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Abstract
We investigate the possibility to apply a method of calculus analytics developed for 
predicting critical transitions in complex systems to social systems modelled with 
agent-based methods (ABMs). We introduce this method on the example of an equa-
tion-based modelled system and subsequently test it—to our knowledge for the first 
time—on ABMs. Our experiments show that the method may have wide applicabil-
ity in the analysis of social systems. The method can help to approximate abrupt and 
thus unpredictable regime shifts, even though it may be constrained by stochastics 
and require a bit more experimentation in selecting suitable variables for making it 
work in ABMs.

Keywords  Critical transitions · Regime shifts · Prediction · Critical Slowing Down · 
Agent-based modelling

Introduction

Like other complex dynamical systems too, social systems can experience abrupt 
transitions from one equilibrium state to another [1]. The fall of the socialist socie-
ties in the late 1980s [2], the sudden emergence of chaotic riots in London 2011 [3], 
the Arab spring in 2010/11 [4], the outbreak of workers protests [5] or the transition 
of financial markets from a balanced to a crisis condition in 2008 [6] are examples 
of such sudden state changes, which all have been subjected to analytical model-
ling. Since many of these changes concern shifts from socially preferable to adverse 
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or detrimental states, the purpose of modelling often is to find ways to predict the 
tipping point in these critical transitions, that is, the point where dynamics incontro-
vertibly shift.

Theory suggests that critical transitions are caused by reinforcing feedbacks 
generating alternate attraction states, between which the system may shift abruptly 
when its equilibria change from stable to unstable or back. Such equilibria changes 
are called bifurcations and analysed in the framework of calculus analytics, for 
which a mathematical representation of the system in terms of differential equa-
tions is needed. Once the differential equations are known, at least for simpler sys-
tems, bifurcation diagrams can be derived from the development of the dominant 
Eigenvalues of the Jacobian matrix, thus giving an idea of where bifurcations can be 
expected [7–9].

Due to this proximity to calculus, it is common to conduct critical transition 
analyses in the framework of equation-based modelling (EBM), that is, based on 
systems being represented in terms of coupled differential equations. Given the the-
oretic proposition, however, that critical transitions origin in the distributed interac-
tions on a system’s component- or micro-level and are only abridged mirrored by the 
aggregated macro-level representations as obtained from EBMs, this seems some-
how at odds. Particularly when considering structured interactions, as they are norm 
in social systems, EBMs do not seem to capture the relevant details. In these cases, 
agent-based modelling methods (ABMs) appear to be the appropriate mean.

ABMs, however, are primarily rule-driven and, therefore, less directly affiliated 
with mathematics. Only rarely they can be directly expressed in terms of differential 
equations. Predicting regime shifts in an ABM-context thus needs to draw on simu-
lations and statistical means. Recently in this regard, an elaborate apparatus of meth-
ods has been introduced, comprised under the term Early Warning Signals ([10–12] 
that basically consists in the analysis of statistical traces that systems generate when 
being perturbed in their approach to a tipping point. A core concept in this analysis 
is Critical Slowing Down, referring to the tendency of systems to show prolonged 
recovery times from perturbations when approaching a tipping [13, 14]). Since Crit-
ical Slowing Down analysis does not depend on a mathematical representations of 
a system—it just needs a way to test systems systematically for their resilience—, 
the method is applicable to ABM-generated data [15], although it is still most often 
applied to EBMs so far.

Alternative to the concept of Early Warning Signals but based on Critical Slow-
ing Down analysis, a team at the University of Michigan [16–18] has suggested a 
method for drafting the essential parts of a system’s equilibria curves, in particu-
lar in bi-stable systems showing hysteresis, without mathematical representation. 
Again, this method has been developed and investigated primarily in the framework 
of EBMs, which gives reason to try to apply the method to ABM-generated data. As 
our investigation shows, this application can be constrained by stochasticity to cer-
tain extent, which is expectable given the higher structural resolution of social inter-
actions in ABMs. Moreover, it can be slightly hampered by the difficulty to select 
appropriate variables as central observables, which is a problem in EBMs as well, 
but it may be somehow aggravated due to the larger complexity that ABMs allow 
to consider. Despite these limitations, however, we find that the method provides 
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interesting insights into the behaviour of complex interactions and thus can help to 
approximate abrupt and thus hard to predict regime shifts in social systems.

