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ABSTRACT

We perform a dynamical analysis of the recently published radial velocity (RV) measurements of a few solar-type
stars that host multiple Jupiter-like planets. In particular, we reanalyze the data for HD 202206, 14 Her, HD 37124,
and HD 108874. We derive dynamically stable configurations that reproduce the observed RV signals, using GAMP
(the genetic algorithm with MEGNO penalty). GAMP relies on N-body dynamics and makes use of genetic algo-
rithms merged with a stability criterion. For this purpose, we use the maximal Lyapunov exponent computed with the
dynamical fast indicator MEGNO. Through a dynamical analysis of the phase space in a neighborhood of the ob-
tained best-fit solutions, we derive meaningful limits on the parameters of the planets. We demonstrate that GAMP is
especially well suited to the analysis of the RV data that only partially cover the longest orbital period and/or are
related to multiplanet configurations involved in low-order mean motion resonances (MMRs). Our analysis reveals a
presence of a second Jupiter-like planet in the 14Her system (14Her c) that is involved in a 3 : 1 or 6 : 1MMRwith the
known companion 14 Her b.We also show that the dynamics of the HD 202206 systemmay be qualitatively different
when coplanar and mutually inclined orbits of the companions are considered. We demonstrate that the two outer
planets in the HD 37124 system may reside in a close neighborhood of the 5 : 2 MMR. Our results confirm that the
HD 108874 system may be very close to a, or locked in an exact, 4 : 1 MMR.

Subject headings: celestial mechanics — methods: n-body simulations — methods: numerical — planetary systems —
stars: individual (HD 202206, 14 Herculis, HD 37124, HD 108874) — stellar dynamics

Online material: color figures

1. INTRODUCTION

Finding the best-fit solutions to radial velocity (RV) observa-
tions of stars with more than one planet that only partially cover
the longest orbital period is difficult. In such a case, a kinematic
superposition of the Keplerian orbits, or even the N-body model
of theRV,may lead to configurationswith a poorly constrained ec-
centricity of the outermost planet (Jones et al. 2002; Goździewski
et al. 2003). In the statistically optimal best-fit solutions, the ec-
centricities can be large and can quickly (on the timescale of
thousands of years) lead to catastrophic collisional instability.
Moreover, the validity of a superposition of kinematic Keplerian
signals can be very problematic for systems that are involved in
low-order mean motion resonances (MMRs). Due to significant
uncertainties and the small number of the measurements, even the
N-bodymodel of the RV curve that incorporates the mutual gravi-
tational interactions frequently yields unstable configurations be-
cause themodel is ‘‘blind’’ to the sophisticated, fractal-like structure
of the orbital parameter space as predicted by the fundamental
Kolmogorov-Arnold-Moser theorem (Arnold 1978). According
to this theorem, the phase space of a planetary system is discon-
tinuous with respect to the requirement of stability.

An ideal fitting algorithm should find a solution that repro-
duces the RV data and simultaneously corresponds to a stable
planetary configuration. The most frequently used notion of the

term ‘‘stable’’ means ‘‘not disrupting or qualitatively changing
during relatively short periods of time,’’ say, millions of years.
This idea has been already used bymany authors in modeling the
RV data. We used it for a dynamical confirmation of the 2 : 1
MMR in the HD 82943 system (Goździewski & Maciejewski
2001). Recently, Ferraz-Mello et al. (2005), Correia et al. (2005),
and Vogt et al. (2005) have applied such an approach in the anal-
ysis of the RV data of multiplanet systems (in particular, of hy-
pothetically resonant configurations).
Often, a stability criterion is applied after the mathematically

best-fit (but unstable) solution is found, and the orbital elements
are then adjusted to obtain a stable configuration. We also show
that such a modification of the best-fit initial condition does not
necessarily give an optimal stable solution. In our relatively new
method, the Genetic Algorithm with MEGNO Penalty (GAMP),
the stability analysis is an internal part of the fitting procedure
(Goździewski et al. 2003, 2005). We treat the dynamical behav-
ior in terms of the chaotic and regular (or weakly chaotic) states
as an additional observable that is weighted at the same level of
importance as the RV measurements. We penalize the strongly
unstable solutions by artificially increasing their (�2

�)
1/2. When

determining the character of motions, we rely on the computa-
tion of the maximal Lyapunov exponent through the mean ex-
ponential growth factor of nearby orbits (MEGNO) indicator
(Cincotta&Simó 2000; Cincotta et al. 2003;Giordano&Cincotta
2004).Apparently the use of such a formal criterion of the stability
for modeling real data may be problematic. Almost any planetary
system, including our own, can be very close to a chaotic state.
Nevertheless, we expect that even if chaos appears, it should not
impair the astronomical stability (Lissauer 1999), by which we
mean that planetary orbits are bounded over a very long time and
that no collisions or ejection of planets occur. For configurations
involving Jupiter-like companions in close orbits with (typically)
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large eccentricities, the formal stability seems to be closely related
to the astronomical stability. A serious complication is that there is
no known general relation between the Lyapunov time (a char-
acteristic time of the formal instability) and the event time; that is,
the time after which a physically significant change of the planetary
configuration happens (see, e.g., Lecar et al. 2001; Michtchenko &
Ferraz-Mello 2001). Still, the chaotic motions may easily destabi-
lize the planetary configuration over a short timescale related to the
relevant low-order MMRs. It can be well explained for the two-
planet configurations close to coplanar systems. By applying
the recent secular theories of Michtchenko & Malhotra (2004)
and Lee & Peale (2003), one can predict that the main sources
of short-time instabilities are related to low-order MMRs or to
the proximity of the system to collision zones. Outside the res-
onances and far from the collision zones, the planetary system is
generically stable, even in the range of large eccentricities. These
works generalize the Laplace-Lagrange secular theory (Murray
& Dermott 2000). For the N-planet system, Pauwels (1983)
derived a similar conclusion, which is nevertheless formally re-
stricted to the range of small eccentricities. In the neighborhood
of the collision zone, the MMRs overlap, and that leads to the
origin of a region of global instability. The fitting process should
certainly eliminate initial conditions in such zones, and, in gen-
eral, eliminate strongly chaoticmotions related to unstable regions
of the MMRs. Fortunately, these can be detected numerically,
thanks to efficient fast indicators over the characteristic event
timescale, which is measured roughly in units of 104–105 times
the longest orbital periods.

In this paper, we reanalyze the RV data for HD202206 (Correia
et al. 2005), 14 Her (Naef et al. 2004), and HD 37124 and HD
108874 (Vogt et al. 2005), using GAMP. A common feature of
these systems is that the available measurements either only par-
tially cover, or cover a small number of, the longest orbital periods.
The planetary systems reside in the zones spanned by strong low-
order MMRs. This work extends the results of our recent papers,
which were devoted to � Arae (Goździewski 2003; Goździewski
et al. 2003) and HD 82943 and HD 123811 (Goździewski &
Konacki 2006). The studied systems are selected as representative
cases found among the detected multiplanet configurations.

2. THE NUMERICAL SETUP
AND THE FITTING METHOD

In order to incorporate the theoretical ideas described in the
previous section, we employ a few numerical tools and merge
the results in a self-consistent manner. To efficiently explore the
phase space (whose structure is understood in terms of the
Kolmogorov-Arnold-Moser [KAM] theorem), we use the genetic
algorithm (GA) scheme implemented by Charbonneau (1995).
The GAs make it possible, in principle, to find the global mini-
mum of (�2

�)
1/2. In the GAMP code, the solutions to which the

GAs converged are finally refined by a very accurate nongradient
simplex scheme through the Nelder-Mead method (Press et al.
1992). The fractional convergence tolerance to be achieved in the
simplex code is set in the range 10�4–10�6 (typically, the lower
accuracy is forced in time-consuming GAMP tests). The simplex
refinement in the CPU-expensive GAMP code reduces the CPU
usage dramatically by a factor of tens.4 Yet a single particular
initial condition may be fine-tuned to match the accuracy required
(or that it is possible to obtain).

