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Timing and its variability are critical for behavior. Consequently, neural circuits that take part in
the control of timing and in the measurement of temporal intervals have been the subject of much
research. Here, we provide an analytical and computational account of the temporal variability
in what is perhaps the simplest model of a timing circuit, the synfire chain. We elucidate the
statistical structure of its trial-to-trial timing variability and show that it is well-described by a
statistical model which consists of local, global, and jitter components. We relate each of these
components to distinct biological mechanisms. A synfire chain architecture is thought to underlie
the circuit that takes part in the control and timing of zebra finch song; we find that the structure
of trial-to-trial timing variability in the synfire chain is consistent with experimental observations
of the song’s temporal variability. Our study therefore provides a neuronal account of behavioral
variability in zebra finches.

I. INTRODUCTION

Neural circuits are charged with behaviorally crucial
timing tasks. The neural mechanisms underlying behav-
ioral timing have been extensively studied experimentally
[1–5], establishing links between temporal variations of
neural activity and that of behavior [6–13]. Understand-
ing timing variability in neural circuits is therefore nec-
essary for understanding timing variability in behavior.
In this paper, we study temporal variability in one of the
most basic neural network models of timing, the synfire
chain [14–16]. While the synfire chain is theoretically
well-studied [15, 17–19], and experiments support its ex-
istence in biological systems [20], a theoretical account of
its temporal variability is still lacking.

The synfire chain is a feedforward network composed of
pools of neurons that produce traveling waves of synchro-
nized spiking activity, as illustrated in Figure 1a. The
synchronization of spikes within a pool, and the sequen-
tial propagation of activity across pools (Figure 1a) allow
the synfire chain to serve multiple timing functions in a
very natural way. First, it can be used to keep time
by simply counting the pool which the spiking activity
has reached. Second, it can be used to produce precisely
timed intervals defined by the time elapsed between when
activity arrives at a given pool and when it arrives at a
subsequent pool (Figure 1a).

The synfire chain can sustain activity indefinitely given
sufficiently many pools [15, 17], or by arranging it in a
circular topology such that the final pool connects back
to the first one [17]. Experiments support the existence
of a synfire chain architecture in the songbird premotor
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cortex [20] for millisecond-scale precise time-keeping of
the birdsong, with total song durations of few hundreds
of milliseconds [6, 21]. While our results are applicable to
arbitrary time scales, our numerical examples will respect
the experimental time scale.

We are interested in the so-called trial-to-trial vari-
ability in the timing of neural activity of a synfire chain.
Such variability arises from the millisecond-scale tempo
differences across multiple propagations of the spiking
activity in the chain. Trial-to-trial variability may be ac-
tively regulated [22] or caused by the inherent noise and
fatigue in the neural system.

While it might seem small, millisecond-scale neu-
ral variability has been experimentally shown to corre-
late with behavioral variability at the same timescale
[9, 11, 13]. Therefore, our findings may have direct im-
plications for behavioral timing. Indeed, we will show
that the statistical structure of temporal variability in a
synfire chain can explain some of the salient features of
temporal variability in birdsong [21, 23, 24].

We address these questions first in a simplified and an-
alytically solvable model of trial-to-trial variability in a
chain of individual neurons (Section II). We derive ana-
lytical expressions that describe the magnitude and sta-
tistical structure of temporal variability, and verify our
results with simulations. Next, we address temporal vari-
ability in a biologically plausible model of a synfire chain,
which includes multiple neurons per pool, by numerical
simulations (Section III). We show that our results from
the analytically tractable model qualitatively carry over
to this more complex model. We further study the de-
pendence of the various components of variability on the
number of neurons per pool of the chain. We show that
the statistical structure and magnitude of variability in
a synfire chain is consistent with that observed in the
zebra finch song (Section IV). In zebra finches, experi-
mental studies support the existence of a synfire chain
structure in the premotor nucleus HVC [20], which takes
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FIG. 1. Timekeeping and trial-to-trial variability in synfire
chains. (a) The synfire chain is a feedforward network of pools
of neurons. In the figure, circles represent neurons and arrows
represent synapses. A simple scheme to measure time inter-
vals composed of K successive pools, is to mark the beginning
and end of the interval by the first spike of readout neurons
corresponding to first and last pools. (b) Spike trains pro-
duced by the synfire chain show a synchronized activity that
progresses pool-by-pool. Each point corresponds to the time
of a spike produced by a neuron in the chain. Color denotes
membership in a layer, each of which consists of a pool of 10
neurons. Various time intervals are shown. (c) Trial-to-trial
variability in the synfire chain. Spike times of six neurons
from different pools are plotted in different colors. Five dif-
ferent trials for each neuron are shown.

part in the production and timing of the birdsong.

II. TRIAL-TO-TRIAL TIMING VARIABILITY
IN A CHAIN OF SINGLE NEURONS

In this section, we describe the statistical struc-
ture of trial-to-trial timing variability in an analytically
tractable model: a chain of single leaky integrate-and-fire
(IF) neurons. In this simple model, each neuron is driven
by excitatory synaptic input from the previous neuron in
the chain at time tps, which we model by IsΘ(t − tps),
where Θ(t) is the Heaviside step function. Additionally,
we model the drive to each neuron from outside the chain
by the sum of a constant current I0, and the noise due to
synaptic transmission and other cellular processes by a
zero-mean Gaussian process

√
τη(t) with autocorrelation

σ2τδ(t− t′), where τ is the membrane time constant and
σ controls the standard deviation of the noise [25, 26].
The sub-threshold dynamics of the membrane potential

V of a given neuron in the chain is then governed by the
Langevin equation [25, 26]

τ V̇ (t) = −V (t) + I0 + IsΘ(t− tps) +
√
τη(t). (1)

When the neuron’s membrane potential reaches a firing
threshold Vth, the neuron produces a spike and resets its
membrane potential to Vr.

