DU MA MSc Mathematics

Topic:- DU_J18_MA_MATHS_Topic01

The complete integral of the partial differential equation $xpq + yq^2 - 1 = 0$ where $p = \frac{\partial z}{\partial x}$ and

$$q = \frac{\partial z}{\partial y}$$
 is

[Question ID = 2159]

$$(z+b)^2 = 4(ax+y)$$
. [Option ID = 8635]

$$z + b = 2(ax + y)$$
. [Option ID = 8633]

$$z + b = 2(ax + y)$$
. [Option ID = 8633]
 $z + b = 4(ax + y)^2$. [Option ID = 8636]

$$z + b = 2(ax + y)^2$$
. [Option ID = 8634]

Correct Answer :-

$$(z+b)^2 = 4(ax+y)$$
. [Option ID = 8635]

Let P be the set of all the polynomials with rational coefficients and S be the set of all sequences of natural numbers. Then which one of the following statements is true?

[Question ID = 2139]

- S is countable but P is not. [Option ID = 8555]
- Both the sets P and S are uncountable. [Option ID = 8556]
- Both the sets P and S are countable. [Option ID = 8553]
- P is countable but S is not. [Option ID = 8554]

Correct Answer :-

P is countable but S is not. [Option ID = 8554]

For the differential equation

$$x\frac{dy}{dx} + 6y = 3xy^{4/3}$$

consider the following statements:

- (i) The given differential equation is a linear equation.
- (ii) The differential equation can be reduced to linear equation by the transformation $V = y^{-1/3}$.
- (iii) The differential equation can be reduced to linear equation by the transformation $V = x^{-1/3}$.

Which of the above statements are true?

are [Question ID = 2156]

- 1. Only (i). [Option ID = 8622]
- 2. Only (iii). [Option ID = 8624]
- 3. Only (ii). [Option ID = 8623]
- 4. Both (i) and (ii). [Option ID = 8621]

Correct Answer:-

• Only (ii). [Option ID = 8623]

4)

Which one of the following statements is not true for Simpson's 1/3 rule to find approximate value of the definite integral $I = \int_0^1 f(x) dx$?

[Question ID = 2151]

If
$$y_0 = f(0)$$
, $y_1 = f(0.5)$, $y_2 = f(1)$, the approximate value of I is $\frac{1}{6}[y_0 + 3y_1 + y_2]$.

[Option ID = 8603]

The approximating function has odd number of points common with the function f(x).

[Option ID = 8604]

- Simpson's 1/3 rule improves trapezoidal rule. [Option ID = 8602]
- The function f(x) is approximated by a parabola. [Option ID = 8601]

Correct Answer :-

If
$$y_0 = f(0)$$
, $y_1 = f(0.5)$, $y_2 = f(1)$, the approximate value of I is $\frac{1}{6}[y_0 + 3y_1 + y_2]$.

[Option ID = 8603]

The equation of the tangent plane to the surface $z = 2x^2 - y^2$ at the point (1, 1, 1) is

[Question ID = 2133]

$$x - y - 2z = 2$$
. [Option ID = 8531]

$$4x - y - 3z = 1$$
. [Option ID = 8532]

$$2x - y - 2z = 1$$
. [Option ID = 8529]

$$4x - 2y - z = 1$$
. [Option ID = 8530]

Correct Answer:-

$$4x - 2y - z = 1$$
. [Option ID = 8530]

6)

If $\{x, y\}$ is an orthonormal set in an inner product space then the value of ||x - y|| + ||x + y|| is

[Question ID = 2128]

1.
$$2\sqrt{2}$$
. [Option ID = 8510]

$$2 + \sqrt{2}$$
. [Option ID = 8512]

3.
$$\sqrt{2}$$
. [Option ID = 8511]

