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A B S T R A C T   

We provide reference forecasts for CO2 emissions from burning fuel fossil and cement production in Portugal 
based on an ARFIMA model approach and using annual data from 1950 to 2017. Our reference projections 
suggest a pattern of decarbonization that will cause the reduction of 3.3 Mt until 2030 and 5.1 Mt between 2030 
and 2050. This scenario allows us to assess effort required by the new IPCC goals to ensure carbon neutrality by 
2050. For this objective to be achieved it is necessary for emissions to be reduced by 39.9 Mt by 2050. Our results 
suggest that of these, only 8.4 Mt will result from the inertia of the national emissions system. The remaining 
reduction on emissions of 31.5 Mt of CO2 will require additional policy efforts. Accordingly, our results suggest 
that about 65.5% of the reductions necessary to achieve IPCC goals require deliberate policy efforts. Finally, the 
presence in the data of long memory with mean reversion suggests that policies must be persistent to ensure that 
these reductions in emissions are also permanent.   

1. Introduction 

The purpose of this article is to provide reference forecasts for CO2 
emissions in Portugal. We consider both aggregate emissions and each of 
its main sources – solid fuels, liquid fuels, gas, and cement production. 
Our ultimate objective is to compare our reference forecasts with the 
relevant emissions targets and thereby ascertain how much of an addi-
tional policy effort is necessary to achieve such targets. 

There is strong scientific evidence confirming the warming the 
planet’s climate system, with increasing temperature of the atmosphere 
and oceans, rising sea levels, melting ice, among others, whose most 
likely causes are the increased concentration of anthropogenic green-
house gas emissions in the atmosphere [see, for example, IPCC (2014)]. 

Recently, the Intergovernmental Panel on Climate Change [see IPCC 
(2018)] has pointed out that limiting global warming to 1.5 �C would 
require “rapid and far-reaching” transitions in land, energy, industry, 
buildings, transport, and cities. Moreover, global net anthropogenic 
emissions of CO2 would need to fall by about 45% from 2010 levels by 
2030, reaching ‘net zero’ around 2050. These new targets were, in 
general terms, incorporated into the Roadmap for Carbon Neutrality, 
released as a Portuguese Ministerial Council Resolution in July 2019 

[RNC2050, 2019]. 
Identifying the proper reference scenario is a critical first step in 

ascertaining the extent of the policy efforts required to achieve any 
policy target for emissions, and thereby determining the costs involved 
in achieving such goals. Hence, there are two key policy questions in 
these matters in Portugal. The first question deals with identifying what 
will emissions in 2030 and 2050 be under a reference or baseline sce-
nario. We follow the IPCC definition of baseline scenario, which assumes 
that no mitigation policy or measure beyond those that are already in 
place and/or legislated or planned for implementation. The second 
question, and as a corollary, is the determination of the dimension of the 
additional policy efforts needed to accomplish such emission targets. 

Specifying a reference scenario, as in the typical reference scenario 
projections, means predicting a path to CO2 emissions that reflect 
existing demographic trends, prospective trends for energy and indus-
trial processes, for the services, residential, transport and waste sectors, 
as well as, ongoing policy commitments. This conventional approach to 
establishing reference scenarios, however, introduces a large number of 
working assumptions and a great degree of arbitrariness in their speci-
fications, thereby clouding the information it intends to provide. 

This paper uses an autoregressive fractionally integrated moving 
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average approach [ARFIMA], to provide reference forecasts for CO2 
emissions in Portugal based on a comprehensive statistical analysis of 
the different time series and recognizing the possible presence of long- 
memory through fractional integration. Accordingly, our forecasts rely 
strictly on the most basic statistical fundamentals of the stochastic 
processes that underlie emissions. As such, they capture the information 
included in the sample, and implicitly assume that the observed trends 
will continue in the future. Thus, these forecasts provide the most 
fundamental reference case emissions forecast [see Belbute and Pereira 
(2015) for an application of this forecasting methodology to develop 
reference scenarios for world CO2 emissions). In addition, this meth-
odology recognizes that emission patterns are subject to a great degree 
of inertia due to consumption patterns and production technologies. 
Accordingly, a focus on a methodology that highlights the relevance of 
long-term dynamics is fundamental. 

There is now an extensive literature on fractional integration, which 
goes well beyond the stationary/non-stationary dichotomy to consider 
the possibility that variables may follow a long memory process [see, 
among others, Diebold and Rudebusch (1991), Lo (1991) Sowell 
(1992a) and Palma (2007)]. The ARFIMA methodology is inspired by a 
budding literature on the analysis of energy and carbon emissions based 
on a fractional integration approach [see, for example, Barassi et al. 
(2011), Apergis and Tsoumas (2011, 2012), Barros et al. (2016) and 
Gil-Alana et al. (2015) and Belbute and Pereira (2016, 2017)]. 

In this literature, long-range dependence is characterized by a 
hyperbolically-decaying autocovariance function and by a spectral 
density that approaches infinity as the frequency tends to zero [see 
among others, Baillie (1996), Diebold and Rudedusch (1989) and Del-
gado and Robinson (1994)]. The intensity of this phenomena can be 
measured by a differencing parameter, which includes the stationary 
and the non-stationary cases as particular cases. 

‘Long memory’ means that there is significant dependence between 
observations widely separated in time, and from a policy perspective, 
the effects of shocks are temporary but long lasting. Therefore, the only 
way to achieve permanent effects is to adopt permanent policies. In 
contrast, the traditional stationary/non-stationary dichotomy would 
suggest that the effects of transitory policies are either short-lived (sta-
tionary case) or permanent (non-stationary case). This more rigid 
approach is bound to lead to misleading policy implications by either 
identifying short lived effects where the effects may actually be long 
lasting or by identifying as permanent, effects that may actually be mean 
reverting. Accordingly, the fractional integration properties of CO2 
emissions have important policy implications for the specification of 
long-term reference case scenarios for emissions. 

All of these issues are of great relevance in the context of the Por-
tuguese experience. In the last three decades, Portugal has implemented 
policies aligned with the international guidelines and policy targets for 
climate change, namely the European Union climate change strategy, 
the Kyoto Protocol and, more recently, the Paris Agreement [see, for 
example, the Strategic Framework for Climate Policy, QEPiC 2030 
(2015) and the Roadmap for Carbon Neutrality, RNC2050 (2019)]. As a 
result, we have observed the introduction of natural gas, the strategic 
option in favor of renewable energy sources, the stimulus towards en-
ergy efficiency, and the participation in the European Union Emissions 
Trading Scheme. These policy efforts have contributed both to the suc-
cessful completion of the first Kyoto Protocol’s period of compliance 
objectives and the reduction in emissions observed since 2002. Still, 
there is a keen awareness that there is much to be done. 