A. Local variability in a chain of single neurons

We want to study the variability in the first-spike times
of successive neurons in the chain. This problem differs
from the standard treatment of noisy and leaky IF neu-
rons [25, 26] in that we are interested in trial-to-trial
variability of intervals between different neurons’ spikes
rather than long-time statistics of the intervals between
spikes generated by a single neuron. However, we can
map this problem to previous results in the literature
[25, 26] by dividing it into two threshold-crossing prob-
lems. First, we can determine the probability distribu-
tion of a given neuron’s membrane potential at time tps,
using the fact that it receives no synaptic input before
the previous neuron’s first spike. Then, given that its
membrane potential at time tps is V0 with probability
P (V0), we can think of the trial-to-trial variability in that
neuron’s time to first-spike after tps as the variability in
the inter-spike intervals of a single leaky IF neuron with
Vr = V0.

If we assume that tps is long enough such that V (tps)
has equilibrated, the solution to the first problem is given
by the stationary distribution of the membrane potential,
which was found in [25] to be

P (V ) = Θ(Vth − V )
2ντ

σ
exp

(
− (V − I0)

2

σ2

)

×
∫ (Vth−I0)/σ

(V−I0)/σ
duΘ

(
u− Vr − I0

σ

)
eu

2

, (2)

where the firing rate ν is given by

ν =
1

τ
√
π

[∫ (Vth−I0)/σ

(Vr−I0)/σ
du eu

2

(1 + erf(u))

]−1
. (3)

We will be interested in the limit of very low firing rates
Vth−I0 � σ, which leads to the standard approximations
(see Appendix A 1 and [25]) of the firing rate as

ν ≈ Vth − I0
στ
√
π

exp

(
− (Vth − I0)2

σ2

)
, (4)

and the membrane potential distribution as

P (V ) ≈ 1√
πσ

exp

(
− (V − I0)

2

σ2

)
, (5)
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which is the stationary limit of an Ornstein-Uhlenbeck
process with boundaries set at infinity.

We can calculate the mean and variance of the first-
spike-interval, Tfs, defined as the time elapsed from tps
to the arrival of the first spike, using the mapping be-
tween our problem and that of determining the statistics
of the inter-spike intervals of a single leaky IF neuron.
Conditioned on V (tps) = V0, these statistics are given by
the standard expressions [25, 26]

〈Tfs〉V0 = τ
√
π

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
du eu

2

(1 + erf(u)) (6)

and

〈δT 2
fs〉V0 = 2πτ2

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dx ex

2

×
∫ x

−∞
du eu

2

(1 + erf(u))2. (7)

We can then combine these results to compute the
mean and variance of the first-spike-interval across trials.
If we approximate the distribution of initial membrane
potentials by the stationary Ornstein-Uhlenbeck process
limit (5) in the low firing rate regime Vth − I0 � σ, we
obtain the lowest-order asymptotic expansions

〈Tfs〉
τ
∼ log

(
Is

I0 + Is − Vth

)
− σ2

4(I0 + Is − Vth)2
(8)

and

〈δT 2
fs〉
τ2

∼ σ2

2(I0 + Is − Vth)2
(9)

in the limit of large synaptic input Is + I0 − Vth � σ (a
detailed derivation of these expressions is given in Ap-
pendix A 2). The scaling of this variability with Is and
σ for fixed I0 and Vth is illustrated in Figure 2 (see Sec-
tion II C). In Appendix A 3, we also derive asymptotics
for 〈Tfs〉 and 〈δT 2

fs〉 using the alternative approximation

P (V0) ≈ δ(V0 − I0).
The above calculation gives the variability in the tim-

ing of one neuron with respect to the previous neuron.
If one defines an interval, T , by a collection of K subse-

quent neurons, i.e. T ≡
∑j+K
a=j T

a
fs for some j, variance

simply adds since noise is assumed to be independent for
each neuron.

B. Correlated variability in a chain of single
neurons

Thus far, we have only considered sources of variabil-
ity that are independent across neurons. However, in bi-
ological neural networks, there are many possible mech-
anisms that could introduce correlated variability, such
as synaptic depression or correlated external input [26–
29]. Here, we consider a simple model for correlated vari-
ability due to neural fatigue. In this model, the spiking
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FIG. 2. Scaling of local trial-to-trial timing variability in a
chain of single neurons. The results of numerical experiment
(Section II C) are shown as dots, and the solid lines show
the asymptotic approximations obtained in Section II A. The
ordinate shows the standard deviation 〈δT 2

fs〉1/2 of the first-
spike-interval, and the abscissa shows the standard deviation
σ of the noise. Increasing values of Is are indicated by darker
shades of gray.

