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Abstract
In data analysis, outliers are deviating and unexpected observations. Outlier detection is important, because outliers can
contain critical and interesting information. We propose an approach for optimizing outlier detection ensembles using a
limited number of outlier examples. In our work, a limited number of outlier examples are defined as from 1 to 10% of
the available outliers. The optimized outlier detection ensembles consist of outlier detection algorithms, which provide an
outlier score and utilize adjustable parameters. The automatic optimization determines the parameter values, which enhance
the discrimination of inliers and outliers. This increases the efficiency of the outlier detection. Outliers are rare by definition,
whichmakes the optimizationwith a few examples beneficial. Obtaining examples of outliers can be prohibitively challenging,
and the outlier examples should be used efficiently.

Keywords Bagging · Outlier detection · Outlier detection ensemble · Semi-supervised outlier detection

1 Introduction

Outlier detection is an important form of data analysis [16].
An outlier is an unexpected data observation that does not
match the existing data or assumptions of how the observa-
tions are generated [31]. Outliers deviate significantly from
the expectations [29].Normal and expected data observations
are called inliers. An outlier can entail interesting informa-
tion. It consists of unusual, unexpected and new information
in comparison with inliers [14]. Other names for outliers
include fault [22], intrusion [25,85] and anomaly [48]. Out-
lier detection has been successfully applied in different fields
[8,15,24–26,28,36,38,62,68,80,81].

We propose an approach for optimizing outlier detection
ensembles by automatically adjusting the parameters of the
combined outlier detection algorithms using a limited num-
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ber of outlier examples. The outlier detection algorithms are
called detectors [43]. An outlier detection ensemble is a com-
bination of detectors; see Sect. 2.1 and [2,3,89] for more
information. In the context of our work, a limited number
of outlier examples range from a single example to 10%
of the available outliers for experiments. The optimization
improves the efficiency of the outlier detection, which is
empirically validated in Sect. 4.3. The optimization method
is introduced in detail in Sect. 3. Section 2 defines the out-
lier detection algorithms and outlier detection ensembles in
detail. Section 5 surveys the relatedwork. Section 6 discusses
about the acquired results and concludes this article. The opti-
mization is suitable for a combination of detectors, which (1)
provide scores as the magnitude of an observation being an
outlier and (2) utilize adjustable parameters. See Sect. 2.1 and
[69] for more information on the outlier scores. Additionally,
the detectors are required to detect outliers in the given data.
If the combination of detectors does not detect outliers in
the given data, even with suitable parameter values, then the
optimization will not benefit the outlier detection ensemble.

To further improve the efficiency of the outlier detection,
we sample a subset of the available features in the analyzed
data [6]. A feature is a single dimension of the analyzed
data; see the beginning of Sect. 2 for details. The existing
work in [43,49,51] samples a random subset of the available
features for outlier detection. This approach is called feature
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bagging; see [43] for more details. Every feature has an equal
probability of being selected.

Unlike the previous work in [72,86,87], our proposed
approach optimizes the parameters of the detectors using
outlier examples. The works in [72,86,87] do not modify the
parameters of the detectors. Instead, they propose new algo-
rithms, which utilize the individual outlier examples. The
utilization of a limited number of outlier examples has been
studied in [87] (10% of the available outliers). Our experi-
ments in Sect. 4 use from a single example to 10% outlier
examples. Therefore, our approach uses a smaller number of
outlier examples than the existing work.

We combine the following two outlier detection algo-
rithms: k-nearest neighbor (KNN) and local outlier factor
(LOF). These outlier detection algorithms are well estab-
lished and commonly utilized in outlier detection ensembles
[12,42,43,49,69]. KNN and LOF are presented in Sects. 2.4
and 2.5. The selection of KNN and LOF is motivated by
the results in [69], which show that KNN and LOF can be
combined successfully.

2 Outlier detection ensembles and
algorithms

Let X ∈ R
n×d be a matrix with n rows and d columns of

real numbers (Xi j ∈ R). The matrix X represents a static
dataset that contains the data for the outlier analysis. The
d columns are called features. The n rows are called data
points or data observations. Vector xi ∈ R

d is a data point,
which is a row in X. The matrix X consists of n data points
X = {xT1 , xT2 , . . . , xTn }. Outlier detection algorithms attempt
to detect outliers in dataset X. The feature space is a vec-
tor space defined by the given features, which measure the
properties of the inspected phenomenon. Inliers are located
in subsets of the feature space. These subsets are known
as normal regions [16,70]. Therefore, inliers are data points
(vectors) in the normal regions. An outlier is a data observa-
tion xi ∈ X that does not belong in the normal region. The
following subsection defines an outlier detection ensemble
in detail.

2.1 Outlier detection ensemble

An outlier detection ensemble combines multiple detectors
for accurate outlier detection. The combination of algorithms
can reduce bias and variance of the ensemble [10,73]. Bias
is the prediction error resulting from the training data of a
model, and variance is the prediction error related to unob-
served data. Small bias indicates that the model has learned
the training data well, because it can predict the training data
with small error. Small variance indicates that the model can
generalize to different data because it can predict unobserved

data with small error. Unfortunately, a low bias causes a high
variance and vice versa. This problem is called the bias–
variance dilemma [73] or bias–variance trade-off [10]. See
[3] for a detailed study of the bias–variance dilemma in the
context of outlier detection ensembles.

The scope of our work is in outlier detection ensembles of
detectors, which measure an outlier score for the data points.
The scoring of outliers is utilized by many of the existing
outlier detection algorithms [14,34,57,82]. Outlier score is a
quantified measure, which indicates the likeliness of a data
point xi being an outlier. Without loss of generality, a higher
score implies a more likely outlier detection. An outlier is a
data point xi that has the corresponding score above a thresh-
old value T .

Let K denote the number of detectors,which are the outlier
detection algorithms in an outlier detection ensemble. The K
detectors operate independently of each other. The detectors
calculate an outlier score si j , in which i ∈ 1, 2, . . . , n and
j ∈ 1, 2, . . . , K , for each n of data points xi in a dataset X.
The subscript j in si j denotes the score of the j th detector
of the outlier detection ensemble, and the subscript i refers
to the data point xi . A detector is mathematically defined
as a function g j (xi ) = si j , which returns nonnegative real
value (outlier score). The function is formally defined as g j :
R
d → R

+ and g j (xi ) = si j .
To form a single outlier score for a data point xi , the outlier

scores of the K individual detectors g j (xi ) are weighted and
summed as follows:

g(xi ) =
K∑

j=1

w j g j (xi ) =
K∑

j=1

w j si j . (1)

The valuesw1, . . . wK in Eq. (1) are weights assigned to each
detector. The weights are discussed further in Sect. 3.2 and
Eq. (13). The effect of the weights on the performance is dis-
cussed in Sect. 4.4. There exist other options in the literature
for the ensemble combination function such as maximum
value and average value [3]. However, no consensus exists
on the choice of the best method to combine the scores [89].
Therefore, we utilize the summation as the ensemble combi-
nation function for the outlier scores [43]. We also normalize
the analyzed data to the range [0, 1] on each feature. This alle-
viates the outlier detection, because the features have similar
ranges of values and no feature dominates the rest in scale.
The normalization of data is also presented in [43] to be a
common step in the process of combining results of detectors
in an outlier detection ensemble.

The outlier scores of KNN and LOF do not have a maxi-
mum value. This means that it is hard to define themagnitude
of a high score and a low score [33]. The scores vary in their
scale and range [42]. Even subsets of same data can result
in different scores [41]. The outlier scores of a detector may
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vary for the same data point xi when different subsets of data
are used. Therefore, it is very hard to compare the scores
between different algorithms and datasets [42]. See [42] for
a detailed discussion on how to normalize the outlier scores.
To alleviate the scale problem, we utilize linear scaling (sim-
ilarly to [88]) to normalize the outlier score of a data point
between zero and one as follows:

gnormj (xi ) = g j (xi ) − g j (xmin)

g j (xmax) − g j (xmin)
, (2)

where xi is a data point in the analyzed dataset (xi ∈ X),
g j (xi ) is the score of the j th detector for a data point xi ,
g j (xmax) is themaximumscore of the detector in the analyzed
dataset X and g j (xmin) is the minimum score of the detector
in the analyzed dataset X.

The detectors have to be accurate and provide diverse
results to benefit from their combination [69,88]. First, the
detectors have to provide results that are more accurate than
random classification. If the detectors assign outliers ran-
domly, then the outlier detection ensemble also provides
random results. Second, the detectors have to provide results
that are not identical. It is not meaningful to combine multi-
ple instances of identical results, because no new information
is gained. Therefore, the correlation should be low between
the results. The following subsection introduces a method to
create diversity in an outlier detection ensemble.

2.2 Bagging

Bagging (bootstrap aggregating) is an ensemble method to
reduce the variance of the results by inducing diversity [13].
In bagging,multiple subsets of the data are sampled randomly
with replacements and a model is trained using the sampled
subsets. The results of the models are combined (e.g., aver-
age or majority voting, see [3,88]) to provide more accurate
results. For clarity, we will use the term data bagging when
the sample is drawn from the available observations. Data
bagging is used in [49].

Another way to utilize bagging in outlier detection is to
draw a sample from the available features. This approach is
called feature bagging. Feature bagging has been success-
fully utilized to build outlier detection ensembles in [43].
However, in feature bagging, the d features are randomly
sampled without replacements, because multiple copies of
the same features do not provide new information. The fea-
ture bagging in [43] samples from d/2 to d − 1 features
for every detector. Our work applies both data bagging (in
Algorithm 2) and feature bagging (in Algorithm 1) to create
diversity between the detectors. The following subsection
introduces outlier detection algorithms in detail.

2.3 Outlier detection algorithms

Algorithms for outlier detection classify the data points in
a dataset X as inliers and outliers. The algorithms are typi-
cally categorized by how they detect outliers as listed below.
Many outlier publications [14,57,69,82] define the following
categories:

Distribution-based outlier detection [17,47,58,60] mod-
els the normal region in feature space as a region of high
probability. Data observations with a low probability in the
probability distribution are assumed to be outliers.

Distance-based outlier detection [5,82] determines the
outlier status of a data observation using distances. Data
observations that have a high distance to other data obser-
vations are outliers.

Density-based outlier detection [14,57] defines outliers
as data observations, which are located in regions with low
density in feature space.

Clustering-based outlier detection [11,34,45] commences
outlier detection by clustering dataset X. Outliers are data
points within deviating clusters or the data points, which
deviate relative to the formed clusters.

We combine two algorithms: KNN and LOF. We do not
combine distribution-based detectors, because distribution-
based detectors assume a distribution [34]. In addition,
distance-based and density-based detectors are known to
perform better than distribution-based and clustering-based
detectors on high-dimensional datasets [57]. This combina-
tion ofKNNandLOF is utilized also in [3] in outlier detection
ensembles.