The reflexmotion of a star is described with the self-consistent
Newtonian N-body model (Laughlin & Chambers 2001). The

character of planetary motions is determined in terms of the
Lyapunov characteristic exponent, which is expressed by the
MEGNO indicator (Cincotta et al. 2003). Thanks to the excellent
sensitivity of this indicator to chaotic motions (particularly when
accompanying close encounters), very short integration times
are sufficient to remove the most unstable initial conditions. Typ-
ically, the computations rely on �103–104 orbital periods of an
outermost body. This is not long enough to eliminate all chaotic
motions, but we are left (and in fact it is a desired feature of the
method) with regular or weakly chaotic configurations that are
typically located on the borders of stable zones. We note that the
GAMP code may use basically any arbitrary stability criterion.
In this sense, the method is quite general. The definition of the
KAM stability, which is directly related to the Lyapunov expo-
nent, seems to be the most natural and well justified by the the-
oretical considerations.

The dynamical neighborhood of a best-fit solution is exam-
ined by other fast indicators. The first one derived on the basis of
the fast Fourier transform (FFT) is called the spectral method
(SM; Michtchenko & Ferraz-Mello 2001). A refined and more
complex method of this type is the frequency analysis by Laskar
(1993). In our work, the SM is employed to resolve the structure
of the spectral signal produced by short-term dynamics (i.e., the
proper mean motion as one of the fundamental frequencies).
After many comparative tests, we found that both MEGNO and
the SM are similarly sensitive to the chaotic diffusion generated
by the MMRs in systems with Jupiter-like planets. To detect it,
the required integration time is relatively very short, typically
about 104 orbital periods of the outermost planet. Under some
conditions, the SM is even more efficient than MEGNO, because
one avoids the integration of complex variational equations. It also
provides a straightforward identification of the MMRs. The SM is
used for computations of dynamical maps in two-dimensional
planes of selected osculating elements. Yet another fast indicator
that helps us to detect physically significant changes of the orbital
configurations is the max e indicator (the maximal eccentricity at-
tained by the orbit of the investigated planet during a prescribed in-
tegration time).We use all three fast indicators, as they complement
each other. This makes it possible to examine the dynamical prop-
erties of the best-fit solutions through different characteristics of the
dynamics: the maximal Lyapunov exponent, the variation of the
fundamental frequencies, and the geometrical evolution of orbits.

3. A PLANETARY SYSTEM IN AN EXACT
MMR (HD 202206)

The two-planet system around HD 202206 was discovered by
the Geneva Extrasolar Planet Search team (Correia et al. 2005).
In this system a massive Jupiter-like planet or a brown dwarf is
accompanied by a smaller Jovian body in a more distant orbit.
The analysis conducted by Correia et al. (2005) revealed that
both planets are likely involved in a 5 : 1 MMR. They found that
both the best double-Keplerian and N-body solutions were very
unstable and led to a disintegration of the system during a few
thousand years. In order to find a dynamically stable solution, the
authors have computed the two-dimensional stability map (in
terms of the diffusion rate of the proper mean motion) in the
neighborhood of the best Newtonian fit. Next, on the basis of this
map, they have selected a stable configuration by a rather arbitrary
postfit adjusting of the orbital parameters. Certainly, we should
not expect that such changes of the mathematically best-fit initial
condition will provide a statistically optimal fit to the data.

The RV data of HD 202206 could be used to test our approach
and to confirm the results of the dynamical analysis performed
by the discovery team. Unfortunately, the full set of RVs has not

4 The fitting code can then be called GAMPS (Genetic Algorithm with
MEGNO Penalty and Simplex).
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been published. In order to overcome this problem, we extracted
the data from the relevant figure from Correia et al. (2005). A
large fraction of the measurements has been published in an ear-
lier paper (Udry et al. 2002). This set consists of 95 measure-
ments. Some of them (apparently the most uncertain ones) have
been removed and do not appear in the data set used by Correia
et al. (2005), which consists of 105 data points. By comparing
the common part of the data sets, we can precisely estimate the
quality of the scanned ‘‘measurements.’’ We found that the stan-
dard deviation of the differences between the relevant data points
is less than 1 m s�1 in RVs and�0.3 days in the moments of ob-
servations. These ‘‘errors’’ are very small when compared to large
variations of the RV signal (�1200 m s�1) and long orbital pe-
riods. Indeed, using the synthetic data, we can recover the solu-
tions by Correia et al. (2005).

The results of the GAMP analysis are illustrated in Figure 1.
We ran the code a few hundred times and collected the solutions
for which the procedure converged. The parameters of these so-
lutions are illustrated by projections onto the representative planes
of the osculating elements at the initial epoch of the first observa-
tion (note that to directly compare our results with those obtained
by the discovery team, the RV measurements are not rescaled by
the stellar jitter). In quite an extensive search, we looked only for
coplanar configurations. In Figure 1 we mark only stable solu-
tions with (�2

�)
1/2 < 1:65 (small filled circles). That value of

(�2
�)

1/2 is comparable with the value of (�2
�)

1/2 of the best stable
fit S5 from Correia et al. (2005). The application of GAMP
makes it possible to find a better solution, with (�2

�)
1/2 ¼ 1:52

and an rms of �10 m s�1. The stability analysis of this fit is il-
lustrated in the left panels of Figure 2. The solution can be found
close to the border of a relatively narrow stable island of the 5 : 1
MMR (Fig. 2, top left, showing log SN). In the same integration
we computed the indicator max ec (Fig. 2, bottom left). The al-

most perfect coincidence of these two plots is striking. It means
that the formally chaotic solutions are physically unstable in the
sense that their configurations disrupt rapidly, at most during the
integration period of 7 ; 104 yr or�2 ; 104Pc . Another conclusion
is that one should not skip the stability test in the fitting procedure,
as the procedurewill not ‘‘see’’ the rapidly changing regions of the
permitted (stable) initial conditions. To illustrate this issue,we com-
puted the dynamicalmaps for amarginallyworse solution than the
best one [with (�2

�)
1/2 ¼ 1:627 and an rms of �10.32 m s�1; its

orbital parameters are given in the caption to Fig. 2]. In this case
the MMRs 4 : 1, 5 : 1, and 6 : 1 overlap, and the resulting stable
zones are much wider than for the formal best fit. We note that in
this solution, the value of ac is larger by about 0.1 AU from the
value of ac of the best-fit solution and can be found in a small
clump of points in Figure 1 to the right of the main minimum. Yet
the close coincidence between the log SN and max ecmaps is still
accurately preserved. This constitutes an excellent argument for
the validity of the GAMP-like approach. Without it, stable solu-
tions can basically be found only by chance.
In another search, we assumed that the system was not co-

planar. We extended the model to 14 free parameters, including
the orbital inclinations and one nodal longitude. As one would
expect, the inclinations were barely constrained by the RV data;
nevertheless, we found an interesting behavior of the HD 202206
system. There exist many solutions whose initial orbits have sim-
ilar inclinations, but the relative inclination is not small: irel � 94�.
We selected one of these solutions for a closer analysis. Its pa-
rameters are given in the caption to Figure 3. The synthetic RV
curves for both solutions (the coplanar and the mutually inclined
configurations) can be barely distinguished one from another (see
Fig. 4). The best-fit solution with the inclined orbits is also found
in the zone of the 5 : 1MMR (see Fig. 3). Again, the formal stabil-
ity is closely related to the geometrical evolution of the orbits.

Fig. 1.—Best fits obtained by the GAMP algorithm for the RV data published graphically in Correia et al. (2005) for HD 202206. The system is assumed to be
coplanar. Parameters of the fit are projected onto the planes of osculating orbital elements at the epoch of the first observation, JD 2,451,402.8027. The smallest filled
circles indicate stable solutions with (�2

� )
1/2 < 1:65 and an rms of �11 m s�1. Larger open circles indicate (�2

� )
1/2 < 1:55 and (�2

� )
1/2 < 1:6 [the formal 1 �

confidence interval of the best-fit solution is (�2
� )

1/2 ¼ 1:53]. The largest circles indicate the solutions with (�2
� )

1/2 < 1:52, which is marginally larger than the value
of (�2

� )
1/2 ¼ 1:519 in the best-fit initial condition (Table 1).

