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Abstract

In this paper we characterize even sublime numbers in theorem 3.2.

Let p, l1, . . . , lp−1 be primes such that q = 2p − 1, 2q − 1,

m1 = 2l1 − 1, . . . , mp−1 = 2lp−1 − 1 are all distinct primes and l1 + . . . + lp−1 = q − 1. Then

n = 2q−1 ·m1 · · ·mp−1 is an even sublime number. Further, every even sublime number n is of the

form 2km for some odd integer m with σ(n) and τ(n) both even, σ(m) = 2q−1 and τ(m) = 2p−1.

We use this theorem to design a constructive algorithm to generate sublime numbers.
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1 Introduction

A natural number n is called perfect if the sum of the divisors of n excluding n itself is equal to n. The

first two such numbers are 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14. Perfect numbers have a very

interesting history (see [2] and [4]) and it goes back to the days of Pythagoras. The first algorithm to

construct a perfect number appeared in Euclid’s Elements (see [4]) which is as follows:

If as many numbers as we please beginning from a unit be set out continuously in double proportion,

until the sum of all becomes a prime, and if the sum multiplied into the last make some number, the

product will be perfect. [Elements-IX, Proposition 36].

For example, 1 + 2 + 4 = 7 is a prime integer. Now the sum is 7 and the last number is 4, therefore

the product is (7)(4) = 28, is perfect. Similarly 1 + 2+ 4+ 8+ 16 = 31 is prime, and 31 · 16 = 496 is

perfect. In modern terminology this result can be stated as:

If for some k > 1, 2k − 1 is prime then 2k−1(2k − 1) is a perfect number.
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A sublime number is a natural number which has a perfect number of positive divisors (including

itself), and whose positive divisors add up to another perfect number. In this paper we provide an

algorithm to find even sublime numbers. In section 2, we set up notations and record some known

results. Main theorem is proved in section 3 and an application of the main theorem is given in section

4.

2 Notations

Most material in this section is known and can be found in any standard text on Number Theory, for

example see [1], chapter 11, section 2 or [5] chapter 2, project 3 on page 56.

Definition 2.1. For any natural number n, σ(n) denotes the sum of distinct divisors of n and τ(n)

denotes the number of distinct divisors of n.

If n is perfect, then σ(n) = 2n. For any prime integer p, σ(p) = p + 1 and τ(p) = 2. Further,

σ(pk) = 1+p2+ . . .+pk = pk+1−1
p−1 . In particular, σ(2k) = 2k+1−1. Functions like σ and τ are called

arithmatic functions. They enjoy some very interesting properrties, see [2], [5] or [6]for the explicit

description of these properties. We will assume these properties. One worth mentioning property is

multiplicative nature of these functions that is, for two co-prime integers m and n,

σ(mn) = σ(m)σ(n) and τ(mn) = τ(m)τ(n)

Next, we record some known results. Their proofs are included mainly because they are used in our

main theorem. These and sinilar results can be found in [2] or [5].

Proposition 2.1. For any natural number p, a necessary, but not sufficient condition for 2p − 1 to be a

prime is that p be a prime.

Proof. Suppose p is composite and let p = m · n, where m,n ∈ N,m > 1, n > 1. Then

2p − 1 = 2m·n − 1 = (2m − 1)(2m(n−1) + 2(m)(n−1)−1 + . . .+ 1),

which shows that (2m − 1) divides (2p − 1) and 2p − 1 is not a prime. When p = 11, 211 − 1 = 23 · 89

is not a prime, which shows that the condition is not sufficient.

Primes of the form 2p − 1 are called Mersenne primes which are discussed in [3].

Theorem 2.2. A perfect number n is even if and only if n is of the form 2p−1(2p − 1), where 2p − 1 is a

prime.
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Proof. Suppose that n = 2p−1(2p − 1), where (2p − 1) is a prime integer. Then,

σ(n) = σ(2p−1)(2p − 1) = σ(2p−1)σ(2p − 1)

= (2p − 1)2p = 2n.

Therefore n is perfect. Conversely, suppose n is an even perfect number, then we can write n = 2k ·m,

where k ≥ 1 and m is odd. Since n is perfect,

σ(n) = 2n = 2(2km) = 2k+1m.

Using the multiplicative property of σ,

σ(n) = σ(2k)σ(m) = (2k+1 − 1)σ(m).

Hence, 2k+1m = (2k+1 − 1)σ(m) and 2k+1 divides σ(m). Then σ(m) = 2k+1 · d, for some d ∈ N ,

2k+1m = (2k+1 − 1)2k+1d and m = (2k+1 − 1)d.

We claim that d = 1. If d > 1, then m has at least three distinct positive divisors, namely, 1, m and d.

Therefore,

σ(m) ≥ m+ d+ 1 = (2k+1 − 1)d+ d+ 1 = 2k+1d+ 1,

But σ(m) = 2k+1 · d and so can not be larger than 2k+1 · d + 1. Hence d must be 1, m = 2k+1 − 1

and σ(m) = 2k+1. Therefore, σ(m) = m + 1 and m is prime. Let p = k + 1 then, n = 2p−1m =

2p−1(2p − 1).

Corollary. Suppose that n is a perfect number other than 6 with the prime factorization n =
∏r

1 p
αi
i .

Then at most one αi can be equal to one.

