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Abstract We derive a curved space generalization of a
scalar to fermion decay rate with a Yukawa coupling in
expanding Friedmann–Robertson–Walker universes. This is
done using the full theory of quantum fields in curved space-
time and the added-up transition probability method. It is
found that in an expanding universe the usual Minkowskian
decay rates are considerably modified for early times. For
conformally coupled scalars the decay rate is modified by
a positive additive term proportional to the inverse of mass
and related to the expansion rate of the Universe. We com-
pare and contrast our results with previous studies on scalar
to scalar decay and find that in general the decay channel into
fermions is the dominant channel of decay in the very early
Universe.

1 Introduction

Particle decay processes in the early Universe have deep
and profound implications in cosmology, from baryogenesis
[1,2] to Big Bang nucleosynthesis [3] and reheating scenar-
ios after inflation [4]. When considering these early Universe
processes in depth, the influence of spacetime curvature can-
not be neglected anymore. In this regime the Minkowskian
quantum field theory is ultimately only an approximation
and of limited applicability. Instead, when studying particle
processes in the early Universe, or in any kind of situation
where the effects of gravitation cannot be neglected, quan-
tum field theory in curved spacetime must be used. As a result
of spacetime curvature and the related violation of conser-
vation laws, the particle decay rates, cross sections and life-
times are modified compared to usual flat space results [5,6].
New particle processes, forbidden in Minkowski space, are
to be considered leading to new Feynman diagrams even
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at first-order [5,7–9]. The lack of energy conservation, e.g.,
in Friedmann-Robertson-Walker (FRW) universes, leads to
processes where a particle can even decay into quanta of its
own field [10,11]. All these suggest that considerable care
must be exercised when studying mutually interacting fields
in curved spacetime.

The groundwork for interacting quantum fields in expand-
ing universes was laid in the 1980s expanding the famil-
iar S matrix formulation of in-out states to simple cos-
mological models. Studies focused on renormalization of
self-interacting fields [12] but also on massive scalar par-
ticles decaying into two conformally coupled scalar parti-
cles [5,13–15]. The method known as added-up probability,
introduced in [5], was used to study photon decay in radia-
tion dominated universe [9,16] and more recently in inves-
tigating scalar particle decay in expanding FRW universes
[6,17,18]. Lately, QED processes in de Sitter spacetime
have also received a lot of interest[19–21]. The investiga-
tions into scalar decay revealed that the Minkowskian decay
rates are significantly modified at early times, but in the long-
time limit approach the Minkowskian results asymptotically.
Lately, a nonperturbative method, the so called Wigner–
Weisskopf method [22] familiar from quantum optics, was
adopted to study particle decay in the context of inflationary
cosmology [23] as well as post inflationary cosmology [24]
and fermionic decay [25].

Although these studies have to a great degree increased
our knowledge of particle decay in curved spacetime, they
have mainly been concerned with a scalar channel decay,
see e.g., [5,6,13,17,18]. The negligence of the fermionic
channel may be attributed to the more complex nature of the
problem involving spinors which may lead to some mathe-
matical difficulties encountered in the technical calculations.
Clearly, the study of the fermionic decay channel would fur-
ther increase and complete our knowledge of particle decay
in curved space. This serves as the motivation for this paper
where we will consider a scalar field interacting with a Dirac
spinor through a Yukawa interaction in curved space. By
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applying the added-up method, we calculate the decay rate
for a fermionic decay of a massive scalar in an expanding
spatially flat FRW universe. The scalar field is taken with
an arbitrary coupling ξ to gravity hence avoiding the restric-
tions commonly encountered in literature where ξ is usually
restricted to be that of minimally or conformally coupled. The
fermions are assumed to be massless in order to to avoid inter-
pretational issues of the decay rate when using the added-up
method.

This article is structured in the following way. In Sect. 2
we introduce the necessary theoretical background and give a
brief review of the method of added-up probability. In Sect. 3
we obtain the positive mode solutions for both the spinor
field and the scalar field. These modes are used in Sect. 4 to
derive a transition amplitude in curved space for the scalar
to decay into a fermion-antifermion pair. In this section we
will also show that the transition amplitude has the correct
Minkowskian limit. After that we will compare the decay
into fermions with the recently obtained decay into massless
scalars in Sect. 5 where it is shown that the fermionic decay
channel is dominant to the scalar channel in the early Uni-
verse. Finally, we will discuss the implications and reasons
behind our results in Sect. 6 and end with conclusions in
Sect. 7.

2 Preliminaries

As was stated in the introduction, there are at least two distinct
ways to calculate the decay probability in curved spacetime.
The difference between these two methods lies in the quantity
which is eventually being calculated. The added-up method
is fundamentally a global expression for the decay rate, while
the Wigner–Weisskopf method is concerned more with the
differential decay rate. In this article we will use the added-
up method introduced in [5] and the purpose of this section
is to summarize this method. We begin by introducing the
necessary theoretical background and then give a brief review
of the method of added-up probability. Natural units h̄ =
c = 1 are used and the metric is chosen with a positive time
component.

