy the weight matrix and freeze the weights of

this copy. We run the dynamics of the recurrent network using the copied frozen weights

and apply plastic changes to the original weight matrix. This means that we effectively decou-

ple the plasticity from the dynamics. Indeed, when the dynamics is sequential, the off-diago-

nal structure is reinforced. When the off-diagonal structure is removed from the frozen

copied weight matrix, the dynamics is not sequential anymore. In this case, the off-diagonal

structure degrades. We conclude that the connectivity pattern is therefore stable under spon-

taneous dynamics (S2 Fig).

We next studied how the spectrum of the recurrent weight matrix is linked to the sequential

dynamics. In linear systems, the eigenvalues of the connectivity matrix determine the dynam-

ics of the system. In a nonlinear spiking model, the relationship between connectivity and

dynamics is less clear. The connectivity after learning can be seen as a low-dimensional pertur-

bation of a random matrix. Such low-dimensional perturbations create outliers in the spec-

trum [30] and change the dynamics [31]. Here, we have carried out a similar spectral analysis

to that presented in [15] (see Fig 7 in the Methods and S2 Fig in the Supplementary material).

The weight matrix has most of its eigenvalues in a circle in the complex plane (Fig 2B) with

eigenvalues associated both with the balanced nature of the network, but, importantly, also

with the sequential structure (Fig 2B). As the temporal backbone develops through learning

(as seen in S2 Fig), it establishes a spectral structure in which the pairs of leading eigenvalues

with large real parts have almost constant imaginary parts.

A simplified analysis of a reduced weight matrix (where nodes are associated with groups of

neurons) shows that the imaginary parts of the dominant eigenvalues depend linearly on the

strength of the weights from cluster i to cluster i + 1 (see Methods, Fig 7). Hence for this sim-

plified linearised rate model, this results in an oscillatory dynamics where the imaginary part

determines the frequency by which the pattern of activation returns due to the periodic excita-

tion pattern. As shown in [15], these properties of the linear system carry over to the nonlinear

spiking model, i.e., the imaginary parts of the eigenvalues with large real parts determine the

time scales of the sequential activity (S2 Fig).

series of dominant eigenvalues in pairs that encode the feedforward embedding. (C) Raster plot of the total network consisting of 2400

excitatory (in red) and 600 inhibitory (in blue) neurons. After learning, the spontaneous dynamics exhibits a stable periodic trajectory ‘going

around the clock’. The excitatory clusters discretize time (see zoom) and the network has an overall period of about 450 ms.

https://doi.org/10.1371/journal.pcbi.1007606.g002
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Under spontaneous activity, each cluster is active for about 15 ms, due to the recurrent con-

nectivity within the cluster. A large adaptation current counteracts the recurrent reverberating

activity to turn off the activity reliably. Therefore, as each cluster is spontaneously active in a

sequence, the sequence length reaches behavioural time scales (Fig 2C). In summary, the net-

work exhibits sequential dynamics, serving as a temporal backbone where time is discretized

over behavioural time scales.

Learning a non-Markovian sequence

After the sequential temporal backbone is learnt via the RNN, we can then learn a spatiotem-

poral sequence via the read-out neurons. To achieve this, during the second stage of training,

the read-out neurons receive additional input from supervisor neurons and from interneurons

(Fig 3A). The supervisor neurons receive an external Poisson input with rate modulated by the

target sequence to be learned (Fig 3B).

As a first example, consider a target sequence composed of states A, B, C activated in the fol-

lowing deterministic order: ABCBA. This is a non-Markovian state sequence because the transi-

tion from state B to the next state (A or C) requires knowledge about the previous state [32], a

non trivial task that requires information to be stored about previous network states, potentially

over long time periods. Previous studies have proposed various solutions for this task [32, 33].

However, separating the problem of sequence learning in two stages solves this in a natural way.

The recurrent network trained in the first stage (Fig 2) is used to encode time. The underly-

ing assumption is that a starting signal activates both the first cluster of the recurrent network

and the external input to the supervisor neurons, which activate the read-out neurons.

After the training period, the interneurons and supervisor neurons stop firing (Fig 3C) and

the target sequence is stored in the read-out weight matrix (Fig 3D). During spontaneous

activity, clusters in the RNN reactivate in a sequential manner driving the learned sequence in

the read-out neurons. Hence the spike sequence of the read-out neurons is a noisy version of

the target signal (Fig 3E). Learning the same target signal several times results in slightly differ-

ent read-out spike sequences each time (S3 Fig). The firing rates of neurons in the read-out

corresponds to the target sequence (Fig 3F). In summary, our results show that the model is

able to learn simple but non-trivial spatiotemporal signals that are non-Markovian.

Learning sequences in parallel

We next wondered how multiple spatiotemporal signals can be learned. We hypothesized that,

once the temporal backbone is established, multiple spatiotemporal sequences can easily be

learned in parallel. As an example, we learn two sequences: ABCBA and DEDED. Here, D and

E denote two additional read-out neurons (Fig 4A). We assume that the model observes each

sequence alternately for 2 seconds at a time (Fig 4B), although in principle it could also been

shown simultaneously. After learning, the target sequences are encoded in the read-out weight

matrix (Fig 4C). In a regime of spontaneous dynamics the learned sequences can be replayed

(Fig 4D). An external inhibitory current to the read-out neurons can control which sequence

is replayed. We conclude that multiple sequences can be learned in parallel. Each separate

sequence requires a separate set of read-out neurons. As such, the number of read-out neurons

required increases linearly with the number of target sequences.

