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Estimating the 3D pose of the space object from a single image is an important but challenging work. Most of the existing methods
estimate the 3D pose of known space objects and assume that the detailed geometry of a specific object is known. These methods are
not available for unknown objects without the known geometry of the object. In contrast to previous works, this paper devotes to
estimate the 3D pose of the unknown space object from a single image. Our method estimates not only the pose but also the shape of
the unknown object from a single image. In this paper, a hierarchical shape model is proposed to represent the prior structure
information of typical space objects. On this basis, the parameters of the pose and shape are estimated simultaneously for
unknown space objects. Experimental results demonstrate the effectiveness of our method to estimate the 3D pose and infer the
geometry of unknown typical space objects from a single image. Moreover, experimental results show the advantage of our
approach over the methods relying on the known geometry of the object.

1. Introduction

The pose estimation of uncooperative space objects is a key
technology for many space missions such as target recog-
nition and on-orbit service [1, 2]. In contrast to other
state-of-the-art systems, a monocular camera ensures pose
estimation under low power and low hardware complexity
[3]. However, it is sometimes hard for the monocular
camera to provide clear image sequence limited by the
observation condition. Therefore, it is necessary to study
the pose estimate of the space object from a single image.

3D pose estimation from a single image is an important
but challenging task. For space objects, most of the existing
methods rely on the known geometry of the object, which
can be broadly classified into model-based and template-
based methods. For model-based methods, the 3D pose is
determined by an iterative algorithm to minimize a certain
fit error between the features detected in the input image
and the corresponding features of the known reference 3D
model [4–8]. For the template-based methods, the input
image is searched for specific features that can be matched
to an assigned template, and the 3D pose is obtained from

the best matching with the prebuilt template library of the
object [9–13]. Currently, with the development of deep learn-
ing technology, a pose determination method based on con-
volutional neural networks (CNN) is provided in [14]. All of
the above methods rely on the known geometry of the object
and work on the specific object.

However, the detailed geometry of the object cannot
always be known in some scenarios, such as for the unknown
space objects. Even for the object with known geometry, there
might be difference between the known reference model and
the actual object. This is because the structure of the space
object may change in different working modes, such as the
rotation of solar sails. Compared with the known object, the
pose estimation of the unknown object is more difficult.
Methods relying on the known object geometry are not avail-
able for the unknown objects. For the unknown object, not
only the pose but also the shape should be estimated. A fewer
works exist in the literature on pose estimation of unknown
space objects. In [15, 16], the feature points of the unknown
space object are stored during continuous observation, and
the pose is determined through the matching of feature points.
However, the stable and continuous observation is always
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hard to provide due to the limitation of observation condi-
tions. To our knowledge, there is no effective method at pres-
ent to estimate the 3D pose of the unknown space object from
a single image.

This paper devotes to estimating the 3D pose of uncoop-
erative unknown space objects from a single image. Although
this is an ill-posed problem, it can be made possible by intro-
ducing the prior information of the object structure. Actually,
there has been some researches on this problem in computer
vision. Generally, a prior shape model is built based on the
structural similarity of objects in a specific category, and the
pose estimation of the unknown object is reduced to a 3D-
to-2D shape fitting problem where the parameters of shape
and pose are estimated simultaneously [17–19]. However,
this solution is not practicable for space objects. Compared
with common objects such as cars and chairs, there are large
structural differences among different space objects. For
example, the number of the solar panels, the shape of the
main body, and the size of the antenna vary from different
space objects. As a result, the structures of different space
objects are hard to be represented by a unified model, which
causes difficulty to introduce the prior structural information
to parameter estimation of the unknown space object.

This paper presents an efficient method to estimate the
3D pose of unknown space objects from a single image.
Although space objects have large structural variability, there

are plenty of constraints among the components of typical
space objects. For example, the solar panels of one object
always have the same size and spatially symmetric disposi-
tion. These constraints have potential value to estimate the
pose and shape for unknown space objects. From this, we
propose a hierarchical shape model of space objects to
describe the prior information of the object geometry, which
represents the constraints among components of objects in
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Figure 1: The framework of our method. The upper part is the prebuilt hierarchical shape model. The lower part shows the estimation of the
shape and pose from the input image. The red line represents the process of activating the hierarchical shape model, and the green line
represents the process of parameter estimation in support of the hierarchical shape model.
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the form of probability distribution. Compared with tradi-
tional prior shape models in computer vision such as wire-
frame [17–19] and mesh [20], the hierarchical shape model
proposed is able to describe objects with large structural
variability. Therefore, with the support of the hierarchical
shape model proposed, the pose estimation of unknown
space objects can be conducted from a single image.