KNN and LOF are chosen, because they are well-
established algorithms for outlier detection in the literature
[12,42,43,49,69]. They also represent a different category
of outlier detection algorithms in which KNN is a distance-
based algorithm and LOF is a density-based algorithm. This
demonstrates how a combination of different outlier detec-
tion algorithms can be optimized to detect outliers. The
following subsections introduce KNN and LOF in detail.

2.4 k-nearest neighbors for outlier detection

k-nearest neighbors (KNN) is a distance-based algorithm for
outlier detection [61,76]. Outliers are defined as data points,
which are distant to the neighboring data points. The outliers
are data points in isolated, or sparsely populated, regions in
the feature space. The degree of a data point being an out-
lier is measured by its location in a local neighborhood. The
local neighborhood of a data point xi is a k-neighborhood,
which is defined as the k nearest data points for a data point
xi . The resulting set of k nearest data points for xi is denoted
asN (xi , k) by Zhang et al. [82]. The members ofN (xi , k)
are called local neighbors of xi . The distances of xi to its
neighbors (N (xi , k)) are combined by using a combination
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function (KNN combination function). Typical choices are
the maximum value and average value. Let T denote a dis-
tance threshold that discriminates outliers from inliers. An
outlier is an observation that has a combined distance greater
than the distance threshold.

The distance between two data points xi and x j is mea-
sured using a distance metric D(xi , x j ). The distance metric
quantifies the difference of the values of two data points (vec-
tors). See [39] for a detailed description of distance metrics
and vector spaces. We utilize the following distance metrics
(see Sect. 3):

Manhattan distance: D(xi , x j ) =
d∑

k=1

|xik − x jk | , (3)

Euclidean distance: D(xi , x j ) =
√√√√

d∑

k=1

(xik − x jk)2 , (4)

Chebyshev distance: D(xi , x j ) = max(|xik − x jk |)∀k , (5)

Cosine distance: D(xi , x j ) = 1 − xi · x j

||xi || ||x j || , (6)

Correlation distance: D(xi , x j ) = 1 − (xi − x̄i )T(x j − x̄ j )

||xi || ||x j || ,

(7)

Canberra distance: D(xi , x j ) = 1

d

d∑

k=1

|xik − x jk |
xik + xik

. (8)

In Eqs. (3)–(8), the symbol ||.|| denotes the norm of a vector,
x̄ denotes the mean value of a vector x and xik denotes the
kth feature of a data point xi .

2.5 Local outlier factor

Local outlier factor (LOF) is a well-established outlier detec-
tion algorithm [14]. LOF estimates the density p(x) of each
observation and classifies the observations in low the density
neighborhoods as outliers. Let D

x j
k be the distance of x j to its

kth nearest neighbor inN (x j , k) and D(xi ,x j ) the distance
from xi to x j . The distance D

x j
k is used to calculate reacha-

bility distance reachdistk(xi ,x j ) between points xi and x j .
The reachability distance is defined as themaximumbetween
D

x j
k and D(xi ,x j ). The reachability distance is at least D

x j
k ,

and it is greater than D
x j
k if xi is not a local neighbor of x j .

Formally, the reachability distance is defined as

reachdistk(xi , x j ) = max(D
x j
k , D(xi , x j )) . (9)

Let avgreach(xi ) be the average reachability distance
between xi and all the data points x j in the k-neighborhood

x j ∈ N (xi , k) of xi . The avgreach(xi ) is defined as

avgreach(xi ) =
∑

x j∈N (xi ,k) reachdistk(xi , x j )

k
. (10)

The avgreach(xi ) is used to calculate local reachability den-
sity lrdk(xi ) for data point xi . The local reachability density
is the inverse of avgreach(xi ). Local reachability density is
defined as

lrdk(xi )= 1

avgreach(xi )
= k∑

x j∈N (xi ,k) reachdistk(xi , x j )
.

(11)

Finally, the LOF score, LOFk(xi ), is computed using the
local reachability densities lrdk(xi ). The LOF score of a data
point xi is defined as the ratio between the average lrd of the
neighborhood N (xi , k) and the lrdk(xi ) as follows:

LOFk(xi ) =
∑

x j∈N (xi ,k) lrdk(x j )

lrdk(xi ) ∗ k
. (12)

The LOFk can be interpreted as a degree of measure on how
packed a given data observation is in a locally reachable
neighborhood [82] without assumptions of the distribution
of all the data. A high LOFk(xi ) score means that xi has a
deviating density compared to its neighborhood, which indi-
cates that xi is an outlier.

3 The proposed optimization approach

In this section, we propose an approach for optimizing
the parameters of outlier detection ensembles using outlier
examples. Our proposed optimization increases the accuracy
of the outlier detection, which is justified in Sect. 4.3. The
process of adjusting the parameters is based on a set of pre-
viously known and available examples of outliers.

3.1 Optimization of detectors

In Sect. 1, we assumed that each detector in the ensemble
utilizes one or more tunable parameters (e.g., the number
of neighbors k). For optimal performance, these parameters
must be tuned optimally. We propose a surrogate cost func-
tion for the selection of the parameter values in Sect. 3.3.
LOF and KNN utilize the following parameters:

– The number of neighbors in a local neighborhood: k
– The selected distance metric: Eqs. (3)–(8)

In addition to these parameters, KNN uses also a combina-
tion function. In our setting, the KNN combination function
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is chosen from the following combination functions: sum,
average, median and maximum function.

Let X ∈ R
n×d be the data to be analyzed and Xo ∈ R

h×d

be a set of h known outlier examples. We assume that the
number of analyzed data points is greater than the number
of outlier examples (n > h), because outliers are rare. The
data points xi in X do not have labels, and they consist of
both inliers and outliers. The outliers in the datasetX are not
known in advance. Therefore, the outliers in the dataset X
are called hidden outliers and we say that the dataset X is
contaminated with the hidden outliers. All of the data points
inXo are outliers. LetX+ ∈ R

(n+h)×d be amatrix that results
in concatenating the rows of the matrices X and Xo as X ∪
Xo = X+ ∈ R

(n+h)×d . The matrix X+ consists of the n
unlabeled data points and the h labeled outlier examples.

As established in Sect. 2, KNN and LOF provide outlier
scores for the data points in a dataset. The outlier scores dis-
criminate the outliers and inliers so that outliers have high
scores and inliers have low scores. Therefore, a contrast
between the inlier scores and outlier scores helps the sep-
aration of the inliers and outliers [42]. However, the outlier
scores do not typically provide a good separation of the scores
between the inliers and outliers [42]. Therefore, the goal of
our proposed optimization is to build a contrast between the
inlier and outlier scores by minimizing the inlier scores and
maximizing the outlier scores. The underlying assumption
in our work is that a contrast between the inlier and outlier
scores makes the outlier detection more efficient. It is easier
to use a score threshold (T ) to classify data points into inliers
and outliers if the scores of inliers and outliers do not resem-
ble each other. One motivation for our approach comes from
the field of classification in machine learning. Support vector
machine (SVM) is a classifier that defines a maximum mar-
gin between the target classes in the utilized feature space
[10]. The SVM classifier is accurate and capable to general-
ize, by utilizing themaximummargin as the target classes are
separated with a clear contrast. We call the contrast between
the inlier and outlier scores a score margin, which is utilized
in the surrogate cost function in Eq. (15).

3.2 Maximization of score margin

The score margin is quantified as a real value. Let gnormj (X)

denote the normalized scores of the analyzed data of the j th
detector. Let gnormj (Xo) denote the normalized scores of the
outlier examples by the j th detector. Then, the margin is
the difference gnormj (Xo) − gnormj (X). To create a contrast
between normal data and outliers, the outlier score distri-
butions of normal data and outliers have to have a positive
margin. However, the analyzed dataset is contaminated by
the hidden outliers, which prevents the exact computation
of the margin. Therefore, a robust measurement is required
for determining the magnitude of the score margin. Themea-

surementmust not be affected by the hidden outliers, because
they are not known in advance in the contaminated dataset.

We utilize the median value (MED) of the score distribu-
tions, because themedianmeasures the 50-percentile (middle
value) of a distribution. The median is robust to the scores
of the hidden outliers, because the median has a breakdown
point of 50% (see [66] for details). If at least 50% of the data
points in a sample are inliers, then the median score is not
arbitrary large. Therefore, the impact of the hidden outliers
is negligible, because the inlier scores are likely to induce the
median value. The median can acquire arbitrary large values
if at least 50% of the data points in the contaminated analysis
data result in high outlier scores. However, 50% of the data
points should not form the set of outliers as this is in stark
contrast with the inherent stipulation of outliers being rare
by definition. Therefore, the median is a robust measurement
for the outlier scores, because it is not significantly affected
by the hidden outliers in the contaminated analysis data.

For the j th detector, the optimization finds the parame-
ter values that maximize the distance MED(gnormj (Xo)) −
MED(gnormj (X)) between the medians of the normalized
score distributions. By maximizing the score margin, the
detectors are more likely to discriminate the inliers from the
outliers. However, we formulate the score margin maximiza-
tion through minimization by minimizing the negative score
margin. The following equation defines an objective function
to be minimized for the j th detector:

− w j = MED(gnormj (X)) − MED(gnormj (Xo)) . (13)

The objective function in Eq. (13) is a fine candidate for a
surrogate objective function for the outlier ensemble opti-
mization. This claim is supported by the correlation of the
value w j (which is the score margin) in Eq. (13) and the
detector performance in Fig. 1.

Figure 1 illustrates the correlation between the AUC score
(see Sect. 4.1) and the weight in Eq. (13). The AUC score and
the weight are computed on different datasets (summarized
in Table 1) with a set of known outliers sampled from all the
outliers. The sample size of the known outliers is ten percent
of the total amount of the outliers in the dataset. In order to
introducemore variability in bothAUC scores and theweight
values, we utilize a sample of the features of the original data.
In addition, the parameters of the detectors (KNN and LOF)
are also selected randomly. Figure 1 shows that the larger
values of the weight (the score margin) tend to predict larger
values of the AUC scores.

The detectors are optimized individually one detector at
a time. The optimization finds the parameters for the indi-
vidual detectors. The optimization is a greedy algorithm
from the point of view of the outlier detection ensem-
ble, because the detectors are optimized separately. Greedy
algorithms make locally optimal choices in optimization

123



International Journal of Data Science and Analytics

(a)

(b)

Fig. 1 The relation between AUC score and the weight in Eq. (13)
on multiple datasets. To induce variability, detectors are executed on a
random sample of features and parameters. a AUC scores and weights
on KNN. b AUC scores and weights on LOF

tasks [18]. The selected parameters maximize the distance
between the distributions of the inlier and outlier scores.
In the existing literature, outlier detection ensembles have
been constructed using a greedy algorithm in [69]. However,
instead of selecting the algorithms, our greedy algorithm
optimizes the parameters of a fixed set of detectors. Our work
is the first to optimize the parameters of detectors directly in
an outlier detection ensemble.