threshold in a given trial is increased by some multiple
m ∈ {0, 1, . . . ,mmax} of a small increment δVth relative
to the baseline threshold Vth. We assume that, across
trials, m is drawn from some distribution with mean 〈m〉
and variance 〈δm2〉. Working in the regime in which
mmax δVth � I0 + Is − Vth, we can use our previously-
obtained asymptotic expansions (8, 9) of the mean and
variance of the first-spike-interval conditioned on Vth to
obtain

〈Tfs〉
τ
∼ log

(
Is

I0 + Is − Vth

)
+

δVth
I0 + Is − Vth

〈m〉, (10)

and

〈δT 2
fs〉
τ2

∼ σ2

2(I0 + Is − Vth)2

[
1 + 2

δVth
I0 + Is − Vth

〈m〉
]

+
δV 2

th

(I0 + Is − Vth)2
〈δm2〉, (11)

to lowest order in both δVth/(I0+Is−Vth) and σ/(I0+Is−
Vth) (see Appendix A 2 for details). If we now consider
two different neurons a and b, the trial-to-trial covariance
of their first-spike-intervals T afs and T bfs will be

〈δT afs δT bfs〉
τaτ b

∼ δV athδV
b
th

(Ia0 + Ias − V ath)(Ib0 + Ibs − V bth)
〈δm2〉,

(12)

to lowest order in δV ath/(I
a
0 + Ias − V ath) and δV bth/(I

b
0 +

Ibs − V bth).
Therefore, we obtain a model in which the trial-to-

trial covariance matrix of the first-spike-intervals of neu-
rons in the chain is the sum of an diagonal, local-
to-a-neuron component and a rank-one global compo-
nent. Concretely, if we assume for simplicity that
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FIG. 3. Correlated trial-to-trial timing variability in a chain
of single neurons. (a) Schematic representation of the decom-
position of the interval-interval covariance matrix into local
and global components as described in Section II B. (b) Scal-
ing of the local and global variability with interval duration.
Numerical experiment and asymptotic theory are shown by
circles and a solid line for local variability, and squares and a
dashed line for global variability (see Section II C). Realiza-
tions of the random sampling used to generate intervals are
plotted as individual markers.

all neurons in the chain are identical, the covariance
matrix of the first-spike-intervals of the neurons in
the chain is given as Σfs = σ2

II + σ2
G11>, where

σ2
I = τ2 σ2

2(I0+Is−Vth)2

[
1 + 2 δVth

I0+Is−Vth 〈m〉
]

is the local

component of the first-spike-interval variance, σ2
G =

τ2
δV 2
th

(I0+Is−Vth)2 〈δm
2〉 is the global component of the first-

spike-interval variance, I is the identity matrix, and 1 is
the ones vector.

If we define an interval by combining K subsequent

neurons in the chain, i.e. Ti ≡
∑iK
a=(i−1)K+1 T

a
fs, we

can see that the resulting interval-interval covariance ma-
trix ΣT will have the same structure: ΣT = Kσ2

II +
K2σ2

G11>. We note that this scaling of local and global
components of variability is independent of the details
of the single-neuron model, and follows from the struc-
ture of the first-spike-interval covariance. This variance
decomposition and scaling with interval length are illus-
trated in Figure 3.

C. Numerical simulation

We compare the theoretical asymptotics we obtained
in Section II A and Section II B to the results of numer-
ical experiment. To study the scaling of local variability
with noise variance and synaptic strength as shown in
Figure 2, we perform 104 realizations of a single-neuron
simulation. In these experiments, we fix τ = 20 ms,
I0 = −70 mV, and Vth = −45 mV while varying σ and Is.
We integrate the Langevin equation (1) using the Euler-

Maruyama method [30] augmented by the reset rule with
a timestep of 10−3 ms; we find empirically that increas-
ing or decreasing the timestep by factors of ten does not
influence the qualitative results. For all parameter values
tested, we observe good agreement between our asymp-
totic approximation and the experimental results for the
mean first-spike-interval. As shown in Figure 2, for the
lowest synaptic strengths and largest noise variances, we
observe some discrepancy between asymptotic theory and
experiment. This is unsurprising, since in that regime
Is + I0 − Vth is only around five times greater than the
standard deviation of the noise, hence higher-order terms
in the expansion are non-negligible.

To study the influence of introducing neural fatigue on
the covariance between intervals defined by collections of
neurons as described in Section II B, we simulate a chain
of 80 identical neurons using the same methodology as
described above. In these experiments, we fix σ = 1 mV
and Is = 45 mV. Over the 104 realizations performed,
we draw the parameter m from the discrete uniform dis-
tribution on {0, . . . , 249}, with the spiking threshold in-
crement set in terms of the baseline threshold Vth as
δVth = 10−3Vth. We then define intervals of varying
lengths by grouping together uniformly randomly sam-
pled sequences of neurons as described in Section II B.

To decompose the resulting interval-interval covariance
matrices into local and global components, we use the
factor analysis method described in [24]. In short, this
method assumes a Gaussian generative model for interval
durations, and decomposes the duration of an interval a
(out of P ) in a trial µ, T aµ as

T aµ =T a + laεaµ + gaχµ

+ (1− δaP ) jaξaµ − (1− δa1) ja−1ξa−1µ , (13)

where T a is the average duration of the interval, εµ ∼
N (0, 1) and ξµ ∼ N (0, 1) are random variables drawn in-
dependently for each interval and trial, and χµ ∼ N (0, 1)
is drawn once per trial and shared across all intervals. la,
gµ and ja are nonnegative parameters. This decomposi-
tion leads to a covariance matrix of the form

Σab =δab

(
la2 + (1− δaP ) ja2 + (1− δa1) ja−1

2
)

+ gagb − (δa,b+1 + δa+1,b)j
a2. (14)

From this covariance matrix, it is apparent that con-
stants la can be associated with local variability and ga

with global variability. ja describes another type of vari-
ability called jitter that we haven’t encountered yet [24].
Jitter describes noise in determining interval boundaries
and causes negative correlations between nearby intervals
[24]. We fit this model to the intervals generated by our
network using the expectation-maximization algorithm
described in [24].