2.1 Theoretical background

We will consider a model described by a four-dimensional
spatially flat Friedmann-Robertson-Walker spacetime with
the metric

ds2 = dt2 − a(t)2dx2 (1)

given in standard coordinate time t with a dimensionless scale
factor a(t). On this classical curved background we consider
propagating quantum fields mutually interacting with each

other. In particular we consider a Yukawa type interaction
where a massive scalar particle decays into two massless
fermions. The Lagrangian density L for this theory is given
by

L = Lφ + Lψ + LI , (2)

which consists of a Lagrangian density for the complex scalar
field Lφ , a fermion Lagrangian Lψ and an interaction term
LI .

For a complex scalar field in curved space the Lagrangian
density is straightforwardly given as

Lφ = √−g(∂μφ∗∂μφ − m2φ∗φ − ξ Rφ∗φ), (3)

where g is the determinant of the metric, R the Ricci scalar
and the coupling of the scalar field to gravity is controlled
by the dimensionless parameter ξ . In four dimensions, the
value ξ = 1/6 is known as conformal coupling, while the
minimal coupling is given by ξ = 0. Denoting the covariant
d’Alembert operator by �, the Klein–Gordon equation in
curved spacetime for the scalar field φ is given by

(� + m2 + ξ R)φ = 0. (4)

The fermion part of the Lagrangian requires a little more
thought in curved space. Because the spinor does not trans-
form like a tensor under Lorentz transformation, one cannot
just replace the derivatives with their covariant counterparts.
To incorporate spinors into general relativity, one can intro-
duce a set of four covariant vector fields eaμ known as a
tetrad. We adopt a convention where the latin indices refer
to local inertial coordinates while greek indices refer to gen-
eral coordinates. With this formalism, the Lagrangian for a
massless spinor field in curved spacetime is given by

Lψ = i

2

√−g(ψγ μ∇μψ − (∇μψ)γ μψ), (5)

where ψ denotes the Dirac conjugate spinor ψ = γ 0ψ†. The
curved space gamma matrices are defined via the tetrad as
γ μ = eaμγ a , where γ a denotes the usual flat space gamma
matrix. The curved space gamma matrices satisfy the usual
anticommutation relations

{γ μ, γ ν} = 2gμν (6)

and the covariant derivative is defined with the help of a spin-
connection �μ as

∇μ := ∂μ + �μ, (7)
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where

�μ = 1

8
[γ a, γ b]eaν∂μebν . (8)

By varying the action one obtains the Dirac equation for a
massless ψ-particle in curved space

iγ μ∇μψ = 0. (9)

The choice of a massless spinor field is motivated by its
necessity in the added-up method, but this choice can also
be thought from a perspective of symmetry. If one consid-
ers a complex scalar field with non-zero charge, a chiral
spinor field ψL with opposite charge and a zero-charge field
ψR , in a U (1)-symmetric theory a mass term in the fermion
Lagrangian density violates this symmetry while the scalar
Lagrangian density is left unchanged. It should also be noted
that in this case no mass appears in the renormalization pro-
cedure either. Therefore, if one wants to consider a (globally)
U (1)-symmetric theory with chiral fields, then the fermionic
Lagrangian density should be taken as massless. Moreover,
if the field φ is considered as an SU (2) doublet, by defining
the (global) U (1)-charges of the theory in a suitable way,
the fermionic fields may be thought of as fermions of the
Standard Model.

Because a complex scalar field can always be decomposed
into two real scalar fields as φ = (φ1 + iφ2)/

√
2, from now

on we will consider only real scalar fields. This is merely to
make the technical calculations and theory more manageable.
In what follows, the only effect of this onto the calculations
is that the total transition amplitude is to be multiplied by a
factor of two in the complex case. For a Yukawa type interac-
tion the interaction part of the Lagrangian when considering
real scalar fields is of the form

LI = −√−ghψφψ, (10)

where h �= 0 is a dimensionless coupling constant chosen
to be real. To describe the interaction, we will apply the S
matrix scheme where the S matrix is given as

S = T̂ exp

(
−i

∫ √−ghψφψd4x

)
, (11)

where the time integration is done over a finite interval
(T0, T ) and T̂ denotes the time-ordering operator.1 The per-
turbative expansion of the S matrix for this interaction gives

S = 1 − ih A + O(h2), (12)

1 If the time interval is not finite, a convergence factor e−β|t | should be
introduced which acts as a switch-off for large times.

where

A :=
∫

T̂ψφψ
√−g d4x . (13)

Furthermore, we consider only tree level processes for which
the transition amplitude is defined as

A := 〈out|A|in〉 . (14)

Moreover, we assume that the influence of spacetime curva-
ture diminishes in such a way that a stable particle concept
can be established in the in and out regions of the spacetime.