The remainder of this paper is organized as follows. Section 2 pre-
sents the data set. Section 3 provides a brief technical description of the 
methodology used. Section 4 discusses the empirical findings, consid-
ering first the fractional integration analysis and then the accuracy of in- 
sample forecasts. Section 5 presents and discusses our reference fore-
casts vis-�a-vis other available reference forecasts and national policy 
scenarios. Finally, section 6 provides a summary of the results, and 
discusses their policy implications. 

2. Data: sources and description 

2.1. Data sources 

Aggregate CO2 emissions in Portugal are the sum of four compo-
nents: CO2 emissions from burning fossil fuels – solid/coal, liquid/oil, 
and gas, and CO2 emissions from cement production. There are no CO2 
emissions from gas flaring. Moreover, we do not consider emissions from 
land use, nor from land-use change and forestry. All variables are 
measured in million metric tonnes of carbon per year (Mt, hereafter), 
and were converted into units of carbon dioxide by multiplying the 
original data by 3.664, the ratio of the two atomic weights. 

We consider annual data for CO2 emissions in Portugal for the period 
between 1950 and 2017. The data until 2014 is from the Carbon-Dioxide 
Information Analysis Centre - CDIAC [see Le Qu�ere et al. (2015) and 
Boden et al. (2017)]. This data set contains information going back to 
1870. Nevertheless, given the profound structural changes that occurred 
after World War II, we only use data starting in 1950. 

We obtained emissions between 2015 and 2017 by using the infor-
mation reported in the National Inventory of GHG Emissions, PNIRGHG 
(2019). While this source only goes back to 1990 and, therefore, in and 
of itself provides a rather inadequate sample size, it is a very helpful 
source in extending the CDIAC series. We started by checking the con-
sistency of the two data series for the period they overlap, i.e., 
1990–2014. We find they are very closely related something to be ex-
pected as the central sources of information for the CDIAC are the na-
tional inventory reports. Specifically, the two series are statistically 
cointegrated in growth rates. With this in mind, we obtain the values for 
the different emissions for 2015–2017 by simply applying the growth 
rates of CO2 emission from the PNIRGHG (2019) figures for CO2 
emission levels without net CO2 from land use, land use change and 
forestry. 

2.2. Description of the data 

Table 1 presents summary information about our data. It includes 
information about total CO2 emissions in the first year of each decade as 
well as the mean shares per decade of emissions from combustion of 
solid, liquid, and gas fossil fuels and from cement production in the total 
emissions. 

In the second half of the 20th Century, total CO2 emissions grew at a 
steady pace. This trend was reverted in the last two decades with 
emissions decreasing progressively until the end of the sample period. 
Annual CO2 emissions peaked in 2002 at 66.7 Mt. By 2017, emissions 
reached 50.8 Mt, a Fig. 20% and 5.6% above the 1990 and 2010 refer-
ence levels, respectively. For perspective, Portugal’s total CO2 emissions 
in 2017 represent about 1.4% of total European Union emissions and 
just 0.13% of worldwide emissions. 

CO2 emissions from solid fossil fuel combustion represented on 
average over the sample period a little more than 18.6% of total 

Table 1 
Portugal CO2 emissions from fossil fuel combustion and cement production.  

Aggregate CO2 emissions Average Shares of Total Emissions (%) 

Years Mt Years Solid 
Fuels 

Liquid 
Fuels 

Gas 
Fuels 

Cement 
Production 

1950 5.621 1950–1959 37.0 56.7 – 6.3 
1960 8.218 1960–1969 26.2 66.6 – 7.2 
1970 15.246 1970–1979 9.6 81.8 – 8.6 
1980 26.963 1980–1989 12.4 78.1 – 9.5 
1990 42.286 1990–1999 24.5 66.3 3.3 8.2 
2000 62.680 2000–2009 19.9 60.6 12.3 7.2 
2010 48.097 2010–2017 20.9 54.9 18.9 5.3 

2017 50.784 2017 22.5 55.1 17 5.5 

1950–2017  1950–2017 18.4 62.4 12.7 7.1  
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emissions. These emissions reached their lowest point in relative terms 
in the 1970s and have shown a relatively steady increase ever since. In 
the last few years of the sample, they represented 22.7% of total 
emissions. 

The combustion of liquid fuels was the dominant source of CO2 
emissions during the sample period, contributing on average to around 
61.4% of total emissions. In the 1970s and 80s they represented close to 
80% of the total, a number that has significantly declined ever since. By 
the last years of the sample, they amounted to 54.9% of emissions. 

Natural gas has developed rapidly after its introduction in 1998. 
Accordingly, related CO2 emissions has increased significantly. The 
average share from gas in aggregate emissions for the period 1998–2017 
was 12.7%, a share that has been steadily increasing over the last three 
decades to reach 17% over the last years of the sample. 

Finally, CO2 emissions from cement production account for 7.1% of 
total emissions over the sample period. These emissions peaked in the 
1970s, 80s, and 90s. Their relative share of emissions decreased in the 
last two decades to reach just 5.3% in the most recent years of the 
sample. 

3. Fractional integration 

3.1. Fractionally-integrated processes 

A fractionally-integrated process is a stochastic process with a degree 
of integration that is a fractional number, and whose autocorrelations 
decay slowly at a hyperbolic rate of decay. Accordingly, fractionally- 
integrated processes display long-run rather than short-term depen-
dence and for that reason are also known as long-memory processes. 

A time series xt ¼ yt � βzt is said to be fractionally integrated of order 
d, if it can be represented by 

ð1 � LÞd xt ¼ ut; t¼ 1; 2; 3; …  

where, β is the coefficients vector, zt represents all deterministic factors 
of the process, yt ; and t ¼ 1; 2; …n, L is the lag operator, d is a real 
number that captures the long-run effect, and ut is. Ið0Þ:

Allowing for values of “d” in the interval between 0 and 1 gives an 
extra flexibility that may be important when modeling long-term 
dependence in the conditional mean. Indeed, in contrast to an Ið0Þ
time series (where d ¼ 0) in which shocks die out at an exponential rate, 
or an Ið1Þ process (where d ¼ 1) in which there is no mean reversion, 
shocks to the conditional mean of an IðdÞ time series with 0 < d < 1 
dissipate at a slow hyperbolic rate. More specifically, if � 0:5 < d < 0, 
the autocorrelation function decays at a slower hyperbolic rate but the 
process can be called anti-persistent, or, alternatively, to have 
rebounding behavior or negative correlation. If 0 < d < 0:5, the proc-
ess reverts to its mean but the auto-covariance function decreases slowly 
as a result of the strong dependence on past values. Nevertheless, the 
effects will last longer than in the pure stationary case (d ¼ 0). If0:5 <
d < 1; the process is non-stationary with a time-dependent variance, but 
the series retains its mean-reverting property. Finally, ifd � 1, the pro-
cess is non-stationary and non-mean-reverting, i.e. the effects of random 
shocks are permanent [for details see, for example, Granger and Joyeux 
(1980), Granger (1980, 1981), Sowell (1992a, 1992b), Baillie (1996), 
Palma (2007) and Hassler et all (2016), Belbute and Pereira (2016)]. 

