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ABSTRACT. The condition for the curvature of a statistical manifold to admit a kind of
standard hypersurface is given. We study the statistical hypersurfces of some types of the
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1. INTRODUCTION

Since Lauritzen introduced the notation of statistical manifolds in 1987 [5], the geometry
of statistical manifolds has been developed in close relations with affine differential ge-
ometry and Hessian geometry as well as information geometry (see, for example, [2,4,8]).
In this paper we study the hypersurface of statistical manifolds.
Let M be an n-dimensional manifold, ∇ a torsion-free affine connection on M, g a Rie-
mannian metric on M, and R a curvature tensor field on M. We denote by TM the set of

vector fields on M, and by TM(r,s) the set of tensor fields of type (r, s) on M.

Definition 1.1. A pair (∇, g) is called a statistical structure on M if (M,∇, g) is a statis-
tical manifold, that is,∇ is a torsion-free affine connection and for all X, Y, Z ∈ T(M),
(∇Xg)(Y, Z) = (∇Yg)(X, Z).

Let ∇◦ be a Levi-Civita connection of g. Certainly, a pair (∇◦, g) is a statistical structure,
which is called a Riemannian statistical structure or a trivial statistical structure (see [3]).
On the other hand, the statistical structure is also introduced from affine differential ge-
ometry which was proposed by Blasche (see [6]). Recently the relation between statistical
structures and Hessian geometry has been studied (see [3, 7]).

For all α ∈ R, a connection ∇(α) is defined by

∇(α) =
1 + α

2
∇+

1 − α

2
∇∗
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where ∇ and ∇∗ are dual connections on M. We study a statistical hypersurface of a

statistical manifold (M,∇, g) which enables (M,∇(α), g), ∀α ∈ R to admit the structure
of a constant curvature.
In section 3, a statistical manifold (M,∇, g), which enables (M,∇(α), g), ∀α ∈ R to ad-
mit the structure of a constant curvature, is considered. In section 4, we study charac-
teristics of statistical immersions between statistical manifolds (M,∇, g) which enable

(M,∇(α), g), ∀α ∈ R to admit the structure of a constant curvature.

2. PRELIMINARIES

A statistical manifold (M,∇, g) is said to be of constant curvature k ∈ R if

R(X, Y)Z = k{g(Y, Z)X − g(X, Z)Y}, ∀X, Y, Z ∈ TM (2.1)

holds, where R is the curvature tensor field of ∇. A pair (∇, g) is called a Hessian
structure if a statistical manifold (M,∇, g) is of constant curvature 0.
A Riemannian metric g on a flat manifold (M, g) is called a Hessian metric if g can be
locally expressed by

g = Ddϕ,

that is,

gij =
∂2 ϕ

∂xi∂xj
,

where {x1, · · ·, xn} is an affine coordinate system with respect to ∇. Then (M,∇, g) is
called a Hessian manifold (see [7]).
Let (M,∇, g) be a Hessian manifold and K(X, Y) := ∇XY−∇◦

XY be the difference tensor
between the Levi-Civita connection ∇◦ of g and ∇. A covariant differential of differential
tensor K is called a Hessian curvature tensor for (∇, g). A Hessian manifold (M,∇, g) is
said to be of constant Hessian curvature c ∈ R if

(∇XK)(Y, Z) = − c

2
{g(X, Y)Z + g(X, Z)Y}, ∀X, Y, Z ∈ TM

holds (see [7]).

Example 2.1. ( [3])
Let (H, g̃) be the upper half space:

H :=
{

y = (y1, · · · , yn+1)T ∈ Rn+1
∣

∣

∣
yn+1

> 0
}

, g̃ := (yn+1)−2
n+1

∑
i=1

dyidyi.