In Figure 3, we plot the square root of the local and
global components of variability as a function of inter-
val duration to more clearly illustrate their scaling with
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the interval duration. We observe good qualitative agree-
ment between the asymptotic theory presented in Section
II B and the results of these numerical experiments.

III. TRIAL-TO-TRIAL TIMING VARIABILITY
IN A SYNFIRE CHAIN

In Section II, we considered a chain of single neurons
with simplified dynamics and coupling for the sake of
analytical tractability. In this section, we study variabil-
ity in a more realistic neural network, a synfire chain
[14, 15, 31–33]. A synfire chain is a feed-forward network
of multiple pools of neurons, also termed nodes or layers,
which are linked by excitatory synaptic connections. We
model the neurons in the synfire chain as bursting neu-
rons, and add a set of readout neurons. This will later
allow us to compare the statistical structure of trial-to-
trial timing variability in this model with the structure
of variability in a biological system, the zebra finch, in
which the underlying neural circuit generating the be-
havior is believed to operate as a synfire chain (Section
IV) [6, 20]. We note that the structure of variability does
not change if we model neurons that emit a single spike
rather than bursts.

We construct a chain of N pools, each composed of
M identical neurons. Every neuron in a given pool i
is connected to all neurons in the next pool i + 1 with
equal weights. As before, we approximate the external
input to each neuron I(t) by the sum of an average part
g(t) and a zero-mean Gaussian process

√
τmη(t) with au-

tocorrelation 〈η(t)η(t′)〉 = σneuronδ(t − t′). Neurons in
the first pool receive an extra input J(t), which is mod-
eled as a rectangular pulse of height J0 and width Tp.
In addition to the per-neuron noise, we include another
noise term, which we refer to as “shared” noise. This
noise ξ(t) is generated by a white Gaussian process but
is shared across all neurons in a given pool, with mean
〈ξ(t)〉 = 0 and autocorrelation 〈ξ(t)ξ(t′)〉 = σpoolδ(t−t′).
Our motivation for including this additional noise term
will become clear later.

Then, the sub-threshold dynamics of the membrane
potential of neuron j in pool i are given by

τmV̇
(i)
j = El − V (i)

j + J
(i)
j (t) +

√
τmη

(i)
j (t)

+ g
(i)
j (t) +

√
τmξ

(i)(t), (15)

where J
(i)
j is zero for all i > 1. The synaptic input g

(i)
j (t)

is modeled by the low-pass-filtered spike train [26]

τsġ
(i)
j = −g(i)j +

τsIs
M

M∑
k=1

S−1∑
l=0

δ(t− t(i−1)ps,k − τbl), (16)

where t
(i−1)
ps,k denotes the first-spike time of the kth neuron

of the (i− 1)th pool and Is sets the strength of synaptic
coupling. The neurons are modeled to emit a burst of S

spikes separated by a fixed interval τb, rather than a sin-
gle spike. When a neuron’s membrane potential reaches
the firing threshold Vth, it is then fixed at that threshold
until the specified burst duration has elapsed, at which
point it is reset to Vr, and once again evolves according
to the sub-threshold dynamics (15). As in Section II B,
we model neural fatigue as a small increase in the mem-
brane potential threshold of all the neurons in the chain
after each trial. We also considered a different neural
mechanism for fatigue, a simplified model of synaptic de-
pression. However, the structure of the resulting trial-to-
trial timing variability was independent of which neural
mechanism of fatigue we implement.

For each pool in the chain, we have a single readout
neuron, which receives synaptic input from all neurons of
that pool along with a white Gaussian noise input with
mean zero and autocorrelation σreadoutδ(t − t′) (Figure
1a). The dynamics of membrane potential and synaptic
inputs for the readout neurons are similar to that in (15)
and (16) with the appropriate inputs.

We will study the statistical structure of timing vari-
ability in this synfire chain model using numerical simu-
lations. As for the simple model (II C), we integrate the
Langevin dynamics (15, 16) using the Euler-Maruyama
method, with a timestep of 10−2 ms. Unless otherwise
noted, we simulate a chain of N = 81 pools of M = 32
neurons each. We set the reset and resting potentials to
−70 mV, the baseline spiking threshold to −45 mV, and
the synaptic strength to Is = 45 mV. We fix the mem-
brane constant τm to 20 ms, the synaptic time constant
τs to 5 ms, the number of bursts S to 4, and the spacing
of bursts τb to 2 ms. These values were chosen to respect
the time scales of bursting in zebra finch HVC neurons
[6, 20, 34]. Unless otherwise noted, we let the strengths of
the per-neuron, per-pool, and readout noise be 0.5 mV,
1 mV, and 3 mV, respectively. As in Section II C, we
fix the spiking threshold increment δVth to 10−3Vth, and
draw the multiplicative increment factor from the dis-
crete uniform distribution on {0, . . . , 249} for each trial.
As propagation in a synfire chain is not always success-
ful [15, 33]. We consider a trial to be successful if the
total number of spikes in the chain is between 4N and
4N + 0.1 (4N), and if all readout neurons fire once. In
the experiments on which Figures 4, 5, and 6 were based,
two trials out of 1000 were excluded from our simulations
with all sources of noise. In Figure 7 no trials were ex-
cluded from the inset.