3.2. ARFIMA processes 

An autoregressive fractionally integrated moving average model is a 
generalization of the autoregressive moving average [ARMA] model 
which frees it from the I(0)/I(1) dichotomy, therefore allowing for the 
estimation of the degree of integration of the data generating process. In 
an ARMA process, the autoregressive components alone are important to 
assess whether or not the series is stationary. In the case of the ARFIMA 
model, the autoregressive and the moving average terms are a part of the 

model selection criteria. Accordingly, the ARFIMA approach provides a 
more comprehensive and yet more parsimonious parameterization of 
long-memory processes than the ARMA models. Moreover, in the 
ARFIMA class of models, the short-run and the long-run dynamic is 
disentangled by modeling the short-run behavior through the conven-
tional ARMA polynomial, while the long run is captures by the fractional 
differencing parameter, d [see, among others, Bollerslev and Mikkelsen 
(1996)]. 

If the process futg in (1) is an autoregressive moving average process 
of order p and q, then fxtg is a ARFIMAðp; d;qÞ process: 

φðLÞð1 � LÞd xt ¼ θðLÞet  

where 

φðLÞ ¼ 1 � φ1L � φ2L2 � … � φpLp ¼ 0 θðLÞ

¼ 1þ θ1Lþ θ2L2 þ … þ θpLq ¼ 0  

are the polynomials of order p and q respectively, with all zeroes of lying 
outside the unit circle, and with etas white noise. Clearly, the process is 
stationary and invertible for � 0:5 < d < 0:5. 

The estimation of the parameters of the ARFIMA model φ; θ; d; β 
and σ2 is done by the method of maximum likelihood. The log-Gaussian 
likelihood of y given parameter estimates bη ¼ ðbφ; bθ; bd; bβ; bσ2) was 
established by Sowell (1992b) as 

ℓððyjbηÞÞ¼ � 1
2
�

Tlogð2πÞþ logjbV j þX’ bV
� 1

X
�

where X represents a T- dimensional vector of the observations on the 
process xt ¼ yt � βzt and the covariance matrix V has a Toeplitz 
structure. 

3.3. ARFIMA forecasting and prediction-accuracy assessment 

Given the symmetry properties of the covariance matrix, Vcan be 
factored as V ¼ LDL’, where D ¼ DiagðvtÞ and L is lower triangular, so 
that; 

L’¼

2

6
6
6
6
4

1 0 0 … 0
τ1;1 1 0 … 0
τ2;2 τ2;1 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

τðT � 1Þ;ðT� 1Þ γðT � 1Þ;ðT � 2Þ τðT � 1Þ;ðT� 3Þ … 1

3

7
7
7
7
5

Moreover, let τt ¼ V� 1
t γt, γt ¼ ðγ1; γ2; …; γtÞ

’ and Vt is the t � t 
upper left sub-matrix of V. 

Let ft ¼ yt � βzt. The best linear forecast of xtþ1 based on x; x2; … xt 
is 

bf tþ1 ¼
Xt

k¼1
τt;kft� kþ1 

Moreover, the best linear predictor of the innovations is bε ¼ L� 1f , 
and the one-step-ahead forecasts for by, in matrix notation, is 

by¼ bL
� 1
ðy � ZbβÞ þ Z bβ:

Forecasting is carried out as suggested by Beran (1994) so that bf Tþk ¼

~γ’
k
bV
� 1bf , where ~γk ¼ ðbγTþk� 1; bγTþk� 2; …; bγkÞ. The accuracy of pre-

dictions is based on the average squared forecast error, which is 

computed as MSEðbf TþkÞ ¼ bγ0 �
eγ’k
bV
� 1

~γk. 
There is a wide diversity of loss functions available and their prop-

erties vary extensively. Even so, all of these share a common feature, in 
that “lower is better.” That is, a large value indicates a poor forecasting 
performance, whereas a value close to zero implies an almost-perfect 
forecast. We use three average loss indicators: the Mean Absolute Per-
centage Error [MAPE], the Adjusted Mean Absolute Percentage Error 
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[AMAPE], and the U-statist inequality coefficient. 
The MAPE and the AMAPE are relative measures, in that they are 

percentages. In particular, the MAPE is the percentage error, and has the 
advantage of having a lower bound of zero. The lower the indicator the 
greater the model’s forecast accuracy. Nevertheless, this loss function 
has drawbacks in any practical application. First, with zero values, we 
have a division by zero issue. Second, the MAPE does not have an upper 
limit. The AMAPE corrects almost completely the asymmetry problem 
between actual forecast values, and has the advantage of having both a 
zero lower bound and an upper bound. Like the MAPE, the smaller the 
AMAPE, the greater the accuracy of predictions. 

The Theil inequality coefficient, as provided by the U-statistic, yields 
a measure of how well estimated values compares to a corresponding 
time series of observed values. It lies between zero and one, with zero 
suggesting a perfect fit. It can be decomposed into three sources of 
inequality: bias, variance, and covariance proportions coverage. The 
bias component of the forecast errors measures the extent to which the 
mean of the forecast is different from the mean of the recorded values. 
Similarly, the variance component tells us how far the variation of the 
forecast is from the variation of the actual series. Finally, the covariance 
proportion measures the remaining unsystematic component of the 
forecasting errors. Naturally, the three components add up to one. 

4. The basic empirical results 

4.1. Preliminary structural break analysis 

Preliminary Quandt-Andrews and Andrews-Ploberger tests for 
structural changes [see Andrews (1993) and Andrews and Ploberger 
(1994)] are reported in Table 2. These tests point to possible structural 
breakpoints for total CO2 emissions, emissions from liquid fuels and 
from cement production in 2002, for coal in 1995 and for cement pro-
duction in 2008. 

From a conceptual perspective, these are all reasonable structural 
break points. The year 2002 corresponds to a turning point in total CO2 
emissions in Portugal due to the full implementation of the international 
commitments under the Kyoto Protocol and the European Union effort 
sharing decisions. In turn, 1995 corresponds to the beginning of activity 
of the Pego power plant, one of the only two coal-operated power plants 
in the country. Finally, in 2008 there was a sharp decline in the pro-
duction of cement, due to the economic and financial crisis and its 
devastating effects on the construction sector. 

4.2. Fractional integration analysis 

Table 3 presents the results of the estimations of the ARFIMAðp; d; qÞ
models, using annual data from 1950 to 2017. The best specifications 
were selected using the Schwartz Bayesian Information Criterion [BIC] 
and include statistically significant autoregressive and moving-average 
terms. 

