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ABSTRACT Predicting students’ line of actions helps educators give adequate guidance to students, but this 

remains a challenge in science, technology, engineering, and mathematics (STEM) education. Given this, 

there is a scarcity of related research that will help improve teachers’ prediction capabilities on students’ line 

of actions when tackling ill-defined problems (IDPs), as well as how emerging data mining techniques could 

contribute to such prediction. The present study aims to fill the gap by measuring the quality of teachers’ 

predictions (labeled expert prediction), where 43 elementary teachers predict students’ step-by-step actions 

when solving an IDP through the light path task (LPT), and then comparing its quality with that of machine 

prediction, executed via sequential pattern mining techniques. Data on students’ lines of action were collected 

from 501 5th- and 6th-grade students, aged 11–12. The results showed the significantly lower accuracy of 

expert prediction compared to machine prediction, which highlights the advantages of using data mining in 

predicting students’ actions and shows its possible application as a recommendation system to provide 

adaptive guidance in future STEM education. 

INDEX TERMS Data mining, ill-defined problem, machine prediction, problem-solving, sequential pattern 

mining, teacher effectiveness. 

I. INTRODUCTION 

Teachers require a good grasp of what students already know 

and their corresponding actions to design more effective 

teaching methods [1], [2]. Ensuring accurate predictions 

remains difficult, however, because teachers would need to 

identify, interpret, and respond to the knowledge level of 

dozens of students, as well as have sufficient awareness of 

classroom-related events [3], [4]. In science, technology, 

engineering, and mathematics (STEM) education, particularly, 

students are required to solve well-defined and ill-defined 

problems (IDPs), with the former having a clearly defined 

goal/routine/solution, while the latter has multiple possible 

goals/routines/solutions [5], [6]. This setup makes 

understanding students’ thinking and possible actions during 

problem-solving processes even more problematic [7]. 

To discover information that would be difficult or 

impossible to analyze manually, data mining techniques have 

been widely adopted in many fields [8]. In education, they are 

used to aid teachers’ understanding of students’ learning as 

well as recommend instructional materials and teaching 

methods [9]–[12]. However, related literature on how data 

mining techniques support teachers’ prediction of students’ 

actions or provisions on adaptive guidance is scarce. To fill 

that gap, the present study developed a machine prediction 

model wherein a STEM problem, labeled light path task (LPT), 

was designed to collect students’ step-by-step actions in ill-

defined problem (IDP)-solving and their level of completion. 

The data were then further analyzed using sequential pattern 

mining (SPM). On the other hand, expert prediction (or a 

teacher’s prediction) regarding students’ progressive actions 

can be compared with that of machine prediction, and, thus, 

allows comparative performance to be evaluated.  

The present study aims to highlight the usefulness of 

machine prediction as a teaching guide and contribute to the 
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development and implementation of data mining technology 

in the field of education by answering the research question 

(RQ):  

How accurate are expert prediction (teachers’ prediction) 

and machine prediction regarding students’ step-by-step 

actions in ill-defined problem-solving?  

II. THEORETICAL BACKGROUND 

A. KNOWING STUDENTS’ THINKING AND ACTIONS 

High familiarity with students and their capacities is 

considered necessary in guaranteeing teaching effectiveness, 

as pointed out by many veteran psychologists and educators in 

their educational practices [13]. However, the long history of 

related research has also implicitly shown how difficult it is 

for teachers to predict their students’ actions in problem-

solving, especially with IDPs in STEM. 

Educators and educational psychologists, such as John 

Dewey, Jean Piaget, and Lev Vygotsky, suggested how 

learners’ prior experiences were fundamental to build 

continuous learning, as supported by the empirical research of 

several others [1], [2]. However, different individuals have 

varying intellectual levels, mental schemas, and learning 

experiences, which makes it challenging to know the learning 

status of each student fully. In STEM education, for example, 

students are frequently asked to explore IDPs—problems 

without a clearly defined goal, a single routine, or an absolute 

solution [5]—which makes teachers’ understanding of 

individual thinking even more problematic. Many studies have 

indicated the complexity of evaluating students’ thinking on 

an individual level [3]–[4], [7]; hence, it is crucial to evaluate 

the extent of teachers’ knowledge of their students’ thought 

processes and actions and further tackle the challenges faced 

by teachers in understanding their students.  

B. WELL-DEFINED AND ILL-DEFINED PROBLEMS 
(IDPs) IN STEM  

Most problems discussed in STEM education do not stop with 

absolute solutions and would require nonlinear and more 

complex solving methods. Much effort has been extended to 

teach students how to solve both well-defined problems and 

IDPs. Well-defined problems, such as “What is the ratio of the 

volume of oxygen to that of hydrogen when water is 

electrolyzed?” or “What is the distance a ball travels in 1 s 

after free release?”, are not new to STEM teachers as these 

have clear goals for which formulated methods can be used as 

solutions. However, questions that lack a clear goal, specific 

investigation boundaries, and solving methods are referred to 

as IDPs, which are becoming more common in STEM 

education. Lynch et al. [5] defined IDPs as problems with no 

definitive answer and heavily dependent upon their conception 

and relevant concepts at hand, giving field-specific questions 

related to swallows as examples, such as “What is the airspeed 

velocity of an unladen swallow?” (physics) and “Design a 

residential building with housing for swallows” (architecture). 