We define an affine connection ∇̃ on H by the following relations:

∇̃ ∂
∂yn+1

∂

∂yn+1
= (yn+1)−1 ∂

∂yn+1
, ∇̃ ∂

∂yi

∂

∂yj
= 2δij(y

n+1)−1 ∂

∂yn+1
,

∇̃ ∂

∂yi

∂

∂yn+1
= ∇̃ ∂

∂yn+1

∂

∂yj
= 0,

where i, j = 1, · · ·, n. Then (H, ∇̃, g̃) is a Hessian manifold of constant Hessian curvature
4.
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Let (M̃, ∇̃, g̃) be a statistical manifold and f : M → M̃ be an immersion. We define g
and ∇ on M by

g = f ∗ g̃, g(∇XY, Z) = g̃(∇̃X f∗Y, f∗Z), ∀X, Y, Z ∈ TM.

Then the pair (∇, g) is a statistical structure on M, which is called the one by f from
(∇̃, g̃) (see [3]).
Let (M,∇, g) and (M̃, ∇̃, g̃) be two statistical manifolds. An immersion f : M → M̃
is called a statistical immersion if (∇, g) coincides with the induced statistical structure
(see [3]).
Let f : (M,∇, g) → (M̃, ∇̃, g̃) be a statistical immersion of codimension one, and ξ a

unit normal vector field of f . Then we define h, h∗ ∈ TM(0,2), τ, τ∗ ∈ TM∗ and A, A∗ ∈
TM(1,1) by the following Gauss and Weingarten formulae:

∇̃X f∗Y = f∗∇XY + h(X, Y)ξ, ∇̃Xξ = − f∗A∗X + τ∗(X)ξ,

∇̃∗
X f∗Y = f∗∇∗

XY + h∗(X, Y)ξ, ∇̃∗
Xξ = − f∗AX + τ(X)ξ, ∀X, Y ∈ TM,

where ∇̃∗ is the dual connection of ∇̃ with respect to g̃.

In addition, we define I I ∈ TM(0,2) and S ∈ TM(1,1) by using the Riemannian Gauss and
Weingarten formulae:

∇̃∗
X f∗Y = f∗∇∗

XY + I I(X, Y)ξ, ∇̃∗
Xξ = − f∗SX.

For more details on the Gauss, Codazzi and Ricci formulae on statistical hypersurfaces,
we refer to [3].

3. THE CONDITION THAT A STATISTICAL MANIFOLD (M,∇(α), g) IS OF CONSTANT

CURVATURE FOR ANY α ∈ R

In this section we consider a condition that a statistical manifold (M,∇(α), g) is of con-
stant curvature for any α ∈ R .

Theorem 3.1. A statistical manifold (M,∇(α), g) is of constant curvature for any α ∈ R iff there

exist α1, α2 ∈ R(|α1| 6= |α2|) such that statistical manifolds (M,∇(α1), g) and (M,∇(α2), g)
are of constant curvature.

Proof. Necessity is obvious. We find sufficiency. Without loss of generality, we assume
α1 6= 0. Then since

∇(α) =
α1 + α

2α1
∇(α1) +

α1 − α

2α1
∇(−α1)

holds for all α ∈ R, the following relation

R(α)(X, Y)Z =
α1 + α

2α1
R(α1)(X, Y)Z +

α1 − α

2α1
R(−α1)(X, Y)Z

+
α2

1 − α2

4α2
1

[K(Y, K(Z, X))− K(X, K(Y, Z))]

holds, where K(X, Y) := ∇XY −∇◦
XY is the difference tensor field of a statistical mani-

fold.
From the relations

R(α1)(X, Y)Z = k1{g(Y, Z)X − g(X, Z)Y},
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R(α2)(X, Y)Z = k2{g(Y, Z)X − g(X, Z)Y},

the relation

R(α)(X, Y)Z =
k2α2

1 − k1α2
2 + (k1 − k2)α2

α2
1 − α2

2

{g(Y, Z)X − g(X, Z)Y}

holds, that is, a statistical manifold (M,∇(α), g) is of constant curvature
k2α2

1−k1α2
2+(k1−k2)α

2

α2
1−α2

2
.