When included in the ARFIMA models, however, the dummy 

coefficients corresponding to the potential structural breaks identified in 
the previous section are not statistically significant. Furthermore, the 
best specification of the ARFIMA models as indicated by the BIC does not 
include structural breaks. For this reason, the empirical results in this 
paper do not consider structural breaks. Not surprisingly, the corre-
sponding estimation results with structural breaks are not different in 
any meaningful way [and are available from the authors upon request]. 

Overall, our results provide strong empirical evidence for the non- 
rejection of the presence of long memory for both aggregate CO2 emis-
sions as well as its different components. The estimated values of the 
fractional parameter d are all between 0 and 1, thus allowing us to reject 
both the case of pure stationarity model (d ¼ 0) and the case of a unit 
root model (d ¼ 1). All series exhibit long-term memory as all estimated 
parameters d lie within the interval (0, 0.5). Total emissions have a 
degree of persistence of d ¼ 0.447, which literally corresponds to the 
convex combination of the persistent levels estimated for each of its four 
individual components. In relative terms, emission from gas show the 
smallest degree of persistence, d ¼ 0.267, while emissions form cement 
production show the highest degree of persistence, d ¼ 0.478. 

With the exception of CO2 emissions from gas combustion, all of the 
estimates of the fractional integration parameter are statistically sig-
nificant at 1%. The lower precision of the estimate for emissions from 
gas is due to the smaller sample size for this variable. 

Finally, the confidence intervals for the estimated fractional inte-
gration parameters are relatively narrow and always in the positive 
range. In all cases, however, the upper bound is slightly greater than 0.5, 
leaving open the marginal possibility that the different series may be 
non-stationary, though still would be mean reverting. 

4.3. In-sample global CO2 emissions forecasts 

Fig. 1 plots the actual values against the in-sample forecasts for 
global CO2 emissions between 1950 and 2017. Table 4 summarizes our 
forecasting accuracy analysis for the in-sample predictions. 

In general, we get excellent in-sample predictions for both aggregate 
CO2 emissions and each one of its four components. The MAPE ranges 
from a minimum of 6.1% for total emissions to a maximum of 14.7% for 
emissions from coal. In addition, the percentage of projected values 
outside the confidence interval ranges from a minimum of 1.5% for 
emissions from cement production to a maximum of 7.4% for emissions 
from coal combustion. 

In turn, the U-statistic shows a very small value, varying in a band 
between 0.03 and 0.09. This suggests that the predictions compare quite 
well with the observed values. Furthermore, the predictions are non- 
skewed and show a low variance. More than 90% of the prediction 
error in all components under analysis is non-systematic. The less pre-
cise results for natural gas emissions are, once again, due to its smaller 
sample size. 

5. ARFIMA CO2 emissions forecasts and their implications 

5.1. The ARFIMA Forecasts 2018–2050 

Having established a good forecasting performance of the different 
ARFIMA models, we use these estimates to forecast CO2 emissions until 
2050. The detailed results are presented in Fig. 2 and Tables A1 to A5 in 
the Appendix. In Table 5, we present summary results relative to the 
2010 reference emissions. To facilitate comparisons, we follow the lead 
of the IPCC (2018) report, which considers 2010 as the reference year 
for emissions reductions targets. 

Total CO2 emissions are projected to decrease from 50.8 Mt in 2017 
to 39.7 Mt in 2050. Emissions in 2030 and 2050 are forecasted to be 
about 6.9% and 17.5% below the 2010 reference level (48.1 Mt), 
respectively. Accordingly, the projected reductions in emissions are 
more pronounced until 2030 – an average annual reduction of about 
0.46 Mt, and noticeably slower in the next two decades – an average 

Table 2 
Quandt-Andrews and Andrews-Ploberger structural break tests.  

Variable Break 
point 

Quandt-Andrews Andrews- 
Ploberger 

t-test p- 
value 

t-test p- 
value 

Aggregate CO2 emissions 2002 18.981 0.002 6.430 0.002 
CO2 emissions from solid 

fuels 
1995 13.029 0.027 4.050 0.021 

CO2 emissions from liquid 
fuels 

2002 13.117 0.026 3.475 0.038 

CO2 emissions from gas fuels 2011 3.276 0.847 1.086 0.481 
CO2 emissions from cement 

production 
2008 22.571 0.000 7.786 0.001  
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annual reduction of 0.26 Mt. 
The general pattern of reductions projected for total emissions is also 

present, with some minor changes, at a more disaggregated level when 
we consider the four different individual components of total emissions. 
Noticeably, we project emissions for liquid fuel and gas fuel combustions 
to be always below the 2010 reference levels. In turn, we project 
emissions from solid fuel combustion and from cement production to be 
always above the 2010 reference levels. Emissions from the combustion 
of liquid fuels are projected to decline by 2030 and 2050 to 20.6% and 
29.4% below the 2010 level while the projected emissions from natural 
gas by 2030 and 2050 are 44.7% and 64.4% below the level in 2010, at a 
level of 3.7 Mt. In turn, projections of emissions from coal in 2030 and 
2050 are 51.9% and 27.3% higher than the reference year while pro-
jected emissions from cement production will reach levels 13.5% and 
5.7% above the 2010 levels by 2030 and 2050, respectively. 

5.2. The ARFIMA forecasts and the IPCC special Report 2018 and 
RNC2050 targets 

Recently, the IPCC (2018) report has pointed that limiting global 
warming to 1.5 �C would require “rapid and far-reaching” transitions in 
land, energy, industry, buildings, transport, and cities which will require 
a fall of global net anthropogenic CO2 emissions by about 45% from 
2010 by 2030, and reaching ‘net zero’ around 2050. While the IPCC 
report focuses on global anthropogenic emissions as the reference var-
iable, our projections focus only on CO2 emissions from fossil fuel 
combustion and cement production, to which we apply literally the 
broader IPCC goals. As such, in this exercise we ignore any national or 
source-based differentiation in the international implementation of the 
IPCC2018 targets. 

