
82 International Arab Journal of e-Technology, Vol. 2, No. 2, June 2011

Applying an Efficient Searching Algorithm for
Intrusion Detection on Ubicom Network Processor

Qutaiba Ibrahim and Sahar Lazim
Computer Engineering Department, University of Mosul, Iraq

Abstract: Intrusion Detection Systems (IDSs) have become widely recognized as powerful tools for identifying, deterring and
deflecting malicious attacks over the network. Essential to almost every intrusion detection system is the ability to search
through packets and identify content that matches known attacks. In this paper, common searching algorithms (string
matching, Native, Boyer Moore and pattern matching algorithms) are examined on Ubicom Network Processor which is
intended to be used as Network Intrusion Detection System (NIDS). Afterword, the suitable algorithm for Ubicom network
processor is chosen which combine string matching and Native algorithms because these algorithms don’t have any type of
preprocessing as Ubicom network processor doesn’t contain Micro Engine (ME) and doesn’t support multithreading which
are used to speed the operation of preprocessing.

Keywords: Intrusion Detection System, Network Processor, Searching Algorithm

Received September 9, 2009; Accepted June 28, 2010

1. Introduction

Intrusion Detection Systems (IDSs) are one of the most
useful tools to identifying malicious attempts over the
network and protecting the systems without modifying
the end-user software. Different from firewalls that
only check specified fields of the packet headers, IDSs
detect the malicious information in the payloads. An
IDS typically contains a database that describes the
signatures of malicious behavior. The number of
patterns is generally a few thousands and still
increasing. The signatures may appear anywhere in any
packet payload. Therefore, IDSs must be capable of in-
depth packet inspection even when suffering serious
attacks; otherwise the protectorate will not be defended
strictly [12].

The core of any intrusion detection system is the
string matching algorithm. String matching is the main
task in intrusion detection. From a stream of packets,
the algorithm identifies those packets that contain data
matching the signatures of a known attack. The
intrusion detection system then takes action that could
vary from alerting the system administrator to
dropping the packet in the case of inline IDS. The
problem of pattern matching is well investigated, many
algorithms exist and they can be classified as either
single pattern string matching or multiple pattern string
matching. In single pattern string matching the packet
is searched for a single string at a time. On the other
hand, multiple pattern string matching searches the
packet for the set of strings all at once. This paper
focuses on single string matching [2].

Network processor (NP)-based network devices are
increasing recently. In opposite to ASIC, NP has a

possibility of adding of modifying functionality only
by use of program update [11]. In this paper, Ubicom
Network Processor is used an embedded Network
Intrusion Detection System (NIDS). SNORT IDS rules
were translated to suite Ubicom platform.

The remainder of this paper is organized as follows:
first section 2 displays the related works. Section 3
introduces the overview of Ubicom Network processor
from point of view hardware and software based.
Section 4 demonstrates the single string searching
algorithms that will be examined in this paper. Section
5 presents the results of the comparison between the
searching algorithms which are remembered in the
previous section. Finally, section 6 discusses the
conclusions of the results.

2. Related Works

Researches in tools and methodologies for network
processors have focused mainly on modularity, re-
usability and ease of programming. The researches in
this section show how intrusion detection can be
performed on a network processor:

In 2003, I. Charitakis et al. presented a software
architecture that enables the use of the Intel IXP1200
network processor in packet header analysis for
network intrusion detection. The proposed work
consists of a simple and efficient run-time
infrastructure for managing network processor
resources, along with the S2I compiler, a tool that
generates efficient C code from high-level, human
readable, intrusion signatures. Therefore implementing
intrusion analysis on the IXP1200 becomes a process

Applying an Efficient Searching Algorithm for Intrusion Detection on Ubicom Network Processor 83

that does not require knowledge of architecture
internals and the micro-C programming language [6].

In 2004, Herbert Bos et al. described a network
intrusion detection system implemented on the
IXP1200 network processor. It was aimed to detect
worms at high speed by matching the payload of
network packets against worm signatures at the lowest
possible levels of the processing hierarchy (the
microengines of an IXP1200 network processor). The
solution employs the Aho-Corasick algorithm in a
parallel fashion, where each microengine processes a
subset of the network traffic. To allow for large
patterns as well as a large number of rules, the
signatures are stored in off-chip memory [7].

In 2006, Robin Salim el at. discussed technique to
improve packet classification through the use of Bloom
Filter and hash table lookup. Because packet
classification is an important function to other
networking infrastructure, for instance firewall, quality
of service, multimedia communication, an improved
packet classification scheme could benefit application
in related areas [13].

