
Fast and Guaranteed Safe Controller
Synthesis for Nonlinear Vehicle Models

Chuchu Fan1(B) , Kristina Miller2 , and Sayan Mitra2

1 Department of Computing and Mathematical Sciences,
California Institute of Technology, Pasadena, USA

chuchu@caltech.edu
2 Department of Electrical and Computer

Engineering, University of Illinois
at Urbana-Champaign, Champaign, USA

{kmmille2,mitras}@illinois.edu

Abstract. We address the problem of synthesizing a controller for non-
linear systems with reach-avoid requirements. Our controller consists of
a reference controller and a tracking controller which drives the actual
trajectory to follow the reference trajectory. We identify a type of refer-
ence trajectory such that the tracking error between the actual trajectory
of the closed-loop system and the reference trajectory can be bounded.
Moreover, such a bound on the tracking error is independent of the ref-
erence trajectory. Using such bounds on the tracking error, we propose
a method that can find a reference trajectory by solving a satisfiability
problem over linear constraints. Our overall algorithm guarantees that
the resulting controller can make sure every trajectory from the initial
set of the system satisfies the given reach-avoid requirement. We also
implement our technique in a tool FACTEST. We show that FACTEST
can find controllers for four vehicle models (3–6 dimensional state space
and 2–4 dimensional input space) across eight scenarios (with up to 22
obstacles), all with running time at the sub-second range.

1 Introduction

Design automation and safety of autonomous systems is an important research
area. Controller synthesis aims to provide correct-by-construction controllers
that can guarantee that the system under control meets certain requirements.
Controller synthesis is a type of program synthesis problem. The synthesized
program or controller g has to meet the given requirement R, when it is run in

The authors acknowledge support from the DARPA Assured Autonomy under con-
tract FA8750-19-C-0089, the Air Force Office of Scientific Research under grant
AFOSR FA9550-17-1-0236, and the National Science Foundation under grant NSF
CCF 1918531. The views, opinions and/or findings expressed are those of the authors
and should not be interpreted as representing the official views or policies of the Depart-
ment of Defense or the U.S. Government.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 629–652, 2020.
https://doi.org/10.1007/978-3-030-53288-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_31&domain=pdf
http://orcid.org/0000-0003-4671-233X
http://orcid.org/0000-0003-1016-1695
http://orcid.org/0000-0001-7082-5516
https://doi.org/10.1007/978-3-030-53288-8_31

630 C. Fan et al.

(closed-loop) composition with a given physical process or plant A. Therefore, a
synthesis algorithm has to account for the combined behavior of g and A.

Methods for designing controllers for asymptotic requirements like stability,
robustness, and tracking, predate the algorithmic synthesis approaches for pro-
grams [3,16,30]. However, these classic control design methods normally do not
provide formal guarantees in terms of handling bounded-horizon requirements
like safety. Typical controller programs are small, well-structured, and at core,
have a succinct logic (“bang-bang” control) or mathematical operations (PID
control). This might suggest that controllers could be an attractive target for
algorithmic synthesis for safety, temporal logic (TL), and bounded time require-
ments [1,9,18,34,38].

On the other hand, motion planning (MP), which is an instance of the con-
troller synthesis for robots is notoriously difficult (see [21] Chapter 6.5). A typi-
cal MP requirement is to make a robot A track certain waypoints while meeting
some constraints. A popular paradigm in MP, called sampling-based MP, gives
practical, fully automatic, randomized, solutions to hard problem instances by
only considering the geometry of the vehicle and the free space [14,15,20,21].
However, they do not ensure that the dynamic behavior of the vehicle will actu-
ally follow the planed path without running into obstacles. Ergo, MP continues
to be a central problem in robotics1.