2.2 The added-up probability

In curved spacetime the particle concept loses meaning mak-
ing the decay rate itself an ambiguous process. In case of mas-
sive particles there is creation of free particles which inter-
feres severly with the process of mutual interaction. Some
time ago, Audretsch and Spangehl drew attention to this issue
and showed that any in-out scattering amplitude containing
finite amount of massive particles makes no physical sense
in curved spacetime [5]. Therefore, because the decay rate
does not have the same conceptual meaning as in Minkowski
space, the normal in-out formalism known in Minkowski
space is not directly transferable to curved spacetime [5,14]
and one needs to use an alternative method of calculation such
as the in-in formalism or the added-up method introduced in
[5].

To begin, recall a result concerning free fields in curved
spacetime: conformally coupled massless particles are not
created as a result of spacetime expansion [26,27]. This
result, which applies both for spin-0 as well as spin-1/2 parti-
cles, is at the heart of the added-up probability method intro-
duced in [5]. Because of this result, a detection of a mass-
less conformally coupled particle in the asymptotic region of
spacetime indicates that this particle must have been solely
created or influenced by a decay process.

In curved spacetime there is still one other complication
arising from the lack of energy conservation in curved space;
the creation of all three particles with a priori unrestricted
momenta. This relates to the detector problem of the added-
up probability: when a massless particle is detected, there is
no way of knowing whether it is the product of this process or
from a process where a massive initial state has decayed. This
lack of kinematic thresholds was also considered in [22,25]
using the Wigner–Weisskopf method.

To get something which resembles closest a decay process,
it is necessary in the added-up method to further restrict the
out momenta to fulfill the three-momentum conservation law
p = k1 +k2. This process can be described at tree level with
two Feynman diagrams (Fig. 1). We emphasize, that a sin-
gle diagram has no physical meaning on its own; only the
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Fig. 1 Production of massless fermions a with and b without proper
decaying massive state. The dashed line corresponds to the massive
scalar and the solid lines to massless fermions. The vertex cross indicates
gravitational influence

combined effect of these two diagrams is to be considered.
Moreover, the added-up method seems to be related to the in-
in or Schwinger–Keldysh formalism, where the contribution
of both diagrams have to be considered [5]. This is in contrast
to the studies done in [25] where the authors neglected dia-
gram (Fig. 1b) when computing the decay rate and obtained a
result that the decay rate diverges at tree level needing renor-
malization. The neglect of this second diagram, which cannot
be done in curved space decay of a massive particle, may be
responsible for this peculiar result.

In the original treatment of Audretsch and Spangehl only
decay into scalars was concerned. Nevertheless, the formal-
ism used in the added-up method applies equally well for
other types of decay product particles as long as they are
massless and conformally coupled to facilitate a meaning-
ful decay rate interpretation in curved space. Especially this
holds for the case where a particle decays into two con-
formally coupled massless fermions. For a more exhaustive
treatment of the added-up method, we refer the reader to the
original paper [5]. The added-up transition amplitude corre-
sponding to the two Feynman diagrams in Fig. 1 reads as

wadd(p,k,p − k) =h2
{ ∣∣∣〈out, 1ψ

k 1ψ

p−k |A| 1φ
p , out

〉∣∣∣2

+
∣∣∣〈out, 1φ

−p1ψ

k 1ψ

p−k |A| 0, out
〉∣∣∣2

}
,

(15)

where k1 = k and k2 = p − k and |out〉 refers to the state in
the out region, i.e., the asymptotic future. In the formalism
one could use both the in or out regions for the one-particle
and vacuum states but not the usual in and out states used
in flat space. This is because such a matrix element suffers
from physical interpretational issues in curved spacetime [5].
With this in mind we choose the asymptotic out region for
the simple reason that the massive field modes can be recog-
nized in the out region. The total transition probability wtot

is obtained by summing over all the k modes,

wtot =
∑
k

wadd(p,k,p − k). (16)

With this brief review of the added-up method we turn
our attention to finding the positive field modes needed in
the calculations.

3 The positive mode solutions

One of the most important issues in quantum field theory
in curved spacetime is finding analytic solutions to the field
equations. This is a task of great complexity because in gen-
eral one is lead to solving highly non-trivial differential equa-
tions. Even when the solution is obtained, it is not all that
certain that the positive mode solutions can be obtained. In
any case, one must fix the scale factor in order to even begin
finding the field modes.

The literature is filled with numerous studies for find-
ing scalar field modes for different types of universes, see
e.g., [28,29] and references therein. Many models studied
are non-physical with the purpose of merely illustrating the
effects of particle creation from the vacuum. Even if a pos-
itive field mode can be found for a more general realistic
model, it usually suffers from quite strict restrictions [6].
The fermionic case presents no simplifications into finding
the positive modes. Some exact solutions have been reported
[30–32] and also more recently by Moradi [33,34]. The goal
of this section is to construct the positive field modes for the
spinor and scalar fields used in the calculation of the transi-
tion probability in the next section.