The main contribution of this paper is a pose estimation
method of unknown space objects from a single image. Spe-
cifically, we establish a hierarchical shape model to describe
the prior structures of typical space objects. On this basis,
the parameter estimation method of unknown space objects
is presented.

2. Overview

Our method consists of two aspects. Firstly, the hierarchical
shape model of typical space objects is established previously.
Secondly, the pose and shape of the unknown object are
estimated simultaneously from a single image in support of
the hierarchical shape model. The framework of our method
is shown in Figure 1.

Section 3 illustrates the building of the hierarchical shape
model of space objects. Section 4 introduces the estimation of
pose and shape.

3. Prebuilt Hierarchical Shape Model

This paper builds the hierarchical shape model previously to
describe the prior structures of typical space objects. The
prebuilt hierarchical shape model is established from the
structural laws of space objects, which is defined as ∂. ∂ is a
2-tuple

∂ = V , Ch i, ð1Þ

where V represents the types of object components and C
indicates the constraints among object components. Each

node vi ∈ V is a type of basic shapes corresponding to one
type of object components. Each node Ci ∈ Cis a set of con-
straints of specific components. The detailed illustration of
V and C is as follows.

3.1. Object Components. V represents the components of
space objects. The components of the space object always
can be simplified as the basic shapes. In this paper, Vcon-
sists of four types of basic shapes: rectangle, cylinder, cube,
and paraboloid, shown as follows.

V = vrec, vcyl, vcub, vpar
n o

, ð2Þ

where rectangle is used to represent the solar panels, cylinder
and cube can be seen as the main body of the space object,
and paraboloid indicates the antenna. Admittedly, these
basic shapes certainly cannot represent all the components
of space objects. Nevertheless, these basic shapes share the
general characters of space objects and have the ability to
describe the main structure of typical space objects. Besides,
the types of basic shapes in our model are extensible. v has
a set of attributes ϕðvÞ that describe its position, size, and
pose, respectively, as below.

ϕ vð Þ = X, S, θf g: ð3Þ

X indicates the position of the component in the object
frame. S represent the size of the component in the object
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Figure 3: The constraints among the components of typical space objects considered in this paper.

Table 1: Detailed constraints of reflective symmetry.

f ⋅ð Þ p

c1 θ1 − θ2j j e−ρ1 ⋅ θ1−θ2j j

c2 S1 − S2j j e−ρ2 ⋅ S1−S2j j

c3 Dis axis1, axis2ð Þ e−ρ3 ⋅Dis axis1,axis2ð Þ
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frame. θ is the rotation angle between the object frame and
the camera frame. Figure 2 shows the reference frames of
our method.

3.2. Constraints among Object Components. C = fC1, C2,⋯,
CNðCÞg represents the constraints among the components of
space objects. The constraints considered in this paper are
shown in Figure 3, which exist commonly in typical space
objects.

Each Ci consists of a set of c defined as

c = f ϕ við Þf gk
� �

, p
� �

, ð4Þ

where f ð⋅Þ is the function over the attributes of correspond-
ing components of the object and p is the probability distri-
bution of the responses of f ð⋅Þ.

To explain detailedly, Table 1 elaborates ci of C2, which
indicates the relation of reflective symmetry.where axisi is
the major axis of the object component. Disðaxis1, axis2Þ
indicates the distance between axes of two components. c1,
c2, and c3 measure the parallelism, conformance of size, and
coaxiality between two components, respectively. Similarly,
each Ci can be represented in this way.

4. Pose and Shape Estimation

On the basis of the prebuilt hierarchical shape model, the
pose and shape of the unknown space object can be estimated
from the input image. The process of estimation is depicted
in the lower part in Figure 1.

Firstly, image features are extracted from the input
image, and the candidate regions of object components are
determined based on the image features, which are detailed
in Section 4.1. Secondly, according to the image features
and regions of components, the pose and shape are estimated
under the support of the prebuilt hierarchical shape model of
space objects, which are detailed in Section 4.2. Besides, this
parameter estimation is a complicated optimization problem,
and the strategy of optimization is given in Section 4.3.