4. 2. [Option ID = 8509]
Correct Answer :-
$2\sqrt{2}$. [Option ID = 8510]
Which one of the following spaces, with the usual metric, is not separable?
[Question ID = 2147]
The space $C[a, b]$ of the set of all real valued continuous functions defined on $[a, b]$. [Option ID = 8586]
The space l^{∞} of all bounded real sequences with supremum metric. [Option ID = 8588]
The Euclidean space \mathbb{R}^n . [Option ID = 8585]
The space l^1 of all absolutely convergent real sequences. [Option ID = 8587]
Correct Answer :-
The space l^{∞} of all bounded real sequences with supremum metric. [Option ID = 8588]
8) Let G be an abelian group of order 2018 and $f: G \to G$ be defined as $f(x) = x^5$. Then
[Question ID = 2118]
1. f is not injective. [Option ID = 8470]
2. f is not surjective. [Option ID = 8471]
there exists $e \neq x \in G$ such that $f(x) = x^{-1}$. [Option ID = 8472]
f is an automorphism of G . [Option ID = 8469]
Correct Answer:- f is an automorphism of G . [Option ID = 8469]

9) If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that

$$f(x + y) = f(x) + f(y)$$
, for all $x, y \in \mathbb{R}$,

then

[Question ID = 2138]

- $_{1}$. f is increasing if $f(1) \ge 0$ and decreasing if $f(1) \le 0$. [Option ID = 8551]
- f is increasing if $f(1) \le 0$ and decreasing if $f(1) \ge 0$. [Option ID = 8552]
- f is a not an increasing function. [Option ID = 8549]
- f is neither an increasing nor a decreasing function. [Option ID = 8550]

- f is increasing if $f(1) \ge 0$ and decreasing if $f(1) \le 0$. [Option ID = 8551]
- ^10) The central difference operator δ and backward difference operator ∇ are related as

[Question ID = 2154]

$$\delta = \nabla (1 - \nabla)^{\frac{1}{2}}.$$
 [Option ID = 8615]

$$\delta = \nabla (1 + \nabla)^{-2}$$
.

$$\delta = \nabla (1 + \nabla)^{-\frac{1}{2}}.$$
2. [Option ID = 8614]
$$\delta = \nabla (1 - \nabla)^{-\frac{1}{2}}.$$
 [Option ID = 8616]

$$\delta = \nabla (1 + \nabla)^{\frac{1}{2}}.$$
[Option ID = 8613]

Correct Answer:-

$$\delta = \nabla (1 - \nabla)^{-\frac{1}{2}}.$$
 [Option ID = 8616]

How many continuous real functions f can be defined on \mathbb{R} such that $(f(x))^2 = x^2$ for every $x \in \mathbb{R}$?

[Question ID = 2144]

- Infinitely many. [Option ID = 8576]
- 2. None. [Option ID = 8575]
- 3. 4. [Option ID = 8574]
- 4. 2. [Option ID = 8573]

Correct Answer :-

- 4. [Option ID = 8574]
- 12) The greatest common divisor of 11 + 7i and 18 i in the ring of Gaussian integers $\mathbb{Z}[i]$ is

[Question ID = 2122]

- 1. 3i. [Option ID = 8485]
- 2. 1. [Option ID = 8488]
- 3. 1 + i. [Option ID = 8487]
- 4. 2 + i. [Option ID = 8486]

Correct Answer :-

- 1. [Option ID = 8488]
- 13) The complete integral of the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+2y}$$

is

[Question ID = 2161]

$$\phi_1(y-x) + x\phi_2(y+x) + e^{x+2y}$$
. [Option ID = 8643]

```
\begin{array}{c} \phi_1(y+x) + x\phi_2(y+x) + xe^{x+2y}. \\ \text{2.} \\ \phi_1(y-x) + \phi_2(y+x) + e^{x+2y}. \\ \text{3.} \\ \phi_1(y+x) + x\phi_2(y+x) + e^{x+2y}. \\ \text{4.} \end{array} [Option ID = 8641]
Correct Answer:-
\phi_1(y+x) + x\phi_2(y+x) + e^{x+2y}. [Option ID = 8642]
14) If S = \{(1, 0, i), (1, 2, 1)\} \subseteq \mathbb{C}^3 then S^{\perp} is
[Question ID = 2127]
  span \{(i, -\frac{1}{2}(i+1), -1)\}.

[Option ID = 8506]

span \{(-i, \frac{1}{2}(i+1), 1)\}.

[Option ID = 8505]
   span \{(i, -\frac{1}{2}(i+1), 1)\}. [Option ID = 8507]
   span \{(i, \frac{1}{2}(i+1), -1)\}. [Option ID = 8508]
Correct Answer:-
  span \{(i, -\frac{1}{2}(i+1), 1)\}. [Option ID = 8507]
The improper integral \int_{-\infty}^{0} 2^{x} dx is
[Question ID = 2135]
convergent and converges to 2. _{[Option ID = 8540]}
divergent. [Option ID = 8539]
   convergent and converges to \frac{1}{\ln 2}. [Option ID = 8538]
convergent and converges to -ln2. [Option ID = 8537]
Correct Answer:-
   convergent and converges to \frac{1}{\ln 2}. [Option ID = 8538]
```