3.1 Spinor modes

As noted, finding a solution to the curved space Dirac equa-
tion is a highly technical task and generally one needs to
fix the scale factor explicitly in order to obtain an exact solu-
tion. This is the case even when considering a massless Dirac
equation like Eq. (9). In a spatially flat FRW universe, the
most general scale factor we can choose in this paper is a
typical power-law expansion

a(t) = btn, (17)

where b is a positive constant controlling the expansion rate
of the Universe. We take n ∈ [0, 1) which covers most of
the interesting cosmological cases like radiation and matter
dominated universes. The de Sitter solution is excluded in
this paper because a positive mode solution for the massive
scalar field cannot be found for de Sitter space [6].

Let us begin by expanding the curved space Dirac equa-
tion (9) in flat FRW spacetime. With the substitution of
ψ = a−3/2ψ̃ we can further simplify the ensuing equation
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to obtain

iγ 0ψ̃ ′(t) − 1

a(t)
γ i ki ψ̃(t) = 0. (18)

Here ki denotes the vector component of the momentum vec-
tor k and γ a are given in chiral representation as

γ 0 =
(

0 σ0

σ0 0

)
, γ i =

(
0 σi

−σi 0

)
, (19)

where σ0 is the identity matrix and σi are the Pauli matrices.
The advantage of using chiral representation is that Eq. (18)
reduces upon solving e.g., the spinor components ψ2, ψ4 into
sets of two second-order differential equations

ψ̃ ′′
i + ȧ

a
ψ̃ ′
i + |k|2

a2 ψ̃i = 0, i = 1, 3, (20)

for the components ψ1 and ψ3. This differential equation can
readily be solved and upon substituting the answers to the
remaining equations for ψ2 and ψ4 obtained from Eq. (18)
yields the unnormalized solutions for the spinor components.
From the solutions we obtain a set of mode solutions for the
massless fermion in chiral representation,

usk(t, x) = 1

[2πa(t)]3/2
√

2k
u(k, s)eik·x− ik

b(1−n)
t1−n

(21)

vsk(t, x) = 1

[2πa(t)]3/2
√

2k
v(k, s)e−ik·x+ ik

b(1−n)
t1−n

, (22)

where the positive and negative energy spinors are to be nor-
malized according to

u(k, s)†u(k, s′) = v(k, s)†v(k, s′) = 2|k|δss′ . (23)

Applying this normalization condition the normalized modes
are given as

u(k,+) =

⎛
⎜⎜⎜⎝

√
k − k3
−k+√
k−k3

0
0

⎞
⎟⎟⎟⎠ , v(k,+) =

⎛
⎜⎜⎜⎝

√
k + k3
−k+√
k−k3

0
0

⎞
⎟⎟⎟⎠ ,

u(k,−) =

⎛
⎜⎜⎜⎝

0
0√

k + k3
k+√
k+k3

⎞
⎟⎟⎟⎠ , v(k,−) =

⎛
⎜⎜⎜⎝

0
0√

k − k3
k+√
k+k3

⎞
⎟⎟⎟⎠ , (24)

where we have defined k := |k| and k± := k1 ± ik2. The
fields can thus be expanded as

ψ =
∑
±s

∫
d3k

[
bsku

s
k(t, x) + ds

†

k vsk(t, x)
]

(25)

ψ =
∑
±s

∫
d3k

[
dskv̄

s
k(t, x) + bs

†

k ūsk(t, x)
]
. (26)

3.2 Scalar modes

For the scalar field modes, one needs to solve the curved
space Klein–Gordon equation (4) and identify the positive
modes. The scalar field φ can be expanded in the usual way
as

φ =
∫

d3p
[
apwp(t, x) + d†

pw
∗
p(t, x)

]
(27)

and because of the homogeneity of the spatial sections, the
positive mode solutions are separable into time and space
parts

wp(t, x) = eip·x

(2π)3/2a(t)
χp(t), (28)

where p := |p|. The positive mode is found by solving the
ensuing differential equation for χp(t) and recognizing the
positive frequency modes in the usual way [28]. The nor-
malized solutions χp(t) were obtained in [6] for a massive
scalar field mode with an arbitrary coupling to gravity in the
rest frame of the particle p = 0. The rest frame was used
in order to get an exact solution for the decay rate in [6] as
well as in previous studies [17,18]. In what follows, it turns
out that in order to find an exact solution for the transition
amplitude, we will also in this paper need to restrict to the
rest frame of the decaying particle. It should be noted that in
the curved space case, the decay rate for when p �= 0 cannot
be obtained by simply doing a Lorentz transformation to the
rest frame decay rate. Nevertheless, the solution obtained in
the rest frame is sufficient for our purposes. In article [6],
using a scale factor a(η) = b′ηn′/2, the authors obtained the
solution for a massive scalar in its rest frame as

χp=0(η) =
√

πη

2(2 + n′)
e− iπ

4 (1−2α)H (2)
α

(
2b′mη(2+n′)/2

2 + n′

)
,

(29)

where η denotes the conformal time and index α is defined
as

α :=
√

1 − n′(n′ − 2)(6ξ − 1)