Properties of the model: Scaling, robustness and temporal variability

We investigate several scaling properties of the network. We first assess how the sequential

dynamics in the RNN depends on the cluster size by increasing the number of excitatory neu-

rons in each cluster (NC), preserving the ratio of excitatory to inhibitory neurons (NE/NI). To
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preserve the magnitude of the currents in the network, the sparseness of the connectivity (p)

also varies with NC such that pNC is constant. The same training protocols are used for each

network configuration as described in the Methods. For a fixed number of clusters C, the

mean period of the sequential dynamics exhibited by the RNN is largely independent of cluster

size NC (Fig 5A). If we fix the number of neurons in the RNN, and in this way change the

Fig 3. Learning a non-Markovian sequence via the read-out neurons. (A) Excitatory neurons in the recurrent network are all-to-all connected to the

read-out neurons. The read-out neurons receive additional excitatory input from the supervisor neurons and inhibitory input from interneurons. The

supervisor neurons receive spike trains that are drawn from a Poisson process with a rate determined by the target sequence. The read-out synapses are

plastic under the voltage-based STDP rule. (B) The rate of the input signal to the supervisor neurons A, B and C. The supervisor sequence is ABCBA
where each letter represents a 75 ms external stimulation of 10 kHz of the respective supervisor neuron. (C) After learning, the supervisor input and

plasticity are turned off. The read-out neurons are now solely driven by the recurrent network. (D) The read-out weight matrix WRE after 12 seconds of

learning. (E) Under spontaneous activity, the spikes of recurrent network (top) and read-out (bottom) neurons. Excitatory neurons in the recurrent

network reliably drive sequence replays. (F) The target rate (top) and the rate of the read-out neurons (bottom) computed using a one sequence replay

and normalized to [0, 1]. The spikes of the read-out neurons are convolved with a Gaussian kernel with a width of� 12 ms.

https://doi.org/10.1371/journal.pcbi.1007606.g003
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number of clusters C, the mean period of the sequential dynamics decreases with increasing

cluster size NC. We conclude that the sequential dynamics is preserved over a wide range of

network configurations. The time scales in the dynamics depend on the number of clusters

and network size.

Another way to modulate the period of the sequential dynamics is to change the unstruc-

tured Poisson input to the RNN during spontaneous dynamics (after the first stage of learn-

ing). When the rate of the external excitatory input is increased/decreased, the mean period of

the sequential dynamics in the RNN decreases/increases (Fig 5B). These results suggest that

the network could learn even if the supervisor signal changes in length at each presentation,

assuming that both the supervisor and external Poisson input are modulated by the same

mechanism.

We next looked at the robustness of the learning of our model under random perturbations

and network size. In this context, we consider the effect of cluster size and the deletion of syn-

apses in the read-out layer after learning. We learn the simple ABCBA sequence (Fig 3) in the

read-out neurons using a RNN with a fixed number of clusters C but varying the cluster size

NC. The total learning time (Δt) is varied with the cluster size, NC Δt, because smaller clusters

Fig 4. Learning sequences in parallel. (A) The recurrent network projects to two sets of neurons. (B) Two different sequences, ABCBA and DEDED,

are learned by alternating between them and presenting each for 2 seconds at a time. (C) The read-out weight matrix after 24 seconds of learning. (D)

Raster plot of spontaneous sequence reactivations, where an external inhibitory current is assumed to control which sequence is replayed.

https://doi.org/10.1371/journal.pcbi.1007606.g004
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learn slower, since smaller clusters need larger read-out synaptic strengths to drive the same

read-out neuron. We also eliminate an increasing number of synapses in the read-out layer.

Performance is quantified as the number of spikes elicited by the read-out neurons after

deletion of read-out synapses normalized by the number of spikes elicited before deletion.

Fig 5. Scaling, robustness and time variability of the model. (A) Change of the mean period of the sequential

dynamics as the number of clusters grows with: (i) the total number of excitatory neurons kept constant (red line); (ii)

the total number of neurons increasing with cluster size (blue line). Error bar shows a standard deviation. (B)

Dynamics with varying level of external excitatory input for four different cluster sizes and NE = 2400. The external

input can modulate the period of the sequential dynamics by� 10%. (C) Recall performance of the learned sequence

ABCBA for varying cluster sizes and NE = 30NC under synapse deletion (computed over 20 repeats). The learning time

depends on the cluster size: Δt = 960s/NC. (D) The ABCBA sequence is learned with a network of 120 excitatory

neurons connected in one large chain and read-out neurons with maximum synaptic read-out strength increased to

WAE
max ¼ 75 pF. The network is driven by a low external input (rEE

ext ¼ 2:75 kHz). When, at t = 500 ms a single synapse is

deleted, the dynamics breaks down and parts of the sequence are randomly activated by the external input. Top: spike

raster of the excitatory neurons of the RNN. Bottom: spike raster of the read-out neurons. (E) (Left) Histogram of the

variability of the period of the sequential activity of the RNN over 79 trials (Right) The standard deviation of the cluster

activation time, σt, increases as the square root of μt, the mean time of cluster activation: st ¼ 0:213
ffiffiffiffi
mt
p

(root mean

squared error = 0.223 ms).

https://doi.org/10.1371/journal.pcbi.1007606.g005
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Networks with larger clusters show a more robust performance under noise (Fig 5C and S4

Fig). These results show that, not surprisingly, larger clusters drive read-out neurons more

robustly and learn faster.

We then tested the limits of time discretization in our model. To that end, we hardcoded

a recurrent network with clusters as small as one neuron. In that extreme case, our network

becomes a synfire chain with a single neuron in every layer [34]. In this case, randomly remov-

ing a synapse in the network will break the sequential dynamics (Fig 5D). Hence, although a

spatiotemporal signal can be learned in the read-out neurons, the signal is not stable under a

perturbation of the synfire chain. In summary, the choice of cluster size is a trade-off between

network size on the one hand and robustness on the other hand. Large clusters: (i) require a

large network to produce sequential dynamics with the same period; (ii) are less prone to a fail-

ure of the sequential dynamics; (iii) can learn a spatiotemporal signal faster; and (iv) drive the

read-out neurons more robustly.