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function which takes irrational values at rational points and rational values at irrational points. Then which one of the following statements is true?

[Question ID = 2145] f is uniformly continuous on \mathbb{Q} . f is uniformly continuous on \mathbb{R} . [Option ID = 8577] f is uniformly continuous on \mathbb{Q}^c .
[Option ID = 8579]

No such function exists. [Option ID = 8580]

Correct Answer:

No such function exists. [Option ID = 8580]

17) If $f:[0,10] \to \mathbb{R}$ is defined as

$$f(x) = \begin{cases} 0, & 0 \le x < 2, \\ 1, & 2 \le x \le 5, \\ 0, & 5 < x \le 10, \end{cases}$$

and
$$F(x) = \int_0^x f(t)dt$$
 then

[Question ID = 2134]

 $F(x) = 3 \text{ for } x \le 5.$ [Option ID = 8536]

F'(x) = f(x) for every x. [Option ID = 8534]

F is not differentiable at x = 2 and x = 5. [Option ID = 8535]

F is differentiable everywhere on [0, 10]. [Option ID = 8533]

Correct Answer :-

F is not differentiable at x = 2 and x = 5. [Option ID = 8535]

18) The Maclaurin series expansion

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

is valid

[Question ID = 2136]

only if $x \in [-1,1]$. [Option ID = 8543]

 $_{2.}$ if x>-1. [Option ID = 8541]

only if $x \in (-1,1]$. [Option ID = 8542]

for every $x \in \mathbb{R}$. [Option ID = 8544]

Correct Answer :-

only if $x \in (-1,1]$. [Option ID = 8542]

19) If $4x \equiv 2 \pmod{6}$ and $3x \equiv 5 \pmod{8}$ then one of the value of x is

[Question ID = 2115]

1. 32 [Option ID = 8460]

2. 34 [Option ID = 8457]

3. 26 [Option ID = 8459]

4. 23 [Option ID = 8458]

Correct Answer:-

• 23 [Option ID = 8458]

20)

If $f(x) = \lim_{n \to \infty} S_n(x)$, where

$$S_n(x) = \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \dots + \frac{x}{(nx+1)((n+1)x+1)}$$

then the function f is

[Question ID = 2131]

- 1. continuous nowhere. [Option ID = 8524]
- 2. continuous everywhere. [Option ID = 8521]
- 3. continuous everywhere except at countably many points. [Option ID = 8522]
- 4. continuous everywhere except at one point. [Option ID = 8523]

Correct Answer :-

• continuous everywhere except at one point. [Option ID = 8523]

The rate of change of $f(x, y) = 4y - x^2$ at the point (1, 5) in the direction from (1, 5) to the point (4,3) is

[Question ID = 2130]

$$\frac{-6}{\sqrt{5}}$$
1. [Option ID = 8519]

$$\frac{-14}{\sqrt{}}$$
.

2.
$$\sqrt{13}$$
* [Option ID = 8518]

3.
$$\sqrt{5}$$
 [Option ID = 8520]

$$\frac{-19}{\sqrt{12}}$$
.