Le et al. [7] proposed that problems could be seen at the 

continuum between well-defined problems and IDPs. To 

better categorize a problem, the researchers divided questions 

into five levels based on the solution’s complexity, strategic 

diversity, and ease of verification regarding solution 

correctness. This categorization provided a framework for a 

better understanding of IDPs in STEM education. Furthermore, 

STEM problems have ill-defined attributes to some extent. 

Because of the elastic nature of an IDP, educators have 

frequently used two strategies, namely expert review and peer 

review/collaboration, to give feedback to learners who have 

tackled the problem [5]. Sensibaugh et al. [14] used ill-defined 

biochemistry cases for students’ group learning by holding 

small group discussions online facilitated by an instructor or a 

teaching assistant via students’ asynchronous discussion 

boards. The instructor or teaching assistant in the study also 

monitored the discussion boards and guided students’ 

problem-solving. Shared knowledge from an expert and a 

small group of peers was also notably used in addition to 

computer-based instruction and evaluation. Furthermore, 

these studies revealed that information sharing with and 

learning from others are the main concepts for instruction in 

tackling IDPs. 

C. SPATIAL ABILITY IN STEM 

In an increasingly competitive technological society, STEM 

professions require spatial ability as a vital part of their work, 

ranging from electric circuitry design and mechanical 

engineering to aeronautics, among others. Tasks requiring 

spatial ability that STEM professionals encounter are mostly 

IDPs. Therefore, students’ spatial abilities are vital in STEM-

related learning, such as physics, chemistry, biology, 

engineering, technical aptitude, and design, as well as 

geography, arts, and sports. In K-12 STEM education, solving 

problems using spatial cognition and reasoning is regarded as 

an essential part of a curriculum [6]. 

Previous studies have shown how spatial ability influenced 

a STEM student’s capacity to solve problems. A large-scale 

study [15] supported how students’ spatial ability affected 

their advanced learning in STEM—a finding also advocated 

by other psychologists. Another study [16] using the five 

spatial skill-related tests developed by the Office of Naval 

Research [17] found that although there were existing 

instruments, there were no spatial tests that satisfied the 

following requirements: (a) of an ill-defined nature that 

elementary students could solve in a limited time, (b) allowed 

observations on how students continue the task of problem-

solving, and (c) enabled measurement of students’ task 

performance. To address this void in the literature, the 

researchers designed a two-dimensional light path problem 

that satisfied the requirements above, in which students can 

have different approaches to reach one goal. Using the 

students’ gathered data could help examine how well teachers 

know about students’ thinking and actions in IDP-solving. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3010168, IEEE Access

                       Y. C. N. Lien et al.: How Well Do Teachers Predict Students’ Actions in Solving an Ill-Defined Problem in STEM Education  

 

VOLUME XX, 2020                                                                                                                                                                                                                                                                        3 

D.  ANALYZING SEQUENTIAL PATTERNS OF 
STUDENTS’ PROBLEM-SOLVING 

Given the number of students in a classroom and the 

complexity of instructional content, it is difficult to identify, 

interpret, and respond to students’ thinking on an individual 

level and provide adaptive guidance accordingly. In particular, 

the more ill-defined attributes there are, the more complex 

students’ actions can be. Moreover, when the scope of the 

problem expands and the solving methods diversify, the 

standard of operations becomes nonexistent. Thus, the rapid 

development of computer technology has been considered an 

opportunity to support teachers in the aspect of knowing 

students and predicting their actions.  

With this, Wang [18] observed that when students were 

allowed to share and access information with peers, their 

levels of self-regulated learning and e-learning effectiveness 

were enhanced, and this was supported by several other 

studies [14], [19]. Thus, sharing or using collective knowledge 

was recognized as a promising approach for helping students 

solve IDPs. For this, many techniques in the computer science 

field have been adopted to organize collective knowledge for 

use in instruction. 

Data mining techniques, especially clustering, classification, 

regression, association rule mining, and SPM, have been 

widely used in the industrial, medical, and business fields [8], 

[20] and have now received more attention in the educational 

field [9]–[12]. Le et al. [7] stressed that educational data 

mining techniques have the potential for use in IDP instruction. 

Using the experiment of Fournier-Viger et al. [21] as an 

example, learners operated RomanTutor, a tutoring system, to 

simulate how astronauts use a robotic arm in an international 

space station. Data mining techniques, including SPM, were 

used to support and guide learners to tackle IDPs, and their 

study’s results supported the potential of using machine 

prediction in educational assistance. 