We have also characterized the variability in the duration of the sequential activity, i.e., the

period of the RNN. Since the neural activity does not move through the successive clusters

with the same speed in each reactivation, we wondered how the variance in the period of our

RNN network compared to Weber’s law. Weber’s law predicts that the standard deviation of

reactions in a timing task grows linearly with time [35, 36]. Because time in our RNN is discre-

tized by clusters of neurons that activate each other sequentially, the variability increases

over time as in a standard Markov chain diffusive process. Hence the variability of the duration

T is expected to grow as
ffiffiffiffi
T
p

rather than linearly. This is indeed what our network displays

(Fig 5E). Here, we scaled the network up and increased the period of the recurrent network

by increasing the network size (80 excitatory clusters of 80 neurons each, see Methods for

details).

Learning a complex sequence

In the non-Markovian target sequence ABCBA, the states have the same duration and the

same amplitude (Fig 3B). To test whether we could learn more complex sequences, the model

was trained using a spatiotemporal signal with components of varying durations and ampli-

tudes. As an example, we use a ‘spatio’-temporal signal consisting of a 600 ms meadowlark

song (Fig 6A). The spectrogram of the sound is normalized and used as the time-varying and

amplitude-varying rate of the external Poisson input to the supervisor neurons. Each read-out

and supervisor neuron encodes a different frequency range, hence in this example our ‘space’

dimension is frequency.

We first trained a RNN of 6400 excitatory neurons (Fig 5E, see Methods) in order to discre-

tize the time interval spanning the full duration of the song. We then trained the read-out

layer. The learned read-out weight matrix reflects the structure of the target sequence (Fig 6B).

Under spontaneous activity, the supervisor neurons and interneurons stop firing and the

recurrent network drives song replays (Fig 6C). The learned spatiotemporal signal broadly fol-

lows the target sequence (Fig 6A). The model performs worse when the target dynamics has

time-variations that are faster than or of the same order as the time discretization in the RNN.

Thus, we conclude that the model can learn interesting spiking dynamics up to a resolution of

time features limited by the time discretization in the recurrent network.

Discussion

We have proposed here a neuronal network architecture based on biophysically plausible neu-

rons and plasticity rules in order to learn spatiotemporal signals. The architecture is formed by
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two modules. The first module provides a temporal backbone that discretizes time, imple-

mented by a recurrent network where excitatory neurons are trained into clusters that become

sequentially active due to strong inter-cluster and cluster i to cluster i + 1 weights. All of the

excitatory clusters are connected to a central cluster of inhibitory neurons. As previously

shown for randomly switching clustered dynamics [12], the ongoing spontaneous activity does

not degrade the connectivity patterns: the set of plasticity rules and sequential dynamics rein-

force each other. This stable sequential dynamics provides a downstream linear decoder with

the possibility to read out time at behavioural time scales. The second module is a set of read-

out neurons that encode another dimension of a signal, which we generically denote as ‘space’

but can correspond to any time-varying observable, e.g., spatial coordinates, frequency, dis-

crete states, etc. The read-out neurons learn spike sequences in a supervised manner, and the

supervisor sequence is encoded into the read-out weight matrix. Bringing together elements

from different studies [18, 22, 32, 37], our model exploits a clock-like dynamics encoded in the

RNN to learn a mapping to read-out neurons so as to perform the computational task of learn-

ing and replaying spatiotemporal sequences. We illustrated the application of our scheme on a

simple non-Markovian state transition sequence, a combination of two such simple sequences,

and a time series with more complex dynamics from bird singing.

Other studies have focused on the classification of spatiotemporal signals. The tempotron

classifies a spatiotemporal pattern by either producing a spike or not [38]. More recent studies

on sequential working memory propose similar model architectures that enable the use of

Hebbian plasticity [39]. For example, spatiotemporal input patterns can be encoded in a set of

feedforward synapses using STDP-type rules [40, 41]. Combining these approaches with our

model might be an interesting line of future research.

Fig 6. Learning a complex sequence. (A) Target sequence (top). The amplitude shows the rate of the Poisson input to the supervisor

neurons and is normalized between 0 and 10 kHz. Rate of read-out neurons for one sample reactivation after learning 6 seconds

(bottom). 45 read-out neurons encode the different frequencies in the song. Neuron i encodes a frequency interval of [684 + 171i,
855 + 171i]Hz. (B) The read-out weight matrix after learning 6 seconds. (C) Sequence replays showing the spike trains of both the

recurrent network neurons (top, excitatory neurons in red and inhibitory neurons in blue), and the read-out neurons (bottom).

https://doi.org/10.1371/journal.pcbi.1007606.g006

Learning spatiotemporal signals using a recurrent spiking network that discretizes time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007606 January 21, 2020 12 / 26

https://doi.org/10.1371/journal.pcbi.1007606.g006
https://doi.org/10.1371/journal.pcbi.1007606


The dynamics of the recurrent network spans three time scales: (i) individual neurons fire

at the millisecond time scale; (ii) clusters of neurons fire at the “tick of the clock”, τc, i.e., the

time scale that determines the time discretization of our temporal backbone; and (iii) the slow-

est time scale is at the level of the entire network, i.e. the period of the sequential activity, τp,

achieved over the cascade of sequential activations of the clusters (see Fig 5A). The time scales

τc and τp are dependent on several model parameters: the cluster and network size, the average

connection strengths within the clusters, and adaptation. Smaller cluster sizes lead to a smaller

τc when the network size is fixed and conversely τp increases with network size when the clus-

ter size is fixed.

The recurrent network is the “engine” that, once established, drives read-out dynamics.

Our model can learn different read-out synapses in parallel (Fig 4) and is robust to synapse

failure (Fig 5C). This robustness is a consequence of the clustered organization of the recurrent

network. Previously proposed models are also robust to similar levels of noise [22, 42]. While

an exact comparison is hard to draw, we have shown that it is possible to retain robustness

while moving towards a more biological learning rule. The development of a clustered organi-

zation in the RNN allows a large drive for the read-out neurons while keeping the individual

synaptic strengths reasonably small. If the clusters become small, larger read-out synaptic

strengths are required, and the dynamics become less robust. Indeed, the sequential dynamics

is especially fragile in the limit where every cluster has exactly one neuron. Furthermore, we

show that learning is faster with more neurons per cluster since relatively small changes in the

synapses are sufficient to learn the target. This is consistent with the intuitive idea that some

redundancy in the network can lead to an increased learning speed [43].