Asnoted in [88], the detectors shouldmake a small number
of different errors. This allows the detectors as a combined
model to mitigate the weaknesses of individual detectors. To
impose diversity between the detectors, we update Eq. (13)

in the following subsection to also consider the correlation
of the scores between the detectors.

3.3 Minimization of correlation between results

The optimization in the previous subsection increases the
contrast between the inlier scores and outlier scores. Our
greedy optimization attempts to improve the accuracy of
the outlier detection of the individual detectors. However,
in addition to being accurate, the results have to be diverse.
The contrast maximization in Eq. (13) does not guarantee
that the results of the detectors are diverse. Therefore, as in
[69], we adjust the optimization to minimize the correlation
between the results of the detectors. We utilize Pearson cor-
relation (corr) tomeasure the amount of dependency between
two distributions of normalized scores (gnormj (X), gnorml (X))
of j th and lth detectors. For two vectors (x, y), Pearson cor-
relation is defined as:

corr(x, y) = cov(x, y)
std(x)std(y)

, (14)

where cov is the covariance and std is the standard deviation.
See [50] for more details. The amount of correlation between
the detector scores is averaged, and the average correlation is
utilized to weight the margin of the current solution: A high
correlation penalizes the margin. Therefore, the final form of
the objective function for the optimization of the j th detector
is as follows:

f j = (MED(gnormj (X)) − MED(gnormj (Xo)))

∗
⎛

⎝1 − 1

K

j−1∑

l=0

|corr(gnormj (X), gnorml (X))|
⎞

⎠ , (15)

where |.| is the absolute value, corr is the correlation function,
K is the number of detectors, MED is the median function,
gnormj is the normalized score function of j th detector, X is
the contaminated dataset and Xo are the outlier examples.
The objective function in Eq. (15) utilizes outlier examples
Xo to (1) create a contrast between inliers and outliers using
accurate detectors and to (2) acquire diverse results from the
detectors.

3.4 Combining outlier scores with logistic regression

After the optimizations in Eq. (15), we have a set of diverse
detectors. The results of these detectors can be combined
using the weighted summation in Eq. (1). We will call
this approach optimized outlier ensemble (OOE). However,
Micenková et al. [49] propose to use supervised meth-
ods to learn the outliers from the outputs of the detectors.
Micenková et al. [49] utilize a set of unoptimized detectors.
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Wewill show in Sect. 4 that the performance of outlier learn-
ing can be further enhanced with our diverse set of optimized
detectors.

In this subsection, we summarize the algorithm dubbed
proposed+ in [49]. The supervised method that proposed+
uses is logistic regression with l1-penalty. Micenková et
al. [49] propose l1-regularization to overcome the curse of
dimensionality. In the training phase, proposed+ uses the
outlier examples Xo as the positive class (C = 1), while
the unlabeled data X constitute the negative class (C = 0).
The hidden outliers in the unlabeled data are labeled incor-
rectly, but since outliers are rare by definition [16], they are
considered to be noise during the training.

Proposed+ utilizes the base detector outputs as a set of
additional features to the original data. Let the vector zi =
(xi , g1(xi ), . . . , gK (xi )) be a data point that is extended with
its outlier scores for all i = 1, . . . , n. Let the variables Ci be
indicators whether a given data point xi is a known outlier.
Logistic regression assumes that the probability of a data
point xi being a known outlier is

p(Ci = 1|zi;β0,β) = 1

1 + exp(−β0 − zTβ)
. (16)

The model parameters β0 and β in Eq. (16) are found by
minimizing a loss function. In the case of l1-regularization,
this loss function is

J (β0,β) = −
n∑

i=1

[Ci (β0 + ziTβ) − log(1 + eβ0+ziTβ)]

+ λ

d+K∑

j=0

|β j |. (17)

The parameter λ in Eq. (17) controls the effect of regu-
larization. We will select the parameter λ by minimizing
Akaike information criterion (AIC) [75]. In the case of logis-
tic regression, both AIC and cross-validation are similar
in terms of performance, but AIC is less computationally
demanding [52].

As a supervised method, imbalanced classes may deterio-
rate the accuracy of logistic regression [7,35]. For this reason,
Micenková et al. [49] propose data bagging. The unlabeled
class X is down-sampled to include as many data points as
there are known outlier examples (|Xo| = h). Both classes
are sampled with replacement. In the experiments, we fixed
the minimum sample size for the bagged datasets to be 20.
Smaller sample sizes conflict with the well-known rule-of-
thumb that the number of observations in the minority class
(in this case, the known outliers |Xo|) should be at least ten
per variable [59]. In addition, smaller sample sizes resulted
in each β j to equal zero and the model giving each data point
a probability of 0.5 of being an outlier. Such a model is inca-

pable of differentiating between the data points and does not
add any value to the ensemble. Finally, proposed+ combines
the outputs of the logistic regressionmodels by averaging the
outputs.

In Sect. 4.4, we use proposed+ with the two modifica-
tions (finding the parameter λ byminimizingAIC and setting
a minimum sample size of 20) as discussed earlier in this
section. We call this modified proposed+ algorithm logistic
regression with transformed features (LOG+).

3.5 Algorithm for optimizing an outlier detection
ensemble

We present two strategies for combining the normalized out-
lier scores gnormj (X) for each of the detectors, j = 1, . . . , K .
The first strategy (OOE) is the weighted sum of the nor-
malized outlier scores using Eq. (1). The normalized outlier
scores and theweights for the detectors are computed accord-
ing to Algorithm 1. The K detectors are greedily optimized
to be accurate [as defined in Eq. (13)] and diverse [as defined
in Eq. (15)].

In Algorithm 1, Steps 2 and 3 represent feature bagging.
Integer l is picked randomly from the set {�d/2�, . . . , d −1}
with equal probabilities. Then, l features are picked from the
original dataX+ without replacement. The optimization loop
in Steps 4–7 iterates until a stopping condition is reached. In
this article, we use a predefined number of iterations as the
stopping condition. The parameters, which are utilized in
Algorithm 1, are found by using random search [9].

The second strategy,whichwecallHybrid, utilizes logistic
regression from Sect. 3.4. This strategy is summarized in
Algorithm2. In step 5, the parameterλ for Logistic regression
inEq. (17) is chosenbyminimizingAICover the parameterλ.
Hybrid utilizes four sources of detector variability: different
feature sets, different training sets, different classifiers and
different parameter choices [20]. These sources of variability
ensure that the set of detectors is diverse.

In Step 2 of Algorithm 2, the unlabeled augmented data
Z consist of both inliers and hidden outliers. In the training
phase in Step 5, both inliers and hidden outliers are used as
the negative class in which the hidden outliers are considered
to be noise as discussed in Sect. 3.4. In Steps 3–8, the index
j runs from K + 1 to 2K to differentiate the outputs of
Algorithm 1 from the probability estimates in Step 6. In Step
7, the weights for the probability estimates are computed
according to Eq. (13). It is not necessary to normalize the
probability estimates, because they arewithin the range [0, 1]
by definition. Finally, in Step 9, the outlier scores of Hybrid
approach are computed as the weighted sum of the outlier
scores from the detectors (outputs of Algorithm 1) and the
probability estimates of the logistic regression models (Step
6.)
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Earlier in this section, we discussed the optimization loop
in Steps 4–7 ofAlgorithm1.We recognize that there aremore
advanced hyperparameter optimization strategies than a sim-
ple random search [9]. For example, tree of Parzen estimators
and genetic algorithm typically find better solutions than
random search when optimizing hyperparameters of convo-
lutional neural networks [30]. In Sect. 4.3, we show that the
random search is sufficient for achieving better performance
compared to unoptimized approaches. Experimenting with
other optimization strategies is left for future work.

4 Experiments

In this section, we examine the performance of our proposed
model (OOEandHybrid) using benchmark datasets from two
outlier data repositories (which are presented in Sect. 4.2). To
apply our approach in practice, the final composition of the
ensembles must be chosen. The computation time increases
as the number of detectors (K ) increases. To compromise
between the computation time and the completeness of the
evaluation experiments, the utilized amount of the detectors
in both LOF and KNN, respectively, in the experiments is
{1, 2, 4, 8, 16} (respectively, powers of two). This provides a
broad view of the efficiency of the outlier detection ensemble
with different numbers of detectors. To reduce the number
of possible combinations and computation time, the num-
ber of LOF and KNN are kept identical. Therefore, the total
number of detectors is K ∈ {2, 4, 8, 16, 32} in the experi-
ments. In the existing work, 50 detectors are utilized in [49],
K ∈ {5, 10, 20, 50} in [88], K ∈ {1, 2, . . . , 25} in [90] and
K ∈ {3, 4, 5, 10} in [42]. There are no established number
of detectors for evaluation in outlier detection ensembles.
Our experiments utilize the powers of two to determine the
number of detectors deterministically in the experiments.

As listed in Sect. 3.1, the following parameters are opti-
mized for the individual detectors in an outlier detection
ensemble:

– LOF and KNN the number of neighbors in a local neigh-
borhood: k [inN (xi , k) as in Sect. 2.4 and Eq. (9)–(12)]

– LOF and KNN the selected distance metric [Eq. (3)–(8)]
– KNN the KNN combination function of the distances in
the local neighborhood: sum, average, median and max-
imum (Sect. 2.4)

For the optimization, we define the maximum number of
neighbors (k) as the square root of the number of data points
in an analyzed dataset (

√
n). This heuristic for k is sug-

gested in [19]. The value is rounded to its nearest integer.
The minimum number of neighbors is set to ten. Models
with less than ten neighbors are susceptible to noise [14].
Let us consider the optimization of the KNN detector for

a dataset with 1000 data points. The maximum (minimum)
number of neighbors is 32 (10). There are six distancemetrics
[Eq. (3)–(8)] and four KNN combination functions available.
Therefore, in case of n = 1000, the optimization is imple-
mented as random sampling from a uniform distribution in
which each of the (32 − 10 + 1) ∗ 6 ∗ 4 = 552 configura-
tions has an equal probability of being evaluated (since both
ends of the range 10, . . . , 32 for parameter k are included in
the random search). Our experiments utilize 20 iterations of
random sampling per detector to provide a trade-off between
the quality of the optimization and the computation time. In
our experiments, increasing the number of iterations (> 20)
did not significantly improve the quality of the optimization.
The optimization evaluates a diverse set of detector config-
urations while restricting the total number of optimization
iterations.