A. Relating neuronal mechanisms to different
components of trial-to-trial timing variability

In Section II B, we showed that introducing correlated
variability to a chain of IF neurons through a simple
model of neural fatigue yields a spike interval covariance
matrix that is the sum of a local component and a rank-
one global component. To test whether this structure
is present in the trial-to-trial timing variability of the
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synfire chain model, we define intervals by grouping to-
gether sequences of ten neurons, yielding intervals with
a mean duration of 59.5 ms and the covariance structure
shown in Figure 4a. Then, we take the full model co-
variance matrix and use the generative model proposed
in [24] to decompose it into three components, a local
component, a global component, and a jitter component,
Figure 4. We found that the resulting decomposition ex-
plained the covariance matrix well, with a standardized
root mean squared residual of 0.0067 [24]. Thus, the sta-
tistical structure of trial-to-trial timing variability in this
synfire chain model is consistent with that of the simple
model, with the addition of the component corresponding
to readout noise.

Next, we delineate the neural mechanisms behind the
components of variability by selectively including differ-
ent sources of noise. First, we include only the chain
noise, which comprises of the shared and the neuron-
specific noise terms in the input to a neuron shown in
Eq. (15). In this case, we recover a diagonal covariance
matrix, which we identify as local variability Figure 5b.
If we include only neural fatigue, we recover the global
component of variability producing a nearly rank-1 co-
variance matrix, Figure 5c. If we only include noise in
the readout neurons, the duration of neighboring inter-
vals are anti-correlated (Figure 5d), corresponding to jit-
ter. This exercise allows us to identify distinct cellular
and synaptic mechanisms that explain distinct compo-
nents of temporal variability: chain noise contributes to
the local component, fatigue to the global component,

and readout noise to the jitter component.

B. Scaling of the components of variability with
interval duration

In Section II B, we observed that, if one groups multi-
ple pools together to form intervals, the local component
of variability should scale with the square root of the in-
terval length, while the global component should scale
linearly with interval length. This scaling is indepen-
dent of the details of the model, and simply follows from
the assumption that the total trial-to-trial variability of
the spike interval can be decomposed into a local compo-
nent and a global component, both of which are uniform
in magnitude across pools. Applying the factor analysis
method introduced in [24] to the spike times produced by
the detailed synfire chain model (Figure 4), we find that
the scaling of local and global components of variabil-
ity with interval length is consistent with this prediction
(Figure 6).

C. Scaling of local variability with pool size

If we vary the number of neurons per pool M , we find
that the interval duration variance due to per-neuron
component of chain noise falls as 1

M (Figure 7). Thus,
despite the fact that the system is nonlinear, such noise
adds quasi-linearly. Therefore, to have a non-negligible
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FIG. 6. Scaling of local, global, and jitter components of
variability with interval duration in the detailed synfire chain
model with 32 neurons per pool. Circular markers indicate
the results of numerical simulations, and dashed lines show
power-law fits to the data, with exponents of 0.46 and 1.00
for the local and global components, respectively. No fit is
shown for the jitter component, as there does not exist a
statistically significant Spearman correlation between it and
the interval duration (ρ = −0.09, p = 0.25).

local component of variability in this model, we must as-
sume that neurons belonging to the same pool receive
shared noise. In Figure 7, we see that the interval vari-
ability due to this noise mechanism is roughly indepen-
dent of the number of neurons per pool. Varying the
number of neurons per pool did not have an effect on the
readout noise or fatigue. This is shown in the inset of
Figure 7.

IV. THE STRUCTURE OF VARIABILITY IN A
SYNFIRE CHAIN IS CONSISTENT WITH THAT

OBSERVED IN ZEBRA FINCH SONG

Glaze and Troyer [21, 23, 24] studied trial-to-trial vari-
ability in the highly stereotyped zebra finch song. Zebra
finch songs consist of several introductory notes, followed
by a few renditions of a motif, sung in a very repeti-
tive manner. Motifs contain 3 to 8 syllables. Syllables
range from 50-100 ms and are separated by gaps. The
timing of the song is controlled by clock-like bursting in
the premotor nucleus HVC, in particular in HVC neu-
rons projecting to Robust Nucleus of the Arcopallium
(RA). Many studies suggest that the underlying neural
circuit behavior is consistent with a synfire chain model
[6, 7, 20, 34, 35]. Further, experimental evidence sup-
ports millisecond scale correlations between HVC activ-
ity and the song [9, 11, 13]. Thus, we want to test if
the trail-to-trail variability in a synfire chain is also con-
sistent with the trial-to-trial variability observed in the
song duration.

Our first observation is that the full model covariance
matrix of interval duration in the synfire chain model
(Fig. 5a and Section III) has the same structure and mag-
nitude as song timing covariance reported by Glaze and
Troyer [24]. These authors [24] showed that the genera-
tive model given in Eq. (13) is a good descriptor of the
statistical structure of the birdsong temporal variability.