In its current form, the target pattern needs to be presented repeatedly to the network

and does not support one-shot learning through a single supervisor presentation. Although

increasing the cluster size NC can reduce the number of presentations, the size of the clusters

would need to be impractically large for one-shot learning. Alternatively, increasing the learn-

ing rate of the plastic read-out weights could be a way to reduce the number of target presenta-

tions to just one [42]. However, it is unclear at present whether such high learning rates are

supported by experiments [44].

Taken together, our numerical simulations suggest ways to scale our network. An optimal

network configuration can be chosen given the temporal length of the target sequence, and

requirements on the temporal precision and robustness. For example, we have shown that a

network with NE = 6400 and NC = 200 can be chosen for a 400 ms target sequence that can be

learned fast with good temporal precision and a robust replay. If the network configuration

and size are fixed, this severely constrains the sequences that can be learned and how they are

replayed.

In this paper, we use local Hebbian learning to produce a sequential dynamics in the recur-

rent network. This is in contrast with previous studies, where often a recursive least squares

method is used to train the weights of the recurrent network [20, 22, 36, 45]. Hardcoding a

weight structure into the recurrent network has been shown to result in a similar sequential

dynamics [16, 17, 46]. Studies that do incorporate realistic plasticity rules are mostly focusing

on purely feedforward synfire chains [47–49], generating sequential dynamics. In this regard,

the contribution of our work is to use the sequential dynamics as a key element to learning spa-

tiotemporal spiking patterns. The ubiquity of sequential dynamics in various brain regions

[50–52] and the architecture of the songbird system [53] was an inspiration for the proposed

separation of temporal and spatial information in our setup. As we have shown, this separation

enables the use of a local Hebbian plasticity rule in the read-out synapses. Our model would

therefore predict that perturbing the sequential activity should lead to learning impairments.
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Further perturbation experiments can test this idea and shed light on the mechanisms of

sequential learning [54].

Previous studies have discussed whether sequences are learned and executed serially or

hierarchically [55]. Our recurrent network has a serial organization. When the sequential

activity breaks down halfway, the remaining clusters are not activated further. A hierarchical

structure would avoid such complete breakdowns at the cost of a more complicated hardware

to control the system. Sequences that are chunked in sub-sequences can be learned separately

and chained together. When there are errors in early sub-sequences this will less likely affect

the later sub-sequences. A hierarchical organization might also improve the capacity of the

network. In our proposed serial organization, the number of spatiotemporal patterns that can

be stored is equal to the number of read-out neurons. A hierarchical system could be one way

to extract general patterns and reduce the number of necessary read-out neurons. Evidence

for hierarchical structures is found throughout the literature [56–58]. The basal ganglia is for

example thought to play an important role in shaping and controlling action sequences [59–

61]. Another reason why a hierarchical organization seems beneficial is inherent to the sequen-

tial dynamics. The time-variability of the sequential activity grows by approximately
ffiffi
t
p

(see

Fig 5E). While on a time scale of a few hundreds of milliseconds, this does not pose a problem,

for longer target sequences this variability would exceed the plasticity time constants. The pre-

sented model could thus serve as an elementary building block of a more complex hierarchy.

In summary, we have demonstrated that a clustered network organization can be a power-

ful substrate for learning, moving biological learning systems closer to machine learning per-

formance. Specifically, the model dissociates temporal and spatial information and therefore

can make use of Hebbian plasticity to learn spatiotemporal sequences over behavioural time

scales. More general, the backbone as a clustered connectivity might encode any variable x and

enable downstream read-out neurons to learn and compute any function of this variable, ϕ(x).

Materials and methods

Neuron and synapse models

Excitatory neurons are modelled with the adaptive exponential integrate-and-fire model [26].

A classical integrate-and-fire model is used for the inhibitory neurons. All excitatory to excit-

atory recurrent synapses are plastic under the voltage-based STDP rule [24]. This enables the

creation of neuronal clusters and a feedforward structure. Normalization and weight bounds

are used to introduce competition and keep the recurrent network stable. Synapses from

inhibitory to excitatory neurons in the recurrent network are also plastic under a local plastic-

ity rule [27]. In general, it prevents runaway dynamics and allows for an automatic search of

good parameters (S5 Fig). The connections from the recurrent network to the read-out neu-

rons are plastic under the same voltage-based STDP rule. However, potentiation of read-out

synapses is linearly dependent on the strength of the synapses. There is no normalization here

to allow a continuous weight distribution. The dynamics was chosen based on previous mod-

els, with parameters for the dynamics and plasticity to a large extent conserved [12]. More

simple integrate-and-fire dynamics should lead to the same qualitative results, given that the

parameters are appropriately changed.

Network dynamics

Recurrent network. A network with NE excitatory (E) and NI inhibitory (I) neurons is

homogeneously recurrently connected with connection probability p. Our network is balanced

in terms of inhibition and excitation, so that it displays irregular and asynchronous spiking.
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This is signalled by the coefficient of variation (CV) of the inter-spike intervals of the neurons

being CV� 1, thus indicating Poisson-like spiking [62]. In our construction, we initialise the

weights of the network near the balanced state by scaling the weights of the balanced RNN

in Ref. [12] by the square root of the relative network size (note that this is the reason why

some parameters in the table are not round numbers; we never fine-tuned parameters). We

then verify that the scaled parameters indeed lead to irregular dynamics. The spiking dynamics

is slightly more regular on average, with a mean CV� 0.8 for excitatory neurons and a mean

CV� 0.9 for inhibitory neurons.