GOŹDZIEWSKI, KONACKI, & MACIEJEWSKI690



Fig. 2.—Left: Dynamical maps in the (ac, ec )-plane in terms of the spectral number, log SN, and max ec for a putative 5 : 1 MMR in a coplanar HD 202206 system
(see Table 1). Shadings used in the log SNmap classify the orbits: black indicates quasi-periodic, regular configurations, while white indicates strongly chaotic systems.
A crossed circle marks the best-fit configuration. Right: Same as at left, but for a slightly worse initial condition with (�2

�)
1/2 ¼ 1:62 and an rms of �10.32 m s�1. The

osculating elements at the epoch of the first observation (m [MJ], a [AU], e, ! [deg],M [deg]) are as follows: (17.589, 0.831, 0.435, 161.118, 353.944) for planet b and
(2.247, 2.835, 0.220, 159.848, 1.247) for planet c, with V0 ¼ �0:47m s�1. The resolution of themaps is 600 ; 120 data points. Integrations are for 2 ; 104 periods of the
outer planet (�7 ; 104 yr). The islands of the relevant MMRs are labeled. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Dynamicalmaps in the (ac, ec)-plane in terms of the spectral number, log SN, andmax ec for the best fit withmutually inclined orbits in theHD202206 system.
Shadings used in the log SN map classify the orbits: black indicates quasi-periodic, regular configurations, while white indicates strongly chaotic systems. A crossed
circle denotes the best-fit configuration. The initial condition yields (�2

�)
1/2 ¼ 1:59, with an rms of �9.97 m s�1 (the number of fit parameters is 14). The osculating

elements at the epoch of the first observation (m [MJ], a [AU], e, i [deg], � [deg], ! [deg],M [deg]) are as follows: (17.723, 0.831, 0.435, 83.625, 265.307, 161.040,
353.921) for planet b and (2.348, 2.736, 0.178, 82.372, 0.0, 127.813, 40.962) for planet c, with V0 ¼ �1:78 m s�1. The resolution of the maps is 600 ; 120 data points.
Integrations are for 2 ; 104 periods of the outer planet (�7 ; 104 yr). [See the electronic edition of the Journal for a color version of this figure.]



Remarkably, the orbital evolution in these two cases is quali-
tatively different. This is illustrated in Figure 5. In the coplanar fit,
as one would expect, the orbital eccentricity of the more massive
planet stays close to the initial value, while the eccentricity of the
outer planet varies with a large amplitude according to the con-
servation of the total angular momentum. In themutually inclined
configuration, the orbital evolution is quite unexpected. The ec-
centricity of the inner and larger planet varies with a much larger
amplitude than the eccentricity of the smaller companion. Simul-
taneously, the inclination of the companion planet c spans almost
the whole possible range. This example demonstrates a potential
problem with a proper interpretation of the RV data. Since we do
not know the true initial orbital inclinations, we cannot be sure
about the choice of the best-fit configuration and hence the orbital
evolution of the whole system. In the case of HD 202206, this is-
sue is of special importance because the system may be consid-
ered a hierarchical one: the inner pair is the binary of the Sun-like
star and a brown dwarf, and the outer planet is a Jovian compan-

ion. In this sense, the HD 202206 system reminds us of a triple
stellar system rather than a ‘‘usual’’ planetary system. In that case,
the assumption of a coplanar configuration may be no longer
valid. In addition, some recent works indicate that extrasolar plan-
etary systems with mutually inclined orbits may be quite frequent
(Thommes & Lissauer 2003; Adams & Laughlin 2003).

4. A TREND IN THE RV DATA (14 HERCULIS)

In many observed extrasolar planetary systems, linear trends
in the RV data are present, indicating the existence of more dis-
tant companions. The GAMP may be very useful to constrain
orbital parameters when the RVobservations cover partially the
longest orbital period. A good example is the � Arae system
(Jones et al. 2002; McCarthy et al. 2004). We did an extensive
analysis of the available RV measurements of � Ara in two ear-
lier papers (Goździewski et al. 2003, 2005). The results of the
first work, which were based on the RV data covering only a frag-
ment of the orbital period of the outer planet, coincide remarkably
with the outcome of the second analysis. In the later work, the
observations cover about 70% of the orbital period of the putative
outermost planet. We found that the stability constraints help to
remove the artifacts, such as the extremely large eccentricity of the
outer planet, and bound the space of permissible orbital parame-
ters. Otherwise, the data permit a continuum of equally good or-
bital solutions.
The 14 Her system was announced by M. Mayor (1998, un-

published). The presence of a Jovian planet in this system was
next confirmed by Butler et al. (2003) and Naef et al. (2004). In
the later work, the discovery team found that the RV data have a
linear slope of �3.6 m s�1 yr�1. The single-planet Keplerian
solution yields an abnormally large rms of about 14 m s�1. Even
when the drift is accounted for, the rms of the single planet plus
drift model leads to an rms of�11.3 m s�1, which is much larger
than the mean observational uncertainties, �m � 7:2 m s�1. Be-
cause the trend is similar to the one observed in the � Ara data,
we try to find a better solution with GAMP.

Fig. 4.—Synthetic RV curves for the HD 202,206 system. The thin line in-
dicates a stable (N-body) solution corresponding to a 5 : 1 MMR in the coplanar
system, and the thick line indicates a 5 : 1 MMR in the configuration with mu-
tually inclined orbits. Circles indicate the RV measurements published graph-
ically in Correia et al. (2005).

Fig. 5.—Orbital evolution of the HD 202,206 configurations corresponding to the best-fit coplanar solution (left; the elements are given in Table 1) and for the
system with mutually inclined orbits (right; see the caption to Fig. 3 for the osculating elements of this configuration).
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Since 14 Her is a quiet star with log R0
HK ¼ �5:07 (Naef et al.

2004), it is thus reasonable to adopt a rather safe estimate of the
stellar jitter, �j ¼ 4 m s�1 (Wright 2005). Still, the rms exceeds
the joint uncertainty � ¼ (�2

m þ �2
j )

1/2� 8 m s�1 by a few m s�1.
Luckily, the RV data of this star are published and publicly avail-
able (Naef et al. 2004). There are 119 known observations. We
combined these with 35 much more accurate measurements (with
mean �m� 3:1 m s�1) by the Carnegie Planet Search Program
team (Butler et al. 2003) covering the middle part of the joint
observational window. The full set consists of 154 measurements
spanning about 3400 days and corresponding to about 2Pb. For
the mass of the parent star, we adopted the value of 0.9M� (Naef
et al. 2004).

We assume that the drift and the large residual signal are due
to a long-period companion in the system. Using GAMP, we
searched for a body in an orbit of ac2 (4; 10) AU, trying to verify
whether the available data could already be useful to constrain
the orbital parameters of the putative distant planet. The results
of thousands of independent GAMP runs are illustrated in Fig-
ure 6. Only the parameters of the stable best fits are projected
onto selected planes of the osculating elements at the epoch of
the first observation, JD 2,449,464.5956. The better the quality
of the fits, as measured by their (�2

�)
1/2, the larger the symbols in

Figure 6. The largest circles indicate the best-fit solutions (given
in Table 1) that have (�2

�)
1/2 �1:11 with an rms of �8.5 m s�1.

The smallest filled circles indicate the fits with (�2
�)

1/2 � 1:4,
corresponding to the limit of an rms of �11 m s�1. Curiously,
two well-defined local minima with almost the same value of
(�2

�)
1/2 are present. The synthetic RV curves for the best fits are

illustrated in Figure 7 (all the available measurements are also
marked with error bars). As we might have expected, the curves
could not be distinguished from each other in the time range

covered by the data. However, a clear choice between the curves
could have been made already by the time of writing this paper
(note that a vertical line at about JD 2,453,736.46 marks the end
of the year 2005).