The IPCC2018 emissions targets were applied and adopted in very 
general terms to the Portuguese case in the RNC2050 (2019), which 
establishes the strategic framework of public policies in Portugal aiming 
at carbon neutrality in 2050. In reality, the RNC2050 (2019) does not set 
specific targets for 2030 and 2050, but rather provides confidence in-
tervals based on three alternative scenarios. Specifically, the RNC2050 
(2019) points for 2030 to a range of reduction in emissions of [-45%,- 
55%] and to carbon neutrality by 2050 assuming a range in carbon sinks 
of [-85%,-90%], both relative to 2005. We apply the middle points of 
these ranges to the values for CO2 emissions from fossil fuels and cement 
production in 2005 to obtain the implicit RNC2050 targets for 2030 and 
2050. Then, we change the base year from 2005 to 2010 in order to 
facilitate comparisons. According to these calculations, the RNC2050 
targets represent a reduction of 32.2%% in emissions by 2030 while 
carbon neutrality by 2050 requires a reduction of 83.0%, both relative to 
2010 levels. Ultimately, the RNC2050 (2019) projects a level of emis-
sions by 2050 in line with IPCC 2018 guidelines, although by 2030 the 

projected reduction is slightly lower than the IPCC guidelines. 
The IPCC2018 and the RNC2050 policy targets are presented in lines 

1 and 2 of Table 6. Under the IPCC targets, CO2 emissions in Portugal 
would have to decrease by 21.6 Mt or 45% of 2010 emissions by 2030 
and a further 18.3 Mt, or a further 38% of 2010 levels, between 2030 
and 2050. The total target accumulated reduction by 2050 is 39.9 Mt, 
which corresponds to a reduction of 83% relative to 2010. Given our 
discussion about and without loss of generality, we can say that by 
construction, the objectives of the RNC2050 for 2050 are the same as the 
IPCC. The projected trajectory of decrease in emissions under the 
RNC2050, however, is slightly less frontloaded, with a projected 
decrease of 32.2% in 2030 relative to 2010 values. 

Of the greatest importance is the comparison of these policy targets 
with our reference scenario. Line 3 of Table 6 indicates that the inertia 
effect estimated according to the ARFIMA model projections is respon-
sible for the reduction of 6.9% of emissions by 2030 and of 10.5% be-
tween this year and 2050, with a total cumulative reduction of 17.5%. 
This implies that the inertia of the Portuguese emissions system is very 
far from sufficient to generate the path of CO2 emissions necessary to 
achieve the IPCC targets towards carbon neutrality by 2050. 

Since our CO2 emissions forecasts provide the most fundamental 
reference case forecast of emissions, they can be used to assess the net 
policy effort necessary to achieve emissions goals. This information is 
provided in lines 4 and 5 of Table 6 and represents the difference be-
tween the IPCC and the RNC2050 policy targets and the ARFIMA model 
forecasts, respectively. 

Line 4 of Table 6 indicates that a policy effort that cuts 38.1% of the 
45% needed to meet the IPCC mid-term target in 2030 will be necessary. 
The remaining 6.9% are achieved through the inertia of the emissions 
system. By 2050, maintaining a policy agenda consistent with the 
overall objective of an 82.3% reduction in emissions will require an 
additional policy effort of 27.4% relative to 2030 emission levels, while 
inertia will be responsible for reducing the remaining 10.6% of emis-
sions this year. Accordingly, the inertia of the system will lead to just 
17.5% of the total target reduction in emissions necessary by 2050 and 
the remaining efforts (-65.5%) will have to come from deliberate 
decarbonization policies. 

Moreover, our results indicate that to meet the RNC2050 (2019) mid- 
term targets in 2030, it is necessary a policy effort that leads to a 
reduction of CO2 emissions of 32.2% relative to 2010 levels. Of these, 
25.3% corresponds to the extra effort over the basic RNC2050 reduction 
target due to the inertia of the emissions system. To achieve carbon 
neutrality by 2050 will require an extra reduction of CO2 emissions of 
50.5% relative to 2010 levels, 40.2% of which from deliberate decar-
bonization policies, and the remaining 10.6% will be achieved through 
the inertia of the emissions system. 

Finally, it should also be noted that the new IPCC guidelines impose a 

Table 3 
Fractional-integration results: 1950–2017.  

Variable Coefficient Estimates Std. Err. (p-value) Confidence Intervals BIC 

Aggregate CO2 emissions d 0.447 0.079 (0.000) [0.293;0.601] 331.742 
p1 0.602 0.138 (0.000) [0.331; 0.873] 
p3 0.339 0.120 (0.005) [0.102; 0.575] 

CO2 emissions from solid fuels d 0.440 0.086 (0.000) [0.272;0.608] 216.876 
p1 0.479 0.135 (0.000) [0.215; 0.743] 
p3 0.388 0.103 (0.000) [0.187; 0.590] 

CO2 emissions from liquid fuels d 0.469 0.044 (0.000) [0.383;0.555] 286.220 
p1 0.532 0.099 (0.000) [0.337; 0.727] 
p3 0.393 0.093 (0.000) [0.210; 0.576] 

Co2 emissions from gas fuels d 0.267 0.172 (0.121) [-0.071;0.605] 69.562 
p1 0.951 0.059 (0.000) [0.835; 1.067] 

CO2 emissions from cement production d 0.479 0.031 (0.000) [0.419;0.540] 120.731 
p1 0.497 0.126 (0.000) [0.250; 0.744] 

Note: p stands for the estimated value of the parameter associated with the xt� p term of the autoregressive component. 
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more stringent policy effort until 2030 - a 2.5% average annual reduc-
tion in emissions than the subsequent 20 years – a 1.9% average annual 
reduction in emissions. The opposite is true under the RNC2050. This is 
a straightforward implications of different 2030 targets coupled with the 
same 2050 target in the two cases. 

6. Summary, conclusions, and policy implications 

This work uses an ARFIMA approach to evaluate the degree of 
persistence of total CO2 emissions from fossil fuel combustion – coal, oil, 
and gas - and cement production in Portugal, and to make projections of 
CO2 emissions until 2050. These ARFIMA projections allow us to assess 

Fig. 1. In-sample CO2 Predictions: 1950-2017 
Note: The grey lines represent the upper and lower bounds of the 95% confidence interval. 
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the policy effort required by the Portuguese authorities to enable the 
country to meet the new IPCC and RNC2050 targets and thereby 
contribute to the global effort to limit the average global average tem-
perature rise to 1.5 �C. 

Our empirical results suggest that CO2 emissions both at the aggre-
gate level and for each of its four different components are fractionally 
integrated processes. Accordingly, they show long-memory and the ef-
fects of shocks tend to dissipate at a slow hyperbolic rate. Moreover, the 
degree of fractional integration does not significantly differ among all 
variables and the degree of fractional integration for aggregate CO2 
emissions is very close to the convex combination of the degrees of 
fractional integration for the four emission sources considered. 

In terms of projections for the CO2 emissions, our approach uses only 
the information included in the stochastic process underlying the 
baseline data, in a context in which the existing policies in 2017 remain 
invariant. Our projections for CO2 emissions suggest an inertial pattern 
of decarbonization of the economy, which translates into emissions re-
ductions of respectively 6.9% and 17.5% in 2030 and 2050 relative to 
2010 levels. 