2 + n′ . (30)
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At this point we have to reconcile the issue that differ-
ent scale factors with different time variables were used for
solving the Dirac equation above and what was obtained for
the solution of the scalar particle. Since we are using a scale
factor a(t) = btn and in [6] the scale factor was given in
conformal time as a(η) = b′ηn′/2, we must find the rela-
tion between the primed and unprimed variables. The coor-
dinate time can be transformed into conformal time using the
usual relation dt = a(η)dη. Comparing the scale factors in
coordinate time gives the relations between the primed and
unprimed variables,

n = n′

2 + n′ , b = b′
(

2 + n′

2b′

) n′
2+n′

. (31)

In terms of the standard coordinate time t and the
unprimed variables, the scalar field mode reads as

χp=0(t) =
√

π t1−n

4b
e− iπ

4 (1−2α)H (2)
α (mt), (32)

and the index α as

α =
√

(1 − n)2 − 4n(2n − 1)(6ξ − 1)

2
. (33)

Finally, we note that the Klein–Gordon equation for a mas-
sive scalar in conformal time is given by

χ ′′
p(η) +

(
p2 + a(η)2m2 + a(η)2

(
ξ − 1

6

)
R

)
χp(η) = 0.

(34)

The initial state is given as η → 0. For a scale factor
a(η) = b′ηn′/2, the Klein–Gordon equation gives the mode
solutions as plane waves in the neighbourhood of η = 0. In
coordinate time t the mode solutions are also plane waves in
the neighbourhood t = 0. Therefore, the initial modes are
exact solutions and the concept of a particle is well defined.
This completes the necessary background formalism.

4 Transition amplitude in curved space

Having established the proper formalism, we turn to the
calculation of the total transition amplitude and the decay
rate. In this section we will explicitly calculate the transition
amplitudes corresponding to the two Feynman diagrams of
Fig. 1, verify the transition amplitude has a correct form in
the Minkowskian limit and discuss about convergence issues
near the spacetime singularity. We will end this section with
a calculation of the exact decay rate for conformally coupled
massive scalars.

4.1 Total transition amplitude

The matrix element corresponding to the diagram (a) can be
written with the positive field modes as

〈
out, 1ψ

k1
1ψ

k2
|A|1φ

p , out
〉

=
∫

d4x
√−g ūsk2(t, x)v

s′
k1(t, x)wp(t, x). (35)

For diagram (b), the matrix element is obtained by substitut-
ing the scalar mode with its complex conjugate wp(t, x) →
wp(t, x)∗. The spatial integration can readily be done result-
ing in taking out the delta function δ(p − k1 − k2) for dia-
gram (a) or δ(p + k1 + k2) in case of diagram (b). These
correspond to the usual conservation of three-momentum.
Hence, in the end, after also performing the k2 integration,
one is left with the amplitude squared corresponding to dia-
gram (a) as

∣∣∣∣
〈
out, 1ψ

k 1ψ

p−k|A|1φ
p , out

〉 ∣∣∣∣
2

= 1

8(2π)3|k||p − k|

×
∣∣∣∣ū(p − k, s)v(k, s′)

∫ T

T0

χp(t)

a(t)
e
i(k+|p−k)
b(1−n)

t1−n
dt

∣∣∣∣
2

(36)

and similarly for diagram (b) with the substitution of
χp(t) → χp(t)∗ and p − k → −p − k.

To proceed, we switch to the rest frame of the decaying
particle where p = 0. The reasons for this are twofold. First,
we only know the massive scalar field mode for a general
power-law expansion in its rest frame. Second, by taking
p = 0 the integrand simplifies to a form where we can use
the properties of distributions to obtain an exact result. We
begin by calculating the spin sum in the rest frame giving

∑
s,s′

|ū(−k, s)v(k, s′)|2 = 8k2, (37)

where k = |k|. Because the spin sum is proportional to the
square of the momentum vector length, we can combine the
k-integration of both diagrams into

wtot = h2

2π2

∫ ∞

−∞
k2dk

∣∣∣∣
∫ T

T0

χp=0(t)

a(t)
e

2ik
b(1−n)

t1−n
dt

∣∣∣∣
2

(38)

by a change of variables k → −k in amplitude squared of
diagram (b). Upon inserting the scalar field mode (32) we
obtain the following integral

wtot = h2

16πb3

∫ ∞

−∞
k2dk

∣∣∣∣
∫ T

T0

t
1−3n

2 H (2)
α (mt)e

2ik
b(1−n)

t1−n
dt

∣∣∣∣
2

(39)
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The above integral can be written as a three dimensional
integral which allows the use of the distribution identity

∫ ∞

−∞
k2eik(y−x)dk = −2πδ′′(y − x) (40)

on the k-integration, which reduces Eq. (39) into a two-
dimensional integral. The remaining integrations can be per-
formed in a symmetric fashion using derivative identities of
distributions.2 Using also the fact that δ′(y−x) = −δ′(x−y)
we can switch the order of integration to obtain an integral
which has two derivative terms. In the end, by performing
the remaining delta integration, we arrive at the exact form
for the total transition probability as

wtot = h2

32

∫ mt

mt0

∣∣∣∣ d

du

(
u

1−n
2 H (2)

α (u)
) ∣∣∣∣

2

undu, (41)

where we have changed to a dimensionless variable u =
m(

b(1−n)s
2 )1/(1−n). Because of the absolute value squared,

the realness of Eq. (41) is manifest. Although derived using
the real scalar field modes, the total transition probability
using the complex field is just Eq. (41) multiplied by a factor
of two.