In this paper, we aim to achieve faster control synthesis with guarantees by
exploiting a separation of concerns that exists in the problem: (A) how to drive
a vehicle/plant to a given waypoint? and (B) Which waypoints to choose for
achieving the ultimate goal? (A) can be solved using powerful control theoretic
techniques—if not completely automatically, but at least in a principled fashion,
with guarantees, for a broad class of A’s. Given a solution for (A), we solve
(B) algorithmically. A contribution of the paper is to identify characteristics
of a solution of (A) that make solutions of (B) effective. Consider nonlinear
control systems A : d

dtx = f(x, u) and reach-avoid requirements defined by a
goal set G that the trajectories should reach, and obstacles O the trajectories
should avoid. The above separation leads to a two step process: (A) Find a
state feedback tracking controller gtrk that drives the actual trajectory of the
closed-loop system ξg to follow a reference trajectory ξref. (B) Design a reference
controller gref, which consists of a reference trajectory ξref and a reference input
uref. The distance between ξg and ξref is called the tracking error e. If we can
somehow know beforehand the value of e without knowing ξref, we can use such
error to bloat O and shrink G, and then synthesize ξref such that it is e away
from the obstacles (inside the goal set). For linear systems, this was the approach
used in [7], but for nonlinear systems, the tracking error e will generally change
with ξref, and the two steps get entangled.

For a general class of nonlinear vehicles (such as cars, drones, and underwater
vehicles), the tracking controller gtrk is always designed to minimize the tracking

1 In the most recent International Conference on Robotics and Automation, among
the 3,512 submissions “Path and motion planning” was the second most popular key
phrase.

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 631

error. The convergence of the error can be proved by a Lyapunov function for
certain types of ξref. We show how, under reasonable assumptions, we can use
Lyapunov functions to bound the value of the tracking error even when the
waypoints changes (Lemma 2). This error bound is independent of ξref so long as
ξref satisfies the assumptions. For step (B) we introduce a SAT-based trajectory
planning methods to find such ξref and uref by solving a satisfiability (SAT)
problem over quantifier free linear real arithmetic (Theorem1). Moreover, the
number of constraints in the SMT problem scales linearly to the increase of
number of obstacles (and not with the vehicle model). Thus, our methods can
scale to complex requirements and high dimensional systems.

Putting it all together, our final synthesis algorithm (Algorithm2) guarantees
that any trajectory following the synthesized reference trajectory will satisfy the
reach-avoid requirements. The resulting tool FACTEST is tested with four non-
linear vehicle models and on eight different scenarios, taken from MP literature,
which cover a wide range of 2D and 3D environments. Experiment results show
that our tool scales very well: it can find the small covers {Θj}j and the cor-
responding reference trajectories and control inputs satisfying the reach-avoid
requirements most often in less than a second, even with up to 22 obstacles. We
have also compared our SAT-based trajectory planner to a standard RRT plan-
ner, and the results show that our SAT-based method resoundingly outperforms
RRT. To summarize, our main contributions are:

1. A method (Algorithm 2) for controller synthesis separating tracking controller
gtrk and search for reference controller gref.

2. Sufficient conditions for tracking controller error performance that makes the
decomposition work (Lemma 2 and Lemma 3).

3. An SMT-based effective method for synthesizing reference controller gref.
4. The FACTEST implementation of the above and its evaluation showing very

encouraging results in terms of finding controllers that make any trajectories
of the closed-loop system satisfy reach-avoid requirements (Sect. 6).

Related Works. Model Predictive Control (MPC). MPC [4,25,45,49] has to
solve a constrained, discrete-time, optimal control problem. MPC for controller
synthesis typically requires model reduction for casting the optimization problem
as an LP [4], QP [2,36], MILP [33,34,45]. However, when the plant model is
nonlinear [8,22], it may be hard to balance speed and complex requirements as
the optimization problem become nonconvex and nonlinear.

Discrete Abstractions. Discrete, finite-state, abstraction of the control system is
computed, and then a discrete controller is synthesized by solving a two-player
game [10,17,24,42,47]. CoSyMA [28], Pessoa [37], LTLMop [18,46], Tulip [9,48],
and SCOTS [38] are based on these approaches. The discretization step often
leads to a severe state space explosion for higher dimensional models.

Safe Motion Planning. The idea of bounding the tracking error through pre-
computation has been used in several techniques: FastTrack [11] uses Hamilton-
Jacobi reachability analysis to produce a “safety bubble” around planed paths.