4.
$$\sqrt{13}$$
 [Option ID = 8517]

Correct Answer:-

$$\frac{-14}{\sqrt{13}}$$
. [Option ID = 8518]

Let
$$G = \{a_1, a_2, \dots, a_{25}\}$$
 be a group of order 25. For $b, c \in G$ let

$$bG = \{ba_1, ba_2, \dots, ba_{25}\}, Gc = \{a_1c, a_2c, \dots, a_{25}c\}.$$

Then

[Question ID = 2119]

$$bG = Gc$$
 only if $b = c$. [Option ID = 8475]

$$bG = Gc \ \forall b,c \in G.$$
 [Option ID = 8473]

$$bG = Gc$$
 only if $b^{-1} = c$. [Option ID = 8476]

$$bG \neq Gc$$
, if $b \neq c$.
[Option ID = 8474]

 $bG = Gc \ \forall b, c \in G.$ [Option ID = 8473]

23)

If $\langle x_n \rangle$ is a sequence such that $x_n \geq 0$, for every $n \in \mathbb{N}$ and if $\lim_{n \to \infty} ((-1)^n x_n)$ exists then which one of the following statements is true?

[Question ID = 2141]

The sequence $\langle x_n \rangle$ is a Cauchy sequence. [Option ID = 8562]

The sequence $\langle x_n \rangle$ is not a Cauchy sequence. [Option ID = 8564]

The sequence $\langle x_n \rangle$ is unbounded. [Option ID = 8563]

The sequence $\langle x_n \rangle$ is divergent. [Option ID = 8561]

Correct Answer :-

The sequence $\langle x_n \rangle$ is a Cauchy sequence.

24) If n > 2, then $n^5 - 5n^3 + 4n$ is divisible by

[Question ID = 2113]

- 1. 80 [Option ID = 8449]
- 2. 120 [Option ID = 8451]
- 3. 100 [Option ID = 8450]
- 4. 125 [Option ID = 8452]

Correct Answer :-

• 120 [Option ID = 8451]

25) Let

$$S = \bigcap_{n=1}^{\infty} \left[2 - \frac{1}{n}, 3 + \frac{1}{n} \right].$$

Then S equals

[Question ID = 2140]

- (2, 3]. [Option ID = 8558]
- [2, 3]. [Option ID = 8560]
- [2, 3). [Option ID = 8557]
- 4. (2, 3). [Option ID = 8559]

Correct Answer :-

$$[2, 3]$$
. [Option ID = 8560]

If
$$a_n = n^{\sin(\frac{n\pi}{2})}$$
 then

[Question ID = 2137]

 $\lim\sup a_n=+\infty, \lim\inf a_n=-1.$ [Option ID = 8547]

```
\limsup a_n = +\infty, \lim\inf a_n = 0. [Option ID = 8548] \limsup a_n = +\infty, \lim\inf a_n = -\infty. [Option ID = 8546]
  \limsup a_n = 1 , \liminf a_n = -1 . [Option ID = 8545]
Correct Answer :-
  \limsup a_n = +\infty, \liminf a_n = 0. [Option ID = 8548]
Let f: \mathbb{R}^2 \to \mathbb{R} be defined as f(x,y) = |x| + |y|. Then which one of the following statements is
[Question ID = 2129]
f is continuous at (0,0) and f_x(0,0) \neq f_y(0,0). [Option ID = 8515]
f is continuous at (0,0) and f_x(0,0)=f_y(0,0). [Option ID = 8514]
f is discontinuous at (0, 0) and f_x(0,0) = f_y(0,0). [Option ID = 8516]
f is continuous at (0, 0) but f_x and f_y does not exist at (0, 0). [Option ID = 8513]
Correct Answer :-
f is continuous at (0, 0) but f_x and f_y does not exist at (0, 0). [Option ID = 8513]
28)
Let A and B be two subsets of a metric space X. If intA denotes the interior A of then which one of
the following statements is not true?
[Question ID = 2146]
, A \subseteq B \Rightarrow \text{int} A \subseteq \text{int} B. [Option ID = 8584]
\inf(A \cup B) = \inf A \cup \inf B._{[Option ID = 8581]}
\inf(A \cap B) = \inf A \cap \inf B._{\text{[Option ID = 8583]}}
int(A \cup B) \supseteq \text{int}A \cup \text{int}B. [Option ID = 8582]
Correct Answer:-
\inf(A \cup B) = \inf A \cup \inf B._{[Option ID = 8581]}
Which one of the following statements is false?
[Question ID = 2123]
A subring of a field is a subfield. [Option ID = 8490]
A subring of the ring of integers \mathbb{Z}, is an ideal of \mathbb{Z}. [Option ID = 8489]
A commutative ring with unity is a field if it has no proper ideals.
4. A field has no proper ideals. [Option ID = 8491]
```