4.1. Image Processing. For the input image, the first step is the
feature extraction. In our method, the features extracted from
the input image are lines and arcs. This is because the compo-
nents of space object always can be treated as the simple basic

shapes such as cylinders and cube, which reflect significant
lines and arcs in the image.

The feature extraction method in this paper is inspired by
[21]. In [21], connecting pixels are extracted from the gradi-
ent magnitudes of the image, and then, lines are detected by
aggregation of the connecting pixels. Similar to [21], lines
and arcs are extracted, respectively, from the input image
by making corresponding aggregation rules in this paper.
Figure 4 shows the extraction of image features. The image
feature detected in our method is defined as L. Experiments
in Section 5.3 verify the advantage of image feature used in
our method.

After the feature extraction, the candidate regions of
object components are determined based on the lines and
arcs detected. For example, the candidate region of the solar
panel contains the long parallel lines, the candidate region
of a cylindrical main body contains the parallel lines and arcs,
the candidate region of a cuboid main body contains several
sets of the parallel lines, and the candidate region of a parab-
oloid antenna contains arcs.

4.2. Estimation of Pose and Shape. Under the hierarchical
shape model, an arbitrary object can be represented as T =
hVT, CTi which is an instance of ∂, where VT ⊆ V and CT

(a) (b)

Figure 4: Extraction of image features. The line and arc detected are marked in red, respectively, in (a) and (b).

Figure 5: Illustration of the pose space discretization using the
sphere with uniformly distributed camera locations. Every orange
circle in the figure indicates the location of one camera.

4 International Journal of Aerospace Engineering



⊆ C. In the support of the hierarchical shape model, estima-
tion of the pose and shape is converted to determine T∗ cor-
responding to the input image.

As a single image is input, the nodes of the hierarchical
shape model are activated. T∗ is obtained by maximum a
posteriori probability PðT ∣ IÞ as follows:

T∗ = arc max
T

P T ∣ Ið Þ = arc max
T

P Tð Þ ⋅ P I ∣ Tð Þð Þ, ð5Þ

where PðTÞ is the probability distribution of activated
nodes in the hierarchical shape model, which is the prod-
uct of PðCTÞ and PðVT ∣ CTÞ. The conditional probability
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Figure 6: Quantitative results of the method proposed. The results of four objects are shown from (a) to (d), respectively. Every object has 30
test images from different views. The performance of the method is evaluated by (10).
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(a)

(b)

(c)

(d)

Figure 7: Part of the qualitative results of pose estimation of unknown space objects. The bottom of each test image is the object shape
inferred by our method under the estimated pose. Four objects are arranged in sequence from (a) to (d).

6 International Journal of Aerospace Engineering



PðI ∣ TÞ measures the matching degree of the inferred object
and the input image, which is equal to PðI ∣VTÞ. Conse-
quently, (5) can be represented as

V∗
T, C

∗
Th i = arc max

VT,CT
P CTð Þ ⋅ P VT ∣ CTð Þ ⋅ P I ∣VTð Þð Þ: ð6Þ

The first item PðCTÞ in (6) indicates the probability of
each type of constraint, which is regarded as a constant in
this paper.

The second item PðVT ∣ CTÞ in (6) can be expressed as
follows due to the definition of constraints among the com-
ponents in (4).

P VT ∣ CTð Þ =
YNCT

i=1
P vkf g ∣ cið Þ =

YNCT

i=1
pi: ð7Þ

The last item PðI ∣VTÞ in (6) measures the matching
degree of the inferred object and the input image. For the
input image, lines and arcs are detected as image features.
PðI ∣VTÞ is defined as the matching degree between the
distance map of image features dismapðLÞ and edge of

projection of the inferred object V edge
T .

P I ∣VTð Þ = e−λ⋅ϕdist dismap Lð Þ,Vedge
T

� �
, ð8Þ

where ϕdistð⋅Þ measures the difference of the distance map
and edge. At this point, the constraints among compo-
nents of space objects are represented as the probability
distribution.

4.3. Optimization Strategy. Substituting (7) and (8) into (6),
we have

V∗
T, C

∗
Tf g = arg max

VT,CT

YNCT

i=1
pi ⋅ e

−λ⋅ϕdist dismap Lð Þ,Vedge
T

� �8<
:

9=
;: ð9Þ

To solve this complicated optimization problem, the
model inference strategy is given as follows: (1) The pose of
the main body of the space object is estimated firstly as the
initial value of other components. This is because the main
body can be always seen as a cylinder or cuboid, which has
significant difference of image features in different poses.
(2) The pruning is used to remove incompatible proposals
in the inference of the hierarchical shape model. (3) The par-
ticle swarm optimization [22] is used in model inference.