8 16 32 64
neurons per pool

0

0.2

0.4

0.6

<δTa δ
Tb > (m

s2 )

σ = 1 mv
σ = 2 mv
σ = 3 mv

per-neuron noise

per-pool noise
σ = 1 mv

2 64
fatigue
readout noise

0

2

FIG. 7. Scaling of interval variability with the number of
neurons per pool due to different noise sources. A per-neuron
noise (filled circles) and shared noise among neurons in the
same pool (open circles). The filled black, gray, and light
gray circles show the interval variability due to per-neuron
noise with σ = 1 mV, 2 mV, and 3 mV, respectively. Solid
lines are power-law fits to the data, with exponents of -0.95
(black line), -0.94 (gray line) and -1.04 (light gray line). Open
circles show the same thing but for noise that is shared among
neurons in the same pool with σ = 1 mV. Error bars show the
standard error of the mean. The data point for per neuron
noise of σ = 3 mV and M = 8 was excluded because the
chain propagation failed in more than 10% of trials. Inset:
Variability due to readout noise and fatigue as a function of
neurons per pool.

We found the same thing for our synfire chain model in
Section III A. The magnitudes of variability we report
for a 100 ms interval is about 1 ms (for all components),
again consistent with data, Fig. 8; data from [24]. Fur-
ther, our results in Section III A allows us to connect
behavioral variability to neural mechanisms. Our model
suggests that the the chain noise contributes to the local
component of the song variability, fatigue contributes to
the global component, and readout noise contributes to
the jitter component.

To further validate our model, we examine how the
different components of variability in syllable duration
scale with syllable duration in birdsong (Fig. 8; data
from [24]). The scaling of the local and global compo-
nents of variability of syllable duration is similar to that
of the synfire chain model. In the experimental data, it
was observed that the jitter component of syllable dura-
tion variability is not significantly correlated with inter-
val duration (Figure 8); a similar lack of scaling is also
observed in our model (Figure 6).

Finally, we present a prediction of the synfire chain
model for the songbird. Previous studies estimated the
number of RA-projecting HVC neurons in adult male ze-
bra finches to be in the tens of thousands [36]. In turn, we
can estimate the number of neurons per pool in the HVC
synfire chain to be about on the order of hundreds of neu-
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FIG. 8. Scaling of the local, global, and jitter components
of syllable timing variability with interval duration in zebra
finch song (data from Glaze & Troyer [24]). As in Figure 6, we
fit the relationships between interval duration and the local
and global components of variability with power laws, yielding
exponents of 0.53 and 1.14, respectively. No fit is shown for
the jitter component, as it is not significantly correlated with
interval duration.

rons per pool, assuming a ∼5ms delay between activity
reaching successive pools in the chain [6] and a song that
is ∼500ms long. Our simulations (Section III C and Fig-
ure 7) show that in order to have a realistic level of local
song variability with a pool size in the hundreds, neurons
within the same pool should receive a shared noise input.
A possible source of such noise can be the area LMAN,
which projects to HVC indirectly [37]. LMAN is known
to act as a source of variability in the song [8, 22], and
lesioning it reduces temporal variability [8].

V. CONCLUSION

In this paper, we presented analytical and computa-
tional analyses of the trial-to-trial timing variability in
synfire chains. We first show how variability scales with
input strength and noise level in a simple, analytically
tractable chain of single neurons. We also show how
trial-to-trial variability scales with interval duration in
this simple model. Then, we show that our main results
carry to a more realistic synfire chain. We found that
the statistical structure of timing variability in a synfire
chain is well-described by a generative model which con-
sists of local, global and jitter components. Remarkably,
we were able to relate each of these components to dis-
tinct biological mechanisms.

Our findings have important implications for the rela-
tionship between neural and behavioral variability. Even
the most stereotyped of animal behaviors are significantly
variable [23], and it has been argued that some of this
variability is rooted in neural activity [28, 29, 38]. If
so, temporal variability of behavior should reflect the
statistics and structure of temporal variability of neu-
ral circuits that represent or govern the behavior’s tim-
ing [2, 5]. Indeed, interrelationships between the timings
of neural dynamics and behavior have been observed in
various experimental studies [6–13]. In this paper, we ar-
gued that the temporal variability observed in the synfire

chain is consistent with the magnitude and structure of
the timing variability in the zebra finch song. Thus, our
findings provide a concrete example of a detailed match
between neural and behavioral variability. Furthermore,
we predict that neurons within the same pool of the HVC
synfire chain should receive a shared noise input.

A notion of tempo variation that we did not consider
arises from structural changes to the chain, such as home-
ostatic and synaptic plasticity [8, 34, 35], or experimen-
tal perturbations [7]. In birdsong, these mechanisms can
lead to tempo changes on the order of tens of millisec-
onds [7, 8, 34, 35], and, when naturally occurring, require
thousands of song repetitions to take effect [8].
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Appendix A: Asymptotics for the chain of
integrate-and-fire neurons

1. Stationary membrane potential distribution in
the low-rate limit

Here, we review the approximate firing rate and sta-
tionary membrane potential distribution in the low-rate
limit Vth − I0 � σ [25]. Inspecting the equation

ν =
1

τ
√
π

[∫ Vth−I0
σ

Vr−I0
σ

du eu
2

(1 + erf(u))