Correct Answer :-

A subring of a field is a subfield. [Option ID = 8490]

Let $\sigma = (37125)(43216) \in S_7$, the symmetric group of degree 7. The order of σ is

[Question ID = 2120]

- 1. 7 [Option ID = 8480]
- 2. 4 [Option ID = 8478]
- 3. 5 [Option ID = 8479]
- 4. 2 [Option ID = 8477]

Correct Answer :-

• 4 [Option ID = 8478]

31) Let

$$S = \bigcap_{n=1}^{\infty} \left[0, \, \frac{1}{n} \right].$$

Then which one of the following statements is true?

[Question ID = 2143]

- 1. $\inf S > 0$. [Option ID = 8571]
- sup S = 1 and inf S = 0. [Option ID = 8572]
- $_{\rm 3.} \ {\rm sup} \ S > 0$. $_{\rm [Option\ ID\ =\ 8569]}$
- $\sup S = \inf S = 0.$ [Option ID = 8570]

Correct Answer :-

 $\sup_{\bullet} S = \inf_{\bullet} S = 0.$ [Option ID = 8570]

32) The characteristics of the partial differential equation

$$36\frac{\partial^2 z}{\partial x^2} - y^{14}\frac{\partial^2 z}{\partial y^2} - 8x^{12}\frac{\partial z}{\partial x} = 0$$

when it is of hyperbolic type are given by

[Question ID = 2160]

$$x + \frac{36}{y^6} = c_1, x - \frac{36}{y^6} = c_2.$$
 [Option ID = 8638]

$$x + \frac{1}{y^6} = c_1, x - \frac{1}{y^6} = c_2.$$
 [Option ID = 8637]

$$x + \frac{1}{y^7} = c_1$$
, $x - \frac{1}{y^7} = c_2$. [Option ID = 8639]

$$x + \frac{36}{y^7} = c_1, x - \frac{36}{y^7} = c_2.$$
 [Option ID = 8640]

$$x + \frac{1}{y^6} = c_1, x - \frac{1}{y^6} = c_2.$$
[Option ID = 8637]

A bound for the error for the trapezoidal rule for the definite integral $\int_0^1 \frac{1}{1+x} dx$ is
[Question ID = 2150]
1. $\frac{1}{6}$ [Option ID = 8600] 2. $\frac{2}{25}$ [Option ID = 8597] 3. $\frac{1}{15}$ [Option ID = 8598] 4. $\frac{1}{20}$ [Option ID = 8599]
Correct Answer :-
1 (Option ID = 8600)
Exact value of the definite integral $\int_a^b f(x)dx$ using Simpson's rule
[Question ID = 2152]
cannot be given for any polynomial. [Option ID = 8608]
is given when $f(x)$ is a polynomial of degree 4. [Option ID = 8605]
is given when $f(x)$ is a polynomial of degree 5. [Option ID = 8607]
is given when $f(x)$ is a polynomial of degree 3. [Option ID = 8606]
Correct Answer :-
is given when $f(x)$ is a polynomial of degree 3. [Option ID = 8606]
Let p be a prime and let G be a non-abelian p -group. The least value of m such that $p^m \setminus o\left(\frac{G}{Z(G)}\right)$ is
[Question ID = 2121]
1. 0 [Option ID = 8481] 2. 1 [Option ID = 8482] 3. 3 [Option ID = 8484] 4. 2 [Option ID = 8483]
Correct Answer :- • 0 [Option ID = 8481]
If φ is Euler's Phi function then the value of $\varphi(720)$ is
[Question ID = 2114]
1. 248 [Option ID = 8456] 2. 144 [Option ID = 8453] 3. 192 [Option ID = 8454] 4. 72 [Option ID = 8455]
Correct Answer :-

The total number of arithmetic operations required to find the solution of a system of n linear equations in n unknowns by Gauss elimination method is

[Question ID = 2153]

$$\frac{2}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n.$$
 [Option ID = 8609]

$$n^3 - \frac{1}{6}n.$$
 [Option ID = 8610]

$$\frac{2}{3}n^3 + \frac{3}{3}n^2 - \frac{7}{3}n$$

$$\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n.$$
[Option ID = 8611]

$$\frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n.$$
[Option ID = 8612]