Example 3.1. Let (M, g) be a family of normal distributions:

M :=

{

p(x, θ)

∣

∣

∣

∣

∣

p(x, θ) =
1

√

2π(θ2)2
exp

{

− 1

2(θ2)2
(x − θ1)2

}

}

, g := 2(θ2)−2 ∑ dθidθi,

x ∈ R, θ1 ∈ R, θ2
> 0.

We define an α− connection by the following relations:

∇(α)
∂

∂θ1

∂

∂θ1
= (−1 + 2α)(θ2)−1 ∂

∂θ2
, ∇(α)

∂
∂θ2

∂

∂θ2
= (1 + α)(θ2)−1 ∂

∂θ2
,

∇(α)
∂

∂θ1

∂

∂θ2
= ∇(α)

∂
∂θ2

∂

∂θ1
= 0.

Then the statistical manifold (M,∇(0), g) is of constant curvature (− 1
2 ), and the statisti-

cal manifold (M,∇(1), g) is of constant curvature 0. Hence for all α ∈ R, the statistical

manifold (M,∇(α), g) is of constant curvature α2−1
2 .

Example 3.2. Let (M, g) be a family of random walk distributions ( [1]):

M :=

{

p(x; θ1, θ2)

∣

∣

∣

∣

∣

p(x; θ1, θ2) =

√

θ2

2πx
exp

{

− θ2x

2
+

θ2

θ1
− θ2

2(θ1)2x

}

, x, µ, λ > 0

}

,

g :=
θ2

(θ1)3
(dθ1)2 +

1

2(θ2)2
(dθ2)2.

We define an α− connection by the following relations:

∇(α)
∂

∂θ1

∂

∂θ1
=

−3(1 + α)

2
(θ1)−1 ∂

∂θ1
+ (−1 + α)(θ1)−3(θ2)2 ∂

∂θ2
,

∇(α)
∂

∂θ1

∂

∂θ2
= ∇(α)

∂
∂θ2

∂

∂θ1
=

(1 + α)

2
(θ2)−1 ∂

∂θ1
,

∇(α)
∂

∂θ2

∂

∂θ2
= (−1 + α)(θ2)−1 ∂

∂θ2
.

Then the statistical manifold (M,∇(0), g) is of constant curvature (− 1
2), and the statistical

manifold (M,∇(1), g) is of constant curvature 0. Hence for all α ∈ R, the statistical

manifold (M,∇(α), g) is of constant curvature α2−1
2 .

Theorem 3.1 implies the following fact.

Corollary 3.1. If there exist α1, α2 ∈ R(|α1| 6= |α2|) such that the statistical manifold (M,∇(α1), g)
is of constant curvature k1 and the statistical manifold (M,∇(α2), g) is of constant curvature k2,
and k1 6= k2, then for α ∈ R satisfying that α2 = (k2α2

1 − k1α2
2)/(k2 − k1), the statistical

manifold (M,∇(α), g) is flat.
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Example 3.3. k1 = −1/2, k2 = 0, α1 = 0 and α2 = 1 hold in example 3.1 and example

3.2. Hence for α ∈ R satisfying that α2 = 1, the statistical manifold (M,∇(α), g) is flat.

Theorem 3.2. If the Hessian manifold (M,∇, g) is of constant Hessian curvature, then for all

α ∈ R, the statistical manifold (M,∇(α), g) is of constant curvature.

Proof. If the Hessian manifold (M,∇, g) is of constant Hessian curvature, then for all
X, Y, Z ∈ TM,

(∇K)(Y, Z; X) = − c

2
{g(X, Y)Z + g(X, Z)Y}, c ∈ R

holds. On the other hand, the curvature tensor R◦ of Levi-Civita connection ∇◦ is written
by

R◦(X, Y)Z = R(X, Y)Z − (∇K)(Y, Z; X) + (∇K)(Z, X; Y)

+K(X, K(Y, Z))− K(Y, K(Z, X)),

where R is the curvature tensor of ∇ and K(X, Y) = ∇XY −∇◦
XY is difference tensor.