]−1
, (A1)

we can see that the integral is dominated by the upper
limit due to the exponential. Making the change of vari-
ables u′ ≡ u/h, h ≡ (Vth−I0)/σ, v ≡ (V0−I0)/(Vth−I0),
we have

ν =
σ

τ
√
π (Vth − I0)

[∫ 1

v

du eh
2u2

(1 + erf(hu))

]−1
≈ σ

2τ
√
π (Vth − I0)

[∫ 1

v

du eh
2u2

]−1

≈ σ

2τ
√
π (Vth − I0)

 eh2u2

2uh2

∣∣∣∣∣
1

v

−1

≈ Vth − I0
στ
√
π

exp

(
− (Vth − I0)2

σ2

)
. (A2)

where we integrated by parts in the third line. By a sim-
ilar argument, we can approximate the stationary distri-
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bution of the membrane potential using the approxima-
tion∫ Vth−I0

σ

V−I0
σ

duΘ

(
u− V0 − I0

σ

)
eu

2

≈ 1

2ντ
√
π
, (A3)

in this limit.

2. Moments of the first-spike-interval in the
low-rate stationary limit

To derive the moments of the first-spike-interval in
the low-rate stationary approximation, we start with the
standard results (given as 6 and 7 in the main text) for
the mean and variance conditioned on V0 [25, 26]:

〈Tfs〉V0 =
√
πτ

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dy ey

2

[1 + erf(y)] (A4)

and

〈δT 2
fs〉V0 = 2πτ2

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dx ex

2

×
∫ 0

−∞
dy e(x+y)

2

[1 + erf(x+ y)]
2
. (A5)

Considering the mean first-spike-interval, we use the in-
tegral representation of the error function as

1 + erf(x) =
2√
π

∫ 0

−∞
du e−(u+x)

2

(A6)

to write

〈Tfs〉V0
τ

= 2

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dy ey

2

∫ 0

−∞
du e−(u+y)

2

=

∫ 0

−∞

du

u
e−u

2

×
[
e2u(I0+Is−V0)/σ − e2u(I0+Is−Vth)/σ

]
,

(A7)

where we note the cancellation in the bracketed integrand
that ensures that it does not diverge as u→ 0−. We can
then easily compute the expectation over the approxi-
mate distribution (5) of V0 to obtain

〈Tfs〉
τ

=

∫ 0

−∞

du

u
e−u

2
[
eu

2+2Isu/σ − e2u(I0+Is−Vth)/σ
]
,

(A8)

which, though it does not have a simple closed-form solu-
tion, is the integral of a bounded entire function that de-
cays exponentially fast at infinity (provided that Is > 0),
and is therefore well-behaved.

To obtain a similar integral expression for the variance
of the first-spike-interval, we recall the law of total vari-
ance

〈δT 2
fs〉 = 〈〈δT 2

fs〉V0 〉+ 〈δ〈Tfs〉2V0 〉, (A9)

where the outer angle brackets denote averaging over the
distribution of V0, and follow the same procedure that
we used to derive 〈Tfs〉 to obtain

〈〈δT 2
fs〉V0 〉
τ2

= 4

∫ 0

−∞
du

∫ 0

−∞
dv

∫ 0

−∞
dw

e−(u+v+w)2+2uv

u+ v + w

×
[
e(u+v+w)2+2(u+v+w)Is/σ − e2(u+v+w)(I0+Is−Vth)/σ

]
,

(A10)

and

〈δ〈Tfs〉2V0 〉
τ2

=

∫ 0

−∞

du

u

∫ 0

−∞

dv

v
e−u

2−v2

×
[
e(u+v)

2+2Is(u+v)/σ − eu
2+v2+2Is(u+v)/σ

]
.

(A11)

With these integral expressions in hand, we can now
derive asymptotic expansions for the moments. For
brevity, we define the dimensionless scalars α ≡ (I0 +
Is − Vth)/σ and β ≡ (Vth − I0)/σ; we will work in the
limit of low baseline firing rates β � 1 and large synaptic
inputs α � 1. Rescaling u by 2α in (A8), we can write
the mean first-spike-interval as

〈Tfs〉
τ

=

∫ 0

−∞

du

u
eu
[
e(β/α)u − e−u

2/4α2
]

= log

(
α+ β

α

)
−
∫ 0

−∞

du

u
eu
[
e−u

2/4α2

− 1
]
,

(A12)

where we have split the integral into two pieces by adding
and subtracting one from the integrand and evaluated the
first of the remaining integrals. Expanding the remaining
integrand other than the overall exponential weight eu

as a power series and integrating term-by-term using the
relationship of the integrand to the gamma function [39],
we obtain the divergent asymptotic series

〈Tfs〉
τ
∼ log

(
α+ β

α

)
+

(−1)k(2k − 1)!

4kk!α2k

∼ log

(
α+ β

α

)
− 1

4α2
+O

(
α−4

)
, (A13)

which yields the lowest-order approximation given in the
main text.

We now consider 〈δT 2
fs〉. Converting the integral over

the negative octant in (A10) to an integral over the
positive octant, making the change of variables x ≡ u,
y ≡ v + w, z ≡ w, and parameterizing the domain of
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integration such that we integrate first over z ∈ [0, y], we
have

〈〈δT 2
fs〉V0 〉
τ2

= 2

∫ ∞
0

dx

∫ ∞
0

dy
e−2α(x+y)

x(x+ y)

[
e2xy − 1

]
×
[
e−(x+y)

2

− e−2β(x+y)
]
.