The policy effort required to reach carbon neutrality in 2050 is 
measured by the difference between the reduction of emissions required 
by the IPCC 2018 and RNC2050 targets and the ARFIMA emissions 
projections. Our results suggest that to achieve such policy targets by 
2050, additional policy efforts are necessary leading to a reduction in 
emissions of 65.5% of the 2010 levels. The required long-term policy 
effort is the same for the IPCC2018 and RNC2050 since both have 
essentially the same objective for emissions in 2050. The direct appli-
cation to Portugal of the IPCC2018 targets, however, requires a larger 
additional policy effort by 2030 (-45% relative to 2010 level) and, 
consequently, lower additional policy effort in the subsequent 20 years 
(-38% relative to 2010 levels) compared to the RNC2050 targets (-32.2% 
and -50.8%, respectively, relative to 2010 levels). Accordingly, if 
directly applied to Portugal, the IPCC2018 targets would lead to the 
need of frontloaded policies until 2030. By contrast, with the RNC2050 
targets the greatest efforts would have to occur between 2030 and 2050. 

These results have important policy implications. First, our emissions 
projections capture the inertia effect underlying CO2 emissions and this 
exercise allows us to assess the policy effort involved in the intermediate 
and final targets. Trivially, the results confirm that the underlying 
inertia of the reference scenario is insufficient to generate a path of CO2 
emissions that would generally achieve carbon neutrality by 2050 and in 
particular the intermediate IPCC targets. Accordingly, but not surpris-
ingly, our forecasts support the contention of the IPCC (2018) report that 
active and deliberate additional policy efforts are crucial in attaining the 
desirable emission targets. 

Second, the long-memory nature of the emissions data implies that 

any policy shock will have temporary effects albeit longer lasting than 
suggested in a traditional analysis of stationarity. The mean reversal 
property of our estimates, however, implies that the policy effort must 
be persistent to produce equally persistent effects. This is particularly 
relevant in the framework of the national strategy for achieving carbon 
neutrality in 2050 where it will be crucial to promote permanent 
changes in behavior and not just short term fixes. 

Finally, the policy efforts required to achieve decarbonization – a 
reduction in emissions by 2050 equivalent to 65.5% of the 2010 refer-
ence levels - are very demanding and frontloaded if the IPCC2018 tar-
gets were to be strictly adopted. The magnitude and urgency of these 
efforts, however, does not seem to be not matched by the consideration 
of any significant actions in the current policy debate. 

Policy efforts toward the decarbonization of the Portuguese economy 
must necessarily include important changes such as a comprehensive 
elimination of pervasive fossil fuel subsidies; the elimination of the large 
market distortions present in electricity pricing; discontinuing coal- 
operated electricity production; continued promotion of electricity 
production from renewable sources; the promotion of abundant and 
readily available energy efficiency measures. Ultimately, they will 
require the establishment of a meaningful carbon emissions pricing - 
either though carbon taxation or emission trading markets. 

Significantly, the Portuguese government announced the forced 
closure of the two major coal-operated power plants - Pego by 2021 and 
Sines by 2023. This is an important step in the right direction as these 
two power plants account for about 19% of the emissions in the country. 
Furthermore, this is a permanent change, the type of change necessary in 
light of the long-term memory of the emissions systems. Nevertheless, 
these forced closures will lead to a reduction in emissions that is less 
than 25% of the total reductions deemed as necessary under our 
projections. 

This paper provides an application and important implications for 
policy making for the case of the Portuguese emissions. Its relevance, 
however, is far from parochial. In fact, the need to identify a meaningful 
reference scenario for emissions is universal. Prospective mitigation 
policy assessment always requires identifying a benchmark scenario for 
emissions to determine the timing and magnitude of the policy efforts 
that are necessary. Defining a meaningful benchmark is best achieved by 
identifying a reference scenario reflecting the emissions that would exist 
at future dates in the absence of any emission targets and policies rather 
than using a recorded value in a particular year [see, for example, 
Markandya (2019)]. The method presented in this paper has the 
advantage of generating such a reference scenario and one that reflects 
the long-term memory of the emissions system. Considering the 
long-term memory of the system is critical not only for the formulation 
of the most accurate reference forecasts but also for the understanding of 
the nature of the response of the emissions system to large policy 
changes or systemic shocks. 

Naturally, our method of identifying the reference scenario and 
concomitantly the policy efforts to achieve the necessary emission tar-
gets is not without limitations. First and foremost, by focusing on the 
inertia from the past, our approach may miss some of the dynamics in 
the direction of greater environmental awareness and more environ-
mental conscientious behaviors fueled by social media in the recent past. 
Our results suggest, however, that the wide gulf between the current 
emissions patterns and the current future emissions targets is highly 
unlikely to be bridged without clear, deliberate, comprehensive and 
substantial policy efforts. As such, identifying the timing and magnitude 
of these policy efforts requires a frequent update of the reference fore-
casts in light of the availability of new data, the implementation of new 
policies, and the consideration of potential exogenous shocks. For 
example, policies of the type of the forced closure of the coal-operated 
power plants in Portugal and exogenous shocks such as the COVID-19 
pandemic, while may or may not affect the inertia of the emissions 
system represent significant structural change that need to be consid-
ered in the development of future reference forecasts. 

Table 4 
In-sample forecasts accuracy analysis: 1950–2017.   

CO2 Emissions 

Aggregate 
CO2 

Solid 
Fuel 

Liquid 
Fuel 

Gas 
Fuel 

Cement 
production 

Mean Absolute 
Percentage Error 
(MAPE) 

6.1% 14.7% 7.3% 8.0% 12.8% 

Adjusted Mean 
Absolute 
Percentage Error 
(AMAPE) 

3.9% 8.2% 4.5% 4.1% 7.3% 

Theil Inequality 
Coefficient 

0.03 0.07 0.03 0.05 0.09 

Mean Squared Error decomposition: 
Bias proportion 4.9% 3.4% 3.2% 4.3% 8.7% 
Variance 
proportion 

1.5% 0.0% 2.3% 1.0% 1.2% 

Covariance 
proportion 

93.5% 96.5% 94.5% 94.8% 90.1%  
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Fig. 2. CO2 emissions forecasts: 2018 - 2050 
Note: The grey lines represent the upper and lower bounds of the 95% confidence interval. 
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APPENDIX 

Table A1 
Total CO2 Emissions Forecasts for 2018–2050  

Years Total co2 emissions (forecasts - ft) Distançe to reference year (2010) RMSE Confidence interval (95%) 