In the remainder of this paper, we will first describe and test the method on the 
example of simple EBM systems prone to critical transitions (Sect. 2). We will then 
apply it to three different ABMs to indicate not only the possibilities but also the 
difficulties this method holds for analysis, with the first ABM known to undergo a 
supercritical pitchfork bifurcation and the other two arbitrarily tuned to show bi-sta-
bility in certain ranges of a critical parameter. The first ABM is a two-dimensional 
version of the famous Ising model of magnetization and is contained in Netlogo’s 
model library (Sect. 3). The second ABM depicts a stylized repeated Public Good 
Game that determines contribution behaviour of agents from a combination of pay-
offs and social influence (Sect. 4). And the third ABM models a stylized job mar-
ket in recession and recovery of economy, which causes unemployed agents to alter 
skill-updating activities in dependence of their neighbourhood’s employment status 
(Sect. 5). Section 6 discusses the results and insights and concludes with an outlook 
on needed further research. To keep the method accessible to social scientists, its 
explanation is deliberately kept somewhat less formal in mathematical terms.

Applying bifurcation prediction to an equation‑based model (EBM)

We first demonstrate the method on the example of an EBM, which among others 
has been suggested in [19] to model economies coupled by trade, or patches of eco-
systems coupled by movement of organisms. The modelled system is subject to a 
combined saddle-node-bifurcation, which causes a particular troublesome form 
of critical transitions. The system’s bi-stability (hysteresis) makes it shift states 
differently in dependence of the direction from which the critical transitions are 
approached [9]. The model reads:

Figure 1a shows a numerical simulation of the system variable x undergoing criti-
cal transitions in dependence of whether the parameter a increases (black curve) or 
decreases (grey curve). The equilibria curves of the system are shown in red. Addi-
tionally, to provide one example of Early Warning Signals analysis, Fig. 1b, c shows 
the autocorrelation with lag 1 (AC-1) of time series of length 100 (after a tran-
sient phase) at each simulated equilibrium. As can be seen, autocorrelation clearly 
increases towards 1 in the wake of a critical transition depending on whether the 
critical parameter a grows or declines. Simulation parameters are c = 0.9 , a as the 
critical parameter varying in 1000 steps between -1 and 1, and a noise term �xdW 
added with � = 0.001. . The equilibria curves (red) show the bi-stable phase of the 
system and indicate critical transitions at a = −0.3286 (B1) and a = 0.3286 (B2) 
(i.e. hysteresis).

In what follows, we assume that the mathematical model is unknown, but the 
system can be tested for its resilience by systematically perturbing it at differ-
ent equilibria states. To do this, we generate time series at different values of a 

(1)x� = −x3 + cx + a.
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(blue, red, green and yellow dots in Fig.  2a) and perturb the system in each of 
these states after a transient time of 100 time steps by raising the system variable 
x beyond the alternate stable equilibrium (Fig.  2b–e, similar to [17]). Thereby, 
the values of the critical parameter a are chosen so that they (a) either increase 
or decrease sequentially, that (b) the resilience of the system still guarantees a 
return to the original equilibrium, and that (c) the recovery over these different 
a-values happens with increasing delays caused by Critical Slowing Down. For 
filtering noise from the system’s recover, these perturbations are repeated several 
times at each value and averaged for further processing. Figures 2b–e shows aver-
ages over 20 recovery curves of 4 systematic perturbations at different a-values 
increasing from −0.7 to −0.4 . (Note that the number of perturbations is arbitrary. 
The method works with a minimum of two perturbations.)