(A14)

Then, adding the expression for 〈δ〈Tfs〉V0 〉 given in (A11)

to the above expression for 〈〈δT 2
fs〉V0 〉 as prescribed by

the law of total variance (A9), we have

〈δT 2
fs〉
τ2

=

∫ ∞
0

dx

∫ ∞
0

dy e−2α(x+y)
[
e2xy − 1

]
×

[
2e−(x+y)

2

x(x+ y)
+

1

xy

(
x− y
x+ y

)
e−2β(x+y)

]
.

(A15)

As it is anti-symmetric about the line y = x, the sec-
ond term in the bracketed integrand will vanish under
integration over the positive quadrant, leaving

〈δT 2
fs〉
τ2

= 2

∫ ∞
0

dx

∫ ∞
0

dy
e−(x+y)

2−2α(x+y)

x(x+ y)

[
e2xy − 1

]
.

(A16)

Rescaling x and y by 2α and making the change of vari-
ables u ≡ x+ y, v ≡ x, we have

〈δT 2
fs〉
τ2

= 2

∫ ∞
0

du

u

∫ u

0

dv

v
e−u

2/4α2−u
[
ev(u−v)/2α

2

− 1
]
.

(A17)

Expanding the bracketed portion of the integrand as a
power series and observing that∫ u

0

dv vk(u− v)k+1 =
k!(k + 1)!

(2k + 2)!
u2k+2, (A18)

we have, integrating over u term-by-term,

〈δT 2
fs〉
τ2

=

∞∑
k=0

k!

2k(2k + 2)!α2k+2

∫ ∞
0

du e−u
2/4α2−uu2k+1.

(A19)

To allow us to apply standard asymptotic results to the
remaining integral, we note that it is related to Tri-
comi’s confluent hypergeometric function U(a, b, z) as
α2k+2(2k + 1)!U(k + 1, 1/2, α2) [39], hence, shifting in-
dices for convenience, we can write

〈δT 2
fs〉
τ2

∼
∞∑
k=1

(k − 1)!

2kk
U

(
k,

1

2
, α2

)
. (A20)

Using the standard result that

U(a, b, z) ∼ z−a
[
1− a(a− b+ 1)

z

+
a(a+ 1)(a− b+ 2)(a− b+ 1)

2z2

+O(z−3)
]
, (A21)

for |z| � 1 [39], we have

〈δT 2
fs〉
τ2

∼ 1

2α2
− 1

8α4
+O(α−6), (A22)

which yields the lowest-order approximation given in the
main text.

To obtain the asymptotic approximations for the tim-
ing variability in the simple model for neural fatigue given
in the main text (10, 11, 12), we start from the asymp-
totic expansions without fatigue (8, 9), and apply the
laws of total expectation and total variance given the
assumed distribution of the parameter m. We then ex-
pand the resulting expressions about the baseline spiking
threshold Vth to lowest order in δVth/(Is + I0 − Vth), as-
suming that mmax δVth � Is + I0 − Vth, yielding the
asymptotic approximations (10) and (11).

3. Moments of the first-spike-interval in a
delta-function approximation

In the previous appendix and in the main text, we con-
sidered the approximation of the distribution of initial
membrane potentials by the stationary Gaussian limit
(5). In this appendix, we consider a delta-function ap-
proximation P (V0) ≈ δ(V0 − 〈V0〉). This approximation
maps directly to the standard treatment of leaky IF neu-
rons with the appropriate replacement of Vr by I0. Here,
we review the derivation of the corresponding asymptotic
results [26, 27]. In the limit Vth − I0 � σ of low firing
rates, we have 〈V0〉 = I0, hence we fix V0 = I0 in this ap-
proximation. Considering the mean first-spike-interval,
we again start from the standard expression (6) with V0
set to I0, and rescale σy 7→ y, yielding

〈Tfs〉
τ

=

√
π

σ

∫ Vth−I0−Is

−Is
dy ey

2/σ2
(

1 + erf
( y
σ

))
.

(A23)

In the limit Is + I0 − Vth � σ of large synaptic inputs,
the quantity y in the above integrand is always negative,
and we have y/σ � −1. Using the asymptotic expansion
of the error function for x� −1 [39],

erf(x) ∼ −1 +
e−x

2

√
π|x|

(
1− 1

2x2
+ . . .

)
, (A24)

we obtain

〈Tfs〉
τ
∼ log

(
Is

Is + I0 − Vth

)
− σ2

4

(
1

(Is + I0 − Vth)2
− 1

I2s

)
(A25)

to lowest order. Similarly, for the variance of the first-
spike-interval, we start with the standard expression (7)
with V0 = I0. Again rescaling the variables of integration
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by σ and using the asymptotic form of the error function,
we obtain the lowest-order asymptotic approximation

〈δT 2
fs〉
τ2

∼ σ2

2

(
1

(Vth − Is − I0)2
− 1

I2s

)
. (A26)

Comparing these expressions to the corresponding re-
sults (8, 9) in the approximation of the initial membrane

potential distribution by the stationary Gaussian dis-
tribution (5), we observe that they are identical up to
the presence of the −I−2s terms in the lowest-order ap-
proximations. The presence of these terms in the delta-
function approximation means that the variability de-
creases more rapidly with increasing synaptic strength
and increases less rapidly with increasing noise variance
σ2 than in the Gaussian approximation.
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