The two best fits correspond to qualitatively different con-
figurations with ac � 5:8 AU and ac � 9 AU. They are found
in the proximity of the 3 : 1 MMR (14 Her a) and the 6 : 1 MMR
(14 Her b), respectively (see Fig. 6, top right; see also Table 1).
Simultaneously, the parameters of the inner planet, as well as the
relative phases of the companions, are already constrained very
well. This makes it possible to perform a representative test of
the system stability. We calculated two maps centered at the val-
ues of ac in the best fits, in the (ac, ec)-plane, keeping other orbital
elements fixed at their best-fit values. The results are illustrated
in Figure 8: the panels in the left column show the best fit for
14 Her a (marked by a crossed circle in each panel), and the pan-
els in the right column show the best fit for 14 Her b. Clearly, the
dynamical map of log SN strongly coincides with the physical
stability (in terms ofmax ec) in the region spannedby the low-order
resonances 3 : 1, 7 : 2, and 4 : 1. The best fit for 14 Her a is found
close to the border of the 3 : 1MMR. This is illustrated in Figure 9
for an initial condition that is close to the best one. It shows, in
subsequent panels, time evolution of the eccentricities, the angle
of the secular resonance �, and one of the critical arguments of
the 3 : 1 MMR (�31 ¼ 3kc � kb �$b �$c). A perfect conver-
gence of hY i(t) confirms that the configuration is close to a quasi-
periodic, ordered motion. The zone of stable motions extends up
to the proximity of the collision zone, which is marked by a solid
line in themaps.We note also the very sharp borders of the stability
regions. Outside these zones, the configurations disrupt cata-
strophically, which is indicated by the values of ec increasing to 1
during at most 105 yr (the integration time). Obviously, in such a

Fig. 6.—Best fits obtained with GAMP for the RV data published in Butler et al. (2003) and Naef et al. (2004) for 14 Her. The system is assumed to be coplanar.
Parameters of the fit are projected onto the planes of osculating orbital elements at the epoch of the first observation, JD 2,449,464.5956. The smallest filled circles
indicate stable solutions with (�2

�)
1/2 < 1:4 and an rms of �11 m s�1. Larger open circles indicate (�2

�)
1/2 ¼ 1:146, (�2

�)
1/2 < 1:129, and (�2

�)
1/2 < 1:117, corre-

sponding to 3 �, 2 �, and 1 � confidence intervals of the best-fit solution, respectively. The largest circles indicate the solutions with (�2
�)

1/2 < 1:111, which is marginally
larger than the value of (�2

�)
1/2 ¼ 1:109 of the two best fits given in Table 1. A curve in the (ac , ec)-plane indicates the planetary collision line. It is determined from the

relation ab(1þ eb) ¼ ac(1� ec), with ab and eb fixed at their best-fit values. The nominal positions of the most relevant MMR inferred from the Keplerian law are also
marked by dashed lines and labeled.
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case, ifwe used the pureN-bodymodel of the RV,wewould not be
properly handling the sophisticated, discontinuous structure of the
phase space.

This last conclusion is also valid for the solution for 14 Her b
with the more distant planet (see Fig. 8, right). We note an ex-
cellent coincidence of the distribution of the best fits (Fig. 6)
with the stable areas unveiled by the SM in Figure 8. The space
in the range [7, 9] AU is spanned by a few low-order MMRs
(4 : 1, 5 : 1, and 6 : 1) of varying width, which are already over-
lapping for values of ec that are �0.2 less than the values deter-
mined by the equation of the collision line. The border of the
stability areas is sharp. Formally chaotic configurations would
be quickly disintegrated by collisions or ejection of a companion
from the system (see the relevantmax ecmap in Fig. 8). Curiously,
the best fit is located between the 11 : 2 and 6 : 1 MMRs, which
reminds us of the HD 12661 planetary system (Fischer et al.
2003; Goździewski & Maciejewski 2003).

According to the above investigations, it remains very likely
that the 14 Her system hosts two Jovian planets involved in a
low-orderMMR. Let us remark that the presence of the twowell-
separated local minima of (�2

�)
1/2 is not so clear when both the

RV data sets are analyzed separately. At present, even if more

data for the 14 Her system were available, it would be desirable
to search for the best fits with a GAMP-like algorithm. Contrary
to the impression caused by the presence of the apparent long-
term drift in the data, a few recent measurements may already be
helpful to resolve a plausible orbital configuration of the 14 Her
system. Yet the measurements gathered by the two observing
teams are in excellent accord, and the data sets complement each
other.

5. A MULTIPLANET CONFIGURATION (HD 37124)

Recently, Vogt et al. (2005) announced a discovery of several
multiplanet systems. In particular, the previously known two-
planet system about HD 37124 is thought to harbor one more
planet. A hypothesis of the third planet removes a previously
present degeneracy of the two-planet solution to the RV that al-
lowed a large eccentricity of the outer planet and collisional de-
stabilization of the system (Goździewski 2003). The discovery
team found that the double-Keplerian model of the RV reveals
two best-fit solutions of similar quality. In the better one, the
planets revolve in almost circular orbits with periods of about
155, 843, and 2300 days, respectively. Curiously, in this solution
the Keplerian periods Pd � 3Pc may indicate a proximity of the
system to a low-order resonance. A possibility of such low-order
commensurability warns that the application of the Keplerian
models of the RV is problematic. Indeed, an inspection of the
three-planet Keplerian best-fit solutions reveals that they corre-
spond to strongly chaotic motions and that the system would eas-
ily disintegrate through mutual interactions. The triple-Keplerian
initial condition found by Vogt et al. (2005) has a fixed value of
ed ¼ 0:2, which was chosen to fulfill the requirement of dynam-
ical stability.
SinceHD37124 is a quiet starwith lowactivity index, log R0

HK ¼
�4:90 (Vogt et al. 2005), the stellar jitter is likely small. We fol-
low the discovery team by adopting �j ¼ 3:2 m s�1. The instru-
mental errors have been rescaled by adding the value of jitter in
quadrature to the measurement uncertainties. As a reference to
further analysis, we reanalyzed the measurements using our hy-
brid GA-simplex code (Goździewski & Migaszewski 2006),
driven by the Keplerian model of the RV. The hybrid algorithm
repeatedly converges to the best three-planet solution, which
yields (�2

�)
1/2 ¼ 0:873 and an rms of 3.22 m s�1. The model

Fig. 7.—Synthetic RV curves for the two best-fit solutions (see Table 1) to the
RV data of 14Her. The thick line indicates 14Her a (a proximity to the 3 : 1MMR),
and the thin line indicates 14 Her b (around the 6 : 1MMR). Data points are plotted
with error bars indicating the joint RV error (stemming from the errors of mea-
surements and the stellar jitter of 4 m s�1 added in quadrature). The vertical line at
JD 2,453,736 indicates the calendar date 2005 December 31.

TABLE 1

Osculating, Astrocentric Elements of the Best Fits

HD 202206 14 Her a 14 Her b HD 37124 HD 108874

Parameter b c b c b c b c d b c

m sin i (MJ) .................. 17.624 2.421 4.485 2.086 4.533 6.289 0.624 0.574 0.695 1.358 1.008

a (AU) ........................ 0.831 2.701 2.727 5.810 2.730 8.911 0.519 1.610 3.142 1.051 2.658

e................................... 0.433 0.255 0.361 0.004 0.357 0.101 0.079 0.150 0.297 0.068 0.252

! (deg) ........................ 161.41 92.73 22.98 197.17 22.88 62.97 138.09 268.88 269.38 255.76 16.65

M (deg)...................... 353.44 65.76 322.94 17.68 323.78 227.45 259.36 109.49 123.92 13.26 32.08

(�2
�)

1/2 .......................... 1.53 1.11 1.11 0.94 0.71

rms (m s�1) ................. 9.98 8.53 8.51 3.38 3.30

V0 (m s�1) ................... �1.36 �14.81 �55.65 7.72 17.28

V1 (m s�1) ................... . . . �49.76 �90.48 . . . . . .