Proof. Suppose n = pqm where p, q are distinct primes and p, q, m) are pairwise co-prime. Since n

is perfect, σ(n) = 2n. Therefore both (p + 1) and (q + 1) divide 2n. In other words, n is an even

perfect number or n = 2i−1(2i − 1), with 2i − 1 a prime. But then the only choice is p = 2, q = 3 and

n = 6.

3 Sublime numbers

Definition 3.1. A natural number n is called Sublime Number if σ(n) and τ(n) are both perfect num-

bers.

Example 3.1. 12 is a sublime number. Factors of 12 are 1, 2, 3, 4, 6 and 12. Therefore, σ(12) = 28 and

τ(12) = 6. Further, 6 and 28 are both perfect numbers.
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Lemma 3.1. If m = p1p2 · · · pr where pi are distinct primes. Then

σ(m) = (p1 + 1)(p2 + 1) · · · (pr + 1) and τ(m) = 2r.

Proof. A direct consequence of the multiplicative property of σ and τ and remark following definition

2.1 proves this lemma.

Theorem 3.2. Let p, l1, l2, . . . , lp−1 be primes such that q = 2p − 1,

2q − 1, m1 = 2l1 − 1, . . . , mp−1 = 2lp−1 − 1 are all distinct primes and l1 + . . .+ lp−1 = q− 1. Then

n = 2q−1 ·m1 · · ·mp−1 is an even sublime number. Further, every even sublime number n is of the form

2km with m odd, σ(n) and τ(n) even, σ(m) = 2q−1 and τ(m) = 2p−1.

Proof. Let m = m1 ·m2 · · ·mp−1, where m1 = 2l1 − 1, . . .,

mp−1 = 2lp−1 − 1 are all distinct Mersenne primes. Then by Lemma 3.1, τ(m) = 2p−1 and

σ(m) = (m1 + 1) . . . (mp−1 + 1) = 2l1 . . . 2lp−1

= 2l1+···+lp−1 = 2q−1.

Since n = 2q−1.m and m is odd, we can use the multiplicative property to get,

τ(n) = τ(2q−1)τ(m) = q.τ(m) = (2p − 1)2p−1

and

σ(n) = σ(2q−1.m) = σ(2q−1)σ(m) = (2q − 1)2q−1.

Hence n is an even sublime number.

Let for some odd integer m and k ≥ 1, n = 2k ·m be an even sublime number with σ(n) and τ(n)

even. Then

σ(n) = σ(2k)σ(m) = (2k+1 − 1)σ(m)

As σ(n) is an even perfect number by theorem 2.2, σ(n) = 2q−1(2q − 1), for some prime q.

Hence, (2k+1 − 1)σ(m) = 2q−1(2q − 1). Now 2k+1 − 1 is odd and 2q − 1 is a Mersenne Prime,

therefore, 2k+1 − 1 = 2q − 1 which shows that

k + 1 = q and σ(m) = 2q−1 (1)

Therefore,

τ(n) = τ(2k)τ(m) = (k + 1)τ(m) = q · τ(m) by (1)

As τ(n) is perfect, qτ(m) = 2p−1(2p − 1), for some p.

Therefore q = 2p − 1 and τ(m) = 2p−1.
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4 Application

The above result gives us an algorithm to construct a sublime number. We first rewrite the result. Sup-

pose p is a prime with the following properties,

• q = 2p − 1 is a prime.

• 2q − 1 is a prime.

• q− 1 can be partitioned into distinct primes l1, . . . , lp−1 such that mi = 2li − 1 are also prime for

all i.

Then n = 2q−1(
∏
mi) is a sublime number.

Examples

(1) Suppose p = 2. Then q = 22 − 1 = 3 is a prime. Further 2q − 1 = 7 is also a prime. Now

q − 1 = 2, therefore l1 = 2. This gives us m1 = 2l1 − 1 = 3. Thus we get the first sublime number

n = 23−1(3) = 12.

(2) Suppose p = 5. Then q = 25 − 1 = 31. We need to find four primes l1, l2, l3 and l4. such that∑4
i=1 li = 30 and mi = 2li − 1 are all primes. This is not possible.

(3) Suppose p = 7. Then q = 27 − 1 = 127 and q − 1 = 126.∑6
i=1 li = 126 = 3 + 5 + 7 + 19 + 31 + 61. Note that,

m1 = 23 − 1 = 7,

m2 = 25 − 1 = 31,

m3 = 27 − 1 = 127,

m4 = 219 − 1 = 524287,

m5 = 231 − 1 = 2147483647,

m6 = 261 − 1 = 2305843009213693951,

are all primes. This shows that m′is are all Mersenne primes.∏6
i=1mi = 71547118063305763497095299547369280601.

and

n = 2126
∏6
i=1mi

= 6086555670238378989670371734243169622657830773351885970528324860512791691264
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To see that n is a sublime number we must show that σ(n) and τ(n) are perfect. Now

σ(n) = σ(2126)σ(7)σ(31)σ(127)σ(524287)σ(214783647)σ(2305843009213693951)

= (2127 − 1)(23)(25)(27)(219)(231)(261)

= 2126(2127 − 1)

and

τ(n) = τ(2126τ(7)τ(31)τ(127)τ(524287)τ(214783647)τ(2305843009213693951)

= (127)(26)

= 26(27 − 1).

which are perfect numbers.
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