Fig. 2   Showing simulations (a), recovery curves from perturbations (b–f), their differentiations (g), a 
linearization of the maximum of deflection (h) and the prediction of the tipping point (i) of the system 
expressed by Eq.  (1). f shows the four (averaged) recovery curves of b–e in relation to the equilibria 
curve, projected onto the locations (the a-values on the x-axes) of the perturbations
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In the case of systems showing combined saddle-node-bifurcations, theory sug-
gests that near-by bifurcation points will exert attraction on the system states recov-
ering from perturbation and thus deflect the recovery curves increasingly when the 
perturbation approaches the critical transition. This so-called Critical Slowing Down 
can be seen in Fig. 2f, where the recovery curves of 2b–e are shown in relation to 
the calculated equilibria curve, projected onto the locations of the perturbations.

In this case, the probably most straight-forward way of the proposed method is to 
calculate the first order discrete differences of the recovery curves,1 focusing on the 
part of their slopes at which the system has not yet returned to equilibrium. This part 
of the differentiated curves then is approximated with a least square polynomial fit 
of degree 3 and plotted in relation to the systems variable during recovery (Fig. 2g). 
Assuming a linear approach to the critical transition and depending on the distinc-
tiveness of the deflection, one can take the maxima of the fitted curves (the bold 
blue, red, green and yellow points in 2 g, also marked with black crosses in 2b–2e) 
as correlated indicators of the approaching tipping. These maxima then are plotted 
against the critical parameter values at which the system was perturbed (Fig. 2h). 
Fitting the four points with linear regression and extending the resulting line (dotted 
red) to the zero line (dotted blue) indicates the parameter value at which the slope 
(dotted black in 2b–2e) of a corresponding recovery curve would be horizontal, or 
in other words, at which no more recovery would take place. This point hence indi-
cates the bifurcation point B1, in this case at a = −0.3286 (Fig. 2h). Averaging the 
x-axes-values of the maxima in Fig. 2g, additionally indicates the variable value at 
this bifurcation, so that the point B1, i.e. the left bifurcation point in Fig. 1b, can be 
approximated as B1 = (−0.3286, 05508) , which in this case corresponds perfectly 
with what can be analytically derived (Fig. 2i).

If this procedure is extended by considering additional points to the left and right 
of the maxima of the differentiated recovery curves (A, B, C, D in Fig. 3a), the left 
part of the hysteresis curve as shown in Fig. 1b can be approximated (Fig. 3b).

For deriving bifurcation point B2 in Fig. 1a (i.e. the right part of the equilibria 
curve), there are two possibilities in this case of a simple and well-understood sys-
tem. The one, suggested by [17] is to choose further critical parameter values for 
perturbation past the B1-bifurcation point, that is, in the range between B1 and an 
assumed B2-point. In this case, the system variable cannot be perturbed beyond the 
unstable part of the equilibrium curve (dotted red line in 1a), since too large pertur-
bations would drive the system over the unstable part towards the upper stable equi-
librium. No return curve would be gained.

In the experiment shown in Fig. 4a, b below, perturbations were applied at the 
critical parameter values a = {−0.1,−0.03, 0.03, 0.1} and the system variable was 
raised to the value of −0.4 (instead of 1 as in the B1 case). Since in this case, no 
deflection in the recovery curves can be observed, the minima, instead of maxima, 
of the differentiated and fitted return curves were considered for linearization to the 

1  Alternatively, [16] suggest to differentiate the recovery curves RC by considering � =
lnx

t−dt−lnxt+dt

2dt
 for 

each x
t
 in RC[dt∶−dt] , which in our experiments yield similar results as the discrete differences, with the 

cutback that this differentiation cannot be applied to negative ranges.
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zero line, together with three further points in equal distance to the left and right of 
the minima (black dots in Fig. 4a), yielding the B2 approximations (black) as shown 
in Fig. 4b. Note, however, that, as described below, it is not mandatory to consider 
extrema of the differentiated recovery curves. As long as the selected points are cor-
respondingly alligned over all curves the method yields useable results.

