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ABSTRACT  
Crosstalk between tumor cells and other cells within the tumor microenvironment (TME) plays a 
crucial role in tumor progression, metastases, and therapy resistance. We present iTALK, a 
computational approach to characterize and illustrate intercellular communication signals in the 
multicellular tumor ecosystem using single-cell RNA sequencing data. iTALK can in principle 
be used to dissect the complexity, diversity, and dynamics of cell-cell communication from a 
wide range of cellular processes. 
 
The TME has emerged as a key modulator of tumor progression, immune evasion, and 
emergence of the anti-tumor therapy resistance mechanisms1, 2. The TME includes a diversity of 
cell types such as tumor cells, a heterogeneous group of immune cells, and the nonimmune 
stromal components. Tumor cells orchestrate and interact dynamically with these non-tumor 
components, and the crosstalk between them is thought to provide key signals that can direct and 
promote tumor cell growth and migration. Through this intercellular communication, tumor cells 
can elicit profound phenotypic changes in other TME cells such as tumor-associated fibroblasts, 
macrophages and T cells, and reprogram the TME, in order to escape from immune surveillance 
to facilitate survival. Therefore, a better understanding of the cell-cell communication signals 
may help identify novel modulating therapeutic strategies for better patient advantage. However, 
this has been hampered by the lack of bioinformatics tools for efficient data analysis and 
visualization.  
 

Here, we present iTALK (identifying and illustrating alterations in intercellular signaling 
network; https://github.com/Coolgenome/iTALK), an open source R package designed to 
profile and visualize the ligand-receptor mediated intercellular cross-talk signals from single-
cell RNA sequencing data (scRNA-seq) (Fig. 1 and Online Methods). We demonstrated that 
iTALK can be successfully applied to scRNA-seq data to capture highly abundant ligand-
receptor gene (or transcript) pairs, identify gains or losses of cellular interactions by 
comparative analysis, and track the dynamic changes of intercellular communication signals in 
longitudinal samples. Notably, functional annotation of ligand-receptor genes is 
automatically added with our curated iTALK ligand-receptor database, and the output can be 
visualized in different formats with our efficient data visualization tool, which is 
implemented as part of iTALK. This approach can be applied to data sets ranging from 
hundreds to hundreds of thousands of cells and is not limited by sequencing platforms. It is 
also noteworthy that, in addition to studying the TME, iTALK can also be applied to a wide 
range of biomedical research fields that involve cell-cell communication.  
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Ligand-receptor binding is one of the main forms of signal transduction between neighboring 
and distant cells. To characterize the ligand-receptor mediated intercellular cross-talk, we first 
manually curated a unique list of ligand-receptor gene pairs based on previous efforts3-10 and 
made this as a built-in database for iTALK. This database collected a total of 2,648 non-
redundant and known interacting ligand-receptor pairs, which were further classified into 4 
categories based on the primary function of the ligand: cytokines/chemokines, immune 
checkpoint genes, growth factors, and others (Fig. 1 and Online Methods). This database will 
be updated periodically and user also has the option to input their own gene list or customized 
gene categories. Given that different cell types may have different receptors for the same ligand 
and they may induce different response and vice versa, iTALK treats each different ligand-
receptor pair as an independent event when analyzing the data. And, because of the functional 
heterogeneity, the same ligand-receptor binding in different types/phenotypes of cells may 
trigger distinct cellular response that is independent of their genetic identity. Therefore, scRNA-
seq data is an ideal platform to determine which cell type/phenotype expresses which ligand or 
receptor and to help map out cell-cell communication network more accurately.  
 

iTALK takes the cell-gene expression matrix from scRNA-seq as input. The expression data 
can be either raw or normalized. The data matrix is parsed and processed subsequently according 
to the study design. For the dataset that is collected at a single timepoint or for a single group or 
cohort, iTALK can identify highly expressed ligand-receptor pairs by generating a ranked genes 
list, followed by searching and pairing ligands and receptors using iTALK database. For the 
dataset that is collected longitudinally at multiple timepoints or contains multiple 
genetically/histologically different subgroups or cohorts, iTALK can identify significant 
changes, i.e. gains or losses of interactions between groups by finding and ranking differentially 
expressed ligands and/or receptors (Fig. 1). iTALK incorporates commonly used algorithms for 
batch effects corrections and differential gene expression analysis (Online Methods), which 
also allows the flexibility to select the method that suits the user’s data best. 
 
    Notably, iTALK is also an efficient data visualization tool. iTALK output can be visualized 
in multiple formats including the network plot, the circos plot, the errorbar plot, and the 
numeric values can be exported as the tabulate format as well (Figs. 1-2). The network plot 
displays the number of ligand-receptor interactions detected between each two different cell 
types in the network by labeling the forward (from signaling cell to target cell) and backward 
signals separately. It also measures the autocrine signals within each individual cell type. The 
nodes of the network plot are color coded by cell types and the edges are scaled and labelled 
with the number of interactions between signaling and target cells (Fig. 2a). The circos plot 
shows the names of each ligand-receptor gene pair and exhibits the direction of each 
interaction. User has the option to choose which cell type(s), gene category(ies), and the number 
interactions to be displayed in the circos plot (Figs. 2b-c). The outside ring of circos plot 
displays cell types, and the inside ring of circos plot shows the details of each interacting 
ligand-receptor pair. Both are color coded. The lines and arrow heads inside the circos plot 
are scaled to indicate the relative signal strength of the ligand and receptor, respectively, and 
different colors and types of lines are used to illustrate various types of possible alterations as 
shown in Fig. 2. It can demonstrate highly expressed ligand-receptor signals in the scenario 
of a single timepoint, or group/cohort (Figs. 2b-c), or display the mostly changed (gains or 
losses) ligand-receptor interactions between two, multiple timepoints, or subgroups/cohorts 
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(Figs. 2d-e). For most ligand-receptor mediated interactions, the ligand appears to have no 
function unless binding to its receptor. Therefore, we anticipate a loss of interaction (or decrease 
in interaction) when the expression of a receptor is lost (or decreased), no matter the expression 
level of its ligand, and vice versa. The errorbar plot is used to demonstrate the dynamic changes 
of a specific ligand-receptor pair of interest across multiple timepoints (Fig. 2f). All numeric 
values with annotation information from iTALK can also be exported as a tabulate (Fig. 1), 
from which, users can sort/filter to select certain interactions for further downstream analysis 
or customized plotting.  
 