5. Experiment

The experiments consist of three parts. In Section 5.1, the
pose estimation method proposed is evaluated on four types
of unknown space objects. The purpose of this part is to ver-
ify the ability of our method to estimate the 3D pose of
unknown space objects. In Section 5.2, the accuracy of pose
estimation on the object with a changed structure is com-
pared between our method and the mainstream method
which relies on the known geometry of the object. This part

reflects the advantage of our method over the approaches
only for the known objects. In Section 5.3, the performance
of the image feature extracted mentioned in Section 4.1 is
compared with other common features based on the frame-
work of our method. This part is to prove the validity of the
image features extracted in our method for space objects.

5.1. Pose Estimation of Unknown Objects. The performance
of our method is evaluated on four types of unknown space
objects from a single image. The experiment data is produced
by the computer simulation. For each object, 30 test images
are sampled from different views shown in Figure 5.

The error of pose estimation ER between the predicted
rotation vector Rpred and the ground truth rotation vector
RGT is measured as

ER =
logm RT

predRGT

� ����
���
Fffiffiffi

2
p : ð10Þ

The quantitative results of four objects are shown
sequentially in Figure 6.

The qualitative results are shown in Figure 7.
In our method, the shape inference and pose estimation

are conducted simultaneously. The object shape inferred is
represented as the combination of basis shapes. Experiments
show the effectiveness of our method to estimate the 3D pose
of unknown space objects.

5.2. Pose Estimation of the Object with Structure Changed.
Most of the existing methods rely on the known geometry
of space object. However, there will always be a difference
between the known reference model and the actual object.
For the pose estimation of the object with a changed struc-
ture, the performance of our method is compared with the
method in [10]. The pose estimation in [10] is based on the
matching with the template library reflecting the object
features in different poses, which is the representative way
at present. The experimental object of this part is the first
object in Section 3.1. The angle deviation of the solar panels
and main body is 0°, 15°, 30°, 45°, and 60°, respectively. The
experimental result is shown in Figure 8.

It can be seen that with the deviation of angle increases,
the accuracy of the method in [10] decreases significantly.
In comparison, our method performs robustly in the case

30

20

10

0

Our method
Method in [10]

0° 15° 30° 45° 60°

Figure 8: The performance comparison of pose estimation between
the method in [10] and our method on the object with a changed
structure. The accuracy is measured by the median error of
different views for each object.

7International Journal of Aerospace Engineering



of change of object structure. The result shows the limitation
of the methods relying known object geometry. The experi-
mental result shows the necessity to estimate the pose of
the unknown objects.

5.3. Comparison of Image Features. In our method, the fea-
tures extracted from the input image are lines and arcs. In
order to verify the validity of feature extracted in this paper,
the experiment is designed as follows. Based on the frame-
work of our method, the performance of image feature
extracted in our method is compared with several common
features including edge [23], line [21], and HOG [24]. These
features are displayed in Figure 9.

The quantitative comparison between the image feature
in our method and other features is shown in Figure 10.

From the results, the performance of the image feature
extracted in our method is better than that of other features.
This is because the image features extracted in our method
reflect the characteristics of space objects well.

6. Conclusion

This paper provides a pose estimation method for uncooper-
ative unknown space objects from a single image. In this
paper, a hierarchical shape model is established to represent
the prior structure information of space objects, and the
model inference is illustrated to estimate the parameters of

(a) (b)

(c) (d)

(e)

Figure 9: Different image features: (a) the original image, (b) the edge of the image, (c) the line feature, (d) the HOG feature, and (e) the image
feature adopted in our method.

Object 1

Edge
Line

HOG
Ours

20

10

0
Object 2 Object 3 Object 4

Figure 10: The performance comparison of the image features
extracted in our method with several common features. The
average error is measured on four objects mentioned in Section 5.1.
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shape and pose simultaneously. The experiments verify the
effectiveness of our method and show the advantage of the
approach proposed over the methods which rely on the
known geometry of the object. Our research is valuable in
exploration to understand the 3D pose and geometry of
unknown objects from a single image.

Data Availability

The underlying data supporting the results of our study is the
public 3D models of space targets, which are from the
Internet.
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