As an alternative to what is suggested in [17], we also applied the procedure sym-
metrically to what is shown in Fig. 2 by running the system from right to left, that is 
in the case at hand, by considering critical parameter values in the range from 0.7 to 
0.4. For perturbation, we lowered the system variable to − 1 and took the minima of 
the first part of the fit of the differentiated return curve. Combined with the approxi-
mation of B1, as described above, this procures more details of the equilibria curve 
and hence a more accurate estimate of the bifurcation points, as shown in Fig. 5. It 
also seems to be better applicable to respective investigations in ABMs (see next 
section).

Not all systems prone to critical transitions, however, are subject to combined 
saddle-node-bifurcations. Perturbing systems with sub- or supercritical pitchfork-
bifurcations for instance does not necessarily yield clear deflections in the recovery 
curves, although Critical Slowing Down can be observed in the wake of a tipping 
point (see Fig. 6a–d). In these cases, when extremes are out of the considered range, 
it may be more applicable, instead of considering maxima or minima, to iterate over 
the differentiated recovery curves with a small running window around a value r ., 
taking the averages of the windows and using these terms for the linearized projec-
tion to the zero line as described above (and indicated in Figs. 2h and 6f). Figure 6 
shows this procedure on the example of the supercritical system x� = x

(
a − x2

)
 (2), 

with a serving as the critical parameter while considering the λ-differentiation as 
described in footnote 1 (plain discrete differentiation, however, yields very similar 
results).

Figure 6a–d shows the recovery curves from perturbing the system after a tran-
sient time of 100 iterations. Figure 6e shows the λ-differentiations of these curves 
(analogue colours to 6a–d) and an (arbitrarily chosen) example point at r = 0.22 
(blue vertical line), chosen as centre of a small window from which the average is 
plotted in Fig. 6f in relation to the corresponding a-value at which the system was 
perturbed (using an average over a small window might seem unnecessary in this 
case, but can improve results enormously in the case of noise in the recoveries, as 

Fig. 5   Showing the combined bifurcation approximations (black and grey stars) on the foreground of the 
analytically derived equilibrium curve of the system expressed by Eq. (1)
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usually is the case in ABMs). As can be seen again from 6f, linearizing the points 
obtained in this way from the λ-differentiated recovery curves towards the zero line 
indicates a point at a = 0.045 , which together with r = 0.22 approximates one point 
on the equilibria curve (black star) as shown in Fig. 6g. Repeating the same proce-
dure for various r-values by iterating over the differentiation curves yields a close 
approximation of the systems equilibria, as shown in Fig. 6h.

Note that, irrespective of the deployed differentiation, the method is quite sensi-
tive to small disturbances. Figure 7a–h shows the procedure as applied in Fig. 6a–h 
with a small noise term added to the state variable [ x� = x

(
a − x2

)
+ �xdW . with 

� = 0.005 (3)]. While the recovery curves 7a–d look smooth and not overly different 
from 6a–d, their differentiations are heavily scattered (7e). Consequently, the critical 
transition prediction is significantly less accurate (7f). As will be seen in the next 
sections, this can be a crucial constraint in applying the method to agent-based mod-
elled systems.

In the following three sections, we show results from applying the above-
described method to attempts of predicting tipping points in agent-based modelled 
systems for which no direct mathematical representation is available. All considered 
ABMs were implemented in Netlogo (https​://ccl.north​weste​rn.edu/netlo​go/) and 
actuated with the Python module NL4Py (https​://githu​b.com/chath​ika/NL4Py​).

Ising ABM

In a first exploratory experiment, we apply the method to a two-dimensional-version 
of the Ising model on ferromagnetism [20], which often also is used to model social 
phenomena like opinion changes [21] or spreading rumours [22]. The used ABM is 
contained in Netlogo’s model library.

The model represents magnetic dipole moments of atomic spins as points on a 
lattice, which can be in one of two states (+ 1 or − 1), dependent on an ambient tem-
perature T  and an energy, which is defined as the negative of the sum of the products 
of a spin with each of its four neighbouring spins. Spins are seeking a low energy 
state, causing them to flip depending on a potential gain in energy Ediff , which deter-
mines the flipping probability p using the Metropolis algorithm as p =

Ediff

t
 . Conse-

quently, as temperature increases, flipping to a higher energy state becomes increas-
ingly likely, but as the energy to be gained by flipping increases, the likelihood of 
flipping decreases.