p................................... 11 12 12 16 11

M? (M�) ...................... 1.15 0.90 0.90 0.78 0.99

�j ................................. . . . 4.0 4.0 3.2 3.9

Notes.—Data are given at the epoch of the relevant first observation. All systems are assumed to be coplanar and edge-on. Formal estimates of the uncertainties
may by derived from the distributions of best fits that are illustrated in various figures in this work. See the text for details. Symbol description: m sin i is the minimal
mass (in Jupiter masses), a is the semimajor axis, e is the eccentricity, ! is the argument of the pericenter in units of degrees, V0 and V1 are the RV offsets, p is the
number of fit parameters in the N-body model, M? is the mass of the parent star, and �j is the jitter estimate added in quadrature to the measurement errors.
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parameters (K, P, e, !, Tp � T0); that is, the semiamplitude, the
orbital period, the eccentricity, the argument of periastron, and
the time of periastron passage, for this fit are (27.665 m s�1,
154.495 days, 0.076, 140N451, 11853.604 days), (14.437 m s�1,
854.330 days, 0.052, 10N476, 12072.944 days), and (15.012m s�1,
2194.094 days, 0.456, 293N496, 12003.128 days) for the inner,
middle, and outer planets, respectively; T0 ¼ JD 2; 440; 000, and
the velocity offset is V0 ¼ 8:058 m s�1. This solution is slightly
better than the triple-Keplerian fit quoted by Vogt et al. (2005), but
our solution has a much larger eccentricity: ed � 0:46. The fit pa-
rameters of multiplanet systems are best interpreted in terms of os-
culating Keplerian elements and minimal masses related to the
Jacobi coordinates (Lee & Peale 2003). Adopting the date of the
first observation as the osculating epoch, we recalculated the in-
ferred astrocentric osculating elements (mp sin i, a, e, !, M) as
follows: (0.618MJ, 0.522AU,0.075, 137N890, 262N142), (0.570MJ,
1.622AU, 0.052, 10N476, 23N499), and (0.725MJ, 3.060AU, 0.454,
294N147, 99N389) for the planets b, c, and d, respectively.

Remarkably, the hybrid code finds the best-fit solution with-
out being given any a priori or additional information. One has

only to determine some reasonable limits for the model parame-
ters. Specifically, for the HD 37124 data, we explored the orbital
periods in the range [5, 2500] days and eccentricities in the range
[0, 0.8]. Yet the apparently very precise three-planet Keplerian fit
describes a collisional configuration, sowe are certainly not done
yet.

Next we reanalyzed the RV data with GAMP by conducting
two searches. Keeping inmind the results of the Keplerian-based
analysis done by the discovery team and the results of our search,
we assumed in the first trial that the companions’ orbits have
moderate eccentricities in the range of [0, 0.5] and semimajor
axes in safe enough bounds of ab2½0:4; 0:8� AU, ac2½1:0; 1:8�
AU, and ad2½2:0; 4:0� AU. The MEGNO was computed for the
whole system over �2 ; 103 periods of the outermost planet.
The results of that GAMP search are illustrated in Figure 10,
which shows the projections of the best-fit parameters onto the
planes of osculating elements at the epoch of the first observation.
The quality of the gathered solutions is marked by the size of the
symbols. The smallest filled circles indicate fits with (�2

�)
1/2 <

1:14; that is, within the 3 � confidence interval of the best-fit

Fig. 8.—Stability maps in the (ac , ec)-plane in terms of the spectral number, log SN, and max ec for the best-fit solution to the RV data of the 14 Her system. Shadings
used in the log SN map classify the orbits: black indicates quasi-periodic, regular configurations, while white indicates strongly chaotic systems. The crossed circles
mark the best-fit configurations. The left panels show the fit to 14 Her a, and the right panels show the fit to 14 Her b (see Table 1). The relevant MMRs are labeled. A
collision line calculated according to the formulae given in the caption to Fig. 6 is alsomarked for fixed best-fit elements of the inner planet. The resolution of the maps is
600 ; 120 data points. Integrations are for 2 ; 104 periods of the outer planet (�7 ; 104 yr). [See the electronic edition of the Journal for a color version of this figure.]
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solution given in Table 1. It appears that the single minimum of
(�2

�)
1/2 that we found is quite precisely determined. The elements

of the innermost planets are already very well constrained. For
instance, the semimajor axis of the companion planet b changes
within only 0.001 AU at the 1 � confidence interval of the best-fit
solution. Obviously, the largest uncertainties are for the outermost
companion planet d, but even in this case, the errors do not seem to
be large.

Yet the apparently well-constrained minimum of (�2
�)

1/2 is
localized in a region of the phase space that has a very complex
dynamical structure. This is illustrated in Figure 11, which
shows the dynamical maps in the (ad, ed )-plane. These maps are
computed for a few initial conditions chosen from the set of the
best fits illustrated in Figure 10. The relevant initial conditions
are marked in the dynamical maps by large crossed circles. The
top left panel of Figure 11 shows the best Newtonian solution ob-
tainedwithout theMEGNO penalty. Mathematically, that fit is the
best one, as it has a (�2

�)
1/2 � 0:86, with an rms of�3.11 m s�1, a

little better than the Keplerian best-fit solution quoted above.
Nevertheless, this fit is also unacceptable because it lies very
close to the collision zone of the two outermost orbits, which is
marked in the figure by a smooth curve. In this area the motions
are strongly chaotic and unstable. Far below the collision line,
we identify the most relevant MMRs of these planets: 7 :3, 5 :2,
8 :3, and 3 :1, at the very edge of the map. In the top right panel
of Figure 11, we chose a relatively good initial condition with
(�2

�)
1/2 �1:25 and an rms of�4.4 m s�1, which is located in the

proximity of the 7 : 3 MMR. Note a significant change of the
shape of the 5 : 2MMR as compared with the top left panel. Some
fits at the 1 �–2 � confidence levels of (�2

�)
1/2 may fall into the

libration zone of this MMR, and they have quite large initial val-
ues of ed � 0:3. An example is illustrated in Figure 12. The con-
figuration is formally chaotic, but the critical angles � ¼ $d �$c

and �52 ¼ 5kd � 2kc � 3$d librate about 180
�; the eccentricities

do not exhibit any secular changes over 3Myr of integration. Note

that in this case MEGNO stays close to 2 for about 0.3 Myr,
the stability criterion used in GAMP was not violated, and the
weakly chaotic configuration has been left in the set of acceptable
solutions.
The left panel in themiddle row of Figure 11 shows the fit with

(�2
�)

1/2 ¼ 1:11 and an rms of �4 m s�1 and a small initial ec-
centricity of the outermost planet. On the right, an even better
solution with (�2

�)
1/2 ¼ 0:96 is related to a configuration be-

tween the 5:2 and 8:3 MMR. The bottom left panel of Figure 11
shows a close-up of the dynamical neighborhood of the stable
best-fit solution (see Table 1). This fit lies close to the border of the
11 : 4 MMR. In this zone, higher order resonances and the fine
structure of the phase space are also visible. Finally, the bottom
right panel shows the dynamical map corresponding to the initial
condition, which yields (�2

�)
1/2 � 1 and an rms of�3.62m s�1. It

would correspond to a system locked in the 11 : 4 MMR of the
outermost planets. In this panel, for a reference, we also marked
the solutions with (�2

�)
1/2 < 1, roughly corresponding to the 2 �

confidence interval of the best-fit solution in Table 1. Actually,
many fits found in this zone and resolved with a relatively short
integration time of MEGNO, �2000Pc , appear to be weakly
chaotic.
Let us note that the best-fit initial condition given in Table 1

has been refined through a postfitting analysis with the MEGNO
computed over 50,000 periods of the outermost planet. The
MEGNO for this fit converges to 2 well over 12 Myr (Fig. 13).
This indicates a strictly regular (quasi-periodic) orbital evolu-
tion. All eccentricities change with significant amplitudes of
�0.1–0.3. This is illustrated in Figure 13. A secular apsidal res-
onance (SAR)with a small semiamplitude of about 20� is present
in themotion of the two outermost planets. The synthetic RVcurve
of the best stable fit is shown in Figure 14.
In the relevant region of the (ad , ed)-plane, the positions of the

MMRs, as well as their widths, vary in the range of �0.2 AU
with respect to ad when the initial conditions are changed. The