In 2007, Young-Ho Kim el at. introduced an
efficient algorithm for content processor to perform
multi-pattern signature matching. The proposed
algorithm uses software bitmap for each multi-pattern
signature without hardware changes, which maximizes
flexibility of content processor. From the analysis of
SNORT which is the widely used intrusion detection
system, they observe spatial locality between distances
of patterns in the multi-pattern signature. The
algorithm makes use of this distance information for
adaptive performance optimization. Their techniques
show that content processor can be a good solution for
multi-pattern processing in intrusion detection systems
without hardware modification with reasonable
performance [8].

Ubicom Network Processor differs from other
platforms in that it has limited memory and relatively

low processing power. It is typical to be used in
embedded system because of its low power
consumption and low cost.

3. Ubicom IP2022 Network Processor
Overview

Ubicom IP2022 network processor produced by
Ubicom Company, Ubicom provides the whole
solution as a fully integrated platform - the RTOS
(Real Time Operating System), the protocol stack, and
the necessary hardware. Ubicom’s IP2022 chip embeds
some basic hardware, but it permits combining it with
on-chip software to support the most prevalent
protocols. The same device can supports Ethernet,
Bluetooth wireless technology, IEEE 802.11, and so on.
The key to this approach is Software SOC™ (System
on Chip) technology.

Ubicom’s hardware includes the following
components as shown in figure1 [1].

• Designed to support single-chip networked solutions
• Fast processor core
• 64KB (32K x 16) Flash program memory
• 16KB (8K x 16) SRAM data/program memory
• 4KB (4K x 8) SRAM data memory
• Two SerDes communication blocks supporting

common PHYs (Ethernet, USB, UARTs, etc.) and
bridging applications

• Advanced 120MHz RISC processor
• High speed packet processing
• Instruction set optimized for communication

functions
• Supports software implementation of traditional

hardware functions
• In-system reprogrammable for highest flexibility
• Run time self-programmable
• Vpp = Vcc supply voltage

Figure 1. IP2022 block diagram.

84 International Arab Journal of e-Technology, Vol. 2, No. 2, June 2011

The scheme in figure 2 appears the basic
components for Ubicom's complete development
environment that can separate it to four essential
components [2]:

• Ubicom’s Software Development Kit (SDK):
Ubicom supports many software packages, like
ipOS™, ipStack™, ipHAL™, ipModule™ and etc.

• Red Hat GNUPro tools which consist of GCC ANSI
C compiler, Assembler, Linker, and GNU debugger.

• Ubicom’s Configuration Tool Integrated tool to
support rapid development efforts.

• Ubicom’s Unity Integrated Development
Environment (IDE) contains Editor, project
manager, graphic user interface to GNU debugger,
device programmer.

Figure 2. Ubicom's complete development environment.

4. Searching Algorithms

At the heart of almost every modern intrusion detection
system is a string matching algorithm. String matching
algorithm is crucial because it allows detection systems
to base their actions on the content that is actually
flowing to a machine. The string identifies those
packets that contain data matching the pattern of
known attacks. Essentially, the string matching
algorithm compares the set of strings in the rule-set to
the data seen in the packets that flow across the
network [14].

4.1. String Matching Algorithm

In order to make Ubicom’s buffer (that used to store
the receiving packet) easier to use, a number of
functions were provided which behave in a similar
manner to standard string/memory functions provided
by a standard C library [3]:

• Strstr Function:This function searches for a given
string in the netbuf and returns the position (address)
pointer to string, where the string was first found, or
0 if not found.

• Strchr Function: This function searches a character
in the netbuf. The function returns the position
(address) pointer to a character, where the character
was first found, or 0 if not found.

4.2. Native Algorithm

The so-called native or brute force algorithm is the
most intuitive approach to the string pattern-matching
problem. This algorithm simply attempts matching the
pattern in the target at successive positions from left to
right. If failure occurs, it shifts the comparison window
one character to the right until the end of the target is
reached. The Native searching algorithm doesn’t need
any kind of preprocessing on the pattern and requires
only a fixed amount of extra memory space.

4.3. Boyer Moore Algorithm

Boyer Moore is the most widely used algorithm for
string matching in intrusion detection system, the
algorithm compares the string of the input starting
from the rightmost character of the string. To reduce
the large number of comparison loops, two heuristics

Applying an Efficient Searching Algorithm for Intrusion Detection on Ubicom Network Processor 85

are triggered on a mismatch. The bad character
heuristic shifts the search string to align the
mismatching character with the rightmost position at
which the mismatching character appears in the search
string. If the mismatch occurs in the middle of the
search string, then there is suffix that matches. The
good suffix heuristic shifts the search string to the next
occurrence of the suffix in the string [4, 9], see figure 3
below.