As a simplified model of particle behaviour in magnetic metals, the model allows 
the identification of phase transitions. It is known to exhibit a (symmetric) super-
critical pitchfork bifurcation at a critical temperature value of about 2.27. As in the 
EBM-example in the preceding section, our experiment considers only the upper 
branch of the pitchfork (Fig. 8b), simulated by running the ABM 100 times for 1000 
ticks on a parameter range from T = 1.42 to T = 3.12 , with an initial value of p = 1 

Fig. 6   Showing recovery curves (a–d), differentiations (e), an example linearization (f) and its corre-
sponding equilibrium point approximation (g), and the result of iterating several such linearizations with 
different values of r (h) of the system expressed by Eq. (2)

▸

https://ccl.northwestern.edu/netlogo/
https://github.com/chathika/NL4Py
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of all spins being in state + 1. Perturbations were applied 100 times at 4 equally 
intervaled values from T = 1.5 to T = 1.9 , (that is, in some distance to the assumed 
critical transition at T = 2.27 ) by making 40% of the particles change their spin’s 
orientation (i.e. from 1 to − 1 or vice versa) for one timestep. Altering larger frac-
tions than 40% caused state shifts prior to the theoretically assumed critical transi-
tion at T = 2.27 and thus was avoided.

The differentiations of the averaged recovery curves are shown in Fig.  7a. To 
cope with the still quite considerable noise in the curves, we fitted them with a 
degree-5 polynomial and iterated over 15 values in the interval (0.29, 0.93) to gen-
erate a not overly accurate, but still somehow indicative approximation of the Ising 
model’s equilibria, as shown as red dots in Fig. 8b.

Repeated public good game‑ABM

The second experiment was performed on an ABM simulating a stylized form of 
a Repeated Public Good Game, in which agents adjust an individual probability 
for contributing (a) in respect to their payoffs in relation to payoffs from preced-
ing rounds of the game and (b) in respect to the majority of other agents’ respec-
tive behaviour. Due to the consideration of individual agent interactions under social 
influence, this system cannot be represented by an EBM.

A Repeated Public Good Game is a well-known game theoretic formalization of 
a situation in which cooperation can procure a common good of high social value, 
but contribution is impeded by the possibility to realize still higher payoffs by free 
riding [23]. Due to social contagion, this situation when repeated tends to evolve 
towards a socially sub-optimal Nash-equilibrium of pervasive defection [24] with 
nobody being willing to cooperate as long as nobody else does [25, 26]. Although 
experiments show that contributions in Repeated Public Good Games do not decline 
to absolute zero [26–28], changes in cooperation behaviour can be abrupt [29], in 
particular when feedback-driven reciprocal entrainment is involved [30].

Our model mimics these feedback-driven shifts in a simple way, which is primar-
ily tuned for generating critical transitions, and not for modelling realistic behaviour 
(see for model details Appendix A). It considers a population of agents playing a 
Repeated Public Good Game conditioned on an individual contribution probability, 
which determines whether agents invest all or nothing of an endowment into a com-
mon pool. After each investment round the pool is multiplied with an enhancement 
factor and evenly distributed among all agents earning them a final payoff dependent 
on investment.

While iterating the game the agents’ contribution probability is updated with a 
simple influence mechanism making agents compare their current payoff with the 
one of the preceding rounds of the game. Dependent on payoff-gains or –losses, they 
adjust their contribution probability in respect to the fraction of other agents con-
tributing or not contributing to the public good (see details in Appendix A). Which 
one of the counteracting updating dynamics dominates depends on a parameter p 
that serves as the critical parameter in this case, causing contribution to tip abruptly 
after a sustained decline when starting contribution near 100% and driving p from 
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0 to 1 (from left to right in Fig. 9c, black triangles), while generating a symmet-
ric upwards-dynamic (i.e. a backward change from the Nash-equilibrium to the 
social optimum of near overall cooperation) when starting contribution near 0% and 
decreasing parameter p from 1 to 0 (from right to left in Fig. 9c, grey triangles).