Correct Answer :-

$$\int_{3}^{2} n^{3} + \frac{3}{2}n^{2} - \frac{7}{6}n.$$
 [Option ID = 8611]

38) If $\langle x_n \rangle$ is a sequence defined as

$$x_n = \left[\frac{5+n}{2n}\right]$$
, for every $n \in \mathbb{N}$

where [.] denotes the greatest integer function then $\lim_{n\to\infty} x_n$

[Question ID = 2142]

- 1. [Option ID = 8568]
- 2. ^{2*} [Option ID = 8566]
- does not exist. [Option ID = 8565]
- 4. 0. [Option ID = 8567]

Correct Answer :-

39)

Let R be a ring with characteristic n where $n \ge 2$. If M is the ring of 2×2 matrices over R then the characteristic of M is

[Question ID = 2125]

3.
$$n-1$$
. [Option ID = 8499]

If $A = \begin{bmatrix} a & 2 \\ 1 & b \end{bmatrix}$ is a matrix with eigen values $\sqrt{6}$ and $-\sqrt{6}$, then the values of a and b are respectively, [Question ID = 2116] 1. 2 and -1. [Option ID = 8463] 2. 2 and -2. [Option ID = 8464] 3. 2 and 1. [Option ID = 8461] 4. -2 and 1. [Option ID = 8462]

Correct Answer:-

• 2 and -2. [Option ID = 8464]

The dimension of the vector space of all 6×6 real skew-symmetric matrices is

[Question ID = 2126]

- 1. 36 [Option ID = 8504]
- 2. 21 [Option ID = 8502]
- 3. 30 [Option ID = 8503]
- 4. 15 [Option ID = 8501]

Correct Answer :-

15 [Option ID = 8501]

Let $(x_0, f(x_0)) = (0, -1), (x_1, f(x_1)) = (1, a)$ and $(x_2, f(x_2)) = (2, b)$. If the first order divided differences $f[x_0, x_1] = 5$ and $f[x_1, x_2] = c$ and the second order divided difference $f[x_0, x_1, x_2] = c$ $-\frac{3}{2}$, then the values of a, b and c are

[Question ID = 2148]

- 4, 2, 4. [Option ID = 8592]
- 2. 2, 4, 6. [Option ID = 8590]
- 3. 4, 6, 2. [Option ID = 8589]
- 4. 6, 2, 4. [Option ID = 8591]

Correct Answer :-

4, 6, 2. [Option ID = 8589]

43) Let the polynomial $f(x) = 3x^5 + 15x^4 - 20x^3 + 10x + 20 \in \mathbb{Z}[x]$, and $f_0(x)$ be the polynomial in $\mathbb{Z}_3[x]$ obtained by reducing the coefficients of f(x) modulo 3. Which one of the following statements is true?

[Question ID = 2124]

- f(x) is reducible over \mathbb{Q} , $f_0(x)$ is reducible over \mathbb{Z}_3 .

 [Option ID = 8496]
- f(x) is irreducible over \mathbb{Q} , $f_0(x)$ is reducible over \mathbb{Z}_3 . [Option ID = 8495]
- f(x) is reducible over \mathbb{Q} , $f_0(x)$ is irreducible over \mathbb{Z}_3 . [Option ID = 8494]
- f(x) is irreducible over \mathbb{Q} , $f_0(x)$ is irreducible over \mathbb{Z}_3 .

 [Option ID = 8493]

Correct Answer :-

f(x) is irreducible over \mathbb{Q} , $f_0(x)$ is reducible over \mathbb{Z}_3 .