Read-out neurons. The NE excitatory neurons from the recurrent network are all-to-all

connected to NR excitatory read-out (R) neurons. This weight matrix is denoted by WRE and it

is where the learned sequence is stored. To help learning, there are two additional types of neu-

rons in the read-out network. During learning, the read-out neurons receive supervisory input

from NR excitatory supervisor (S) neurons. The connection from supervisor neurons to read-

out neurons is one-to-one and fixed, wRS. Also during learning, NR interneurons (H) are one-

to-one and bidirectionally connected to the read-out neurons with fixed connection strengths,

wRH and wHR (see Table 1 for the recurrent network and read-out parameters). The E to E, I to

E and the E to R connections are plastic.

Membrane potential dynamics. There are two different regimes, one for each part of the

model. Excitatory neurons in the recurrent network have a high adaptation current while

excitatory neurons in the read-out network have no adaptation. This is to allow for a wide

range of firing rates in the read-out network, while spiking is more restricted in the recurrent

network. Differences in the refractory period are there for the same reason, but are not crucial.

The membrane potential of the excitatory neurons (VE) in the recurrent network has the fol-

lowing dynamics:

dVE

dt
¼

1

tE
EE

L � VE þ D
E
T exp

VE � VE
T

D
E
T

� �� �

þ gEE EE � VE

C
þ gEI EI � VE

C
�

aE

C
ð1Þ

where τE is the membrane time constant, EE
L is the reversal potential, D

E
T is the slope of the

exponential, C is the capacitance, gEE, gEI are synaptic input from excitatory and inhibitory

neurons respectively and EE, EI are the excitatory and inhibitory reversal potentials respec-

tively. When the membrane potential diverges and exceeds 20 mV, the neuron fires a spike

and the membrane potential is reset to Vr. This reset potential is the same for all neurons in

the model. There is an absolute refractory period of τabs. The parameter VE
T is adaptive for

Table 1. Initialization of network.

Constant Value Description

NE 2400 Number of recurrent E neurons

NI 600 Number of recurrent I neurons

p 0.2 Recurrent network connection probability

wEE
0

2.83 pF Initial E to E synaptic strength

wIE 1.96 pF E to I synaptic strength

wEI
0

62.87 pF Initial I to E synaptic strength

wII 20.91 pF I to I synaptic strength

wRE
0

0 pF Initial E to R synaptic strength

wRS 200 pF S to R synaptic strength

wRH 200 pF H to R synaptic strength

wHR 200 pF R to H synaptic strength

https://doi.org/10.1371/journal.pcbi.1007606.t001
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excitatory neurons and set to VT + AT after a spike, relaxing back to VT with time constant τT:

tT
dVE

T

dt
¼ VT � VE

T : ð2Þ

The adaptation current aE for recurrent excitatory neurons follows:

ta
daE

dt
¼ � aE: ð3Þ

where τa is the time constant for the adaptation current (see also S6 Fig). The adaptation cur-

rent is increased with a constant β when the neuron spikes. The membrane potential of the

read-out (VR) neurons has no adaptation current:

dVR

dt
¼

1

tE
EE

L � VR þ D
E
T exp

VR � VR
T

D
E
T

� �� �

þgRE EE � VR

C
þ gRS EE � VR

C
þ gRH EI � VR

C

ð4Þ

where τE, EE
L, D

E
T , EE, EI and C are as defined before. gRE is the excitatory input from the recur-

rent network. gRS is the excitatory input from the supervisor neuron (supervisor input only

non-zero during learning, when the target sequence is repeatedly presented). gRH is the inhibi-

tory input from the interneuron (only non-zero during learning, to have a gradual learning in

the read-out synapses). The absolute refractory period is τabsR. The threshold VR
T follows the

same dynamics as VE
T , with the same parameters. The membrane potential of the supervisor

neurons (VS) has no inhibitory input and no adaptation current:

dVS

dt
¼

1

tE
EE

L � VS þ D
E
T exp

VS � VS
T

D
E
T

� �� �

þ gSE EE � VS

C
ð5Þ

where the constant parameters are defined as before and gSE is the external excitatory input

from the target sequence. The absolute refractory period is τabsS. The threshold VS
T follows

again the same dynamics as VE
T , with the same parameters. The membrane potential of the

inhibitory neurons (VI) in the recurrent network has the following dynamics:

dVI

dt
¼

EI
L � VI

tI
þ gIE EE � VI

C
þ gII EI � VI

C
: ð6Þ

where τI is the inhibitory membrane time constant, EI
L is the inhibitory reversal potential and

EE, EI are the excitatory and inhibitory resting potentials respectively. gEE and gEI are synaptic

input from recurrent excitatory and inhibitory neurons respectively. Inhibitory neurons spike

when the membrane potential crosses the threshold VT, which is non-adaptive. After this,

there is an absolute refractory period of τabs. There is no adaptation current. The membrane

potential of the interneurons (VH) follow the same dynamics and has the same parameters, but

there is no inhibitory input:

dVH

dt
¼

EI
L � VH

tI
þ gHE EE � VH

C
ð7Þ

where the excitatory input gHE comes from both the read-out neuron it is attached to and

external input. After the threshold VT is crossed, the interneuron spikes and an absolute refrac-

tory period of τabsH follows. The interneurons inhibit the read-out neurons stronger when they

receive strong inputs from the read-out neurons. This slows the potentiation of the read-out
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synapses down and keeps the synapses from potentiating exponentially (see Table 2 for the

parameters of the membrane dynamics).

Synaptic dynamics. The synaptic conductance of a neuron i is time dependent, it is a con-

volution of a kernel with the total input to the neuron i:

gXY
i ðtÞ ¼ KYðtÞ � WX

ext s
X
i;ext þ

X

j

WXY
ij sYj ðtÞ

 !