4.1 Metrics for evaluating the outlier detection

The following metrics are utilized in the evaluation of the
outlier detection: recall (REC), false positive rate (FPR),
receiver operating characteristics (ROC) curve and the area
under ROC (AUROC). Let TP be the number of detected
true positives, FP the number of detected false positives, TN
the number of detected true negatives and FN the number
of detected false negatives. Recall is defined as REC =
TP/(TP + FN), and the false positive rate is defined as
FPR = FP/(FP + TN). See [23] for a detailed definition
of the evaluation metrics.

The outlier scores (see Sect. 2.1) discriminate inliers from
outliers using a threshold (T ). Outliers (inliers) are the data
points with a score greater (less) than T . A low value of the
threshold results in a high value of recall and a high value
of false positive rate, and vice versa. Let us consider, for
example, using a low value of the threshold. Many of the
outliers are detected with various magnitudes of the score.
However, the more unusual inliers are incorrectly detected
as outliers. Therefore, the threshold T defines a trade-off
between the recall and false positive rate.

To study the trade-off and the efficiency of the outlier
detection ensembles with different threshold values, we uti-
lize ROC to summarize the resulting pairs of recall and false
positive rate. ROC is a graph of the resulting REC (y-axis)
and FPR (x-axis) values in which the threshold is varied. The
ROC presents a complete view of the efficiency of the outlier
detection ensemble. ROC is used to evaluate outlier detection
in [1,41,43,44,49,69,72]. See [23] for a detailed tutorial on
ROC.

TheROCgraphs are quantified as real values between zero
and one by computing the area under the ROC curve (AUC).
The value of AUC shows the efficiency of an outlier detec-
tion ensemble over a range of values of the score threshold.
A perfect algorithm acquires AUC = 1 by detecting all of
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Algorithm 1 Generate optimized ensemble.
Input: Dataset X, positive example(s) Xo, ensemble size K .
Output: Normalized outlier scores gnormj (X( j)

+ ) and weights w j for j = 1, . . . , K .
1: for j ∈ {1, 2, ..., K } do 
 Add K detectors in the outlier detection ensemble
2: Sample a random integer l from the interval [d/2, d − 1]
3: Sample l features from all features without replacement to construct a dataset X( j)

+ = X( j) ∪ X( j)
o

4: while Optimization is not finished do 
 e.g iterations remaining > 0
5: Sample a set of parameters for the j :th detector
6: Compute the loss function value in Eq. (15) with the sampled parameters
7: end while
8: Compute and normalize the outlier scores gnormj (X( j)

+ ) using j :th detector with parameters that resulted in the lowest loss function value in
Step 6

9: Compute the weight w j in Eq. (13)
10: end for

Algorithm 2 Hybrid approach.
Input: Dataset X, positive example(s) Xo, ensemble size K .
Output: Outlier scores g(X) for Hybrid approach.
1: Compute the normalized outlier scores gnormj (X( j)

+ ) and the weights w j for j = 1, . . . , K using Algorithm 1.

2: Augment the data such that Z = (
X, gnorm1 (X(1)), . . . , gnormK (X(K ))

)
and Zo =

(
Xo, gnorm1 (X(1)

o ), . . . , gnormK (X(K )
o )

)

3: for j ∈ {K + 1, K + 2, ..., 2K } do
4: Sample min{10, |Zo|} data points from both unlabelled data Z and known outliers Zo with replacement to form a sample Z( j)+.
5: Train logistic regression using l1-regularization according to Eq. (17) with the sample Z( j)+
6: Compute the probability estimates p(C = 1|Z( j)+; β

( j)
0 , β( j)) 
 Note that the index j is defined j = K + 1, . . . , 2K to make a distinction

to the outputs of Algorithm 1
7: Compute the weight w j in Eq. (13) using probability estimates in the place of the normalized scores
8: end for
9: Compute final outlier scores g(X) = ∑K

j=1 w j gnormj (X( j)) + ∑2K
j=K+1 w j p(C = 1|Z; β

( j)
0 , β( j))

the outliers without false positives [23]. The worst possible
algorithm acquires AUC = 0 by intentionally misclassifying
the data points [23]. Notice that AUC = 0.5 is acquired by
randomly guessing if a data point is an outlier or an inlier
[23]. The general efficiency of the algorithms is determined
by comparing the resulting values of AUC. The outlier detec-
tion ensemble with the highest value of AUC is declared the
best performing ensemble.

We use statistical tests to critically examine the results of
the experiments. We utilize the paired t test [65], which tests
the average difference on paired data. Let a random vari-
able D denote the difference in AUC scores between two
different algorithms on the same data. The null hypothesis
is that the difference in AUC scores between the two dif-
ferent algorithms is zero (H0 : D = 0). The paired t test
assumes that the differences follow the normal distribution
(D ∼ N (μ, σ 2)). Then, the test variable t := D/SE(D),
in which SE denotes the standard error, follows Student’s t
distribution. If the p value of the test variable t is less than
0.05, then the difference D differs from zero on a statistically
significant level. In addition to the paired t test, we utilize
two nonparametric tests, bootstrapping [74] and Wilcoxon
signed-rank test [65,77], to the difference D. If all the three
tests result in a p value less than 0.05, then we conclude that
the difference in the performance of the two algorithms is
statistically significant.

4.2 Data

The outlier detection ensembles are evaluated using pub-
lic real-world data, which are commonly utilized in outlier
publications [4,12,33,34,41,42,46,51,71,78,82]. Real-world
datasets are recorded and aggregated from real-world envi-
ronments. It is challenging to evaluate outlier detection,
because only a few datasets exist with specifically distin-
guished outliers [40,82]. In the literature, two approaches
to acquire annotated outlier data are utilized: either gener-
ate data with outliers [4,33,78] or sample imbalanced data
from existing datasets [51,82]. We utilize the second option,
because many outlier publications sample imbalanced data
[33,34,41,42,69,78,79] to validate outlier detection.

For reproducibility, we utilize publicly available out-
lier dataset repositories. The datasets we use as benchmark
datasets are gathered from two repositories, outlier detection
datasets (ODDS) [63] and anomaly detection meta-analysis
datasets (Oregon) [21]. All the methods (OOE, LOG+ and
Hybrid) are ensemble methods. For this reason, we have
chosen to limit the size of the datasets to maximum of
n = 20,000 [86] to keep the computation times manageable.
Both ODDS and Oregon are collections of outlier datasets
with annotations (each data point is classified either inlier or
outlier) from multiple domains [21,63].
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Table 1 Summary of the datasets

Data n d Outliers Frequency

Abalone 4177 7 2081 0.498

Annthyroid 7200 6 534 0.074

Arrhythmia 452 274 66 0.146

Breastw 683 9 239 0.350

Cardio 1831 21 176 0.096

Comm and crime 1994 101 993 0.498

Concrete 1030 8 515 0.500

Ecoli 336 7 9 0.027

Fault 1941 27 673 0.347

Gas 13,790 128 3517 0.255

Glass 214 9 9 0.042

Imgseg 2310 18 990 0.429

Ionosphere 351 33 126 0.359

Letter 1600 32 100 0.062

Lympho 148 18 6 0.041

Magic gamma 19,020 10 6688 0.352

Mammography 11,183 6 260 0.023

Mnist 7603 100 700 0.092

Musk 3062 166 97 0.032

Optdigits 5216 64 150 0.029

Pageb 5473 10 560 0.102

Pendigits 6870 16 156 0.023

Pima 768 8 268 0.349

Satellite 6435 36 2036 0.316

Satimage-2 5803 36 71 0.012

Spambase 4601 57 1813 0.394

Speech 3686 400 61 0.017

Thyroid 3772 6 93 0.025

Vertebral 240 6 30 0.125

Vowels 1456 12 50 0.034

Wave 5000 21 1657 0.331

Wbc 378 30 21 0.056

Wine 129 13 10 0.078

Yeast 1484 8 507 0.342

The datasets in Table 1 [21,63] do not separate the out-
liers into known and unknown outliers, in which the known
outliers are exploited in our approach to correctly detect the
unknown outliers. To acquire the known outliers, we sam-
ple the outlier class randomly. The amount of known outliers
affects the performance of the models. For this reason, we
generate four sample sizes. The hardest setting has the sam-
ple size of only one known outlier. The other sample sizes
for the known outliers are 1%, 10% [87] and 50% [49] of the
total number of outliers. The assumption that 50% of the out-
liers are known outliers is a rather strong assumption since
acquiring a representative set of outlier examples is difficult

and often expensive [16]. However, we include the sample
size of 50% known outliers in our experiments, as in [49],
for completeness.

The selection of the known outliers affects the model per-
formance. According to chance, the set of the known outliers
may represent all the outliers either poorly or quite well. In
addition, it is difficult to measure how representative the set
of the known outliers is to all the outliers [16]. To mitigate
this effect, we repeat the experiments for sample sizes 1,
1% and 10% ten times on each algorithm (OOE, LOG+ and
Hybrid) on each datasetwith a different set of known outliers.
The results reported on each algorithm on each dataset are
the average AUC scores over these ten repetitions. The tests
for the sample size of 50% are not repeated, because using
such a large sample size is not our primary goal, as such a
well-sampled set of known outliers is hard to acquire [16].
In addition, such a large sample size diminishes the effect of
random chance in itself.

4.3 The effect of the parameter optimization

Now, we present our examinations on the effectiveness of
our proposed optimization procedure. We test the hypothe-
sis that the proposed optimization in Eq. (15) improves the
outlier detection. We compare our proposed method (OOE)
against three ensemble configurations (presented in the ensu-
ing paragraph) that do not utilize known outliers. We attempt
to show that our optimization procedure has a positive effect
on the results. The comparison against LOG+ [49] (which is
another method that utilizes known outliers) is presented in
Sect. 4.4.

The first two unoptimized ensemble configurations are
dubbed Random [69] and Default [49]. Both of these con-
figurations utilize feature bagging and the detectors KNN
and LOF, as in OOE. The difference to OOE is that both
configurations (Random [69] and Default [49]) use a heuris-
tic instead of optimization procedure in the selection of the
parameters. In other words, both Random and Default imple-
ment Algorithm 1 with Xo = ∅, without Steps 4–7 and with
equal weights w j = 1 for all j = 1, . . . , K . The outlier
scores of the detectors are aggregated according to Eq. 1.
Random configuration samples the parameters for KNN and
LOFfrom the samepool asOOE(k ∈ {10, . . . ,Round(√n)},
distance metric as in Eq. (3)–(8) and a combination function
as each of the following: sum, average, median or maximum.
Default configuration uses k = 20, Euclidean distance as a
metric and sumas the combination function [49]. TheDefault
configuration is utilized by LOG+ [49].