Then

(∇K)(Y, Z; X)− (∇K)(Z, X; Y)

= 2{K(X, K(Y, Z))− K(Y, K(Z, X))}+ 1

2
{R(X, Y)Z − R∗(X, Y)Z}

implies

R◦(X, Y)Z = − c

4
{g(Y, Z)X − g(X, Z)Y},

where R∗ is curvature tensor of dual connection ∇∗, that is, the statistical manifold
(M,∇◦, g) is of constant curvature. On the other hand, the statistical manifold (M,∇, g)
is flat, that is, constant curvature 0. Therefore we finish the proof of theorem by applying
Theorem 3.1.
Hitherto we found some conditions that for any α ∈ R, the statistical manifold (M,∇(α), g)
is of constant curvature.

4. THE HYPERSURFACES OF STATISTICAL MANIFOLDS OF CONSTANT CURVATURE

We consider statistical hypersurfaces of some type of statistical manifolds, which enable

for any α ∈ R a statistical manifold (M,∇(α), g) to be of constant curvature.

Theorem 4.1. Let (M,∇, g) be a trivial statistical manifold of constant curvature k, (M̃, ∇̃, g̃)
a statistical manifold of constant curvature k̃ with a Riemannian manifold of constant curvature
◦
k̃ ( 6= k̃) (M̃, ∇̃◦, g̃), and f : M → M̃ a statistical immersion of codimension one. Then
f : M → M̃ is equiaffine, that is, τ∗ vanishes.

Proof. If (M̃, ∇̃, g̃) is a statistical manifold of constant curvature k̃ with a Riemannian

manifold of constant curvature
◦
k̃ ( 6= k̃) (M̃, ∇̃◦, g̃), the following equation

(∇̃XK̃)( f∗Y, f∗Z)− (∇̃YK̃)( f∗X, f∗Z)

= 2{R̃( f∗X, f∗Y) f∗Z − R̃◦( f∗X, f∗Y) f∗Z} (4.1)

= 2(k̃−
◦
k̃){g̃( f∗Y, f∗Z) f∗X − g̃( f∗X, f∗Z) f∗Y}
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holds by Eq.(2.2) and Eq.(2.3) in [3]. By above equation and equation Eq.(3.6) in [3], we
have

−2(k̃−
◦
k̃){g(Y, Z)X − g(X, Z)Y} = (∇XK)(Y, Z)− (∇YK)(X, Z)

−b(Y, Z)A∗X + b(X, Z)A∗Y + h(X, Z)B∗Y − h(Y, Z)B∗X

0 = (∇Xb)(Y, Z)− (∇Yb)(X, Z) + τ∗(X)b(Y, Z)− τ∗(Y)b(X, Z) (4.2)

−τ∗(Y)h(X, Z) + τ∗(X)h(Y, Z)

0 = −τ∗(Y)A∗X +−τ∗(X)A∗Y − (∇XB∗)Y + (∇YB∗)X + τ∗(X)B∗Y − τ∗(Y)B∗X

0 = −h(X, B∗Y) + h(Y, B∗X) + (∇Xτ∗)(Y)− (∇Yτ∗)(X) + b(Y, A∗X)− b(X, A∗Y).

By K = 0, B∗ = A∗ − S and Gauss equation (3.3)1 in [3], from Eq.(4.2)1, we have

−2(k̃−
◦
k̃){g(Y, Z)X − g(X, Z)Y} = −b(Y, Z)A∗X + b(X, Z)A∗Y

+h(X, Z)A∗Y − h(X, Z)SY − h(Y, Z)A∗X + h(Y, Z)SX

= −b(Y, Z)A∗X + b(X, Z)A∗Y − h(X, Z)SY + h(Y, Z)SX + R̃(X, Y)Z − R(X, Y)Z.