: ð8Þ

where X and Y denote two different neuron types in the model (E, I, R, S or H). K is the differ-

ence of exponentials kernel:

KYðtÞ ¼
e� t=tYd � e� t=tYr

tYd � t
Y
r

;

with a decay time τd and a rise time τr dependent only on whether the neuron is excitatory or

inhibitory. There is no external inhibitory input to the supervisor and inter- neurons. During

spontaneous activity, there is no external inhibitory input to the recurrent network and a fixed

excitatory input rate. The external input to the interneurons has a fixed rate during learning as

well. The external input to the supervisor neurons is dependent on the specific learning task.

There is no external input to the read-out neurons. The externally incoming spike trains sXext
are generated from a Poisson process with rates rX

ext. The externally generated spike trains enter

the network through synapses WX
ext (see Table 3 for the parameters of the synaptic dynamics).

Plasticity

Excitatory plasticity. The voltage-based STDP rule is used [24]. The synaptic weight from

excitatory neuron j to excitatory neuron i is changed according to the following differential

Table 2. Neuronal membrane dynamics parameters.

Constant Value Description

τE 20 ms E membrane potential time constant

τI 20 ms I membrane potential time constant

τabs 5 ms Refractory period of E and I neurons

τabsR 1 ms R neurons refractory period

τabsS 1 ms S neurons refractory period

τabsH 1 ms H neurons refractory period

EE 0 mV Excitatory reversal potential

EI −75 mV Inhibitory reversal potential

EE
L −70 mV Excitatory resting potential

EI
L −62 mV Inhibitory resting potential

Vr −60 mV Reset potential (for all neurons the same)

C 300 pF Capacitance

D
E
T

2 mV Exponential slope

τT 30 ms Adaptive threshold time constant

VT −52 mV Membrane potential threshold

AT 10 mV Adaptive threshold increase constant

τa 100 ms Adaptation current time constant

β 1000 pA Adaptation current increase constant in RNN

https://doi.org/10.1371/journal.pcbi.1007606.t002
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equation:

dWij

dt
¼ � ALTD sjðtÞR uiðtÞ � yLTDð Þ þ ALTP xjðtÞR ViðtÞ � yLTPð ÞR viðtÞ � yLTDð Þ: ð9Þ

Here, ALTD and ALTP are the amplitude of depression and potentiation respectively. θLTD

and θLTP are the voltage thresholds to recruit depression and potentiation respectively, as R(.)

denotes the linear-rectifying function (R(x) = 0 if x< 0 and else R(x) = x). Vi is the postsynap-

tic membrane potential, ui and vi are low-pass filtered versions of Vi, with respectively time

constants τu and τv (see also S6 Fig):

tu
dui

dt
¼ Vi � ui ð10Þ

tv
dvi

dt
¼ Vi � vi ð11Þ

where sj is the presynaptic spike train and xj is the low-pass filtered version of sj with time con-

stant τx:

tx
dxj

dt
¼ sj � xj: ð12Þ

Here the time constant τx is dependent on whether learning happens inside (E to E) or out-

side (E to R) the recurrent network. sj(t) = 1 if neuron j spikes at time t and zero otherwise.

Competition between synapses in the recurrent network is enforced by a hard L1 normaliza-

tion every 20 ms, keeping the sum of all weights onto a neuron constant: ∑j Wij = K. E to E
weights have a lower and upper bound ½WEE

min;W
EE
max�. The minimum and maximum strengths

are important parameters and determine the position of the dominant eigenvalues of W.

Potentiation of the read-out synapses is weight dependent. Assuming that stronger synapses

are harder to potentiate [63], ALTP reduces linearly with WRE:

ALTP ¼ A
WRE

max � WRE

WRE
max � WRE

min

: ð13Þ

The maximum LTP amplitude A is reached when WRE ¼WRE
min (see Table 4 for the parame-

ters of the excitatory plasticity rule).

Table 3. Synaptic dynamics parameters.

Constant Value Description

tEd 6 ms E decay time constant

tEr 1 ms E rise time constant

tId 2 ms I rise time constant

tIr 0.5 ms I rise time constant

WE
ext 1.6 pF External input synaptic strength to E neurons

rE
ext 4.5 kHz Rate of external input to E neurons

WI
ext 1.52 pF External input synaptic strength to I neurons

rI
ext 2.25 kHz Rate of external input to I neurons

WS
ext 1.6 pF External input synaptic strength to S neurons

WH
ext 1.6 pF External input synaptic strength to H neurons

rH
ext 1.0 kHz Rate of external input to H neurons

https://doi.org/10.1371/journal.pcbi.1007606.t003
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Inhibitory plasticity. Inhibitory plasticity acts as a homeostatic mechanism, previously

shown to prevent runaway dynamics [12, 13, 27]. Here, it allows to automatically find good

parameters (see also S5 Fig). Excitatory neurons that fire with a higher frequency will receive

more inhibition. The I to E weights are changed when the presynaptic inhibitory neuron or

the postsynaptic excitatory neuron fires [27]:

dWij

dt
¼ Ainh yE

i ðtÞ � 2r0ty

� �
sIj ðtÞ þ Ainh y

I
j ðtÞ s

E
i ðtÞ ð14Þ

where r0 is a constant target rate for the postsynaptic excitatory neuron. sE and sI are the spike

trains of the postsynaptic E and presynaptic I neuron respectively. The spike trains are low

pass filtered with time constant τy to obtain yE and yI (as in Eq 12). Table 5 shows parameter

values for the inhibitory plasticity rule. The I to E synapses have a lower and upper bound

½WEI
min;W

EI
max�.

Learning protocol

Learning happens in two stages. First a sequential dynamics is learned in the RNN. Once this

temporal backbone is established connections to read-out neurons can be learned. Read-out

neurons are not interconnected and can learn in parallel.

Recurrent network. The network is divided in 30 disjoint clusters of 80 neurons. The

clusters are sequentially stimulated for a time duration of 60 minutes by a large external cur-

rent where externally incoming spikes are drawn from a Poisson process with rate 18 kHz.

This high input rate does not originate from a single external neuron but rather assumes a

large external input population. Each cluster is stimulated for 10 ms and in between cluster

Table 4. Excitatory plasticity parameters.