    We have successfully applied iTALK to multiple scRNA-seq data sets from both internally 
generated and publically downloaded. This approach can be applied to data sets ranging from 
hundreds to hundreds of thousands of cells and is not limited by sequencing platforms. In 
addition to studying the TME, we anticipate that iTALK can also be applied to a wide range 
of biomedical research fields that involve cell-cell communication to help dissect the 
complex intercellular signaling networks. 
 
METHODS 
Method, including statements of data availability and any associated accession codes and 
references, are available in the online version of the paper. 
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ONLINE METHODS 
Database and annotation. The built-in database is manually curated from previous efforts3-10. 
The gene lists were combined and duplicates were removed to make a non-redundant ligand-
receptor list. This database contains a total of 2,648 unique ligand-receptor interacting pairs. We 
further classified them into four categories: cytokine/chemokine (n=320), immune checkpoint 
(n=31), growth factor (n=227) and others (n=2,070), based on the known function of the ligand. 
We anticipate to update the database periodically to keep it up-to-date. In addition to the built-in 
database, user also has the option to input their own ligand-receptor gene list. They can also 
customize the gene categories as needed. 
 
Input data format, data parsing, filtering, batch effects removal. The input data should be a 
cell-gene expression matrix with cell type or phenotype annotated for each cell. Raw data should 
be filtered based on QC metrics. The default criteria are to filter out genes detected in <3 cells 
and cells where <200 genes had nonzero counts. Low-quality cells where >15% of the counts 
derived from mitochondrial genome will also be discarded. For sequencing data with possible 
batch effects, scde11 and monocle12 (incorporated into iTALK) can be applied to remove them.  
 
Identifying significant interactions. We integrated multiple algorithms for identifying 
significant interactions (differentially expressed ligands and receptors) including commonly used 
R packages: DESeq214, scde11, monocle12, DEsingle15, edgeR16 and MAST17. User has the 
flexibility to select the method that suits their data set best. All these methods require the input 
data to be raw, without any filtering or normalization. Considering single cell sequencing data 
sometimes can have thousands or tens of thousands of cells, we also provided Wilcoxon method 
to speed up data processing. The input data for Wilcoxon method can be both raw or processed. 
After finding the highly expressed or differential expressed genes, these genes will be matched 
and paired using our ligand-receptor database to find significant ligand-receptor interactions. To 
identify alterations in singling interactions, the expression levels of both ligand and receptors are 
evaluated.  
 
We define the gain of interaction if either a ligand (or receptor) gene upregulated and its paired 
gene upregulated or remains no change. We define the loss of interaction if either the ligand (or 
receptor) gene downregulated, no matter the expression level of its paired gene.  
 
Illustration. The network plot, circos plot and errorbar plot are all color coded and user has the 
option to choose their favorite colors (e.g. for cell types, gene categories, strength and direction 
of changes, etc.). In addition, use has the options to choose the number of cell types (tumor cells, 
T cells, NK cell, macrophages, fibroblasts, etc.) or gene categories (cytokine/chemokine, 
immune checkpoint, growth factor, and others), and the number of interactions (top 30, 50, 100, 
or all) to be displayed in the circos and network plots. The network plot is generated based on the 
R package igraph18; circos plot is based on package circlize19, and errorbar plot is based on 
ggplot220. 
 
 
Example datasets: Our example datasets were generated internally. The data were filtered and 
normalized by Seurat13. The cell types are defined with known markers. Briefly, B cells were 
identified using CD79A, CD79B and MS4A1; T cells were identified by CD3D/E; CD8 T cells 
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were identified using CD3D/E and CD8A; NK cells were classified by CD45, NKG7, GZMA; 
and monocytes were identified using CD68, CD163, S100A8/9. Wilcoxon method was applied 
to find significant interactions between different groups.  
 
Code availability. The code and built-in database are publicly accessible on GitHub at 
https://github.com/Coolgenome/iTALK  
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Figure 1. The Bioinformatics workflow of iTALK and illustration formats of iTALK output. iTALK takes cell-gene expression 
matrix from scRNA-seq as input. The data matrix is processed according to the study design. Known ligand and receptor gene 
are selected, paired and functional annotated with the built-in ligand-receptor database, and the output can be visualized in 
different formats with the data visualization tool, which is implemented as part of iTALK.
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Cell and Gene type (a-e)Figure 2

Figure 2. Visualization of iTALK outputs in different formats. a) network plot showing the number of ligand-receptor interactions detected between 
each two different cell types and/or within the same cell type; b-c) circos plots for a single timepoint, group or cohort, showing top 20 highly expressed 
ligand-receptor interactions; d) circos plot for a study includes two subgroups or cohorts; or e) a longitudinal study, showing significant alterations in 
cellular interaction. f) errorbar plot showing the dynamic changes of a certain ligand-receptor pair across multiple timepoints. 
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