SPM is designed to reveal patterns in a sequence by 

measuring the frequency of how sets of items appear in a given 

data set (e.g., analyzing a data set of students’ procedures 

while solving a STEM problem). For instance, using the “A 

 B  C” sequence in solving problems may be more 

frequent in a set compared to using the “C  B  A” 

sequence, and so on, depending on the number of patterns that 

emerge. Given the complexity of studying various patterns, 

several SPM algorithms have been developed for different 

contexts. Febrer-Hernandez and Hernandez-Palancar [22] 

presented and introduced a major a priori algorithm that 

addressed the variance in contexts, including Generalized 

Sequential Pattern (GSP), which is more commonly used, and 

Sequential Pattern Discovery using Equivalence classes 

(SPADE), as well as Constraint-based Apriori Algorithm for 

Mining Long Sequences (CAMLS), among others. Fournier et 

al. [23] reported how a wide selection of open-source software 

could be used for SPM purposes and identified another 

variation of a typical SPM technique that included mining 

frequent partial orders, which could complement SPM. 

Considering the data set size, objective, and availability, the 

researchers selected Weka ver. 3.8 [24], which uses the GSP 

algorithm as its mining tool.  

E. APPLICATIONS OF SEQUENTIAL PATTERN MINING 
IN STEM 

Wang et al. [25] used lag sequential analysis [26] to explore 

university students’ collaborative learning behaviors in 

different learning environments and successfully identified 

and demonstrated that students exhibit different behavior 

patterns in diverse learning environments. Kucuk and Sisman 

[27] also used lag sequential pattern techniques to reveal 

differences between teachers’ and students’ behavioral 

patterns in one-to-one robotics instruction processes. On the 

other hand, Kinnebrew et al. [28] used SPM to detect students’ 

learning behavior patterns in a computer-based learning 

environment wherein a STEM topic (i.e., global climate 

change) was selected for grade 8 students to explore. This was 

done through a piecewise linear segmentation algorithm with 

the differential sequence mining technique. After coding 

students’ behaviors into categories (i.e., reading, editing, 

querying, explaining, quizzing, etc.), the researchers identified 

productive and unproductive learning behaviors by comparing 

those of less and more successful students.  

Identifying differences in behavior within the spectrum of 

less and more successful students continued in a study done 

by Chang et al. [29], wherein a web-based collaborative 

simulation was developed to allow students to collaboratively 

solve a problem for which they needed to apply kinematics 

principles and tune variables. After gathering the simulation 

results, the researchers carried out a lag sequential analysis to 

explore the students’ activities. Their results revealed that less 

and more successful students observed different sequential 

patterns as “the discussion of ‘monitoring & reflecting’ was 

also linked to ‘exploring & understanding,’ which was further 

linked to the problem-solving activity ‘browsing problem’” 

[29, p. 230]. From this, they concluded that successful students 

tended to apply analytical reasoning strategies. Meanwhile, 

Sung and Kelley [12] revealed students’ problem-solving 

patterns by analyzing the sequential patterns of iterative design 

processes when working on a STEM learning activity of 

designing a doggie door alarm. They then identified 

significant sequential patterns and a problem-solving pathway 

model that includes six design process elements. All these 

studies showed how data regarding students’ behaviors in 

STEM activities can be extracted with adequate SPM 

techniques. 

In applying such techniques in STEM education, Perera et 

al. [30] utilized SPM to reveal patterns in less and more 

successful students’ performances using students’ online 

group work data to facilitate their learning of software 

development. Their study indicated that the SPM of stronger 

groups was promising for providing advice to their peers’ 

learning. Chiu and Lin [31] used an innovative approach to 

explore students’ concept map construction by developing a 
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concept-mapping platform that could trace and record students’ 

mapping activities. In this study, students’ mapping sequences 

were analyzed, and sequential patterns in the step-by-step 

processes of less and more successful students were compared. 

Their results showed that students who had superior 

performance on concept map construction demonstrated 

similar sequences, while no similarities were found among 

students who had inferior construction performance. These 

studies support the present study’s claim that the sequential 

patterns of more successful students could be identified and 

have the potential to provide useful information for instruction. 

The present study’s researchers noted that previous studies 

were more focused on discovering students’ behavioral 

patterns or measuring the effect of using SPM in learning. 

Studies rarely investigated empirically and compared how 

well teachers and machines predict students’ actions when 

solving IDPs in STEM-related activities. It was also just as 

rare to find a study that centered on how such identified 

patterns can be used to predict individuals’ next actions. 

Therefore, the present study may not only shed light on the 

extent of expert and machine predictions but also enhance the 

applicability of using machine recommendations to guide 

students in solving IDPs adaptively. 

III. RESEARCH METHODS 

A. PARTICIPANTS 

In the present study, the researchers asked 501 grade 5 and 6 

students (aged 11–12) from 7 elementary schools in Taiwan to 

solve the two-dimensional LPT designed specifically by the 

researchers. After excluding those who did not have any 

correct answers (5 students) and those who had only 1 correct 

answer (35 students), the data of only 461 students were used. 