The Eq. (41) is our main result of this paper. It is an
exact formula for the transition probability from which the
decay rate may be obtained. The integration can be per-
formed exactly resulting in an extremely long and compli-
cated expression involving hypergeometric and Bessel func-
tions. This expression is of no illuminating value and we do
not present it here. In its current form, Eq. (41) gives the mean
decay rate when divided by the time t . Of interest besides this
is also on the form of a differential decay rate which can read-
ily be obtained as the integrand of the transition probability.
If we make this interpretation the differential decay rate is
given as

�diff
ψ = h2tn

32

∣∣∣∣ ddt
(
t

1−n
2 H (2)

α (mt)
) ∣∣∣∣

2

. (42)

4.2 Minkowskian limit

As with any theory in physics, a generalized theory should
reproduce the known results in the more specialized situation.
Therefore a decay rate in an expanding spacetime should
yield the flat spacetime results when the appropriate limit is
taken. This limit is given when the spacetime is static, i.e.,
the scale factor a(t) = 1. This is achieved for the value n = 0
and, although not needed in the final equation (41), one may
take b = 1 since it is only a scaling factor. With the value

2 For any distribution f and test function ϕ with a compact support it
holds that

∫
f ′ϕdx = − ∫

ϕ′ f dx .

n = 0, the parameter α = 1/2 and the transition probability
reads as

wtot
Mink = h2

32

∫ mt

mt0

∣∣∣∣ d

du

(
u

1
2 H (2)

1/2(u)
) ∣∣∣∣

2

du. (43)

Because H (2)
1/2(u) = i

√
2/(πu)e−iu , we see immediately that

the integrand in (43) is equal to 2/π and the transition ampli-
tude reduces to

wtot
Mink = h2m

16π
(t − t0). (44)

From this, the decay rate is obtained in the usual way by divid-
ing the transiton probability by the infinite time t . Thereby
dividing equation (44) by �t := t − t0, we obtain the
Minkowskian decay rate

�Mink = h2m

16π
(45)

which corresponds to the decay rate calculated in the added-
up method using only Minkowskian plane waves. This con-
sistency serves as a validation of our procedure. It should be
noted that the derived equation (44) contains both diagrams
of Fig. 1. A single diagram makes no physical meaning and
in fact if calculated on its own, diagram 1a of Fig. 1 obtains a
divergent mass dependent additive term and this divergence
is cancelled by the second diagram.

4.3 Convergence near spacetime singularity

Equation (41) gives the transition probability beginning from
some time t0 up to time t , assuming that the total transition
probability wtot � 1. Although e.g., in post-inflationary sce-
narios the time t0 truly differs from zero, it is illuminative to
study also the zero time limit of the transition probability. As
it turns out, the transition probability diverges for other cou-
plings than the conformal coupling when this limit is taken.
Because we are dealing with a classical theory of gravita-
tion, this spacetime singularity poses its own problems and
the physical explanation of this divergence might need a more
complete theory of quantum gravity to explain it.

The convergence of the integral of Eq. (41) in the limit
where t0 → 0 can be investigated in a simple fashion.
First, the Hankel function of the second kind has the fol-
lowing limiting form when the argument approaches zero:
H (2)

α (u) ∼ i�(α)(u/2)−α/π . Second, requiring that the
behavior of the power of the variable u is greater than −1,
to avoid singular behaviour, we can restrict the values of α

for which we obtain a finite result. The condition for which
the transition probability is finite is given by the requirement
α < 0. This implies that the integral diverges for all values
of n and ξ when t0 → 0 is taken.
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There is one value, namely α = (1 − n)/2, however for
which the limit is finite. The reason for this is that for this
value, the power of the limiting form of the Hankel function
exactly cancels out the power of the prefactor leaving only
un to be integrated. Hence, the transition probability Eq. (41)
converges near the spacetime singularity when the following
condition holds,

√
(1 − n)2 − 4n(2n − 1)(6ξ − 1)

2
= 1 − n

2
. (46)

This condition is valid for Minkowski limit n = 0 as well
as for radiation dominated universe n = 1/2 for any value
of the coupling. But the most peculiar feature of it is that the
equality holds for conformal and only conformal coupling
ξ = 1/6 and for any n ∈ (0, 1). Now that we know the
integral of Eq. (41) is convergent for conformal coupling at
the spacetime singularity, we can calculate it explicitly.