Constant Value Description

ALTD 0.0014 pA mV−2 LTD amplitude

A 0.0008 pA mV−1 LTP amplitude (in RNN: ALTP = A)

θLTD −70 mV LTD threshold

θLTP −49 mV LTP threshold

τu 10 ms Time constant of low pass filtered postsynaptic membrane potential (LTD)

τv 7 ms Time constant of low pass filtered postsynaptic membrane potential (LTP)

τxEE 3.5 ms Time constant of low pass filtered presynaptic spike train in recurrent network

τxRE 5 ms Time constant of low pass filtered presynaptic spike train for read-out synapses

WEE
min 1.45 pF Minimum E to E weight

WEE
max 32.68 pF Maximum E to E weight

WRE
min 0 pF Minimum E to R weight

WRE
max 25 pF Maximum E to R weight

https://doi.org/10.1371/journal.pcbi.1007606.t004

Table 5. Inhibitory plasticity parameters.

Constant Value Description

Ainh 10−5 AHz Amplitude of inhibitory plasticity

r0 3 Hz Target firing rate

τy 20 ms Time constant of low pass filtered spike train

WEI
min 48.7 pF Minimum I to E weight

WEI
max 243 pF Maximum I to E weight

https://doi.org/10.1371/journal.pcbi.1007606.t005
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stimulations there are 5 ms gaps (see also S6 Fig for different gaps). During excitatory stim-

ulation of a cluster, all other clusters receive an external inhibitory input with rate 4.5 kHz
and external input weight WI

ext ¼ 2:4 pF. There is a periodic boundary condition, i.e. after

the last cluster is activated, the first cluster is activated again. After the sequential stimula-

tion, the network is spontaneously active for 60 minutes. The connectivity stabilizes

during the spontaneous dynamics. Learning in scaled versions of this network happens in

exactly the same way (Fig 5A). The recurrent weight matrix of the large network (80 clusters

of 80 neurons, Figs 5E and 6) is learned using the same protocol. The recurrent weight

matrix reaches a stable structure after three hours of sequential stimulation followed by

three hours of spontaneous dynamics. Parameters that change for the scaled up version are

summarized in Table 6. For randomly switching dynamics, a similar protocol is followed

(S1 Fig). The weight matrix used to plot the spectrum of the recurrent network in Fig 2 and

S2 Fig is:

W ¼
WEE � WEI

WIE � WII

 !

:

Read-out network. During learning of the read-out synapses, external input drives the

supervisor and interneurons. The rate of the external Poisson input to the supervisor neu-

rons reflects the sequence that has to be learned. The rate is normalized to be between 0 kHz
and 10 kHz. During learning, WRE changes. After learning, the external input to the supervi-

sor and inter- neurons is turned off and both stop firing. The read-out neurons are now

solely driven by the recurrent network. Plasticity is frozen in the read-out synapses after

learning. With plasticity on during spontaneous dynamics, the read-out synapses would con-

tinue to potentiate because of the coactivation of clusters in the recurrent network and read-

out neurons. This would lead to read-out synapses that are all saturated at the upper weight

bound.

Simulations. The code used for the training and simulation of the recurrent network

is built on top of the code from [12] in Julia. The code used for learning spatiotemporal

sequences using read-out neurons is written in Matlab. Forward Euler discretization with a

time step of 0.1 ms is used. The code is available online on ModelDB (http://modeldb.yale.edu/

257609).

Table 6. Parameters for the large recurrent network (all the other parameters are the same as the smaller

network).

Constant Value Description

NE 6400 Number of recurrent E neurons

NI 1600 Number of recurrent I neurons

wEE
0

1.73 pF baseline E to E synaptic strength

wIE 1.20 pF E to I synaptic strength

wEI
0

40 pF Initial I to E synaptic strength

wII 12.80 pF I to I synaptic strength

WEE
min 1.27 pF Minimum E to E weight

WEE
max 30.5 pF Maximum E to E weight

WEI
min 40 pF Minimum I to E weight

WEI
max 200 pF Maximum I to E weight

WRE
max 15 pF Maximum E to R weight

https://doi.org/10.1371/journal.pcbi.1007606.t006
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Linear rate model: Spectral analysis

A linear rate model can give insight into the dynamics of a large nonlinear structured spiking

network [15]. The dynamics of a simplified rate model with the same feedforward structure as

in the RNN is as follows:

dx
dt
¼ � xþ Axþ x ð15Þ

where x is a multidimensional variable consisting of the rates of all excitatory and inhibitory

clusters, A is the weight matrix, and ξ is white noise. The matrix A is a coarse-grained version

of the weight matrix of the recurrent network in Fig 2B averaged over each cluster. In order to

obtain analytical expressions, we consider a network with 3 excitatory clusters and 1 inhibitory

cluster. The connectivity of this model can be parametrized as:

A ¼

d 1 � � kw

� d 1 � kw

1 � d � kw
w
3

w
3

w
3
� kw

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð16Þ

where δ> 0, w = δ + � + 1, � > 1 guarantees sequential dynamics, and k> 1 guarantees a bal-

anced network.

The Schur decomposition A = UTUT gives eigenvalues and Schur vectors ui:

T ¼

� wðk � 1Þ
ffiffiffi
3
p

w kþ
1

3

� �

0 0

0 0 0 0

0 0 d �
�þ 1

2
�

ffiffiffi
3
p

2
ð� � 1Þ

0 0

ffiffiffi
3
p

2
ð� � 1Þ d �

�þ 1

2

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð17Þ

u1 ¼
1

2

1

1

1

1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; u2 ¼
1

2
ffiffiffi
3
p

1

1

1

� 3

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; u3 ¼
1
ffiffiffi
2
p

� 1

0

1

0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; u4 ¼
1
ffiffiffi
6
p

� 1

2

� 1

0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð18Þ

The first mode u1 decays fast and uniformly over the four neuronal groups. The second

mode u2 decays more slowly, and indicates the interplay between excitatory groups (x1, x2, x3)

and the inhibitory group x4. The eigenspace associated with the pair {u3, u4} has complex con-

jugate eigenvalues and is localized on the three excitatory groups. An increase of activity in

one excitatory group is coupled with decreased activities in the other groups. If the real part

d � �þ1

2
< 1 then these modes are linearly stable but if the real part becomes closer to one

means a slower decay of this mode. Importantly, the imaginary part of the eigenvalues is

�
ffiffiffi
3
p
ð� � 1Þ=2; hence it grows linearly with the strength of the feedforward structure (� − 1)
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(Fig 7A). This leads to oscillatory behavior, which determines the time scale of the sequential

switching.