By b = h − I I, B∗ = A∗ − S and Riemannian Gauss equation (3.5)1 in [3], we have

− 2(k̃−
◦
k̃){g(Y, Z)X − g(X, Z)Y}

= −h(Y, Z)A∗X + I I(Y, Z)A∗X + h(X, Z)A∗Y − I I(X, Z)A∗Y

− h(X, Z)SY + h(Y, Z)SX + R̃(X, Y)Z − R(X, Y)Z

= −h(Y, Z)B∗X + h(X, Z)B∗Y + I I(Y, Z)B∗X + I I(Y, Z)SX

− I I(X, Z)B∗Y − I I(X, Z)SY + R̃(X, Y)Z − R(X, Y)Z

= −b(Y, Z)B∗X + b(X, Z)B∗Y + R◦(X, Y)Z − R̃◦(X, Y)Z + R̃(X, Y)Z − R(X, Y)Z.

Since (M,∇, g) is Riemannian manifold, clearly R◦(X, Y)Z = R(X, Y)Z. Hence we have

0 = (k̃−
◦
k̃){g(Y, Z)X − g(X, Z)Y} − b(Y, Z)B∗X + b(X, Z)B∗Y.

And since b(Y, Z) = g(BY, Z), b(X, Z) = g(BX, Z), from above equation we have

0 = (k̃−
◦
k̃){g(Y, Z)X − g(X, Z)Y} − g(BY, Z)B∗X + g(BX, Z)B∗Y. (4.3)

From Eq.(4.2)3, B∗ = A∗ − S and Codazzi equation on A we get

0 = −τ∗(Y)A∗X + τ∗(X)A∗Y − (∇X A∗)Y + (∇XS)Y + (∇Y A∗)X − (∇YS)X

+ τ∗(X)B∗Y − τ∗(Y)B∗X

= (∇XS)Y − (∇YS)X + τ∗(X)B∗Y − τ∗(Y)B∗X

and by ∇ = ∇◦ and Codazzi equation on S, we also get

0 = τ∗(X)B∗Y − τ∗(Y)B∗X. (4.4)

From Eq.(4.2)4, B∗ = A∗ − S and Ricci equation we have

b(X, B∗Y)− b(Y, B∗X) = 0,

and since b(X, B∗Y) = g(BX, B∗Y) and b(Y, B∗X) = g(BY, B∗X), we have

g(BX, B∗Y)− g(BY, B∗X) = 0.
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Since g(BX, B∗Y) = g(B∗Y, BX) = b∗(BX, Y) = g(B∗BX, Y), we have

0 = −g([B, B∗]X, Y). (4.5)

From Eq.(4.5), B and B∗ are simultaneously diagonalizable.
In the case that B∗ is of the form λ∗ I, we see easily that τ∗ vanishes from Eq.(4.4) if

λ∗ 6= 0 and
◦
k̃= k̃ from Eq.(4.3) otherwise. In the case that B∗ is not of the form λ∗ I, there

are λ∗
1 , λ∗

2 with λ∗
1 6= λ∗

2 such that B∗Xj = λ∗
j Xj, where g(Xi, X j) = δij, i, j = 1, 2. Besides

there are λ1, λ2 such that BXj = λjXj. Eq.(4.3) implies that

(k̃−
◦
k̃){g(Xj, Z)Xi − g(Xi, Z)Xj}+ λjλ

∗
i g(Xj, Z)Xi − λiλ

∗
j g(Xi, Z)Xj

= (k̃−
◦
k̃ +λjλ

∗
i )g(Xj, Z)Xi − (k̃−

◦
k̃ +λiλ

∗
j )g(Xi, Z)Xj = 0

and hence k̃−
◦
k̃ +λjλ

∗
i = k̃−

◦
k̃ +λiλ

∗
j = 0, which means that

λjλ
∗
i = λiλ

∗
j = −(k̃−

◦
k̃) 6= 0.

By Eq.(4.4) we have λ∗
2τ∗(X1)X2 − λ∗

1τ∗(X2)X1 = 0, which implies that τ∗ vanishes.