Figure 3. Algorithm actions of Boyer Moore algorithm.

4.4. Pattern Matching Algorithm

The Pattern Matching Algorithm can be divided into
two phases: preprocessing phase and search phase. The
first task of preprocessing phase is to change each byte
from signature string to two bytes and put these bytes
in converting array. The second task is to generate a
two dimensional array called NEXT. This Array is
very important which decides how to move to a proper
position in the next search. After, array NEXT is
generated, its values will be invariable during
searching process.

During searching phase, the comparison is
performing from right to left at each check point. If a
mismatching occurs, the next to the last character of
current comparing window is used to execute the next
matching [16], see figure 4.

5. SNORT Rules analysis and Search
Algorithm Assumptions

Snort is source code open software programmed by C
language, which conforms to GNU. It is a platform
independent, light network intrusion detection system,

and it also works as network traffic sniffer and log
record tool. Snort employs network information search

Figure 4. Algorithm actions of Pattern Matching Algorithm.

technique based on rules. Pattern matching is
performed on each packet to conduct intrusion
detection [15]. Before the results are displayed, the
SNORT rules analysis must be described to constrain
range of patterns lengths and payload length which will
be searched to find the pattern. Reference [5] illustrates
that 87% of the rules contain strings to match against
the packet payload. The bar chart in figure 5 shows the
distribution of the string lengths in bytes. The columns
represent the number of rules containing strings of
certain length that is marked on the x axis. The
columns are clustered around the average string length
of 14 bytes. The majority of the strings are shorter than
26 bytes. While, reference [10] shows that 88.6% of all
rules are satisfied by first 145 bytes of payload. This
means, most of attacks’ signatures can be found in first
145 bytes. Figure 6 explains the distribution of the
required payload length.

Therefore, this paper proposed to constrain the
maximum length of pattern to 20 bytes and the
maximum length of payload to145 bytes.

Figure 5. Distribution of the string lengths in the SNORT database.

Pattern Matching Algorithm
begin
1 for (n=0 ,k=0 to k<m k=k+2) do

convert[k]=left nibble of pattern[n];
convert[k+1]=right nibble of pattern[n];

end
2 for (i=0 to16) do

3 for(j=0 to 16) do next[i,j]←m+1;
4 for (i=0 to 2m-2) do next[convert[i],convert[i+1]]
←m-i/2;
5 j←0;
6 while(j<= stringlen) do begin
7 i←m-1;
8 while(i>=0 and pattern[i]=text[i+j]) do i←i-1;
9 if (i<0) then output(match at location j);return;
10 if (text[j+m-2,j+m-1]=pattern[m-2,m-1]) then j
←j+1;
11 else j←j+next[left nibble of text[j+m-1],right
nibble of text[j+m-1]];
end while
end

1{ initialization of Badcharacter and Goodsuffix
tables is omitted }
lastch.← patttern[m];
i← m;
while i≤ stringlen do
begin
ch← string[i];
if ch = lastch then
begin
j← m - 1;
repeat
if j = 0 then return i;
j← j - 1;
i← i - 1;
until string[i]≠ pattern[j];
i← i + max(Badcharacter [ch] , Goodsuffix [j]);
end
else
i← i + Badcharacter [ch];
end;

86 International Arab Journal of e-Technology, Vol. 2, No. 2, June 2011

Figure 6. The distribution of the required payload length.

6. Results

The results of the algorithms that were presented in
section 4 are discussed and a comparison between
them through variant values of signature and payload
lengths is given.

Results are discussed as two steps: In the first one,
results are discussed by comparing the various
algorithms at similar signature lengths. Two metrics
were used to evaluate the performance of the various
algorithms: Searching time is the amount of time to
find a signature inside the payload, and Total searching
time is the overall time for the searching algorithm,
which includes the searching time and preprocessing
time if existed. At second one, some matrices are
specified to constrain the best algorithm to be adopted
by the platform. The signature position is
assumed to be at the end of the payload at each length
during computing the total searching time for the
algorithms.

6.1. Algorithms Comparison using various
Signature lengths:

In this section, comparisons between various
algorithms were made. The range of the signature
lengths is constrained between 1 to 20 bytes, and the
range of the payload length is constrained between 22
to 145 bytes. as mentioned earlier in Section 5.