632 C. Fan et al.

Reachability based trajectory design for dynamical environments (RTD) [44]
computes an offline forward reachable sets to guarantee that the robot is not-
at-fault in any collision. In [40], a technique based on convex optimization is
used to compute tracking error bounds. Another technique [23,43] uses motion
primitives expanded by safety funnels, which defines similar ideas of safety tubes.

Sampling Based Planning. Probabilistic Road Maps (PRM) [15], Rapidly-
exploring Random Trees (RRT) [19], and fast marching tree (FMT) [12] are
widely used in actual robotic platforms. They can generate feasible trajectories
through known or partially known environments. Compared with the determin-
istic guarantees provided by our proposed method, these methods come with
stochastic guarantees. Also, they are not designed to be robust to model uncer-
tainty or disturbances. MoveIT [5] is a tool designed to implement and bench-
mark various motion planners on robots. The motion planners in MoveIT are
from the open motion planning library (OMPL) [41], which implements motion
planners abstractly.

Controlled Lyapunov Function (CLF). CLF have been used to guarantee that
the overall closed-loop controlled system satisfies a reach-while-stay specifica-
tion [35]. Instead of asking for a CLF for the overall closed-loop system, our
method only needs a Lyapunov function for the tracking error, which is a weaker
local requirement. CLF is often a difficult requirement to meet for nonlinear vehi-
cle models.

2 Preliminaries and Problem Statement

Let us denote real numbers by R, non-negative real numbers by R≥0, and natural
numbers by N. The n-dimensional Euclidean space is R

n. For a vector x ∈ R
n,

x(i) is the ith entry of x and ‖x‖2 is the 2-norm of x. For any matrix A ∈ R
n×m,

Aᵀ is its transpose; A(i) is the ith row of A. Given a r ≥ 0, an r-ball around
x ∈ R

n is defined as Br(x) = {x′ ∈ R
n | ||x′ − x||2 ≤ r}. We call r the radius

of the ball. Given a matrix H ∈ R
r×n and a vector b ∈ R

r, an (H, b)-polytope
is denoted by Poly(H, b) = {x ∈ R

n | Hx ≤ b}. Each row of the inequality
H(i)x ≤ b(i) defines a halfspace. We also call H(i)x = b(i) the surface of the
polytope. Let dP(H) = r denotes the number of rows in H. Given a set S ⊆ R

n,
the radius of S is defined as supx,y∈S ‖x − y‖2/2.

State Space and Workspace. The state space of control systems will be a subspace
X ⊆ R

n. The workspace is a subspace W ⊆ R
d, for d ∈ {2, 3}, which is the

physical space in which the robots have to avoid obstacles and reach goals.
Given a state vector x ∈ X , its projection to W is denoted by x ↓ p. That is, x ↓
p = [px, py]ᵀ ∈ R

2 for ground vehicles on the plane and x ↓ p = [px, py, pz]ᵀ ∈ R
3

for aerial and underwater vehicles. When x is clear from context we will write
x ↓ p as simply p. The vector x may include other variables like velocity, heading,
pitch, etc., but p only has the position in Cartesian coordinates. We assume that
the goal set G := Poly(HG, bG) and the unsafe set O (obstacles) are specified by
polytopes in W; O = ∪Oi, where Oi := Poly(HO,i, bO,i) for each obstacle i.

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 633

Trajectories and Reach-Avoid Requirements. A trajectory ξ over X of duration T
is a function ξ : [0, T] → X , that maps each time t in the time domain [0, T] to a
point ξ(t) ∈ X . The time bound or duration of ξ is denoted by ξ.ltime = T . The
projection of a trajectory ξ : [0, T] → X to W is written as ξ ↓ p : [0, T] → W and
defined as (ξ ↓ p)(t) = ξ(t) ↓ p. We say that a trajectory ξ(t) satisfies a reach-
avoid requirement given by unsafe set O and goal set G if ∀t ∈ [0, ξ.ltime], ξ(t) ↓
p /∈ O and ξ(ξ.ltime) ↓ p ∈ G. See Fig. 1 for an example.