Fig. 9.—Orbital evolution of a configuration close to the best-fit solution of 14 Her a (see Table 1). The osculating elements for the epoch of the observations in the
fits, given in terms of (m [MJ], a [AU], e,! [deg],M [deg]), are (4.478, 2.726, 0.363, 23.28, 322.706) for planet b and (1.945, 5.628, 0.0028, 192.98, 15.33) for planet c,
with V0 ¼ �13:38,V1 ¼ �48:18m s�1, (�2

� )
1/2 ¼ 1:111, and an rms of 8.53m s�1. From top to bottom and from left to right, we plot the eccentricities, the angle � of the

secular alignment of the apsides, the MEGNO hY i, indicating a quasi-regular configuration, and the critical argument of the 3:1 MMR.
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border of the zone of global instability is highly irregular but
very sharp and, as one would expect, it can be found in the max e
maps (not shown here). A conclusion provided by this experi-
ment is that the structure of the phase space changes dramati-
cally, even if we choose initial conditions that are statistically
comparable and relatively close to each other. An inspection of the
dynamical maps in Figure 11 reveals that it is hardly possible to
avoid the unstable areas without explicitly accounting for the sta-
bility criterion in a self-consistent manner. One might think that
the N-body model does not lead to a significant improvement of
(�2

�)
1/2; we obtained very similar values, (�2

�)
1/2 � 0:88–0.96, to

those of the best fits found with the triple-Keplerian model of the
RV. Nevertheless, both the Keplerian and Newtonian best-fit solu-
tions obtained without the stability check are in some sense de-
generate because they yield precise but physically unacceptable,
disrupting configurations.

The best fits found in the GAMP search and the result of the
dynamical analysis reveal an intriguing state of the HD 37124
system. It resides in a dynamically very active region of the
phase space. It remains possible that the two external planets are
close to the 5 : 2 MMR, similar to the Jupiter-Saturn case. We
found some acceptable fits within the libration island of this
resonance; however, in such a case the eccentricities of both of

the outermost companions would be relatively large at�0.3 (see
Fig. 12). Some best-fit configurations are very close to the 8 :3 or
11:4 MMRs. As we demonstrate by the computations illustrated
in Figure 11, the parameters’ errors bounds are relatively ex-
tended and the proximity of the system to any of these reso-
nances cannot be excluded at present. In this sense, with the
currently available observations it is not possible to choose one
particular configuration that could represent the true state of the
system.

In the second GAMP search we looked for the best fits, assum-
ing that the semimajor axes were of about ab2½0:05; 0:3� AU,
ac2½0:3; 0:6� AU, and ad2½1:2; 1:8�AU. In this way we tried to
verify the Keplerian fits of the second plausible configuration
found by the discovery team. Their analysis reveals the best-fit
solution, which could be concurrent with the configuration with
the long-period orbit of companion planet d but which has a
significantlyworse (�2

�)
1/2 � 1:14 (Vogt et al. 2005). TheGAMP-

resolved N-body solutions are also not so good, as for the pre-
viously analyzed configurations. The best fit found in the GAMP
search has (�2

�)
1/2 �1:2. In that case, the innermost planet would

be a hot Neptune with a mass of about 0.1 MJ and a semimajor
axis of about 0.1 AU. Overall, this fit is evenworse than the triple-
Keplerian fit found by the discovery team, with (�2

�)
1/2 � 1:14.

Fig. 10.—Best fits obtained with the GAMP for the RV data published in Vogt et al. (2005) of HD 37124. The system is assumed to be coplanar. Parameters of the fit are
projected onto the planes of the osculating orbital elements at the epoch of the first observation, JD 2,450,420.047. The smallest filled dots indicate GAMP solutions with
(�2

�)
1/2 < 1:1 and an rms of �4.0 m s�1. Larger open circles indicate (�2

�)
1/2 ¼ 1:02 and (�2

�)
1/2 ¼ 0:97 (2 � and �1 � confidence intervals of the best-fit solution,

respectively). The largest circles indicate the solutions with (�2
�)

1/2 < 0:94,marginally larger than the value of (�2
�)

1/2 ¼ 0:935 of the best fit found in the whole search. In the
top right panel, a curve in the (ad , ed)-plane indicates the planetary collision line for the outermost companions. It is determined from the relation ac(1þ ec) ¼ ad(1� ed), with
ac and ec fixed at their best-fit values. The nominal positions of the most relevant MMRs inferred from the Keplerian law are also marked by dashed lines and labeled.

ORBITS AND STABILITY OF MULTIPLANET SYSTEMS 697No. 1, 2006



Fig. 11.—Dynamical maps in the (ad , ed )-plane for the best-fit solutions to the RV data of HD 37124. The shading scheme is the same as in Fig. 8. The initial conditions,
marked by crossed circles, are given in terms of osculating elements at the epoch of the first observation: (m [MJ], a [AU], e, ! [deg],M [deg]). Top: The left panel shows the
best N-body fit found without instability penalty, which yields (�2

�)
1/2 ¼ 0:846 and an rms of 3.11 m s�1, with (0.614, 0.519, 0.061, 161.18, 238.68), (0.563, 1.660, 0.070,

343.97, 55.17), and (0.726, 2.974, 0.367, 284.06, 99.19) for the planets b, c, and d, respectively, and with V0 ¼ 7:536 m s�1. The right panel shows a stable fit with
(�2

�)
1/2 ¼ 1:25, an rms of 4.43 m s�1, (0.603, 0.519, 0.030, 135.80, 264.10), (0.540, 1.659, 0.061, 359.25, 44.65), and (0.698, 2.915, 0.178, 277.90, 95.57) for the planets b, c,

and d, respectively, and with V0 ¼ 7:27 m s�1.Middle : The left panel shows a stable solution with (�2
� )

1/2 ¼ 1:11, an rms of 4 m s�1, (0.614, 0.519, 0.000, 240.27, 159.73),
(0.641, 1.628, 0.104, 326.01, 69.75), and (0.622, 3.230, 0.005, 190.15, 206.89) for the planets b, c, and d, respectively, and V0 ¼ 7:70 m s�1. The right panel shows a stable
solution with (�2

�)
1/2 ¼ 0:92, an rms of 3.53 m s�1, (0.614, 0.519, 0.041, 149.56, 250.13), (0.572, 1.630, 0.006, 104.63, 288.68), and (0.612, 3.070, 0.206, 275.23, 113.35) for

the planets b, c, and d, respectively, andV0 ¼ 7:92 m s�1. Bottom: The left panel shows the solution very close to the best stable solution given in Table 1, with (�2
�)

1/2 ¼ 0:94,
an rms of 3.4 m s�1, (0.624, 0.519, 0.079, 138.01, 259.01), (0.574, 1.611, 0.126, 268.86, 109.55), and (0.712, 3.145, 0.298, 269.49, 124.11) for the planets b, c, and d,
respectively, and V0 ¼ 7:63 m s�1. The integration time for this map is�2 ; 105 yr. The right panel shows a stable solution in the close neighborhood of the 11 : 4MMRwith
(�2

�)
1/2 ¼ 1:01, an rms of 3.63m s�1, (0.620, 0.519, 0.042, 231.08, 170.00), (0.592, 1.627, 0.023, 270.86, 122.38), and (0.634, 3.203, 0.202, 275.49, 129.50) for the planets b, c,

and d, respectively, and V0 ¼ 7:78 m s�1. In this panel, we also marked the elements of the fits yielding (�2
� )

1/2 < 1 and thus falling within the formal 2 � level of the best fit in
Table 1 (black crossed circle). See also Fig. 10. The smooth curves in themapsmark the collision line of the two outermost planets. The resolution of themaps is 400 ; 100 data
points. Integrations are for 6 ; 103 periods of the outermost planet (�3 ; 104 yr). [See the electronic edition of the Journal for a color version of this figure.]



However, it remains possible (but not very likely) that we missed
a better solution. Yet it could also be a dynamically derived ar-
gument against the configuration with the hot Neptune planet.
Another argument against such a solution is given in a very recent
work by Ford (2005), who found via the Bayesian technique that
the short-period orbit (of 30 days) is not very credible.