6.1.1. Signature Length of 1 Byte.

Figure 7 shows the results of searching phase for all
algorithms. this figure shows that the string algorithm
(using the strchr function which is specified for one
character) has the minimum searching time. But an
increased searching time of string function (using strstr
function) is observed, because it checks the byte which
is read from Ubicom’s buffer if it is NULL or not. The
cause for the relatively long searching time of Boyer
Moore algorithm is this algorithm works in backward
direction. This means, it reads the values of payload
from netbuf to find signature from right to left on
opposite to the native and strstr function which read
forwarding from left to right. The pattern matching
algorithm is better than Boyer Moore because its
shifted value is larger than that of the last one, the
shifted value in the pattern matching algorithm is two
byte, while the shifted value in the Boyer Moore
algorithm is one byte.

Figure 8 shows the Total searching time of the four
algorithms. The String Matching (using strstr and
strchr functions) and Native Algorithms weren’t
affected by the preprocessing time because they didn’t
have any type of preprocessing. Pattern matching and
Boyer Moore algorithms have preprocessing time, their
values can be extracted from Table 1. Although, the
preprocessing time of pattern matching algorithm is
higher than that of Boyer Moore, the last one has
higher total searching time. Also, Table 1 show the
first hit of the four algorithms.

Applying an Efficient Searching Algorithm for Intrusion Detection on Ubicom Network Processor 87

Figure 7. Variation of searching time for 1 Byte signature length.

Figure 8. Variation of total searching time for 1 Byte signature length.

Table 1. The first hit of the four algorithms.

88 International Arab Journal of e-Technology, Vol. 2, No. 2, June 2011

6.1.2. Signature Length of 20 Bytes.

The signature length is increased to 20 bytes, the
searching time for the four algorithms are shown in
Figure 9. Pattern matching and Boyer Moore
algorithms have the minimum searching time because
their shifted values are affected by increasing signature
length. The difference between them is very small.
String and Native algorithms weren’t affected by the
increased signature length because their shifted values
are always one byte.

Figure 10 shows the total searching time of the four
algorithms. Native algorithm is the best one against
other algorithm because it has the minimum total
searching time in all cases. The Pattern Matching
algorithm is the worst in this case because it has very
large preprocessing time, and this time is affected by
increased signature length. The difference of
preprocessing time between Boyer Moore and Pattern
Matching algorithms is constant and nearly smaller
than the difference in the previous case because Boyer
Moore algorithm is affected by the increased signature
length.

Figure 9. Variation of searching time for 20 Bytes signature length.

Figure 10. Variation of total searching time for 20 Bytes signature length.

6.2. Suggesting a New Searching Algorithm

In order to summarized the comparison results,
searching algorithms features were compound as
listed on Table 2.

According to Ubicom platform criteria, native
algorithm is candidate to be the best searching

algorithm. Also, string algorithm using strchr function
has the higher performance when searching for (1 byte)
signature. In this paper, the adopted searching
algorithm is a combination of the above two algorithms.
The use of strchr function is suggested in the case of (1
byte) signature. When searching for a higher signature
value, a switching procedure is made to the operation

Applying an Efficient Searching Algorithm for Intrusion Detection on Ubicom Network Processor 89

of the native algorithm. The performance of the
suggested algorithm can be seen in figure 11.

7. Conclusion

This paper deals with investigating a set of searching
algorithms intended to be used on an embedded NIDS
platform. Ubicom Network Processor supplied with

SNORT IDS rules was examined against a set of
common searching algorithms (string Matching, Native,
Boyer Moore and Pattern Matching algorithms). It was
found that combining both String Matching and Native
algorthims was the optimum solution to build a high
response embedded NIDS.

Table 2. Comparison algorithms based on metrics.

Figure11. The performance of the Suggested Algorithm.

References

[1] “IP2022 Wireless Network Processor Features
and Performance Optimized for Network
Connectivity IP2022 Data Sheet”, UBICOM, Inc.,
22 Jan. 2009, Web Site: http//www.ubicom.com.

[2] “IP2022 Internet Processor Product Brief”,
UBICOM, Inc., 2001, Web Site:
http//www.ubicom.com.

[3] “IP3000/IP2000 Family Software Development
Kit Reference Manual”, UBICOM, Inc., 28 June
2005, Web Site: http//www.ubicom.com.

[4] “Boyer-Moore algorithm”, Web Site:
http://www-igm.univ-
mlv.fr/~lecroq/string/node14.html.