Applying perturbations for predicting critical transitions holds some subtleties 
in this case. As in the EBM, the system is run at different values of p over some 
transient time and then is systematically perturbed for one time step by diminish-
ing (increasing) the cooperation probability of 95% of the agents by the value 0.4. 
As observable for the recovery curves served the percentage of agents cooperating. 
This, however, turned out to yield not sufficiently fine-grained curves to provide use-
ful data for differentiation. As a remedy, the update regime of the Netlogo model 
had to be altered so that in each time step (i.e. Netlogo-tick) several rounds of the 
Repeated Public Good Game could be considered, which improved granularity, but 
also caused severe stochastic variations. Perturbations had to be averaged over large 
numbers of instances (100 in the plots shown in Fig. 9c) to yield usable results.

Even with this, the variance in the differentiated recovery curves (Fig.  9a, b) 
remains large, suggesting again to fit the data points with a higher degree (3 in this 
case) polynomial to get clear enough signals for approximating the tipping parame-
ters. The resulting predictions in this case seem plausible to some extent. In Fig. 9c, 
they are plotted (in red) together with the simulated decline and recovery of the 
Repeated Public Good Game’s cooperation dynamics.

Skill‑matching ABM

Our third experimental ABM builds loosely on an observation by [31] noting that 
the abrupt decline of employment during an economic recession may not be fol-
lowed by a similarly rapid reinvigoration once the economy recovers, consequently 
causing hysteresis in the unemployment rate. Our model follows an argument of 
[32], which as a cause for the delayed upswing suggests that workers may lose skills 
while being unemployed and thus face difficulties finding new jobs after reces-
sion [33]. Or in other words, reestablishing skills costs them more time than los-
ing them. Our model accounts for this aspect with the additional proposition that 
the loss and the subsequent update of skills are socially mediated. It assumes that 
employed neighbourhoods raise the probability of updating skills, while neighbour-
hoods with high unemployment diminish this probability, with neighbourhoods hav-
ing their own time to form and disintegrate (see details in Appendix B). Or to put it 
differently, skill-updating together with the situation on the job market is taken to 
determine neighbourhoods, with neighbourhoods in their turn forming clusters of 
self-enforcing stability that cause unemployment to persist even so the demand on 
the job market reaches pre-crises levels (see Fig. 10b).

These dynamics of the model induce a distinct upward tipping of the unemploy-
ment rate (black curve in Fig.  10) when the economy E (x-axes, taken as critical 
parameter) deteriorates beneath a certain level and a delayed recovery when reces-
sion is over. The green curve in Fig. 10 shows the parallel dynamics of the agents’ 
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skill-updating probability, impeded or amplified by the development of the neigh-
bourhoods (shown in the inserted 2-d displays). Note that the inserts 2 and 4 are 
obtained at the same economic state value, but show distinctly different neighbour-
hood clusters.

Perturbations in this case were applied to the unemployment rate by setting the 
employment status of the agents to “true” for one timestep in the onset of the unem-
ployment upswing (at E = {0.6, 0.53, 0.47, 0.4} , see lower coloured dots in Fig. 11c) 
and to “false” after the economic turnaround at the peak level of unemployment (at 
E = {0.05, 0.08, 0.11, 0.15} , upper lower coloured dots in Fig.  11c). The resulting 
recovery curves again had to be averaged over large numbers, and their differentia-
tions again were fitted with a degree 3 polynomial to gain sufficiently clear signals 
for the critical transition prediction (see 11a, b). Note that the second set of pertur-
bations at the upper level of unemployment (11b) obviously exerts less impact on 
the system and thus yields significantly shorter recovery curves with less informa-
tion about the critical transition. The results from linearized zero-projection of the 
differentiations, shown in red in Fig. 11c, again are not as highly correlated to the 
dynamics of the state variable as in the case of the EBM in Sect. 1. Still they may be 
seen as indicative of changing dynamics in the onset of a critical transition and may 
thus be interpreted as an early warning signal for an imminent regime shift.