4.4 Conformally coupled massive particles

As noted, the transition probability (41) is finite for all
n ∈ [0, 1) in the limit t0 → 0 only for conformally cou-
pled massive particles. For a conformally coupled massive
scalar particle, the decay probability reads as

wtot = h2

32

∫ mt

0

∣∣∣∣ d

du

(
u

1−n
2 H (2)

1−n
2

(u)

) ∣∣∣∣
2

undu

= h2

32

∫ mt

0
uH (2)

− 1+n
2
H (1)

− 1+n
2
du, (47)

where, to get to the second line, we have used the derivative
identity [uαH (2)

α ]′ = uαH (2)
α−1. This integral can be integrated

exactly to yield

wtot = h2

64

{
(mt)2

[
J− 1+n

2
(mt)2 − J− 3+n

2
(mt)J 1−n

2
(mt)

+Y− 1+n
2

(mt)2 − Y− 3+n
2

(mt)Y 1−n
2

(mt)
]

+2(1 + n) tan(nπ/2)

π

}
, (48)

where the last constant term arises from the lower limit of
the integration. For further insight, we take a look at the
asymptotic behaviour of this transition amplitude when the
time is large. Given by the leading terms in the asymptotic
expansion, the transition probability is given by

wtot ∼ h2m

16π

(
t + (1 + n)

2m
tan

(nπ

2

))
. (49)

valid when n ∈ [0, 1). We see that it is linear in time t ,
which would prompt us to divide the transition probability

by the time t to obtain the decay rate in the familiar fashion of
Minkowski space field theory. A complication however arises
from the constant term reflecting the fact that in curved space
one needs to be more careful concerning usual Minkowski
space procedures. To deal with the constant term we adopt the
same procedure as was introduced in [5] where this constant
term is divided by a time tgrav , known as time of gravitational
influence. This can be defined as tgrav := t f − ti , where
ti indicates the time when the gravitational field begins its
influence and t f its end. By this it is meant the time when
the particles cease to show a WKB behavior [5]. With this
definition the asymptotic decay rate is given by

�ψ ∼ h2m

16π

(
1 + (1 + n) tan(nπ/2)

2mtgrav

)
(50)

It should be stressed that while generally tgrav cannot be
defined exactly, this procedure will at least lead to some
physically reasonable mean decay rate. It is now seen that
asymptotically the decay rate obtains a gravitational correc-
tion term to the Minkowskian decay rate. This term is positive
implying, in the case of conformal coupled particles, that the
effect of the gravitational field is to enhance the decay rate.
With Eq. (50) we are now in a position to compare this to
the process where a massive scalar decays into two massless
scalars.

5 Comparison with scalar to scalar decay

In this section we will mainly be concerned in comparing the
results of this paper into studies where scalar to scalar decay
was concerned using also the added-up method [6,17,18].
This allows a direct comparison due to the same methods of
calculations being used.

The asymptotic decay rate for a massive scalar φ decaying
into two conformally coupled massless scalars χ was given
in [6] as

�φ ∼ λ2

16mπ

(
1 − (1 − n) cot[(1 − n)π/2]

4mtgrav

)
, (51)

where λ is the coupling constant. This expression was also
derived in the limit of t0 → 0 making the comparison valid.
Comparing the expressions (50) and (51) a major difference
is immediately seen corresponding to the sign of the rel-
ative correction term. For a decay into scalars, the sign is
negative, implying that the effect of a gravitational field is
to diminish the rate of decay. On the contrary, in fermionic
decay the sign is positive and the effect of the gravitational
field is to enhance the decay. Both relative correction terms
are increasing functions of the parameter n on the interval
n ∈ [0, 1), so the gravitational correction term increases in
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Fig. 2 Exact mean decay rate �φ for the scalar channel in units of
h2m/64 and �ψ for the fermion channel in units of λ2/64m as a function
of mt for radiation, matter and stiff matter dominated universes. The
dashed line corresponds to asymptote at 4/π for all decay rates

magnitude as n increases. This means that the decay into
fermions increases and decay into scalars diminishes as the
parameter n increases.

Although the ordering of these decay rates is most promi-
nently seen in the asymptotic decay rates, it cannot be inferred
from these that the decay rates are so ordered for all time. To
investigate the small time behaviour, one needs to take a look
at the exact decay rates. This is done in Fig. 2 for three cosmo-
logically interesting situations, namely universes dominated
by stiff matter, radiation and ordinary matter. From Fig. 2 we
see that this ordering of the decay rates is the same for these
universes for all time and not just asymptotically. Finally, it
should be noted that in practical situations tgrav is usually
much longer than inverse of mass, when these corrections
are in practice small. These relative correction terms might
not, however, be neglegted altogether, because for t ∼ m the
exact equation (43) divided by t should be used instead.