Example 4.1. Suppose M̃ be R3. We define Riemannian metric and an Affine connection
by the following relations:

g̃ = a ∑ dθidθi,

∇̃ ∂
∂θ1

∂

∂θ1
= b̃

∂

∂θ1
, ∇̃ ∂

∂θ2

∂

∂θ2
=

b̃

2

∂

∂θ1
, ∇̃ ∂

∂θ3

∂

∂θ3
=

b̃

2

∂

∂θ1
,

∇̃ ∂
∂θ1

∂

∂θ2
= ∇̃ ∂

∂θ2

∂

∂θ1
=

b̃

2

∂

∂θ2
, ∇̃ ∂

∂θ1

∂

∂θ3
= ∇̃ ∂

∂θ3

∂

∂θ1
=

b̃

2

∂

∂θ2
,

∇̃ ∂
∂θ2

∂

∂θ3
= ∇̃ ∂

∂θ3

∂

∂θ2
= 0.

Then (M̃, ∇̃, g̃) is a statistical manifold of constant curvature − b̃2

4a with a trivial statistical

manifold of constant curvature 0 (M̃, ∇̃◦, g̃). Suppose M be R2, and (∇, g) an induced
statistical structure from (∇̃, g̃) by an immersion f : (x, y)(∈ R2) 7→ (0, x, y). We remark
that (M,∇, g) is a trivial statistical manifold of constant curvature 0.
Theorem 3.2 and Theorem 4.1 imply the following fact.

Corollary 4.1. Let (M,∇, g) be a trivial statistical manifold of constant curvature k, (M̃, ∇̃, g̃)
a Hessian manifold of constant Hessian curvature c̃, and f : M → M̃ a statistical immersion of
codimension one. Then f : M → M̃ is equiaffine, that is, τ∗ vanishes.

We consider a shape operator of statistical immersion of a trivial statistical manifold of
constant curvature into a Hessian manifold of constant Hessian curvature.

Lemma 4.1. Let (M,∇, g) be a trivial statistical manifold of constant curvature k, (M̃, ∇̃, g̃) a
Hessian manifold of constant Hessian curvature c̃, and f : M → M̃ a statistical immersion of
codimension one. Then the following holds:

A∗ = kνc̃−1 I, B∗ = −1

2
νI, h = c̃ν−1g, A = c̃ν−1 I, B = [2c̃2 − (2k + c̃)ν2](2νc̃)−1 I.
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Proof. Combining Eq.(2.3) and Eq.(3.6) in [3] with Eq.(2.1), we have

c̃

2
{g(Y, Z)X − g(X, Z)Y} = 2(k−

◦
k){g(Y, Z)X − g(X, Z)Y}

−b(Y, Z)A∗X + b(X, Z)A∗Y + h(X, Z)B∗Y − h(Y, Z)B∗X

0 = h(X, K(Y, Z))− h(Y, K(X, Z)) + (∇Xb)(Y, Z)− (∇Yb)(X, Z)

+τ∗(X)b(Y, Z)− τ∗(Y)b(X, Z)− τ∗(Y)h(X, Z) + τ∗(X)h(Y, Z) (4.6)

0 = K(Y, A∗X)− K(X, A∗Y)− τ∗(Y)A∗X + τ∗(X)A∗Y

−(∇XB∗)Y + (∇YB∗)X + τ∗(X)B∗Y − τ∗(Y)B∗X

0 = −h(X, B∗Y) + h(Y, B∗X) + (∇Xτ∗)(Y)− (∇Yτ∗)(X) + b(Y, A∗X)− b(X, A∗Y)

Taking the trace of (4.6)1 with respect to X, we have

−c̃g(Y, Z) = −trA∗b(Y, Z) + h(B∗Z, Y) + h(B∗Y, Z)

and taking the trace of (4.6)1 with respect to Y, we have

− c̃

2
(n + 1)g(X, Z) = −b(A∗X, Z) + h(X, B∗Z) + trB∗h(X, Z).

Using the above equation and Eq.(4.6)4, we have

− c̃

2
(n + 2)g(X, Y) = −b(A∗X, Y) + h(X, B∗Y) + trB∗h(Y, Y).

−h(X, Y)ν − h(X, B∗Y) + (∇Xτ∗)Y + b(Y, A∗X)

= trB∗h(X, Y)− h(X, Y)ν + (∇xτ∗)Y

and since from Corollary 4.1 τ∗ = 0 holds, we have

(ν − trB∗)h(X, Y) =
c̃

2
(n + 2)g(X, Y).