The third unoptimized ensemble is SELECT[64]. Fromall
the presented SELECT configurations, we chooseHorizontal
SELECT with robust rank aggregation since that combina-
tion seems to have the highest total performance in [64].
Horizontal SELECTmodels the outlier scores as amixture of
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Table 2 OOE compared to Random and Default configurations

Versus Random Default SELECT OOE

Random 0.741 − 0.011 − 0.043* 0.028*

Default 0.730 − 0.033* 0.038*

SELECT 0.698 0.071*

OOE 0.768

The diagonal indicates the average AUC scores of each configura-
tion. The off-diagonal indicates the average difference in AUC scores
between the two configurations

an exponential and a Gaussian distribution [27]. The pseudo-
target outliers are chosen under a hypothesis that their outlier
scores are generated from the Gaussian distribution. A set of
relevant base detectors is chosen based on how strongly a
given base detector agrees with the pseudo-target. Finally,
the outlier scores of the relevant base detectors are combined
using robust rank aggregation [37]. We use the same set of
base detectors for SELECT as for the Random configuration.

The data used in our experimentation are summarized
in Table 1. We optimize OOE with only one known out-
lier example, as it is the most difficult setting. This means
that OOE utilizes the minimal amount of external knowl-
edge. If OOE performs better than Random, Default and
SELECT with just a single known outlier example, then the
optimization routine in Algorithm 1 has a positive impact on
the performance. In Table 4 of Sect. 4.4, we show that the
more the known outlier examples available, the higher the
AUC score of OOE is. To mitigate the randomness that is
caused by the sampling of the known outlier example, the
experiments are repeated ten times on each dataset [54]. In
addition, we reduce the random effect of the feature bag-
ging so that each method uses exactly the same feature bags
throughout the experiments.

The results of the comparison of the methods (OOE, Ran-
dom, Default and SELECT) are presented in Table 2. The
diagonal identifies the average AUC scores of each method.
The off-diagonal indicates the average difference in AUC
scores between the two algorithms over all the datasets in
Table 1. The average differences in AUC scores between
OOE versus Random, OOE versus Default, and OOE versus
SELECT are statistically significant [less than 5% (0.05)] at
p values 0.014, 0.021 and 0.000 (see Table 3), respectively,
according the paired t test (presented in Sect. 4.1). These
statistically significant differences at confidence level 95%
(0.95) are bolded and indicated with asterisks (∗) in Table 2.

Table 3 presents the corresponding p values on all the
three tests discussed in Sect. 4.1 (the paired t test, bootstrap
and Wilcoxon signed-rank test). The statistically significant
p values [less than 5% (0.05)] are bolded. All the three tests
agree that OOE performs better than Random, Default and
SELECT on a statistically significant level. The three tests

Fig. 2 The kernel density estimates of the AUC score distributions with
only one known example. The vertical markers at the bottom of the
figure indicate the AUC scores of OOE, Random, Default and SELECT
configurations on the individual datasets in Table 1

cannot differentiate between Random and Default configura-
tions. SELECT has the lowest performance on a statistically
significant level.

The AUC scores of each configuration on each dataset in
Table 1 are presented in Fig. 2. The markers at the bottom
are the AUC scores for each configuration on each individual
dataset. The depicted curves represent the kernel density esti-
mate. The two modes in the kernel density estimates allude
that it is rather easy to classify the observations into inliers
and outliers on half of the datasets,while this outlier detection
is considerably harder on the rest of the datasets. The kernel
density estimates of the AUC scores of Random and Default
configurations are very similar. Indeed, the paired t test does
not indicate that there would be any significant difference in
performance between Random and Default configurations in
Table 2. The mass of the kernel density estimate of the AUC
scores of OOE clearly locates more to the right-hand side
of Fig. 2 compared to Random and Default configurations.
This indicates that OOE achieves higher AUC scores than
Random and Default configurations in general. The paired t
tests in Table 2 confirm this observation.

Figure 3 presents the difference in AUC scores between
OOE and Random configuration with one known outlier
example on the datasets in Table 1. Figure 3 also includes
the confidence interval of the mean at 95% certainty level.
The markers at the density level 0 are the differences in the
AUC scores on individual datasets. Values larger than zero
indicate datasets on which OOE performs better than Ran-
dom configuration. The extreme differences are highlighted
with the red markers and the corresponding dataset names.
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Fig. 3 The differences in AUC scores between OOE and Random con-
figuration on the datasets in Table 1. Each vertical marker at the bottom
of the figure indicates the difference on each dataset. The continuous
line is the kernel density estimate

4.4 Performance comparison between OOE, LOG+
and Hybrid on benchmark datasets

Here,wepresent our comparisons ofOOEandHybrid against
LOG+ [49]. The experiments are performed on the data sum-
marized inTable 1.We repeat the test ten times [54] for outlier
example sample sizes of one, 1% and 10%. The tests for out-
lier example sample size of 50% are performed only once,
because the larger sample size lessens the effect of random
chance and ourmodel is designed specifically for smaller sets
of known outliers. As in Sect. 4.3, we use the same features
in feature bagging between the methods to reduce the effect
of random chance. In addition, LOG+ and Hybrid use the
same data samples in data bagging [3] to reduce the impact
of random selection.

The average AUC scores of all the algorithms are pre-
sented in Table 4. The column dubbed H–L is the average
difference inAUCscores betweenHybrid andLOG+.Table 4
summarizes the performance of each algorithm on a differ-
ent sample size of the known outliers. Each of the algorithms
performs betterwhenmore known outlier examples are avail-
able. Hybrid achieves better performance than OOE and

Table 4 The average AUC scores of OOE, LOG+ and Hybrid with
different amounts of known outlier examples on ODDS and Oregon
datasets

Known outliers OOE LOG+ Hybrid H–L

1 0.768 0.769 0.792 0.023*

1% 0.788 0.829 0.844 0.015

10% 0.809 0.895 0.897 0.002

50% 0.816 0.926 0.929 0.003

The columndubbedH–L indicates the average difference inAUC scores
between Hybrid and LOG+

Table 5 The p values on the average difference onAUC scores between
Hybrid and LOG+ in Table 4

Known outliers p value p-Bootstrap p-Wilcoxon

1 0.011 0.002 0.043

1% 0.060 0.023 0.064

10% 0.512 0.491 0.623

50% 0.359 0.358 0.964

LOG+ on all the sample sizes of known outliers. The differ-
ence in performance betweenHybrid andLOG+ is the largest
when only one of the outliers is knownand the rest are hidden.
With only one known outlier, this difference in performance
is statistically significant (p value less than 0.05; bolded and
indicated with an asterisk). This is remarkable since gather-
ing an excessive amount of known outliers is difficult and
often expensive in practice [16]. The difference between the
performances of Hybrid and LOG+ lessens whenmore exter-
nal knowledge (known outliers) is available.

The corresponding p values on the average differences
in AUC scores between Hybrid and LOG+ are presented in
Table 5. All three tests agree that Hybrid performs better than
LOG+ when only one known outlier is available. With one
percent of all the outliers known beforehand, the difference
in performance is not statistically significant (p value is not
less than 0.05) for paired t test and Wilcoxon signed-rank
test. However, all the tests indicate that the difference in per-
formance still exists on the confidence level of 90% (0.9). If
ten percent or more of all the outliers are known beforehand,
both Hybrid and LOG+ are similar in performance.

Table 3 The p values on the
average differences presented in
Table 2

Test p value p-Bootstrap p-Wilcoxon

OOE versus Random 0.014 0.009 0.006

OOE versus Default 0.021 0.009 0.023

OOE versus SELECT < 0.001 < 0.001 < 0.001

Random versus Default 0.309 0.292 0.478

Random versus SELECT < 0.001 < 0.001 < 0.001

Default versus SELECT 0.006 0.001 0.006
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Fig. 4 The kernel density estimates of the AUC score distributions
with only one known example. The vertical markers at the bottom of
the figure indicate the AUC scores of OOE, LOG+ and Hybrid on the
individual datasets in Table 1

OOEandHybrid approaches utilize the combination func-
tion in Eq. (1) with the weights defined in Eq. (13). The
weights appear to have little effect on the performance of
OOE and Hybrid compared to the flat weights (w j = 1
for all j = 1, . . . K ). The difference in the average AUC
scores between the combination function in Eq. (1) and the
combination function with flat weights ranges from −0.019
to 0.020. These differences fail to be statistically signif-
icant (p value is not less than 0.05) when there are only
few outlier examples available. With 10% of known outlier
examples, the difference in the average AUC scores between
OOE and flat-weight OOE is 0.015 (p < 0.001). With 50%
of known outlier examples, the difference in the average
AUC scores between OOE and flat-weight OOE is 0.020
(p < 0.001) and between Hybrid and flat-weight Hybrid
0.007 (p = 0.020). The consensus seems to be that the
weights in Eq. (13) are more relevant when there are more
known outlier examples available. This result is reasonable,
because when there is more external knowledge available,
evaluating the performance of the base detectors during opti-
mization becomes more accurate. Further experimentation
with different weighting schemes is left for future work.

Figure 4 shows the kernel density estimates of the AUC
score distributions of all the algorithms with one known out-
lier example. The markers at the bottom in Fig. 4 indicate
the AUC scores on the individual datasets in Table 1, and
the depicted curves are the kernel density estimates over the
AUC scores on respective datasets. The kernel density esti-
mates for Hybrid and LOG+ are rather similar in shape, but
the kernel density estimate of Hybrid has more mass around
the second peak at AUC score 0.950. This means that Hybrid
produces better results than LOG+ in general. The average

Fig. 5 The differences in AUC scores between Hybrid and LOG+ with
one known outlier example of the datasets in Table 1. Each vertical
marker at the bottom of the figure indicates the difference on each
dataset. The continuous line is the kernel density estimate

difference inAUCscores betweenHybrid andLOG+ inTable
4 and the p values in Table 5 confirm this observation in the
situations in which there is one known outlier.

The differences inAUCscores betweenHybrid andLOG+
with one known outlier example on individual datasets are
presented in Fig. 5. The continuous line is the kernel density
estimate of the distribution of the differences. The confi-
dence interval at the 95% (0.95) confidence level is indicated
with the red horizontal bar. The markers at the density 0
represent the differences in AUC scores on each individual
dataset in Table 1. The datasets with extreme differences are
highlighted with the red vertical markers and dataset names.
Values larger than zero indicate datasets on which Hybrid
performs better than LOG+.

4.5 Generalizability of the outlier detection

Outliers are often dissimilar to each other [55,67] and contain
unusual, unexpected and new information [14]. This means
that it is unreasonable to assume that the knownoutliers cover
every type of the possible outliers [16]. For this reason, we
test the generalizability of the proposed methods to detect
previously unseen outliers.