44) The general solution of the system of the differential equations

$$x_1' = 3x_1 - 2x_2$$

$$x_2' = 2x_1 - 2x_2$$

is given by

[Question ID = 2158]

$$\begin{pmatrix} c_1e^{-t} + 2c_2e^{2t} \\ 2c_1e^{-t} + c_2e^{2t} \end{pmatrix}$$
1. [Option ID = 8632]
$$\begin{pmatrix} c_1e^t + 2c_2e^{-2t} \\ 2c_1e^t + 2c_2e^{-2t} \end{pmatrix}$$
2. [Option ID = 8631]
$$\begin{pmatrix} c_1e^t + 2c_2e^{-2t} \\ c_1e^t + c_2e^{-2t} \end{pmatrix}$$
3. [Option ID = 8629]
$$\begin{pmatrix} c_1e^{-t} + c_2e^{2t} \\ c_1e^{-t} - c_2e^{2t} \end{pmatrix}$$
4. [Option ID = 8630]

Correct Answer:-

$$\binom{c_1 e^{-t} + 2c_2 e^{2t}}{2c_1 e^{-t} + c_2 e^{2t}}.$$
 [Option ID = 8632]

The eigenvalues for the Sturm-Liouville problem

$$y'' + \lambda y = 0, 0 \le x \le \pi,$$

 $y(0) = 0, y'(\pi) = 0$

are [Question ID = 2155]

$$\lambda_n=n^2\pi^2, n=1,2,\dots.. \\ \text{[Option ID = 8619]} \\ 2. \ \lambda_n=n^2, n=1,2,\dots.. \\ \text{[Option ID = 8618]} \\ \lambda_n=n\pi, n=1,2,\dots.. \\ \text{[Option ID = 8617]} \\ \lambda_n=\frac{(2n-1)^2}{4}, n=1,2,\dots.. \\ \text{[Option ID = 8620]}$$

$$\lambda_n=rac{(2n-1)^2}{4}$$
 , $n=1,2,\ldots$ [Option ID = 8620]

The initial value problem

$$x\frac{dy}{dx} - 2y = 0,$$

$$x > 0, y(0) = 0$$

has

[Question ID = 2157]

- 1. exactly two solutions [Option ID = 8626]
- 2. a unique solution. [Option ID = 8627]
- 3. no solution. [Option ID = 8628]
- 4. infinitely many solutions. [Option ID = 8625]

Correct Answer :-

- infinitely many solutions. [Option ID = 8625]
- The partial differential equation

$$(x^2 - 1)\frac{\partial^2 z}{\partial x^2} + 2y\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$$

is

[Question ID = 2162]

- hyperbolic for $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. [Option ID = 8645]
- parabolic for $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. [Option ID = 8646]
- hyperbolic for $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}$. [Option ID = 8648]
- elliptic for $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}$. [Option ID = 8647]

Correct Answer:-

hyperbolic for $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}$. [Option ID = 8648]

48)

Let f be a convex function with f(0) = 0. Then the function g defined on $(0, +\infty)$ as $g(x) = \frac{f(x)}{x}$

[Question ID = 2132]

- 1. is an increasing function. [Option ID = 8525]
- 2. is such that its monotonicity cannot be determined. [Option ID = 8528]
- 3. is neither increasing nor decreasing function. [Option ID = 8527]
- 4. is a decreasing function. [Option ID = 8526]

Correct Answer :-

is an increasing function. [Option ID = 8525]

49) Which one of the statements is false? [Question ID = 2117]

Every quotient group of a cyclic group is cyclic.

If G and H are groups and $f: G \to H$ is a homomorphism then f induces an isomorphism of $\frac{G}{\text{Ker}(f)} \text{ with } H.$

[Option ID = 8467]

Every quotient group of an abelian group is abelian.

[Option ID = 8468]

	If G is a group and $Z(G)$ is its centre such that the quotient group of G by $Z(G)$ is cyclic, then G	
4.	is abelian.	[Option ID = 8466]

Correct Answer:-

If G and H are groups and $f: G \to H$ is a homomorphism then f induces an isomorphism of $\frac{G}{\operatorname{Ker}(f)} \text{ with } H.$ [Option ID = 8467]

50) For cubic spline interpolation which one of the following statements is true? [Question ID = 2149]

- 1. The second derivatives of the splines are continuous at the interior data points but not the first derivatives. [Option ID = 8594]
- 2. The third derivatives of the splines are continuous at the interior data points. [Option ID = 8596]
- 3. The first derivatives of the splines are continuous at the interior data points but not the second derivatives. [Option ID = 8593]
- 4. The first and the second derivatives of the splines are continuous at the interior data points. [Option ID = 8595]

Correct Answer:-

• The first and the second derivatives of the splines are continuous at the interior data points. [Option ID = 8595]