The criterion was set because only when students had more 

than two correct answers did their sequential patterns become 

useful for SPM. To measure machine prediction, the data were 

divided into test and training sets (further explained in the Data 

Analysis section). Stratified sampling of 10.4% (48 students) 

of each score level was used for the test set, while the 

remaining 89.6% (413 students) was for the training set. Then, 

the researchers adopted the Pareto principle, also represented 

as the 80/20 rule or the law of the vital few [32], and used the 

answers of the approximate top 20% of more successful 

students to establish the sequential pattern rule set. To be 

specific, 82 (19.9%) of the 413 students correctly answered 6 

or 7 light paths, with a total of 532 light paths included in the 

training set. The performance of machine prediction, which 

was based on the sequential pattern rule set established from 

the training set, was then measured. 

To evaluate expert prediction performance, the researchers 

chose the sample of teachers based on their educational and 

professional backgrounds. Of 43 elementary teachers, 18 took 

up master’s studies in science education in a major university, 

while the remaining 25 were in-service teachers who had 

experiences in teaching STEM-related courses in an 

elementary school setting (14 of whom had master’s degrees 

and 11 with bachelor’s degrees for varying majors). These 

teachers have prior knowledge in teaching and understanding 

the interdisciplinary nature of problem-solving. However, 

terms, such as well-defined and IDPs, have not been 

emphasized in their preparation programs. Hence, the 

researchers designed a task that will allow teachers to make 

predictions without interference from their knowledge of IDP-

solving. In the experiment, these teachers were asked to 

predict students’ step-by-step actions based on real data in the 

test set. However, the test set’s size was too large and beyond 

the capacity of human experts to complete the prediction. Thus, 

the present study randomly selected 30% from the above test 

set (n = 16 students) and used these students’ answers and 

sequences as test contents for the teachers to predict. Our pilot 

test found that teachers needed about 40 min to complete the 

prediction task, which can be considered too long for a student 

exercise. As a result, the test contents were divided into two 

equivalent parts (Forms A and B) from which teachers can 

select randomly, reducing the test time to 20 min. Forms A and 

B were used by 19 and 24 teachers, respectively. 

B. LIGHT PATH TASK (LPT) 

The researchers designed a two-dimensional LPT that shows 

a laser light beam target experiment (Fig. 1). This 20 min long 

LPT included the following instructions: “There are many 

ways to use and guide a laser light beam to reach point B from 

point A. You can only use the minimum number of mirrors to 

complete each light path. Given this, please draw as many light 

paths as you can.” All seven possible light paths are shown in 

Fig. 2. 

 

  
FIGURE 1.  Ill-defined problem: Two-dimensional light path task board. 
(A) The laser beam shoots downward first. (B) The target. (C) The 
minimum number of mirrors to be used to reflect the beam; a mirror is 
located on the slope of a triangle. 
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FIGURE 2.  Seven possible light paths. 

 

It is worth noting that this LPT’s design emphasis was to 

create an IDP task with multiple solutions that have similar 

cognitive loads so that students’ problem-solving sequences 

mainly reflect their preferences and not the relative difficulties 

of each solution. This will yield meaningful sequential 

patterns and produce more reliable results. With many 

research design restrictions, this light task is more likely set as 

a research instrument than an instructional instrument. 

However, the task can still be used as the students’ exploration 

activity where they can apply their STEM knowledge (e.g., 

light travels in a straight line and reflection of light), spatial 

ability, and/or skills (e.g., planning and causal relationship) in 

the elementary school level. 

C. INSTRUMENTS FOR EXPERT PREDICTION AND 
MACHINE PREDICTION 

For collecting data from expert prediction, the present study 

developed a program (Fig. 3) for teachers to input their 

predictions, which were randomly selected from the test set, 

based on students’ actions. For each prediction, teachers were 

asked to give their best and second-best predictions regarding 

students’ possible corresponding actions. Moreover, the 

current study designed a machine prediction model (Fig. 4) 

that is composed of the following elements: a training set, a 

test set (which has been introduced in the Participants section), 

the SPM algorithm for creating the rule set, and the machine 

prediction algorithm to produce machine recommendations. 

The following two sections explain the study’s machine 

prediction model. 

 

 
FIGURE 3.  Screenshot of the program where teachers input their 
predictions of students’ next chosen light paths. 

 

 
FIGURE 4.  Machine prediction model. 

D. SEQUENTIAL PATTERN MINING ALGORITHM AND 
RULE SET 

To discover students’ sequential patterns as they work on the 

LPT, the researchers coded students’ sequence of drawing 

correct light paths and the total number of correct paths. 

Students’ records were then analyzed with SPM and used to 

create the rule set. To establish the rule set of sequential 

patterns, the present study used Weka ver. 3.8 as a mining tool.  