In fact, in the GA-simplex search we also found other curi-
ous triple-Keplerian solutions that were comparable to the best
fits described above. The first one yields (�2

�)
1/2 ¼ 1:029 and an

rms of 3.74 m s�1. Its parameters (K, P, e, !, Tp � T0) are
(31.763 m s�1, 154.444 days, 0.095, 170N909, 11557.591 days),
(13.102 m s�1, 318.922 days, 0.673, 50N785, 13929.828 days),

Fig. 12.—Orbital evolution of a configuration close to the best-fit solution of HD 37124 (see Table 1) and corresponding to the libration center of the 5:2 MMR.
From top to bottom and left to right, we plot the eccentricities, the angle � of the secular alignment of the apsides, the MEGNO hY i, indicating a quasi-regular
configuration, and the critical argument of a 5:2 MMR. Parameters of this fit [(�2

� )
1/2 ¼ 1:05, with an rms of 3.82 m s�1] in terms of the osculating elements at the

epoch of the first observation, (m [MJ], a [AU], e, ! [deg], M [deg]), are (0.633, 0.519, 0.032, 63.56, 334.53) for planet b, (0.583, 1.647, 0.015, 124.63, 281.95) for
planet c, and (0.671, 3.025, 0.269, 307.64, 82.47) for planet d, with V0 ¼ 8:61 m s�1.

Fig. 13.—Orbital evolution of the configuration related to the best-fit solution of HD 37124 (see Table 1). From top to bottom and left to right, we plot the
MEGNO hY i, the eccentricities, the angle � of the secular alignment of the apsides of the two outermost orbits, and the semimajor axes.
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and (14.828m s�1, 862.831 days, 0.379, 139N256, 11536.030 days)
for planets b, c, and d, respectively, with T0 ¼ JD 2; 440; 000 and
V0 ¼ 6:229 m s�1. This solution might correspond to the 2 : 1
MMR of planets b and c, but it appears to be very unstable (due to
large eb and crossing orbits). An even better best-fit solution
[(�2

�)
1/2 ¼ 0:99, with an rms of 3.66 m s�1], unfortunately also

unstable, is given by the following: (19.794 m s�1, 96.062 days,
0.789, 308N678, 13102.865 days), (31.181 m s�1, 154.848 days,
0.014, 198N923, 14361.028 days), and (16.482m s�1, 859.218 days,
0.259, 214N801, 12509.269 days) for planets b, c, and d, respec-
tively, withV0 ¼ 5:315.Whether stableN-body solutions of these
types exist is an open question that we have not investigated that
closely. Yet these examples show once again that modeling of the
RV data gathered for HD 37124 should not rely on the kinematic
Keplerian model.

6. IS THE GAMP NOT ALWAYS
NECESSARY? (HD 108874)

The dual planet system around HD 108874 can be close to the
4 : 1 MMR. That conclusion follows from the analysis of the
double-Keplerian model of the RV performed by the discovery
team (Vogt et al. 2005).With the HD 202206 system inmind, we
suspect that the GAMP code should help us to better understand
the system dynamics than follows from the kinematic approach.
According to Vogt et al. (2005), HD 108874 is an inactive star

with log R0
HK ¼ �5:07; thus, following the discovery team, we

adopted a value of �j of 3.9 m s�1. Using the hybrid GA-simplex
code, we found a slightly better two-planet Keplerian solution than
the one by Vogt et al. (2005), which yielded (�2

�)
1/2 � 0:79. Our

solution has (�2
�)

1/2 ¼ 0:733 and an rms of 3.29m s�1. Themodel
parameters (K, P, e, !, Tp � T0) are as follows: (37.898 m s�1,
395.276 days, 0.069, 249N271, 923.629 days) and (18.355 m s�1,
1600.112 days, 0.254, 15N352, 2790.983 days) for the inner and
outer planets, respectively, with T0 ¼ JD 2; 450; 000 and ve-
locity offset V0 ¼ 17:435 m s�1. Adopting the date of the first
observation as the osculating epoch, we recalculated the inferred
astrocentric osculating elements (mp sin i, a, e,!,M) as follows:
(1.358 MJ, 1.046 AU, 0.067, 248N183, 21N029) and (1.015 MJ,
2.668 AU, 0.254, 15N352, 33N733) for the inner and outer plan-
ets, respectively.
The discovery team performed dynamical simulations that

relied on their double-Keplerian fit. These experiments revealed
that HD 108874 is a dynamically active system. Initial condi-
tions derived from the kinematic model may lead, depending on
the initial epoch, to the destruction of the system in a timescale
of about 0.5 Myr.
The results of the GAMP search are illustrated in Figure 15,

which shows the solutions spanning the formal 1 �, 2 �, and 3 �
confidence intervals of the best fit (its parameters are given in

Fig. 15.—Best fits obtained with GAMP for the RV data (Vogt et al. 2005) of HD 108874. In the model, a coplanar system is assumed. Parameters of the best fits are
projected onto the planes of osculating orbital elements. The smallest filled circles indicate stable solutions with (�2

�)
1/2 < 0:91, corresponding to the 3 � confidence interval of

the best fit. Larger open circles indicate (�2
�)

1/2 < 0:82 and (�2
�)

1/2 < 0:76 (the 2 � and 1 � confidence intervals of the best-fit solution given in Table 1, respectively). The
largest circles indicate the solutions with (�2

�)
1/2 < 0:713, marginally larger than the value of (�2

� )
1/2 ¼ 0:7126 of the best-fit initial condition given in Table 1.

Fig. 14.—Synthetic RV curves for the best-fit solutions to the RV data of HD
37124 (see Table 1). Data points published in Vogt et al. (2005) are plotted with
error bars indicating the joint RV error (stemming from the measurements and
the stellar jitter). The vertical line at JD 2,453,736 indicates the calendar date
2005 December 31.
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Table 1). In that figure, the osculating elements of the best fits
gathered by independent runs of the GAMP code are illustrated
as projections onto the planes of orbital elements. This also gives
us estimates of the fit errors. In the independent runs, the fits con-
verged to the same solution as in Table 1. That solution has orbital
parameters similar to those found with a double-Keplerian model
of the RV; nevertheless, the quality of the fit measured by
(�2

�)
1/2� 0:71 is slightly better than that for the kinematic model.

It appears that the orbital elements of both companions are
already well constrained through the available RVmeasurements.
An interesting conclusion can be derived from the inspection of
the bottom left and middle panels of Figure 15, showing the (!b,
!c)-plane and the (kb , kc)-plane, respectively. While the values of
!b of the best fits are spread over the whole possible range, both
planetary longitudes are very well bounded. This means that the
parameters ! and M (the mean anomaly) may be apparently
unconstrained; nevertheless, their sum gives us a well-fixed or-
bital phase. Finally, we computed the dynamical maps in the (ac,
ec)-plane (the left panel of Fig. 16 shows log SN, and the right
panel shows max ec). We note that the border of the formally un-

stable region begins well under the planetary collision line. How-
ever, in the libration area of the 4 : 1 MMR, stable motions are
possible up to ec � 0:7! In the log SN map we marked the or-
bital parameters of the fitswithin the 1� confidence interval of the
best-fit solution. They cover the whole resonance width of about
0.05 AU. The best-fit solution is found close to the separatrix of
the resonance. The synthetic RV curve is shown in Figure 17, and
it perfectly follows the measurements. Finally, Figure 18 shows
the orbital evolution of the configuration derived from the best fit
(Table 1) and its stability analysis byMEGNO.MEGNOhas been
computed for over 10 Myr (�2 ; 106Pc) and perfectly converges
to 2 at this period of time, so this configuration is strictly quasi-
periodic. This is also seen in the time evolution of the eccentric-
ities: no secular drifts are present, and their amplitudes are very
small. Actually, the system is locked in the 4 : 1 MMR, as the one
of the critical arguments, �41 ¼ 4kc � kb � 2$c �$b, librates
around 0�.

Our conclusions are somewhat against the results of Vogt et al.
(2005), who claim that the system can be currently described
by a large number of dynamically distinct configurations. Curi-
ously, the best fit foundwith GAMP is almost the same as the one
derived without the penalty term and only marginally different
(�0.01 m s�1 in the rms) from the one obtained with the double-
Keplerian parameterization.