[5] Aldwairi M., “Hardware-Efficient Pattern
Matching Algorithm And Architectures For Fast

Intrusion Detection”, Dissertation, Computer
Engineering Dept., North Carolina State
University, 2006.

[6] Charitakis I., Pnevmatikatos D., Markatos E.,
Anagnostakis K., “Code Generation for Packet
Header Intrusion Analysis on the IXP1200
Network Processor”, Appears in 7th International
Workshop on Software and Compilers for
Embedded Systems, Vienna, Austria, Sep. 2003.

[7] Herbert B., Kaiming H., “A network intrusion
detection system on IXP1200 network processors
with support for large rule sets”, Technical
Report, Leiden University, Netherlands, 2004.

[8] Kim Y., Jung B., Lim J., Kim K., “Processing of
Multi-pattern Signature in Intrusion Detection
System with Content Processor”, The 6th
International Conference on Information,

http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=4446227

90 International Arab Journal of e-Technology, Vol. 2, No. 2, June 2011

Communications & Signal Processing, 10-13 Dec.
2007.

[9] Matyas A., Moore J., “String Searching over
Small Alphabets”, Technical Report, Department
of Computer Sciences University of Texas,
Austin, 11 Dec. 2007.

[10] Münz G., Weber N., Carle G., “Signature
Detection in Sampled Packets”, The 2nd
Workshop on Monitoring, Attack Detection and
Mitigation, Toulouse, France, 5-6 Nov. 2007.

[11] Ryu S., Chung B., Kim K., “Incorporating
Intrusion Detection Functionality into 1XP2800
Network Processor based Router”, Electronics
Telecommunication Research Institute, 20-22
Feb. 2006.

[12] Sheu T., Huang N., Lee H., “A Time- and
Memory- Efficient String Matching Algorithm
for Intrusion Detection Systems”, Global
Telecommunications Conference, 1 Dec. 2006.

[13] Salim R., Radha G., “Software-based Packet
Classification in Network Intrusion Detection
System using Network Processor”, IEEE Region
10 Conference on TENCON, 14-17 Nov. 2006.

[14] Tuck N., Sherwood T., Calder B., Varghese G.,
“Deterministic Memory-Efficient String
Matching Algorithms for Intrusion Detection”,
Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications
Societies, VOL.4, PP.2628 –2639, 7-11 March
2004.

[15] Wang Y., Kobayashi H., “High Performance
Pattern Matching Algorithm for Network
Security”, International Journal of Computer
Science and Network Security, VOL.6 No.10,
PP.83–87, Oct. 2006.

[16] Zhao K., Chu J., Che X., Lin L., Liang H.,
“Improvement on Rules Matching Algorithm of
Snort Based on Dynamic Adjustment”, The 2nd
International Conference on Anti-counterfeiting,
Security and Identification, 20-23 Aug. 2008.

Qutaiba Ali was born in Mosul,
Iraq, on October ,1974. He
received the B.S. and M.S.
degrees from the Department of
Electrical Engineering,
University of Mosul, Iraq, in
1996 and 1999, respectively. He

received his Ph.D. degree (with honor) from the
Computer Engineering Department, University of
Mosul, Iraq, in 2006. Since 2000, he has been with
the Department of Computer Engineering, Mosul
University, Mosul, Iraq, where he is currently an
assistance professor. His research interests include
computer networks analysis and design, embedded
network devices and network security. Dr. Ali
instructed many topics (for Post and
Undergraduate stage) in computer engineering
field during the last ten years and has many
publications in numerous journals and conferences.
He acquires many awards (form National
Instrument INC.) and appreciations form different
parties for excellent teaching and extra scientific
research efforts. Also, he was invited to join many
respectable scientific organizations such as IEEE,
IENG ASTF, WASET and many others. He was
participate (as technical committee member) in ten
IEEE conferences in USA, Malaysia, China, South
Korea and Egypt and joined the editorial board of
five scientific international journals.

Sahar Lazim was born in Mosul, Iraq, on 1985. She
received the B.S. & MS degree from the Department of
Computer Engineering University of Mosul, Iraq, in
2007 and 2009 respectively. Her research interests
include Network security & Network processor
architecture.

http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=4446227
http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=4142120
http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=4142120
http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=9369
http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=9369
http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=9369
http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=4674526
http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=4674526
http://ieeexplore.ieee.org.connector.ivsl.org/xpl/RecentCon.jsp?punumber=4674526