MtCO2 rmset/ft (%) Lower limit Upper limit 

2018 47.800 -0.6 4.1 8.5 41.1 54.5 
2019 47.757 -0.7 4.9 10.3 39.7 55.8 
2020 47.303 -1.7 5.8 12.2 37.8 56.8 
2021 47.121 -2.0 6.5 13.8 36.4 57.9 
2022 46.949 -2.4 7.3 15.5 35.0 58.9 
2023 46.653 -3.0 8.0 17.2 33.5 59.8 
2024 46.382 -3.6 8.7 18.8 32.0 60.7 
2025 46.132 -4.1 9.4 20.4 30.7 61.6 
2026 45.858 -4.7 10.1 21.9 29.3 62.4 
2027 45.579 -5.2 10.7 23.5 28.0 63.2 
2028 45.307 -5.8 11.3 25.0 26.7 63.9 
2029 45.032 -6.4 11.9 26.5 25.4 64.6 
2030 44.755 -6.9 12.5 27.9 24.2 65.3 
2031 44.480 -7.5 13.1 29.4 23.0 66.0 
2032 44.206 -8.1 13.6 30.8 21.8 66.6 
2033 43.932 -8.7 14.1 32.2 20.7 67.2 
2034 43.661 -9.2 14.7 33.6 19.6 67.8 
2035 43.391 -9.8 15.1 34.9 18.5 68.3 
2036 43.124 -10.3 15.6 36.2 17.4 68.8 
2037 42.859 -10.9 16.1 37.6 16.4 69.3 
2038 42.596 -11.4 16.5 38.8 15.4 69.8 
2039 42.335 -12.0 17.0 40.1 14.4 70.3 
2040 42.078 -12.5 17.4 41.4 13.4 70.7 
2041 41.823 -13.0 17.8 42.6 12.5 71.1 
2042 41.571 -13.6 18.2 43.9 11.6 71.6 
2043 41.321 -14.1 18.6 45.1 10.7 72.0 
2044 41.075 -14.6 19.0 46.3 9.8 72.3 
2045 40.832 -15.1 19.4 47.4 9.0 72.7 
2046 40.591 -15.6 19.7 48.6 8.1 73.0 
2047 40.354 -16.1 20.1 49.8 7.3 73.4 
2048 40.120 -16.6 20.4 50.9 6.5 73.7 
2049 39.888 -17.1 20.7 52.0 5.8 74.0 
2050 39.660 -17.5 21.1 53.1 5.0 74.3   

Table 5 
CO2 emissions forecasts: Changes in emissions relative to 2010 reference levels 
(%).   

Aggregate CO2 Solid fuel Liquid fuel Gas Cement 

2020 -1.7 66.3 -14.8 -29.9 19.4 
2030 -6.9 51.9 -20.6 -44.7 13.5 
2040 -12.5 38.0 -25.5 -56.0 9.0 
2050 -17.5 27.3 -29.4 -64.4 5.7  

Table 6 
Reductions in CO2 emissions relative to 2010 (%).   

2030 2050 

Increment over 2030 Total 

(1) IPCC (2018) Policy targets -45.0% -38.0% -83.0% 
(2) RNC2050 (2019) targets -32.2% -50.8% -83.0% 
(3) ARFIMA model -6.9% -10.6% -17.5% 

Policy efforts relative to ARFIMA model 

(4) IPCC (2018) targets (1)–(3) -38.1 -27.4% -65.5% 
(5) RNC2050 (2019) targets (2)–(3) -25.3 -40.2 -65.5%  
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Table A2 
CO2 Emissions from Solid Fuels Forecasts for 2018–2050  

Years Total co2 emissions forecasts (ft) (Mt) Distançe to reference year: 2010 (%) RMSE Confidence interval (95%) 

MtCO2 rmset/ft (%) Lower limit Upper limit 

2018 10.697 69.8 1.6 14.8 8.1 13.3 
2019 10.628 68.7 1.9 17.7 7.5 13.7 
2020 10.476 66.3 2.2 20.8 6.9 14.1 
2021 10.437 65.7 2.4 23.0 6.5 14.4 
2022 10.365 64.6 2.6 25.4 6.0 14.7 
2023 10.248 62.7 2.9 27.9 5.5 14.9 
2024 10.156 61.2 3.1 30.1 5.1 15.2 
2025 10.066 59.8 3.2 32.2 4.7 15.4 
2026 9.961 58.2 3.4 34.4 4.3 15.6 
2027 9.860 56.6 3.6 36.4 4.0 15.8 
2028 9.764 55.0 3.7 38.4 3.6 15.9 
2029 9.664 53.4 3.9 40.3 3.3 16.1 
2030 9.565 51.9 4.0 42.2 2.9 16.2 
2031 9.470 50.4 4.2 44.0 2.6 16.3 
2032 9.375 48.8 4.3 45.8 2.3 16.4 
2033 9.282 47.4 4.4 47.5 2.0 16.5 
2034 9.191 45.9 4.5 49.2 1.8 16.6 
2035 9.102 44.5 4.6 50.8 1.5 16.7 
2036 9.015 43.1 4.7 52.4 1.3 16.8 
2037 8.930 41.8 4.8 53.9 1.0 16.8 
2038 8.848 40.5 4.9 55.4 0.8 16.9 
2039 8.767 39.2 5.0 56.9 0.6 17.0 
2040 8.689 38.0 5.1 58.3 0.4 17.0 
2041 8.613 36.7 5.1 59.7 0.2 17.1 
2042 8.539 35.6 5.2 61.0 0.0 17.1 
2043 8.467 34.4 5.3 62.4 -0.2 17.2 
2044 8.398 33.3 5.3 63.7 -0.4 17.2 
2045 8.330 32.3 5.4 64.9 -0.6 17.2 
2046 8.264 31.2 5.5 66.1 -0.7 17.3 
2047 8.200 30.2 5.5 67.4 -0.9 17.3 
2048 8.139 29.2 5.6 68.5 -1.0 17.3 
2049 8.079 28.3 5.6 69.7 -1.2 17.3 
2050 8.020 27.3 5.7 70.8 -1.3 17.4   

Table A3 
CO2 Emissions from Liquid Fuels Forecasts for 2018–2050  

Years Total co2 emissions forecasts (ft) (Mt) Distançe to reference year: 2010 (%) RMSE Confidence interval (95%) 