We select five datasets (Letter, Optdigits, Pageb, Satellite
andYeast) for generalizability tests. These datasets consist of
multiple classes that are on a nominal scale. First, in each of
the datasets, we construct the normal data (CN ) by selecting
the threemost frequent classes (except in the dataset Pageb, in
whichwe select only themost frequent class as that class con-
stitutes 89.8% of all the data). Second, we select three classes
(two in the dataset Pageb) randomly from all the remaining
classes to represent the outlier classes (CO ). All the remain-
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Table 6 The results of the generalizability tests

Known outliers: 1 Known outliers: 10%

OOE LOG+ Hybrid OOE LOG+ Hybrid

Letter 0.981 (0.952) 0.856 (0.952) 0.975 (0.961) 0.986 (0.963) 0.831 (0.970) 0.983 (0.982)

Optdigits 0.982 (0.953) 0.903 (0.985) 0.976 (0.984) 0.982 (0.944) 0.922 (0.997) 0.979 (0.992)

Pageb 0.986 (0.974) 0.602 (0.832) 0.984 (0.976) 0.986 (0.979) 0.460 (0.766) 0.986 (0.979)

Satellite 0.959 (0.886) 0.751 (0.990) 0.968 (0.984) 0.973 (0.937) 0.937 (0.995) 0.977 (0.994)

Yeast 0.622 (0.677) 0.599 (0.747) 0.661 (0.774) 0.705 (0.782) 0.646 (0.855) 0.669 (0.873)

Average 0.906 (0.888) 0.742 (0.901) 0.913 (0.936) 0.926 (0.921) 0.759 (0.917) 0.919 (0.964)

The values in the table represent average AUC scores on test data which consist of normal data and previously unseen outliers. The best performance
between the methods are bolded. The values in parenthesis are the average AUC scores on test data which consist of only normal data and outliers
similar to training data. The best performances on these test data are italicized

ing classes represent previously unseen outlier classes (CU ).
Third, we construct the training data by sampling 60% of
the normal data CN and down-sampling the outlier classes
CO until 10% [45] of the training data are from these out-
lier classes (or until 40% of the data in the outlier classes
remain). Finally, we construct two test sets: one test set with
outliers (O) and one test set with previously unseen outliers
(U ). Both test sets, O andU , share the remaining 40% of the
normal data CN (using the train/test split of 60:40 [49]), but
O contains a sample from the remaining data from outlier
classes CO , while U contains a sample from the previously
unseen outlier classes CU . We down-sample both test sets
until half of the data in the test sets are normal data.

We execute the generalizability test by first training the
models (OOE, LOG+ and Hybrid) on the training set with a
small sample of known example outliers and then testing the
models on both test sets O andU . If a model generalizes well
to detect previously unseen outliers, then the model should
achieve similar, high AUC scores on both test sets O and
U . We repeat the generalizability test ten times with one
randomly chosen known example and ten timeswith a known
example sample size of 10% and average the repetitions [54]
to receive two AUC scores for each model on each dataset:
one AUC score for the test set O and one for the test set U .
The known outlier examples are sampled from the training
set similarly to Sect. 4.4.

The results of the generalizability tests are presented in
Table 6. The values in Table 6 are the AUC scores on the test
set U , and the values in the parenthesis are the AUC scores
on the test set O . The best AUC scores are bolded on the
test set U and italicized on the test set O . Both OOE and
Hybrid achieve similar, high AUC scores on the test set U
implying high generalizability toward new outliers. The pre-
viously unseen outliers seem to degenerate the performance
of LOG+ quite drastically. In general, having more examples
of labeled outliers available in the training data improves per-
formance in both test sets U and O .

5 Related work

There is plenty of previous work available on outlier detec-
tion algorithms [14,33,34,41,51,53,57,82]. There also exists
previous work on outlier detection ensembles, such as in
[2,42,43].

Bouguessa [12] proposed a probabilistic approach for
combining multiple detectors. This approach assumes that
the outlier scores follow a multivariate beta mixture model.
Rayana and Akoglu [64] utilize a mixture of exponential
and Gaussian distributions to model the outlier scores and to
generate a pseudo-ground truth. Nguyen et al. [51] proposed
an ensemble framework (HeDES) for finding outliers in the
random subspaces of a dataset. HeDES creates a synthetic
dataset based on the unlabeled dataset and injects artificial
outliers in the data. The artificial outliers are sampled from
a uniform distribution. Our work does not assume how the
outliers or the scores are distributed.

Several studies propose that only a subset of well-
performing base detectors should be utilized in the ensemble.
Schubert et al. [69] studied combining different detectors and
stated that resulting errors from detectors should be uncorre-
lated. Schubert et al. devised a greedy algorithm for selecting
a subset of the base detectors that maximize the diversity
of results. Another approach for selecting base detectors is
to maximize their correlation with the pseudo-ground truth
[64,84]. SELECT [64] selects a fixed set of well-performing
base detectors, while LSCP [84] optimizes the set of base
detectors for each observation independently. In our work,
the optimization is responsible for creating the diverse detec-
tors by adjusting their parameters. Our optimization, and the
model of an outlier detection ensemble, allows the use of a
detector that (1) provides a score, and (2) utilizes adjustable
parameters which greatly improve the flexibility and perfor-
mance of the detectors. In addition, we utilize few labeled
outliers efficiently instead of a pseudo-ground truth. The
experiment results show that even a limited number of outlier
examples is sufficient.
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Recently, the utilization of few examples of labeled out-
liers has gained attention. An approach called example-based
outlier detection by Zhu et al. [87] uses a linear classifier to
distinguish outliers from normal data. The outliers are pro-
vided by the user, while the normal data are determined as
data that receive low outlier scores with LOCI [57]. Then,
the linear classifier is iteratively retrained using the data
points, which are classified outliers and normal data by the
linear classifier. Additional examples of outliers are created
by modifying the outlier examples, similarly to the work of
Nguyen et al. [51]. Another example-based outlier detec-
tion algorithm by Zhu et al. [86] utilizes an evolutionary
algorithm to find a lower-dimensional data representation,
in which most of the provided outlier examples are signifi-
cantly outstanding. Then, the outliers reside in the regions,
in which the density is lower than in the regions of the pro-
vided outlier examples. Unlike thework in [86,87], we do not
propose a single algorithm for outlier detection. Our main
contribution is an example-based approach for optimizing
outlier detection ensembles with detectors that provide out-
lier scores. Therefore, the algorithms by Zhu et al. [86,87]
could be optimized as detectors in an outlier detection ensem-
ble using our proposed approach.

The work in [49,83] constructs a data representation that
augments the original data with outlier scores from the
base detectors. Outliers are learned in this data representa-
tion using logistic regression [49] and XGBoost [83]. The
reported results show that the proposed method is efficient
for outlier detection. The work in [49] uses 50% of the avail-
able outliers as outlier examples for training the classifiers.
It is not realistic to have a sample of 50% annotated outliers
because outliers are rare by definition [16]. As established
previously, our work uses from 1 to 10% outlier examples
to optimize the parameters of outlier detection ensembles.
Therefore, compared to work in [49], our work utilizes a sig-
nificantly smaller number of outlier examples to optimize the
parameters of outlier detection ensembles. Additionally, our
optimization procedure could be used to optimize the base
detectors in [49,83].

There are also approaches that utilize deep learning to
learn a lower-dimensional data representation in a semi-
supervised manner in conjunction with outlier detection
[54–56,67]. By integrating representation learning into semi-
supervised outlier detection, the learner is able to learn a
more relevant data representation compared to the traditional
two-step outlier detection, which first learns an unsupervised
data representation and then executes outlier detection [55].
REPEN [54] learns a data representation, in which normal
data resemble other normal data, while known outliers and
probable outlier candidates clearly differ from the normal
data. Deep SAD [67] initializes itself by learning a low-
dimensional data representation using autoencoder and then
enhances that representation by minimizing the volume of

a hypersphere surrounding normal data and pushing out-
liers away from that hypersphere. DevNet [55] learns a data
representation that yields high, positive values (around five
standard deviations from themean) in a reference distribution
for outlying data. PReNet [56] augments the data by pairing
the observations, and then it learns the relation between the
paired observations that is either both normal, both outliers
or a normal and an outlying observation.

The following list recapitulates the novelty and the bene-
fits of our work compared to the existing work:

– Our proposed example-based optimization is applicable
when a limited number of outlier examples are avail-
able (1–10%). Our experiments use a smaller number of
outlier examples than the work in [87] (7–33) and [49]
(50%).

– Our model of an outlier detection ensemble requires the
detectors to provide outlier scores. However, the selected
set of the outlier detection algorithms is not fixed.

– Our work is the first effort to directly optimize the param-
eters of detectors of outlier detection ensembles. The
results of our experiments show that the optimization
is capable of utilizing outlier examples to improve the
efficiency of the outlier detection.

– Our work does not require the utilization of artificially
created outliers. Therefore, our work does not impose
assumptions on how the artificial outliers are distributed.

6 Conclusions

We present an optimization approach for outlier detection
ensembles in Sect. 3. The experiments show that indi-
vidual examples of outliers are sufficient for optimizing
outlier detection ensembles. Unlike the previous work in
example-based outlier detection [49,86,87], our optimiza-
tion encompassed with only a few examples can be used for
outlier detection algorithms, which provide an outlier score.
The experiments in [86,87] use 10% of the available outliers
(7–33) as examples (50% in [49]), while our experiments
use from 1 to 10% of the available outliers. Therefore, our
proposed optimization is suitable when a limited number of
outlier examples is available.

Instead of only providing an algorithm for outlier detec-
tion (as in [14,33,34,41,51,53,57,82]), our work focuses on
optimizing the detector parameters. The previous work in
outlier detection ensembles [12,32,51,53,69,82] defines a
specific set of outlier detection algorithms. Ourwork is appli-
cable for a wide variety of outlier detection algorithms. Our
proposed optimization is an approach for optimizing the
parameters of detectors, which define an outlier score for
data points. Our work is the first effort to directly adjust the
parameters of the detectors to provide diverse and accurate
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results, which improve the efficiency of the outlier detection
ensemble.

Our proposed method for optimization opens possibilities
for future research. Our method could be extended to use a
semi-supervised data representation instead of feature bag-
ging [54]. The use of Bayesian and evolutionary methods
could speed up the optimization of the base detectors [30].
Hybrid method can be extended to weight the outlier scores
and logistic regression in Step 9 in Algorithm 2 more appro-
priately than equal weights according to a meta-analysis.
Also, it would be beneficial to experiment Hybrid approach
with other classifiers in addition to logistic regression such as
XGBoost [83]. Another idea is to construct outlier detection
ensembles sequentially (see [3]). For example, the detectors
could be added dynamically in an outlier detection ensemble
using our proposed optimization.