Furthermore, all calculations were executed using a computer 

that has a 1.8 GHz central processing unit (CPU). Using the 

GSP algorithm, Weka first discovered the frequent sequences 

and then filtered those with a user-selected minimum support 

level (the default value is at 10% but can be changed 

depending on the purpose of its use). Considering the large 

diversity of the students’ sequences of drawing paths, the 

researchers set the minimum support level at 5%. The rule set 

in the present study showed a total of 462 frequent sequential 

patterns, which represented 532 paths from the 82 students 

who were more successful in the task and had 6–7 correct 

answers. In the 462 frequent sequential patterns, the numbers 

of each length of the sequence from 1 to 5 were 7, 42, 206, 
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205, and 2, respectively. A sample of the sequential patterns 

in the rule set is shown in Fig. 5. 

 

 

FIGURE 5.  Rule set: Sample of sequential patterns. 

NOTE: [Sequential no.]<{path 1}{path 2}{path 3}>(frequency). 

 

It can be noted that the sequential patterns with lengths 6 

and 7 did not reach the minimum support threshold of 5%, 

which called for the need to establish a machine prediction 

algorithm that can address this problem and continue 

predictions for longer sequences. 

E. MACHINE PREDICTION ALGORITHM AND MACHINE 
RECOMMENDATIONS 

The machine prediction algorithm was presented as follows: 

 
Machine Prediction Algorithm 

1. Input 

2.  A student’s light path record is in the Test Set. 

3.  All rules are in the Sequential Rule Set. 

4.  Output 

5.  Predictions on this student’s next action:  

6.   1. The best prediction and 2. The second-best prediction 

7.  Begin 

8.  INPUT a student’s record in the Test Set: SequenceOfStudentA  

9.   for i = 1 to (Length(SequenceOfStudentA) - 1) 

10.                    TestSequence = LEFT(SequenceOfStudentA, i) 
11.    if TestSequence matches rules in Rule Set that has the  

length of (LENGTH(TestSequence + 1)) then 
12. COMPARE above frequencies of all matched  

sequential rules  

13.  REPORT the highest frequency as the best  
prediction and the second highest as the 

second-best predictiona 

14.  else if // when two more predictions were needed from a  
lower sequential length 

15.  FIND sequential rules in Rule Set with the next  

short length and started with 
RIGHT(TestSequence, i – 1) 

16. COMPARE above frequencies of all matched  

sequential rules 
17.  REPORT the highest frequency as the best  

prediction and the second highest as the 

second-best predictiona 
18.  else if // when only one more prediction was needed  

from lower sequential length 

19.   REPORT the best prediction obtained from  
rules of longer sequential length and the 

second-best prediction from shorter 

sequential lengtha 
20.  end if 

21. end for 

22. End 

aIn the case of a third roundup, an arbitrary one was selected. 

 
The machine prediction algorithm in the present study used a 

student’s light path record (line 2 of the algorithm), which is 

read from the test set (as shown in Fig. 4), and all sequential 

pattern rules (line 3), which are read from the rule set of 

sequential patterns, to output two predictions for his or her 

next action, including one best prediction and one second-best 

prediction (lines 4–6).  

For example, the algorithm fetched a student’s record 

sequence from the test set that has a path sequence of “(C)  

(F)  (B)” (SequenceOfStudentA; line 8). Based on this 

student’s record, which has a sequence length of 3, only two 

sets of predictions would be made for this evaluation. The first 

set was to make predictions based on the first known “(C),” 

and the second set was to make predictions based on the 

currently known “(C)  (F).” Here, we used the second set of 

predictions for the explanation, to which i = 2 and the variable 

of TestSequence equaled “(C)  (F)” (lines 9–10). Afterward, 

the algorithm was to produce two predictions, one best and one 

second-best, for each set of predictions (lines 11–21). These 

two predictions would be compared with the student’s actual 

drawing path, “(B),” to judge the quality of this machine 

recommendation model (Fig. 4) with the evaluation methods 

explained in the Data Analysis section. Continuing this 

example, the length of the current known TestSequence was 2. 

The algorithm’s task, then, is to predict the student’s third act. 

To fulfill this, the algorithm sought all three-series sequential 

patterns in the rule set starting with “(C)  (F)” (line 11), 

which were based on numbers 80–84 in Fig. 5. After 

comparing the five candidates’ frequencies, the best prediction 

(G) and the second-best prediction (B), with the highest 

frequencies of 10 and 8, respectively, made up the final output 

(lines 12–13). In this case, the student’s drawing after “(C)  

(F)” was “(B).” These results indicated that the machine 

prediction algorithm missed the answer with its first prediction 

but got it correctly with its second-best prediction. 

As indicated by Fournier-Viger et al. [33], sequential 

pattern rules in the rule set may not be sufficient for many 

reasons and, thus, become unable to produce predictions. As 

such, the present study used a partially ordered approach by 

scanning the sequential pattern rules with the next shorter 

length in the rule set. For example, if our algorithm was unable 

to find the six-series rules to give two predictions for the 

TestSequence “(A)  (B)  (C)  (D)  (E),” the algorithm 

would neglect the leftmost item and treat it as “(B)  (C)  

(D)  (E)” only. Consequently, the five-series rules in the rule 

set would be used to make further predictions (lines 14–17). 