Supporting information

S1 Fig. Randomly switching dynamics. The recurrent network is stimulated with external

input that is spatially clustered, but temporally uncorrelated. Each cluster is stimulated for 50

ms, with 50 ms gaps in between stimulations. The rate of external stimulation is 18 kHz during

training. This is repeated for 20 minutes after which the network stabilizes during 20 minutes

of spontaneous activity. (A) A diagonal structure is learned in the recurrent weight matrix.

Since there are no temporal correlations in the external input, there is no off-diagonal struc-

ture. (B) The spectrum shows an eigenvalue gap. This indicates the emergence of a slower time

scale. The leading eigenvalues do not have an imaginary part, pointing at the absence of feed-

forward structure and thus there is no sequential dynamics. (C) Under a regime of spontane-

ous dynamics (i.e. uncorrelated Poisson inputs), the clusters are randomly reactivated.

(TIF)

S2 Fig. The connectivity structure is stable under spontaneous dynamics. (A) After 60 min-

utes of training, the network stabilizes during spontaneous activity. During the first 30 minutes

of spontaneous dynamics, the connectivity still changes. More specifically, the imaginary parts

of the leading eigenvalues increase. This leads to a higher switching frequency and as such a

smaller period in the sequential activity. After around 30 minutes, a fixed point is reached.

The first row shows spike trains at different times, for one second of spontaneous activity.

The second row shows the spectra of the weight matrix at those times. (B) After 60 minutes of

sequential stimulation, we test reinforcement and degradation of the learned connectivity by

decoupling the plasticity from the dynamics. We plot the evolution of the off-diagonal weights

during spontaneous dynamics in two separate cases: (i) we run the dynamics of the network

using a frozen copy of the learned weight matrix and apply plastic changes that result from the

dynamics to the original weight matrix (blue curve); (ii) we run the dynamics of the network

using a frozen copy of the learned weight matrix where the off-diagonal structure was removed

and apply plastic changes that result from the dynamics to the original weight matrix (red

Fig 7. Spectral analysis of reduced linear model. (A) Cartoon of a simplified linearised rate model with three nodes

x1, x2, x3 corresponding to three clusters of excitatory neurons with recurrent strength δ connected to a central cluster

of inhibitory neurons x4. The cyclic connections are stronger clockwise than anticlockwise since � > 1. (B) The

spectrum shows a conjugate complex eigenvalue pair with large real part (2δ − � − 1)/2 and an imaginary part

�
ffiffiffi
3
p
ð� � 1Þ=2 which grows linearly with the asymmetry of the clockwise/anticlockwise strength (� − 1). This pair of

eigenvalues dominates the dynamics as their real parts are close to 1 and leads to the periodic behaviour corresponding

to propagation around the cycle x1! x2! x3! x1. . ..

https://doi.org/10.1371/journal.pcbi.1007606.g007
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curve). We can see that in the former, the learned connectivity is reinforced and in the latter,

the learned connectivity degrades. Off-diagonal weights (the y-axis) are quantified by averag-

ing over the weights in the 80 by 80 blocks in the lower diagonal, for the 30 different clusters.

The curves are the means over the 30 clusters and the error bars one standard deviation.

(TIF)

S3 Fig. Noisy learning. The sequence ABCBA is relearned four times for 12 seconds each.

Before relearning, the read-out weight matrix WRE was always reset. When active, read-out

neurons fire two spikes on average +/− one spike. This variability is a consequence of the noisy

learning process.

(TIF)

S4 Fig. Details of some network properties. (A) Duration that a cluster is activated as a func-

tion of network size (B) Raster plot of sequential dynamics for NE = 1200 and NC = 40, after

training. We observe that by reducing the cluster size, the irregularities in the sequential

dynamics are increased (compare with Fig 2). (C) Two raster plots showing two different levels

of robustness (summary plot in Fig 5C). In both cases, at t = 1s (purple arrow), 40 read-out

synapses are deleted for each cluster. Left panel: NC = 120, each read-out neuron fires two

spikes before deletion and one spike after deletion resulting in� 50% performance. Right

panel: NC = 200, each read-out neuron fires two spikes before deletion and one or two spikes

after deletion resulting in a higher performance (� 80%).

(TIF)

S5 Fig. The role of inhibition. (A) Inhibitory neurons are necessary to prevent pathological

excitatory activity. (B) The weights projecting from the inhibitory neurons to the excitatory

neurons without inhibitory plasticity are random (left panel). The weights projecting from the

inhibitory neurons to the excitatory neurons with inhibitory plasticity show some structure

(right panel). (C) The full spectrum of the recurrent weight matrix after learning without

inhibitory plasticity. (D) Without inhibitory plasticity, the sequential dynamics shows irregu-

larities. The inhibitory plasticity allows for better parameters to be found to stabilize the

sequential dynamics in the recurrent network.

(TIF)

S6 Fig. Sensitivity to parameters. The periods of the sequential dynamics are computed after

one hour of external stimulation and one hour of spontaneous dynamics. Only one parameter

at a time is changed. (A) The adaptation time constant is varied. (B) The time gap between

external sequential stimulations is varied. (C) The time constants of the voltage-based STDP

rule are varied. The lines are guides to the eye and the error bars indicate one standard devia-

tion.

(TIF)
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