Acknowledgements Openaccess fundingprovidedbyTechnicalResearch
Centre of Finland (VTT).

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abe, N., Zadrozny, B., Langford, J.: Outlier detection by active
learning. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’06,
pp. 504–509. ACM, New York, NY, USA (2006)

2. Aggarwal, C.: Outlier ensembles: position paper. SIGKDDExplor.
Newsl. 14(2), 49–58 (2013)

3. Aggarwal, C., Sathe, S.: Theoretical foundations and algorithms for
outlier ensembles. SIGKDD Explor. Newsl. 17(1), 24–47 (2015)

4. Alcala, C., Qin, S.: Reconstruction-based contribution for process
monitoring. Automatica 45(7), 1593–1600 (2009)

5. Angiulli, F., Fassetti, F.: Dolphin: an efficient algorithm for mining
distance-based outliers in very large datasets. ACM Trans. Knowl.
Discov. Data 3(1), 1–57 (2009)

6. Azmandian, F., Yilmazer, A., Dy, J.G., Aslam, J.A., Kaeli, D.R.:
Harnessing the power of gpus to speed up feature selection for
outlier detection. J. Comput. Sci. Technol. 29(3), 408–422 (2014).
https://doi.org/10.1007/s11390-014-1439-4

7. Barandela, R., Sánchez, J., García, V., Rangel, E.: Strategies for
learning in class imbalance problems. Pattern Recognit. 36(3),
849–851 (2003)

8. Bellaachia, A., Bari, A.: A flocking based data mining algorithm
for detecting outliers in cancer gene expression microarray data.
In: Proceedings of the International Conference on Information
Retrieval Knowledge Management, CAMP, pp. 305–311 (2012)

9. Bergstra, J., Bengio, Y.: Random search for hyper-parameter opti-
mization. J. Mach. Learn. Res. 13, 281–305 (2012)

10. Bishop, C.: Pattern Recognition and Machine Learning. Springer,
New York (2006)

11. Böhm, C., Faloutsos, C., Plant, C.: Outlier-robust clustering using
independent components. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08,
pp. 185–198 (2008)

12. Bouguessa, M.: A probabilistic combination approach to improve
outlier detection. Int. Conf. Tools Artif. Intell. (ICTAI) 1, 666–673
(2012)

13. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140
(1996)

14. Breunig, M., Kriegel, H., Ng, R., Sander, J.: Lof: identifying
density-based local outliers. In: Proceedings of the International
Conference on Management of data, SIGMOD ’00, pp. 93–104.
ACM, New York, NY, USA (2000)

15. Budalakoti, S., Srivastava, A., Otey, M.: Anomaly detection and
diagnosis algorithms for discrete symbol sequences with applica-
tions to airline safety. IEEETrans. Syst.Man Cybern. Part C (Appl.
Rev.) 39(1), 101–113 (2009)

16. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a sur-
vey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)

17. Cheng, H., Ooi, M., Kuang, Y.C., Demidenko, S., Cheah, B.:
Outlier distribution detection approach to semiconductor wafer
fabrication process monitoring. In: Proceedings of the 3rd Asia
Symposium on Quality Electronic Design, ASQED, pp. 62–67
(2011)

18. Cormen, T., Stein, C., Rivest, R., Leiserson, C.: Introduction to
Algorithms, 2nd edn. McGraw-Hill Higher Education, New York
(2001)

19. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn.Wiley,
Hoboken (2000)

20. Duin, R.P.W.: The combining classifier: to train or not to train?
In: Object recognition Supported by User Interaction for Service
Robots, vol. 2, pp. 765–770 (2002). https://doi.org/10.1109/ICPR.
2002.1048415

21. Emmott,A.,Das, S.,Dietterich, T., Fern,A.,Wong,W.K.:Anomaly
detection meta-analysis benchmarks (2016). https://doi.org/
10.7267/N97H1GGX. https://ir.library.oregonstate.edu/concern/
datasets/47429f155

22. Fang, L., Zhi-zhong, M.: An online outlier detection method for
process control time series. In: Proceedings of the Chinese Control
and Decision Conference, CCDC, pp. 3263–3267 (2011)

23. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit.
Lett. 27(8), 861–874 (2006)

24. Ganapathy, S., Jaisankar, N., Yogesh, P., Kannan, A.: An intel-
ligent system for intrusion detection using outlier detection. In:
Proceedings of the International Conference on Recent Trends in
Information Technology (ICRTIT), pp. 119–123 (2011)

25. Ganapathyand, S., Jaisankarand, N., Yogesh, P., Kannan, A.: An
intelligent system for intrusion detection using outlier detection. In:
International Conference on Recent Trends in Information Tech-
nology (ICRTIT), pp. 119–123 (2011)

26. Ganeriwal, S., Balzano, L., Srivastava, M.: Reputation-based
framework for high integrity sensor networks. ACM Trans. Sens.
Netw. 4(3), 1–37 (2008)

27. Gao, J., Tan, P.: Converting output scores from outlier detection
algorithms into probability estimates. In: Proceedings of the 6th

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11390-014-1439-4
https://doi.org/10.1109/ICPR.2002.1048415
https://doi.org/10.1109/ICPR.2002.1048415
https://doi.org/10.7267/N97H1GGX
https://doi.org/10.7267/N97H1GGX
https://ir.library.oregonstate.edu/concern/datasets/47429f155
https://ir.library.oregonstate.edu/concern/datasets/47429f155


International Journal of Data Science and Analytics

IEEE International Conference on Data Mining (ICDM 2006),
18–22 December 2006, Hong Kong, China, pp. 212–221. IEEE
Computer Society (2006). https://doi.org/10.1109/ICDM.2006.43

28. Gaspar, J., Lopes, F., Freitas, A.: An analysis of hospital coding in
Portugal: Detection of patterns, errors and outliers in female breast
cancer episodes. In: Proceedings of the 6th Iberian Conference on
Information Systems and Technologies (CISTI), pp. 1–6 (2011)

29. Hawkings, D.: Identification of Outliers. Chapman and Hall, Lon-
don (1980)

30. Hinz, T., Navarro-Guerrero, N., Magg, S., Wermter, S.: Speeding
up the hyperparameter optimization of deep convolutional neural
networks. Int. J. Comput. Intell. Appl. 17(02), 1850008 (2018).
https://doi.org/10.1142/S1469026818500086

31. Hodge, V., Austin, J.: A survey of outlier detection methdologies.
Artif. Intell. Rev. 22, 85–126 (2004)

32. Huang, B., Li, W., Chen, D., Shi, L.: An intrusion detection
method based on outlier ensemble detection. In: Proceedings of
the International Conference onNetworks Security,Wireless Com-
munications and Trusted Computing, NSWCTC ’09, vol. 2, pp.
600–603 (2009)

33. Janssen, J., Huszar, F., Postma, E., van den Herik, E.: Stochastic
outlier selection (2012)

34. Jiang, S., An, Q.: Clustering-based outlier detection method. In:
Proceedings of the Fifth International Conference on Fuzzy Sys-
tems and Knowledge Discovery, FSKD ’08, vol. 2, pp. 429–433
(2008)

35. Jiang, Y., Li, M., Zhou, Z.H.: Software defect detection with rocus.
J. Comput. Sci. Technol. 26(2), 328–342 (2011). https://doi.org/10.
1007/s11390-011-9439-0

36. Ju, C., Wang, N.: Research on credit card fraud detection model
based on similar coefficient sum. In: DBTA, pp. 295–298. IEEE
Computer Society (2009)

37. Kolde, R., Laur, S., Adler, P., Vilo, J.: Robust rank aggregation
for gene list integration and meta-analysis. Bioinformatics 28(4),
573–580 (2012). https://doi.org/10.1093/bioinformatics/btr709

38. Konijn, R., Kowalczyk, W.: Finding fraud in health insurance
data with two-layer outlier detection approach. In: Proceedings
of the 13th International Conference on Data Warehousing and
Knowledge Discovery, DaWaK’11, pp. 394–405. Springer, Berlin,
Heidelberg (2011)

39. Kreyszig, E.: Introductory Functional Analysis with Application.
Wiley, Hoboken (1978)

40. Kriegel, H., Hubert, M., Zimek, A.: Angle-based outlier detec-
tion in high-dimensional data. In: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’08, pp. 444–452. ACM, New York, NY, USA
(2008)

41. Kriegel, H., Kröger, P., Schubert, E., Zimek, A.: Loop: Local out-
lier probabilities. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM ’09, pp. 1649–
1652. ACM, New York, NY, USA (2009)

42. Kriegel, H., Kröger, P., Schubert, E., Zimek, A.: Interpreting and
unifying outlier scores. In: Proceedings of the SIAM International
Conference on Data Mining, SDM, pp. 13–24. SIAM/Omnipress
(2011)

43. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In:
Proceedings of the Eleventh International Conference on Knowl-
edge Discovery in Data Mining, KDD ’05, pp. 157–166. ACM,
New York, NY, USA (2005)

44. Lee, Y., Yeh, Y., Wang, Y.: Anomaly detection via online oversam-
pling principal component analysis. IEEETrans. Knowl. Data Eng.
25(7), 1460–1470 (2013)

45. Lei, D., Zhu, Q., Chen, J., Lin, H., Yang, P.: Automatic k-means
clustering algorithm for outlier detection. In: Zhu, R., Ma, Y. (eds.)
Information Engineering and Applications, pp. 363–372. Springer,
London (2012)

46. Li, C., Georgiopoulos, M., Anagnostopoulos, G.: Kernel principal
subspace mahalanobis distances for outlier detection. In: Proceed-
ings of the 2011 International JointConference onNeuralNetworks
(IJCNN), pp. 2528–2535 (2011)

47. Li, Y., Nitinawarat, S., Veeravalli, V.: Universal outlier detection.
Computer Research Repository (2013). arXiv:1302.4776

48. Maya, S., Ueno, K., Nishikawa, T.: dLSTM: a new approach for
anomaly detection using deep learningwith delayed prediction. Int.
J. Data Sci. Anal. 8(2), 137–164 (2019). https://doi.org/10.1007/
s41060-019-00186-0

49. Micenkova, B., McWilliams, B., Assent, I.: Learning outlier
ensembles: the best of both worlds—supervised and unsupervised.
In: Proceedings of the ACMSIGKDDWorkshop on Outlier Detec-
tion and Description, ODD ’14 (2014)

50. Murphy, K.: Machine Learning: A Probabilistic Perspective. The
MIT Press, Cambridge (2012)

51. Nguyen, H., Ang, H., Gopalkrishnan, V.: Mining outliers with
ensemble of heterogeneous detectors on randomsubspaces. In: Pro-
ceedings of the 15th International Conference onDatabase Systems
for Advanced Applications, DASFAA’10, pp. 368–383. Springer,
Berlin, Heidelberg (2010)