When only one prediction is lacking from the previous output 

(lines 11–13), the second-best prediction would be produced 

(lines 18–19) with the same partially ordered approach as 

explained above. 

F. DATA ANALYSIS 

Mean of precision (MP) and mean reciprocal ranking (MRR) 

were used as evaluation metrics of the prediction quality. 

Precision, which is defined as the ratio of correct predictions 

(which is a true positive (tp)) to the total predictions (which 

include true and false predictions (tp + fp)), is a well-
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established metric that has been widely used in many studies 

[34]. 

  

Precision =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
 ;  𝑀𝑃 =

1

𝑁
∑ Precision(𝑖)

𝑁

𝑖=1

(1) 

 

where N refers to the number of predictions, and Precision(i) 

is the precision of the i-th prediction. For example, if a 

student’s sequence is path A and then path B, and the expert 

or machine correctly predicts the second path, which is path B, 

then this prediction’s precision is regarded as 1 (tp is 1, and fp 

is 0). Meanwhile, if the prediction is path C, which is an 

incorrect prediction, then the precision value would be 0. MP 

would be the mean of precisions of tries. MRR is also 

frequently used in evaluating the performance of 

recommendation systems [35], and, here, it measured the 

reciprocal of the highest-ranked correct answers.  

 

𝑀𝑅𝑅 =
1

𝑁
∑

1

rank(𝑖)

𝑁

𝑖−1

(2) 

 

where N is the number of predictions, rank(i) is the rank of 

the correct prediction of the i-th prediction. The prediction for 

each student’s next drawing was set only to two in the present 

study, considering human capacity. Taking the previous 

student’s case as an example (path A then path B), if the expert 

or machine errs in its first attempt and only predicts correctly 

in the second, then a 0.5 value is gained (0.5 = 0/1 + 1/2). 

MRR was calculated from all attempts. The researchers further 

applied the Mann-Whitney U test to compare the performance 

of expert and machine predictions. Finally, the MP’s and 

MRR’s effect sizes will be calculated [36]. 

IV. RESULTS AND DISCUSSION 

The total number of predictions was 1,099 made by 43 

teachers (Table I). For each prediction of students’ step-by-

step actions, teachers gave two guesses, namely best and 

second-best predictions, simultaneously. The result showed 

that of all expert predictions, there were 162 correct best 

predictions, 238 correct second-best predictions, and 699 

incorrect predictions. The performance of expert predictions 

was expressed by the MP and MRR values. The MP of expert 

predictions was 14.8% (standard deviation (sd) = 6.7%), and 

the MRR was .256 (sd = .074). On the other hand, the machine 

predicted students’ step-by-step actions 149 times, of which 

there were 68 correct best predictions, 42 correct second-best 

predictions, and 39 incorrect predictions. The performance of 

machine prediction was as follows: MP = 45.6%, MRR = .597. 

These values were unlike those of expert prediction in which 

each value was obtained from many experts’ predictions; 

hence, there were no sd values presented in Table I. 

 

 

 

TABLE I 
THE DESCRIPTIVE STATISTICS OF THE PERFORMANCE OF EXPERT AND 

MACHINE PREDICTIONS 

Prediction 
Total 
predictionsa 

Hit 
(1st) 

Hit 
(2nd) 

Missed MPb  MRRc  

Experta 1,099 
16
2 

23
8 

699 

14.8 

(6.7

%) 

.256 

(.074

) 

Machine 149 68 42 39 
45.6

% 
.597 

aNo. of teachers = 43; bMP: mean of precisions; cMRR: mean of reciprocal 

ranks. 

 

The results of the two prediction approaches were analyzed 

with the Mann-Whitney U test, and the results of comparing 

the predictions’ precisions with the reciprocal rankings are 

shown in Table II. It revealed that there were statistically 

significant differences between the expert and machine 

predictions, both in terms of precision (z = −9. 124, p < .05) 

and reciprocal ranking (z = −9.718, p < .05). Moreover, the 

statistical tests’ results indicated that the SPM-based machine 

prediction outperformed expert prediction with a value close 

to the medium effect sizes (es) for precision (es = .26) and 

reciprocal ranking (es = .28). 

 
TABLE II 

MANN-WHITNEY U TEST FOR DIFFERENCES BETWEEN EXPERT AND 

MACHINE PREDICTIONS 

Metric Groupa Mean 

rank 

Sum of 

rank 

  Z p Effect 

size 

Precision 

Expert 601.48 661028.50 

9.1 .000(*) .26 
Machine 794.28 118347.50 

Reciprocal 

ranking 

Expert 592.35 650990.50 

9.7 .000(*) .28 
Machine 861.65 128385.50 

aThe numbers of expert and machine predictions are 1,099 and 149, 

respectively. 