The results of the stability analysis carried out for the best fit
(Fig. 16) suggest that in the case of HD 108874 the use of GAMP
is not so critical for obtaining stable solutions as it is for other
systems analyzed in this paper. It is likely due to well-constrained
orbital parameters of the best fit or to a specific shape of the res-
onance. Its width is comparable to the fit errors. Still, without ex-
plicit computations, we cannot be sure in which region of the
phase space the best fit is localized andwhat this region looks like.

7. CONCLUSIONS

With the application of GAMP, we found a clear indication of
a new, second planetary companion in the 14 Her system. Re-
markably, the data permit two distinct solutions corresponding to
the low-order mean motion resonances 3 : 1 or 6 : 1. A few recent
observations could be very useful to resolve the doubt. We also
found that the two outermost planets in the HD 37124 system

Fig. 16.—Dynamical maps in the (ac, ec)-plane in terms of the spectral number, log SN, and max ec for the best-fit solution to the HD 108874 RV data. See Table 1
for the initial condition. Shadings used in the log SN map classify the orbits: black indicates quasi-periodic, regular configurations, while white indicates strongly
chaotic systems. The resolution of the maps is 600 ; 120 data points. Integrations are for 2 ; 104 periods of the outer planet (�8:6 ; 104 yr). The parameters of the
fits within 1 � confidence interval of the best fit are also marked (see also Fig. 15). The crossed circle marks the initial condition used for computing the maps. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 17.—Synthetic RV curve for the best-fit solution to the RV data of HD
108874 (see Table 1; thick line). The thin line indicates the best-fit double-
Keplerian solution quoted in the text. Data points published in Vogt et al.
(2005) are plotted, with error bars indicating the joint RV error (stemming
from the measurements and the stellar jitter). The vertical line at JD 2,453,736
indicates the calendar date 2005 December 31.
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may be close to a 5 : 2 MMR, thus appearing remarkably similar
to the Jupiter-Saturn pair. GAMP helped us to find stable con-
figurations of the HD 108874 system that support the hypothesis
that the system is locked in an exact 4 : 1 MMR.

As a by-product of our analysis, we have provided new ex-
amples that confirm good properties of the GAMP algorithm.
Indeed, the idea has a solid theoretical background. By applying
the obvious requirement of the dynamical stability, we eliminate
the initial conditions that lead to a quick destruction of a plan-
etary configuration. A delicate matter is the question of how to
understand (and measure) the stability. In this paper we prefer
the formal definition provided by the KAM theorem. Essentially,
the dynamics of a planetary system has two timescales related
to the fast orbital motions and their resonances (MMRs) and the
much slower precession of instantaneous orbits (secular dynam-
ics). In analyzing the relatively small sets of the RVmeasurements
and due to narrow observational windows, we are naturally
limited to the short timescale. The recent secular theories by
Michtchenko & Malhotra (2004) and Lee & Peale (2003) for
two-planet systems and the results of Pauwels (1983) for a gen-
eral N-planet system in the regime of moderate eccentricities are
very useful for predicting the generic features of such systems.
They are generically stable under the condition that planets are
not involved in strongly chaotic motions (usually related to low-
order MMRs) or that their orbits stay far from collision zones.
Our line of reasoning is that, at least in the first approximation,
we should eliminate initial conditions corresponding to such
unstable behaviors. This is possible thanks to computationally
efficient fast indicators. Yet, according to the KAM theorem, the
search for the best-fit solutions is conducted in a highly noncon-
tinuous parameter space. A cure for this problem is an applica-
tion of nongradient genetic algorithms that have features ideally
suited to our purposes. The GAs need only to ‘‘know’’ the (�2

�)
1/2

function to efficiently explore the phase space. To eliminate the
unstable solutions we add a penalty term to the formal (�2

�)
1/2 of

potential solutions. Let us underline that such a penalty term may
be arbitrary, so in fact we may use virtually any criterion of sta-
bility. Still, one should be aware that the GAMP-like code is CPU-
expensive. For instance, the GAMP calculations typically take
several days of a 16 processor AMD Opteron 2 GHz cluster for
every system studied in this paper. Nevertheless, the method may
be optimized in many ways.
The multiplanet configurations analyzed in this paper are rep-

resentative cases in which we may benefit from the application of
GAMP-like code. Frequently, the RV data span a short time with
respect to the longest orbital periods, and then pure Keplerian, or
evenN-bodyNewtonian,models of the reflexmotion of the parent
star yield physically unacceptable configurations that disrupt dur-
ing thousands of years. That obviously contradicts the Copernican
principle. A good example of such a situation is provided by the
�Ara system (Jones et al. 2002;McCarthy et al. 2004;Goździewski
et al. 2005) or the 14 Her system (Butler et al. 2003; Naef et al.
2004) analyzed in this paper. In both instances, the RV data in-
dicate linear trends over the RV signal of a single-planet config-
uration. In such instances, the GAMP-like code makes it possible
to limit significantly the otherwise completely unconstrained pa-
rameters of the putative long-period companions.
It is important to stress that a GAMP-like code (with any kind

of a instability penalty) by no means modifies the N-body model
that is used as an internal representation of the planetary sys-
tem. It does not increase the number offitted parameters.We also
do not assume ad hoc that only one ‘‘excellent’’ (for instance,
strictly resonant) best-fit solution exists. Using the GAMP-like
approach, we are able to simultaneously analyze many local
minima of (�2

�)
1/2. The code enables us to illustrate the space of

stable multiparameter best-fit solutions within prescribed error
bounds as projections of their elements onto chosen parameter
planes. Indeed, the case of 14 Her shows that there exist two
equally deep and well-defined local (�2

�)
1/2 minima that are far

from each other in the parameter space. Another example is the

Fig. 18.—Orbital evolution of the best-fit configuration of HD 108874 (see Table 1). From top to bottom and left to right, we plot the eccentricities, the angle � of
the secular alignment of the apsides, the MEGNO hY i, and the critical argument of the 4:1 MMR. MEGNO is computed over 2 ; 106 periods of the outermost
planet. A perfect convergence to the value of 2 indicates a strictly quasi-regular configuration. The critical argument of the 4:1 MMR librates around 0�: the system
is locked in an exact 4:1 MMR.

GOŹDZIEWSKI, KONACKI, & MACIEJEWSKI702 Vol. 645



HD 37124 system, for which we found many qualitatively dif-
ferent configurations and resolved the system’s complex phase
space. Yet another example is the HD 128311 system, which we
analyzed in our recent paper (Goździewski & Konacki 2006). In
that case, the RV curve can be described equally well by two
completely different 2 : 1 and 1 :1 MMR configurations.

The GAMP-like algorithm is especially well suited for the
analysis of RV data of stars hosting multiplanet systems with
Jovian planets likely involved in strong, low-order MMRs. Such
systems are naturally favored by the Doppler technique because
of their relatively short observational windows. We have illus-
trated the efficiency of themethod by analyzing themeasurements
of HD 202206 (Correia et al. 2005), HD 37124 and HD 108874
(Vogt et al. 2005), HD 128311 (Vogt et al. 2005), and HD 82943
(Mayor et al. 2004), which we also studied in our recent paper
(Goździewski & Konacki 2006). In all these cases, the stability
zones are very sharp and the formal (KAM-like) and astronomical
notions of stability are strictly related to each other. Then it is es-
sential to use the stability criterion as an internal part of the fitting
algorithm. The GAMP-like code makes it possible to find the sta-
tistically optimal, stable solutions. The stability analysis is also

greatly simplified. Certainly the dynamical analysis of other res-
onant systems may also benefit from the application of this nu-
merical tool.

According to Marcy et al. (2005), nearly all giant planets
orbiting within 2 AU of all F, G, and K stars within 30 pc have
now been discovered. The observational windows of the extra-
solar searches are constantly widening. The orbital periods of
newly revealed candidate planets become longer and longer. The
full coverage of their periods by observations has already be-
come amatter of many years. In this context, the GAMP analysis
may be useful to significantly constrain the orbital elements of
long-period planetary companions and to plan the optimal ob-
servational strategy.
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