Summary and discussion

We investigate the prospects of applying a method for predicting critical transi-
tions in complex dynamic systems, which was developed and deployed so far only 
on EBMs, to ABMs. This method bases on the fact that the resilience of a system 
decreases when approaching a critical transition point and the time to recover from 
small perturbations increases. Assuming a linear increase of recovery time, the 

Fig. 10   Showing the simulated unemployment rate (black) with its variance (grey) generated with the 
skill-matching ABM as detailed in Appendix B. A linearly declining and recovering economic situation 
(x-axes) serves as critical parameter. The green curve shows the corresponding average skill-updating 
probability of agents with its variance (in light-green). The inserted grid-displays show four example 
neighbourhoods constraining skill-updating in varying extent, with inserts 2 and 4 depicting conditions at 
the same percental state of economy, one in the onset of the crisis (2) and the other in the recovery phase 
(4). Unemployment (red) is clearly higher in the second case, indicating hysteresis
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changes in the slope of the recovery curves can be considered as an indicator of the 
distance to the tipping point. Linearly projecting these slopes (mathematically the 
differentiations at certain points of the recovery curves) to the zero line (that is to 
a horizontal slope and thus a state of no recovery) yields approximations of critical 
parameter values at which the system shifts its regime from one equilibrium state to 
another (it bifurcates). This allows predicting critical transitions without exact math-
ematical representation of the system, which here is done for three different ABMs 
holding various degrees of complexity and yielding results with different levels of 
accuracy and predictive power.

The first ABM is a two-dimensional implementation of the well-known Ising 
model for identifying phase transitions in ferromagnetism. The difficulties in this 
ABM concern primarily the limited possibilities for perturbing the main state 
variable, that is, the spin of the particles. The analogous example-EBM with the 
supercritical pitchfork bifurcation in Sect. 2 (Figs. 6 and 7) suggests perturbing the 
Ising-system in the range T > 2.27 , that is, while decreasing the critical parameter 
temperature from values beyond the critical transition. Since in this range, particles 
have an equal probability of being either in state + 1 or − 1, switching their spin does 
not change the state of the system. Perturbations, therefore, had to be applied at the 
upper equilibrium branch in the range T < 2.27 (for details see Sect. 3). Addition-
ally, perturbations had to be restricted to just 40% of the particles for not driving the 
system beyond the unstable equilibrium. This, together with the strong noise caused 
by the particles’ individual interactions, restricted the results to a rather approximate 
transition forecast, as shown in Fig. 8b.

The second ABM is arbitrarily modelled to show a combined saddle-node bifur-
cation on the example of a Repeated Public Good Game with an artificial symme-
try that, strictly speaking, makes one of the two sets of perturbations redundant. 
As a proof of concept, however, this example shows that critical transitions can be 
approximated quite accurately with the method described, even though recovery 
curves and their differentiations are overly noisy in this case as well.

The dynamics of the third ABM eventually are explicitly subjected to local 
neighbourhood interactions and, therefore, are probably the ones most affected by 
stochastic variations. The system is asymmetric and consequently provides differ-
ent conditions for perturbations on the lower and on the upper equilibrium. While 
the perturbation amplitude for the lower set covers nearly the whole range between 
equilibria, the upper equilibrium allowed only for minor displacements, although 
the same number of agents was exposed to perturbations in both cases. The usable 
signals thus, and their differentiations are significantly shorter in the second case. 
Despite averaging and curve-fitting in the analysis, the critical transition-predictions 
turned out to be inaccurate but not completely out of line, as shown in Fig.  11c. 
Given the strong noise from truly local neighbourhood interactions, it still can be 
argued that the method may help to give an approximate indication of where critical 
transitions in agent-based modelled systems occur.

Two key problems occur in all three ABMs. One concerns the question 
about which of the state variables is most suitable for being perturbed. While 
the Ising model seems to offer switching the particle spins quite naturally, the 
other two models hold several possibilities in this regard. Instead of increasing or 
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decreasing the cooperation probability in the Repeated Public Good Game-ABM, 
one could simply alter the number of cooperators. Analogously, instead of chang-
ing the number of unemployed in the skill-matching ABM, one could change 
the skill-matching probability. Which of the variables is best suited to generate 
a clear Critical Slowing Down seems to depend very much on the system in ques-
tion and thus needs to be subjected to experimentation.