Hence we have

h =
c̃

2
(n + 2)(ν − trB∗)−1g. (4.7)

If c̃ 6= 0 holds, h is non-degenerated.
Since ∇̃ is flat in Gaussian equation in [3], we obtain

k{g(Y, Z)X − g(X, Z)Y} = h(Y, Z)A∗X − h(X, Z)A∗Y

and taking the trace of above equation with respect to X, we have

k(n − 1)g(Y, Z) = trA∗h(Y, Z)− h(A∗Y, Z) = h((trA∗ I − A∗)Y, Z).

Since the above equation and Eq.(4.7) imply that

k(n − 1)I =
c̃

2
(n + 2)(ν − trB∗)−1(trA∗ I − A∗),

there is a ∈ R such that A∗ = aI and trA∗ = an. Therefore the above equation implies
that

k(n − 1)I =
c̃

2
(n + 2)(ν − trB∗)−1(na − a)I

and thus since
2k(ν − trB∗) = c̃(n + 2)a,

we have
A∗ = 2k(ν − trB∗)[c̃(n + 2)]−1 I. (4.8)
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If k 6= 0 holds,then since A∗ is non-degenerated, by Eq.(4.8) we have

B∗ = −ν

2
I, trB∗ = −nν

2

and

A∗ =
2k(ν + nν

2 )

c̃(n + 2)
I =

kν

c̃
I, h =

c̃

2
(n + 2)(ν +

nν

2
)−1g =

c̃

ν
g.

Since h(X, Y) = g(AX, Y), we have A = c̃
ν I and

B = B∗ + (A − A∗) = −ν

2
I + (

c̃

ν
− kν

c̃
)I =

−ν2c̃ + 2c̃2 − 2kν2

2νc̃
I =

2c̃2 − (2k + c̃)ν2

2νc̃
I.

Theorem 4.2. Let (M,∇, g) be a trivial statistical manifold of constant curvature k, (M̃, ∇̃, g̃)
a Hessian manifold of constant Hessian curvature c̃. If there is a statistical immersion of codimen-
sion one f : M → M̃, 2k + c̃ is of non-negative. Moreover, when c̃ is positive, the Riemannian

shape operator of f : M → M̃ is given by S = ± 1
2

√
2k + c̃I.

Proof. By Lemma 4.1 and Eq.(4.2), we have

c̃

4
{g(Y, Z)X − g(X, Z)Y}+ 2c̃2 − (2k + c̃)ν2

2νc̃
(−ν

2
){g(Y, Z)X − g(X, Z)Y}

=

[

c̃

4
− 2c̃2 − (2k + c̃)ν2

4c̃

]

{g(Y, Z)X − g(X, Z)Y} = 0

and thus conclude that
c̃

4
− 2c̃2 − (2k + c̃)ν2

4c̃
= 0.

Since c̃2 = (2k + c̃)ν2, we have 2k + c̃ ≥ 0 and

ν = ± |c̃|√
2k + c̃

.

Thus the Riemannian shape operator S is given by

S = A∗ − B∗ = (
kν

c̃
+

ν

2
)I =

2k + c̃

2c̃
(± |c̃|√

2k + c̃
)I = ±|c̃|

2c̃

√
2k + c̃I.

When c̃ is positive, we have S = ± 1
2

√
2k + c̃I.

Example 4.2. Let (H, ∇̃, g̃) be the (n + 1)−dimensional upper half Hessian space of con-
stant Hessian curvature 4 as in Example 2.1. For a constant y0 > 0, write the following
immersion by f :

(y1, · · ·, yn)T(∈ Rn) 7→ (y1, · · ·, yn, y0)
T ∈ H.

Let (∇, g) be the statistical structure on Rn induced by f from (∇̃, g̃). Then (Rn,∇, g)
is a trivial statistical manifold of constant curvature 0 and f is a statistical immersion
of a trivial statistical manifold of constant curvature into Hessian manifold of constant
Hessian curvature.
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