MtCO2 rmset/ft (%) Lower limit Upper limit 

2018 25.403 -13.1 2.8 10.9 20.8 30.0 
2019 25.279 -13.6 3.4 13.3 19.7 30.8 
2020 24.901 -14.8 4.0 15.9 18.4 31.4 
2021 24.788 -15.2 4.5 18.0 17.4 32.1 
2022 24.656 -15.7 5.0 20.2 16.5 32.8 
2023 24.421 -16.5 5.5 22.5 15.4 33.4 
2024 24.239 -17.1 6.0 24.6 14.4 34.0 
2025 24.079 -17.7 6.4 26.7 13.5 34.6 
2026 23.894 -18.3 6.9 28.7 12.6 35.2 
2027 23.716 -18.9 7.3 30.8 11.7 35.7 
2028 23.551 -19.5 7.7 32.7 10.9 36.2 
2029 23.385 -20.0 8.1 34.7 10.0 36.7 
2030 23.220 -20.6 8.5 36.6 9.2 37.2 
2031 23.062 -21.1 8.9 38.5 8.5 37.7 
2032 22.908 -21.7 9.2 40.3 7.7 38.1 
2033 22.756 -22.2 9.6 42.1 7.0 38.5 
2034 22.608 -22.7 9.9 43.9 6.3 38.9 
2035 22.464 -23.2 10.2 45.6 5.6 39.3 
2036 22.323 -23.7 10.6 47.3 5.0 39.7 
2037 22.185 -24.1 10.9 49.0 4.3 40.1 
2038 22.050 -24.6 11.2 50.6 3.7 40.4 
2039 21.919 -25.0 11.4 52.2 3.1 40.7 
2040 21.790 -25.5 11.7 53.8 2.5 41.1 
2041 21.665 -25.9 12.0 55.3 1.9 41.4 
2042 21.542 -26.3 12.2 56.9 1.4 41.7 
2043 21.422 -26.7 12.5 58.3 0.9 42.0 
2044 21.305 -27.1 12.7 59.8 0.3 42.3 
2045 21.191 -27.5 13.0 61.3 -0.2 42.5 
2046 21.079 -27.9 13.2 62.7 -0.6 42.8 
2047 20.969 -28.3 13.4 64.1 -1.1 43.1 
2048 20.862 -28.7 13.6 65.4 -1.6 43.3 
2049 20.757 -29.0 13.9 66.8 -2.0 43.5 
2050 20.655 -29.4 14.1 68.1 -2.5 43.8 
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Table A4 
CO2 Emissions from Gas Forecasts for 2018–2050  

Years Total co2 emissions forecasts (ft) (Mt) Distançe to reference year: 2010 (%) RMSE Confidence interval (95%) 

MtCO2 rmset/ft (%) Lower limit Upper limit 

2018 7.570 -26.3 1.4 19.1 5.2 10.0 
2019 7.381 -28.1 1.9 25.6 4.3 10.5 
2020 7.202 -29.9 2.3 31.7 3.4 11.0 
2021 7.030 -31.5 2.6 37.5 2.7 11.4 
2022 6.863 -33.2 3.0 43.0 2.0 11.7 
2023 6.701 -34.8 3.2 48.4 1.4 12.0 
2024 6.544 -36.3 3.5 53.6 0.8 12.3 
2025 6.390 -37.8 3.8 58.7 0.2 12.6 
2026 6.240 -39.2 4.0 63.8 -0.3 12.8 
2027 6.094 -40.7 4.2 68.7 -0.8 13.0 
2028 5.951 -42.1 4.4 73.7 -1.3 13.2 
2029 5.813 -43.4 4.6 78.5 -1.7 13.3 
2030 5.678 -44.7 4.7 83.4 -2.1 13.5 
2031 5.546 -46.0 4.9 88.2 -2.5 13.6 
2032 5.418 -47.2 5.0 93.0 -2.9 13.7 
2033 5.294 -48.5 5.2 97.8 -3.2 13.8 
2034 5.173 -49.6 5.3 102.6 -3.6 13.9 
2035 5.055 -50.8 5.4 107.4 -3.9 14.0 
2036 4.941 -51.9 5.5 112.2 -4.2 14.1 
2037 4.829 -53.0 5.7 117.0 -4.5 14.1 
2038 4.722 -54.0 5.8 121.9 -4.7 14.2 
2039 4.617 -55.0 5.8 126.7 -5.0 14.2 
2040 4.515 -56.0 5.9 131.5 -5.3 14.3 
2041 4.417 -57.0 6.0 136.4 -5.5 14.3 
2042 4.321 -57.9 6.1 141.2 -5.7 14.4 
2043 4.228 -58.8 6.2 146.1 -5.9 14.4 
2044 4.138 -59.7 6.2 151.0 -6.1 14.4 
2045 4.050 -60.6 6.3 155.9 -6.3 14.4 
2046 3.966 -61.4 6.4 160.9 -6.5 14.5 
2047 3.884 -62.2 6.4 165.8 -6.7 14.5 
2048 3.804 -63.0 6.5 170.8 -6.9 14.5 
2049 3.727 -63.7 6.6 175.8 -7.0 14.5 
2050 3.652 -64.4 6.6 180.8 -7.2 14.5   

Table A5 
CO2 Emissions from Cement Production Forecasts for 2018–2050  

Years Total co2 emissions forecasts (ft) (Mt) Distançe to reference year: 2010 (%) RMSE Confidence interval (95%) 

MtCO2 rmset/ft (%) Lower limit Upper limit 

2018 2.759 20.7 0.9 30.9 1.4 4.2 
2019 2.745 20.1 0.9 33.9 1.2 4.3 
2020 2.731 19.4 1.0 36.0 1.1 4.3 
2021 2.716 18.8 1.0 37.7 1.0 4.4 
2022 2.702 18.2 1.1 39.1 1.0 4.4 
2023 2.687 17.5 1.1 40.2 0.9 4.5 
2024 2.673 16.9 1.1 41.2 0.9 4.5 
2025 2.660 16.3 1.1 42.1 0.8 4.5 
2026 2.646 15.7 1.1 42.9 0.8 4.5 
2027 2.633 15.2 1.1 43.6 0.7 4.5 
2028 2.620 14.6 1.2 44.3 0.7 4.5 
2029 2.608 14.1 1.2 45.0 0.7 4.5 
2030 2.596 13.5 1.2 45.6 0.7 4.5 
2031 2.584 13.0 1.2 46.2 0.6 4.5 
2032 2.572 12.5 1.2 46.7 0.6 4.5 
2033 2.561 12.0 1.2 47.2 0.6 4.6 
2034 2.551 11.6 1.2 47.8 0.5 4.6 
2035 2.540 11.1 1.2 48.2 0.5 4.6 
2036 2.530 10.7 1.2 48.7 0.5 4.6 
2037 2.520 10.2 1.2 49.2 0.5 4.6 
2038 2.511 9.8 1.2 49.6 0.5 4.6 
2039 2.502 9.4 1.3 50.0 0.4 4.6 
2040 2.493 9.0 1.3 50.5 0.4 4.6 
2041 2.484 8.6 1.3 50.9 0.4 4.6 
2042 2.476 8.3 1.3 51.2 0.4 4.6 
2043 2.467 7.9 1.3 51.6 0.4 4.6 
2044 2.459 7.6 1.3 52.0 0.4 4.6 
2045 2.452 7.2 1.3 52.4 0.3 4.6 
2046 2.444 6.9 1.3 52.7 0.3 4.6 
2047 2.437 6.6 1.3 53.1 0.3 4.6 
2048 2.430 6.3 1.3 53.4 0.3 4.6 
2049 2.423 6.0 1.3 53.7 0.3 4.6 
2050 2.416 5.7 1.3 54.0 0.3 4.6 
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