52. Ninomiya, Y., Kawano, S.: AIC for the LASSO in generalized
linear models. Electron. J. Stat. 10(2), 2537–2560 (2016). https://
doi.org/10.1214/16-EJS1179

53. Pamula, R., Deka, J., Nandi, S.: Distance-based fast outlier detec-
tion method. In: Proceedings of the 2010 Annual IEEE India
Conference., INDICON, pp. 1–4 (2010)

54. Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations
of ultrahigh-dimensional data for random distance-based outlier
detection. In: Proceedings of the 24th ACMSIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ‘18,
p. 2041–2050. Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3219819.3220042

55. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detec-
tion with deviation networks. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ‘19, pp. 353–362. Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/
3292500.3330871

56. Pang, G., Shen, C., Jin, H., van den Hengel, A.: Deep weakly-
supervised anomaly detection (2019)

57. Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: Loci:
Fast outlier detection using the local correlation integral. In: Pro-
ceedings of the International Conference on Data Engineering,
ICDE, pp. 315–326. IEEE Computer Society (2003)

58. Paschalidis, I., Chen, Y.: Statistical anomaly detection with sensor
networks. ACM Trans. Sens. Netw. 7(2), 1–23 (2010)

59. Peduzzi, P., Concato, J., Kemper, E., Holford, T.R., Feinstein,
A.R.: A simulation study of the number of events per variable
in logistic regression analysis. Journal of Clinical Epidemiol-
ogy 49(12), 1373–1379 (1996). https://doi.org/10.1016/S0895-
4356(96)00236-3

60. Rajasegarar, S., Bezdek, J., Leckie, C., Palaniswami, M.: Elliptical
anomalies in wireless sensor networks. ACM Trans. Sens. Netw.
6(1), 1–28 (2010)

61. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for
mining outliers from large data sets. In: Proceedings of the 2000
ACMSIGMOD International Conference onManagement of Data,
SIGMOD ’00, pp. 427–438. ACM, New York, NY, USA (2000)

62. Raniga, P., Schmitt, P., Bourgeat, P., J. Fripp, V.V., Rowe, C., Sal-
vado, O.: Local intensity model: an outlier detection framework
with applications to white matter hyperintensity segmentation. In:
IEEE International Symposium on Biomedical Imaging, pp. 2057–
2060 (2011)

63. Rayana, S.: ODDS library (2016). http://odds.cs.stonybrook.edu

123

https://doi.org/10.1109/ICDM.2006.43
https://doi.org/10.1142/S1469026818500086
https://doi.org/10.1007/s11390-011-9439-0
https://doi.org/10.1007/s11390-011-9439-0
https://doi.org/10.1093/bioinformatics/btr709
http://arxiv.org/abs/1302.4776
https://doi.org/10.1007/s41060-019-00186-0
https://doi.org/10.1007/s41060-019-00186-0
https://doi.org/10.1214/16-EJS1179
https://doi.org/10.1214/16-EJS1179
https://doi.org/10.1145/3219819.3220042
https://doi.org/10.1145/3292500.3330871
https://doi.org/10.1145/3292500.3330871
https://doi.org/10.1016/S0895-4356(96)00236-3
https://doi.org/10.1016/S0895-4356(96)00236-3
http://odds.cs.stonybrook.edu


International Journal of Data Science and Analytics

64. Rayana, S., Akoglu, L.: Less is more: building selective anomaly
ensembles. ACM Trans. Knowl. Discov. Data (2016). https://doi.
org/10.1145/2890508

65. Rietveld, T., vanHout, R.: The paired t test and beyond: recommen-
dations for testing the central tendencies of two paired samples in
research on speech, language and hearing pathology. J. Commun.
Disord. 69, 44–57 (2017). https://doi.org/10.1016/j.jcomdis.2017.
07.002

66. Rousseeuw,P., Leroy,A.:RobustRegression andOutlierDetection.
Wiley, New York (1987)

67. Ruff, L., Vandermeulen, R.A., Görnitz, N., Binder, A., Müller, E.,
Müller, K.R., Kloft, M.: Deep semi-supervised anomaly detection
(2019)

68. Sarasamma, S., Zhu, Q., Huff, J.: Hierarchical Kohonenen net for
anomaly detection in network security. IEEE Trans. Syst. Man
Cybern. Part B 35(2), 302–312 (2005)

69. Schubert, E., Wojdanowski, R., Zimek, A., Kriegel, H.P.: On eval-
uation of outlier rankings and outlier scores. In: Proceedings of
the SIAM International Conference on Data Mining, SDM, pp.
1047–1058 (2012)

70. Singh, K., Upadhyaya, S.: Outlier detection: applications and tech-
niques. IJCSI Int. J. Comput. Sci. Issues 9(3), 307–323 (2012)

71. Tao, W., Wenbo, Z., Jun, W., Hua, Z.: Workload-aware online
anomaly detection in enterprise applications with local outlier fac-
tor. In: Proceedings of the IEEE 36th Annual Computer Software
and Applications Conference, pp. 25–34 (2012)

72. Tax, D., Duin, R.: Support vector data description. Mach. Learn.
54(1), 45–66 (2004)

73. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn.
Academic Press, Cambridge (2008)

74. Trede, M.: Bootstrapping inequality measures under the null
hypothesis: is it worth the effort? J. Econ. 77(1), 261–282 (2002).
https://doi.org/10.1007/BF03052507

75. Vidaurre, D., Bielza, C., Larrañaga, P.: A survey of l1 regression.
Int. Stat. Rev. 81(3), 361–387 (2013). https://doi.org/10.1111/insr.
12023

76. Wang, X.T., Shen, D.R., Bai, M., Nie, T.Z., Kou, Y., Yu, G.: An
efficient algorithm for distributed outlier detection in large multi-
dimensional datasets. J. Comput. Sci. Technol. 30(6), 1233–1248
(2015). https://doi.org/10.1007/s11390-015-1596-0

77. Wilcoxon, F.: Individual comparisons by ranking methods. Biom.
Bull. 1(6), 80–83 (1945)

78. Yang, P., Huang, B.: KNN based outlier detection algorithm in
large dataset. Proc. Int. Workshop Geosci. Remote Sens. 1, 611–
613 (2008)

79. Yu, B., Song, M., Wang, L.: Local isolation coefficient-based out-
lier mining algorithm. In: International Conference on Information
Technology andComputer Science, ITCS2009, vol. 2, pp. 448–451
(2009)

80. Zengan, G.: Application of cluster-based local outlier factor
algorithm in anti-money laundering. In: Proceedings of the Inter-
national Conference on Management and Service Science, pp. 1–4
(2009)

81. Zhang, J., Zulkernine,M.: Anomaly based network intrusion detec-
tion with unsupervised outlier detection. In: Proceedings of the
IEEE International Conference on Communications (ICC ’06),
vol. 5, pp. 2388–2393 (2006)

82. Zhang, K., Hutter, M., Jin, H.: A new local distance-based outlier
detection approach for scattered real-world data. In: Computing
Research Repository (2009)

83. Zhao, Y., Hryniewicki, M.K.: XGBOD: improving supervised out-
lier detection with unsupervised representation learning. In: 2018
International Joint Conference on Neural Networks, IJCNN 2018,
Rio de Janeiro, Brazil, July 8–13, 2018, pp. 1–8. IEEE (2018).
https://doi.org/10.1109/IJCNN.2018.8489605

84. Zhao, Y., Nasrullah, Z., Hryniewicki, M.K., Li, Z.: LSCP: locally
selective combination in parallel outlier ensembles. In: Berger-
Wolf, T.Y., Chawla, N.V. (eds.) Proceedings of the 2019 SIAM
International Conference on Data Mining, SDM 2019, Calgary,
Alberta, Canada, May 2–4, 2019, pp. 585–593. SIAM (2019).
https://doi.org/10.1137/1.9781611975673.66

85. Zhou, C., Huang, S., Xiong, N., Yang, S., Li, H., Qin, Y., Li, X.:
Design and analysis of multimodel-based anomaly intrusion detec-
tion systems in industrial process automation. IEEE Trans. Syst.
Man Cybern. Syst. 45(10), 1345–1360 (2015)

86. Zhu, C., Kitagawa, H., Faloutsos, C.: Example-based robust outlier
detection in high dimensional datasets. In: Proceedings of the Fifth
IEEE International Conference on Data Mining (2005)

87. Zhu, C., Kitagawa, H., Papadimitriou, S., Faloutsos, C.: Obe: out-
lier by example. In: Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 222–234 (2004)

88. Zimek, A., Campello, R., Sander, J.: Data perturbation for out-
lier detection ensembles. In: Proceedings of the 26th International
Conference on Scientific and Statistical Database Management,
SSDBM ’14, pp. 13:1–13:12. ACM, New York, NY, USA (2014)

89. Zimek, A., Campello, R., Sander, J.: Ensembles for unsupervised
outlier detection: challenges and research questions a position
paper. SIGKDD Explor. Newsl. 15(1), 11–22 (2014)

90. Zimek, A., Gaudet, M., Campello, R., Sander, J.: Subsampling for
efficient and effective unsupervised outlier detection ensembles. In:
Proceedings of the 19th ACM SIGKDD International Conference
onKnowledgeDiscovery andDataMining,KDD’13, pp. 428–436.
ACM, New York, NY, USA (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/2890508
https://doi.org/10.1145/2890508
https://doi.org/10.1016/j.jcomdis.2017.07.002
https://doi.org/10.1016/j.jcomdis.2017.07.002
https://doi.org/10.1007/BF03052507
https://doi.org/10.1111/insr.12023
https://doi.org/10.1111/insr.12023
https://doi.org/10.1007/s11390-015-1596-0
https://doi.org/10.1109/IJCNN.2018.8489605
https://doi.org/10.1137/1.9781611975673.66

	Automatic optimization of outlier detection ensembles using a limited number of outlier examples
	Abstract
	1 Introduction
	2 Outlier detection ensembles and algorithms
	2.1 Outlier detection ensemble
	2.2 Bagging
	2.3 Outlier detection algorithms
	2.4 k-nearest neighbors for outlier detection
	2.5 Local outlier factor

	3 The proposed optimization approach
	3.1 Optimization of detectors
	3.2 Maximization of score margin
	3.3 Minimization of correlation between results
	3.4 Combining outlier scores with logistic regression
	3.5 Algorithm for optimizing an outlier detection ensemble

	4 Experiments
	4.1 Metrics for evaluating the outlier detection
	4.2 Data
	4.3 The effect of the parameter optimization
	4.4 Performance comparison between OOE, LOG+ and Hybrid on benchmark datasets
	4.5 Generalizability of the outlier detection

	5 Related work
	6 Conclusions
	Acknowledgements
	References