As was noted, the integral in Eq. (41) diverges when t0
approaches the spacetime singularity. When looking at the
behavior of the differential decay rate (42), interpreted as the
integrand of (43), we notice that it behaves like t−2α−1 in the
vicinity of the spacetime singularity. On the other hand, the
scalar to scalar differential rate obtained in [6],

�diff
ψ = λ2t

32

∣∣H (2)
α (mt)

∣∣2 (52)

behaves like t−2α+1 near the singularity. These observations
together imply that near the singularity, as long as 2α + 1 >

2α − 1, the decay channel into fermions is dominant over
the decay channel into scalars. However, this inequality is
always true implying that in the very early Universe, the
decay channel into fermions is always the dominant one to
the scalar channel no matter what is the scalar coupling or
universe matter content. It must be stressed, however, that
this holds only near the singularity and the exact time when

it is true is not evident from this analysis because the decay
rates are differently proportional to the couplings and masses
in the prefactors which affect the decay rate.

6 Discussion

Our study of scalar particle decay in the early Universe has
presented us with novel features concerning the effect of
gravitation on the decay process. Not only does the curved
background modify the Minkowskian results, but the effect
is in some cases opposite for fermionic and scalar channels.

We wish to emphasize three key elements of this paper:

(a) We have derived a curved space generalization for a mas-
sive scalar to decay into two massless fermions.

(b) For conformally coupled scalars, the decay into fermionic
channel is enhanced and decay into scalar channel dimin-
ished by the curved background.

(c) It is found that in the very early Universe, the fermionic
decay channel is dominant to the scalar channel.

These two last points bear some further elaboration. For
conformally coupled scalars, the integration from the singu-
larity introduces an additive constant to the decay rate. In the
paper [17] a proposition was put forward in the case of a scalar
to scalar decay that the faster the Universe is expanding, the
smaller is the decay rate into scalars. We may elaborate this
point by speculating within the same framework, i.e., by tak-
ing a look at the Hubble parameter H = ȧ/a = n/t . The
Hubble parameter shows us that as n increases, the Universe
expands relatively faster. In the case of a fermionic decay
channel, the faster the Universe is expanding the larger is
the decay rate. We may speculate the reason behind this
from a statistical point of view. As the Universe expands
faster, more and more states are becoming available for the
fermions to occupy. For bosons, on the other hand, this same
expansion reduces the Bose enhancement thereby diminish-
ing the decay. This would statistically explain the observed
phenomena, but further investigations into this feature are
surely needed.

As was noted, independent of the matter content of the
Universe or the coupling of the massive scalar, the fermionic
decay channel is the dominant one in the very early Uni-
verse. How close this time should be to the singularity for the
fermionic channel to be the dominant one cannot be inferred
from the analysis made in Sect. 4. For times farther away
from the singularity, it cannot be said that for any fixed n the
decay into fermions is more probable because the prefactors
on the decay rates differ; the scalar to scalar is proportional
to m−1 while scalar to fermion is proportional to the mass
m with different couplings. Furthermore our study has been
restricted to massless fermions in the fermionic decay chan-
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nel. The main reason for this has been the fact that in order to
apply the added-up method and to obtain a meaningful decay
rate interpretation in curved space this needs to be done. For
fermions this restriction is, however, less severe when con-
sidering times before electroweak phase transition because
then fermions are usually massless as in the Standard Model.
If the time when the fermion channel is dominant over the
scalar channel is before this phase transition, then it could
be inferred that the decay into Standard Model fermions
is more preferred than massless scalars. Which brings up
another point.

The analysis for scalar to scalar decay in [17] was done
using massless scalars as decay products. The inference that
the fermion decay channel is dominant to the scalar channel
only applies when the product scalar particles are massless,
although one could argue that for very light scalars this is
still valid. The case where the decay products are also mas-
sive cannot be straightforwardly calculated using the added-
up method and it cannot be said if the fermionic channel is
indeed the dominant one in all cases. The decay into mas-
sive scalars has been considered in [24] using the methods
introduced in [22,23] for post inflationary cosmology where
the authors obtained similar type of results indicating slower
decay for scalars. It would be a worthwhile study to see
whether similar types of results are obtained for a fermionic
channel as well.

7 Conclusions

Particle decay rates in the early Universe play an ever increas-
ing role in modern cosmology. In this paper we have used
quantum field theory in curved spacetime and the added-up
probability method to calculate the decay rate of a φ →
ψψ process in curved spacetime. We have found that the
Minkowskian decay rates are modified in the early Universe
by the presence of a gravitational field and that the fermionic
decay channel of a scalar is dominant to a scalar decay chan-
nel in the very early Universe.

This modification of decay rates should be taken into
account when considering with more precision early universe
processes involving scalar decay scenarios. For fermionic
decay of a scalar, possible scenarios involve e.g., fermionic
preheating scenarios. Also, as cosmological data and mea-
surements become increasingly more accurate, it may be nec-
essary in the future to include the effects of curved space also
in particle decay rates.
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