The second problem concerns the question of where in the parameter range 
best to apply the perturbations. Our experiments show that the distinctiveness and 
clarity of Critical Slowing Down does not necessarily increase continuously with 
the approach to a critical transition. In respect to this problem, future research 
could focus on the possibility of combining the statistical method of Early Warn-
ing Signals (as mentioned in Sect. 1) with the method described here and to tap 
its insights for pinpointing prospective parameter ranges at which perturbations 
can be applied. Regardless of these problems, we find that the method presented 
has great potential to further the analysis of complex systems and, especially 
when applied to ABM-generated data, can enhance the understanding of real-
world behavior in social systems.
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Appendix A: Repeated public good game‑ABM details

A population of N agents is made to play Repeated Public Good Games with 
an agent’s cooperativeness depending on a contribution probability ci , which 
initially is normally distributed either close to 1 or close to zero ( ci = 1 − s or 
ci = 0 + s . with s ∈ {0.01, 0.04} ). In each game iteration, agents, dependent on ci , 
invest either all or nothing of an endowment E into a common pool, earning them 
a final payoff

(4)�i = E − Ii + f

∑n

j=1
Ij

N

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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with the initial endowment E , the individual investment Ii , the number of partici-
pants N in the game, and an enhancement factor f  , expressing the added value from 
social cooperation.

After each game, ci is updated in respect to the following symmetric dynamics (5) 
and (6)

and

with N|I=0 ( N|I=1 ) indicating the number of non-contributors (contributors) in the 
population, and g being an arbitrary scaling factor which governs the dynamics of 
the development.

The second dynamic (6) is introduced to mimic system behaviour similar to the 
one of the EBM in Sect. 2. An explanation for it could be that once the majority 
cooperation is lost and the Repeated Public Good Game is close to its Nash equilib-
rium, the difference between the actual payoff and the payoff, which could be gained 
with a majority investing, might cause individuals to be dissatisfied, leading to scat-
tered trial investments and eventually to a revival of cooperation. For considering 
a transition between these two effects, that is, between dynamic (5) and dynamic 
(6), we define a critical parameter p that lets dynamic (5) take effect if a random 
real number r ∈ { 0, 1} < p, and dynamic (6) otherwise, with p being decremented 
(incremented) by steps of 0.003 after each 100 rounds of the game.

Parameters are: N = 100, E = 1, I ∈ { 0, 1}, f = 1.6, g = 3.

Appendix B: Skill‑matching ABM details

The model assumes economic decline causing deteriorating job supply, with job 
supply evolving according to J =

E3

(h+E3)
 if 1 > E > 0 , with E indicating the percen-

tual state of the economy, varying linearly between 1 (full blown) and 0 (deterio-
rated). Agents employment status is determined by J and a skill-matching probabil-
ity s , which deteriorates with the unemployment rate in an agent’s neighborhood. 
The assumption here is that group dynamics rather than individual employment sta-
tus are the driver of regular skill updating. The number of unemployed agents au in 
the Moore-neighborhood of an agent determines a probability f  according to the 

if𝜋i,t−1 > 𝜋i,t then ∶ ci,t+1 = ci,t − g

(
N|I=0
N

)3

,

(5)else ∶ ci,t+1 = ci,t

if𝜋i,t−1 < 𝜋i, t then ∶ ci,t+1 = ci,t + g

(
N|I=1
N

)3

(6)else ∶ ci,t+1 = ci,t
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sigmoid function f = a
p
u

a
p
u+h

p
 , with h = 5.7, p = 10 , where f  is taken to equilibrate the 

skill-matching probability s of an agent with dt = 0.01 over 200 time steps in rela-
tion to the employment condition in its neighborhood. To increase the resolution of 
the generated data, the described dynamics were executed five times per simulation 
step (tick).
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