 

The results shown in Tables I and II have demonstrated that 

machine prediction surpassed expert prediction both in MP 

and MRR and showed significant differences with the Mann-

Whitney U Test. To closely observe all teacher’s (expert) 

predictions, the predictions were further demonstrated 

individually and contrasted with machine prediction in Fig. 6, 

which shows that most teachers had an MP of around 10%–

20% (mean = 14.8%, Table I). This indicates that when a 

teacher is faced with a student who is working on an IDP like 

the LPT, the teacher could only have a 10%–20% possibility 

to predict the student’s next action correctly. Most of the 

teachers have an MRR between 0.2 and 0.3 (mean = .256; 

Table I). 
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FIGURE 6.  Expert prediction vs. machine prediction: Mean of precision 
and mean of reciprocal ranking. 

 

In the context of the present study, the teacher gave both 

best and second-best predictions for each student’s step-by-

step actions. When a teacher has an MRR value of 1, it means 

that every student’s next action was correctly guessed in the 

expert’s best prediction. For the value of 0.5, the student’s next 

action was correctly guessed in the second-best prediction on 

average. However, if it is 0, then none of the guesses were 

correct. Given this, the MRR results in the present study mostly 

ranged from 0.2 to 0.3 only, indicating that teachers were 

barely able to predict the students’ next thinking despite being 

given two opportunities to make predictions. The low MP and 

MRR values also indicated the teachers’ poor ability to predict 

students’ actions in STEM education. As mentioned by 

Barnhart and van Es [3], it was difficult for teachers to see the 

details of students’ thinking and actions during their learning 

activity. With the increasing presence of IDPs in STEM 

education, which has raised the teaching difficulty level, the 

present study’s results and methods can help address problems 

commonly encountered by teachers. 

To look into more detail about how well each teacher’s 

prediction compares to machine prediction, this study 

illustrated every teacher’s prediction performance in terms of 

MP and MRR in contrast with that of machine prediction as 

shown in Fig. 6. Interestingly, 1 of the 43 teachers had 

exceptionally high prediction performance (no. of teachers = 

24; MP = 38%; MRR = 0.54), which indicated that some 

teachers had a better understanding of their students’ actions 

than their colleagues. Further exploration of the reasons 

behind this was not done, but this phenomenon can be a topic 

for future research to improve teachers’ performance. Two 

horizontal lines were shown in Fig. 6 to represent machine 

prediction performance (MP = 45.6%; MRR = .597; see data 

in Table I), which is seen as much higher among all cases of 

expert prediction. Adding this to the statistical results reported 

earlier, the performance of machine prediction using SPM to 

analyze students’ collective experiences demonstrated its 

power and potential to predict students’ actions. With this 

unfavorable result regarding the teachers’ prediction 

performance, some might suspect that this could result from 

the low preparedness of teachers. However, that cause is 

unlikely as all elementary teachers in the present study have at 

least four-year college degrees (with some having master’s 

degrees) and an elementary school teaching certificate. As 

elementary teacher qualifications and student performance in 

international assessments in Taiwan have been examined and 

considered as high standard [37], [38], it was reasonable to 

infer that the lack of competency in predicting students’ 

thinking was a common and challenging subject that deserves 

attention worldwide. Considering the results from Table I, 

Table II, and Fig. 6, the present study had not only answered 

the RQ by displaying the superiority of machine prediction but 

also revealed the noteworthy phenomenon wherein machine 

prediction outperformed all predictions made by teachers 

during the experiment. 

These empirical results echoed Le et al. [7], who stated that 

data mining techniques were promising for instructing higher-

level IDPs. Moreover, in addition to existing studies that used 

data mining techniques to increase knowledge and enhance 

students’ STEM learning [9]–[12], [18], [21], [25], [27], [29], 

[31], the present study extended knowledge in the field by 

demonstrating machine prediction’s capacity. All “next 

actions” recommended by the machine prediction model were 

based on the collective knowledge of more successful students, 

which revealed that the Pareto principle [32] could be used to 

support the predictions. 

Predictions based on the collective knowledge of more 

successful students made in this machine prediction model can 

be used in guiding those less successful students throughout 

their problem-solving processes when tackling an IDP. More 

specifically, for example, many previous studies have reported 

that students’ problem-solving processes in STEM education 

all have sequential patterns [12], [29], [39]. These have 

allowed the researchers to claim that by incorporating the 

present study’s machine prediction model, students’ problem-

solving learning, which was mentioned in the studies above 

(e.g., “Design a Doggie Door Alarm” activity [12]) and other 

STEM problem-solving activities (e.g., “Interactive Problem 

Solving Questions” [40], “Interactive Simulations for Science 

and Math” [41]), can be supported by machine-generated 

recommendations based on SPM. However, the present study 

has not emphasized and considered the time complexity of the 

algorithm because the empirical tests have shown that the 

bottleneck of the machine prediction model lies in establishing 

a sequential pattern rule set from a matrix with a sequential 

length of 7 and 501 participating students that can be 

accomplished in less than a second. In the most exemplary 

learning activities in K-12 STEM education [12], [40], [41], 

IDPs have similar sequential lengths and their rule sets can be 

established from the same number of students as that of the 

present study. As such, this enabled the researchers to assert 

that the present study is vital and applicable for guiding 

students who are learning about IDPs in STEM education. 

However, it should also be noted that there are many other 

machine learning techniques [22], [23], [26] that can be 

utilized to enhance executive performance when needed. 
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From the perspectives of pedagogical theories, high 

machine prediction accuracy has implications in improving 

teaching and learning. Its capability to detect the differences 

between sequential patterns while solving IDPs between 

students and their more successful counterparts enabled the 

researchers to achieve what was emphasized in pedagogical 

theories—to ascertain what students already know and then 

teach them accordingly [42]. In addition, the implications that 

gave timely and adaptive guidance based on collective 

knowledge constructed from more successful IDP solvers 

aligned with Vygotsky’s theory of the zone of proximate 

development and scaffolding [43, p. 86], which highlighted 

the importance of accurately providing the level of potential 

development zone—a set of skills or knowledge that a student 

cannot do by himself or herself without guidance. These 

studies have pointed out that the machine prediction model 

developed in the present study was not only capable of 

predicting students’ next actions in solving IDPs but also has 

the potential to transform into a recommendation system 

compatible with major pedagogical theories. This can 

substantially change the traditional approach of teaching IDP-

solving, which has the disadvantage of relying heavily on 

human interactions [5], making it time-consuming, ineffective, 

inefficient, and highly unreliable. 

V. CONCLUSION 

Philosophical and psychological views have identified the 

importance of knowing students’ thinking and behaviors for 

successful subsequent instruction. The present study’s results 

revealed that expert prediction on students’ progress in solving 

an IDP performed significantly weaker than machine 

prediction, which means that the prediction of students’ 

thinking and actions were frequently beyond the teachers’ 

capacities. To conduct machine prediction, the researchers 

used SPM aided with a partial sequential algorithm, which 

raised the mean of precisions (MP) and the mean of reciprocal 

ranking (MRR) to 45.6% and .597, respectively, and reached 

statistical significance. The results concluded that machine 

prediction outperformed expert prediction in terms of 

knowing students’ next actions and could be a useful approach 

to enhance the instruction quality in STEM education. This 

shows how the present study’s methodology and results can 

be extended and applied in various problem-solving activities 

in STEM. However, some limitations should be considered 

regarding the present study and its results. First, although 

teachers involved were not outliers, caution is needed when 

making inferences to other regions. A bigger population 

sample for future studies should be helpful. Second, although 

the machine prediction model used can be extended in 

predicting more complicated well-defined problems or IDPs 

and has the potential for further application to higher school 

“levels, the generalization should be scrutinized. Third, 

although the researchers have found that both MP and MRR of 

machine prediction have reached relatively higher levels than 

any teacher’s prediction in this study, they have also noted that 

a disadvantage of the GSP algorithm is that it makes multiple 

database passes and generates a large set of candidate 

sequences. As explained previously, while the SPM-based 

prediction method in this study was able to meet most needs 

in supporting students’ learning activities of solving IDPs in 

K-12 STEM education, the executive time performance for 

different complexities was not measured. As such, further 

studies should explore the distribution and types of IDPs that 

would exceed the capacity of this method or focus on fine-

tuning data mining and machine prediction using revised and 

improved algorithms, such as those used in other studies [25]–

[27], [44], or the combined machine technique [45] to elevate 

computational and prediction performance.  

The rapid development of data mining techniques creates 

the advantage of continuously providing new possibilities for 

assisting teachers in discovering students’ learning behaviors 

and needs and guiding students in making timely and adequate 

dynamic decisions [46]. Although the research subjects of the 

present study and many other studies [12] were elementary 

students and elementary-level contents [29], [39], it can be 

inferred that similar sequential patterns of more and less 

successful students can also be expected for higher school 

levels based on the findings of previous studies. Therefore, 

there is a high likelihood that this machine prediction approach 

can be extended and used in higher school levels to enhance 

the teaching and learning qualities of future STEM education. 

For further research, a study to compare educators’ teaching 

methods with or without machine prediction support will 

establish a technologically supported environment that may 

better arm teachers with information that can help inform their 

instructional decisions in STEM education. The research 

findings will shed light on how machine prediction can be 

implemented in STEM classrooms. In addition, the expansion 

of the current machine prediction model into a machine 

recommendation model may also be a topic for further studies 

to provide adaptive and immediate guidance on online 

problem-solving activities. The researchers believe that these 

will prove useful in online STEM education development. 

Finally, further studies that explore different degrees of IDPs 

and/or complexities of teaching content that affect MP and 

expert prediction performance are needed to bolster the results 

of the present study. The future findings of such studies will 

add to the gaps in knowledge in this particular field and will 

be vital for the further implementation of machine prediction 

and recommendation to enhance student learning in STEM 

education.  
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