Given a trajectory ξ : [0, T] → X and a time t > 0, the time shift of ξ is a
function (ξ + t) : [t, t + T] → X defined as ∀t′ ∈ [t, t + T], (ξ + t)(t′) = ξ(t′ − t).
Strictly speaking, for t > 0, ξ + t is not a trajectory. The concatenation of two
trajectories ξ1 � ξ2 is a new trajectory in which ξ1 is followed by ξ2. That is, for
each t ∈ [0, ξ1.ltime+ξ2.ltime], (ξ1 � ξ2)(t) = ξ1(t) when t ≤ ξ1.ltime, and equals
ξ2(t − ξ1.ltime) when t > ξ1.ltime. Trajectories are closed under concatenation,
and many trajectories can be concatenated in the same way.

2.1 Nonlinear Control System

Definition 1. An (n,m)-dimensional control system A is a 4-tuple 〈X ,Θ,U, f〉
where (i) X ⊆ R

n is the state space, (ii) Θ ⊆ X is the initial set, (iii) U ⊆ R
m

is the input space, and (iv) f : X × U → X is the dynamic function that is
Lipschitz continuous with respect to the first argument.

A control system with no inputs (m = 0) is called a closed system.
Let us fix a time duration T > 0. An input trajectory u : [0, T] → U, is a

continuous trajectory over the input space U. We denote the set of all possible
input trajectories to be U . Given an input signal u ∈ U and an initial state
x0 ∈ Θ, a solution of A is a continuous trajectory ξu : [0, T] → X that satisfies
(i) ξu(0) = x0 and (ii) for any t ∈ [0, T], the time derivative of ξu at t satisfies
the differential equation:

d

dt
ξu(t) = f(ξu(t), u(t)). (1)

For any x0 ∈ Θ, u ∈ U , ξu is a state trajectory and we call such a pair (ξu, u) a
state-input trajectory pair.

A reference state trajectory (or reference trajectory for brevity) is a trajectory
over X that the control system tries to follow. We denote reference trajectories
by ξref. Similarly, a reference input trajectory (or reference input) is a trajectory
over U and we denote them as uref. Note these ξref and uref are not necessarily
solutions of (1). Figure 1 shows reference and actual solution trajectories.

We call a reference trajectory ξref and a reference input uref together as a
reference controller gref. Given gref, a tracking controller gtrk is a function that
is used to compute the inputs for A so that in the resulting closed system, the
state trajectories try to follow ξref.

Definition 2. Given an (n,m)-dynamical system A, a reference trajectory ξref,
and a reference input uref, a tracking controller for the triple 〈A, ξref, uref〉 is a
(state feedback) function gtrk : X × X × U → U.

634 C. Fan et al.

At any time t, the tracking controller gtrk takes in a current state of the system
x, a reference trajectory state ξref(t), and a reference input uref(t), and gives an
input gtrk(x, ξref(t), uref(t)) ∈ U for A. The controller g for A is determined by
both the reference controller gref and the tracking controller gtrk. The resulting
trajectory ξg of the closed control system (A closed with gref and gtrk) satisfies:

d

dt
ξg(t) = f (ξg(t), gtrk (ξg(t), ξref(t), uref(t))) ,∀ t ∈ [0, T]\D, (2)

where D is the set of points in time where the second or third argument of gtrk
is discontinuous2.

2.2 Controller Synthesis Problem

Definition 3. Given a (n,m)-dimensional nonlinear system A = 〈X ,Θ,U, f〉,
its workspace W, goal set G ⊆ W and the unsafe set O ⊆ W, we are required to
find (a) a tracking controller gtrk, (b) a partition {Θj}j of Θ, and (c) for each
partition Θj, a reference controller gj,ref, which consists of a state trajectory ξj,ref

and an input trajectory uj,ref, such that ∀x0 ∈ Θj, the unique trajectory ξg of the
closed system as in Eq. (2) starting from x0 reaches G and avoids O.

Again, ξj,ref and uj,ref in gj,ref are not required to be a state-input pair, but,
for each initial state x0 ∈ Θj , the closed loop trajectory ξg following ξref is a
valid state trajectory with corresponding input u generated by gtrk and gj,ref. In
this paper, we will decompose the controller synthesis problem: Part (a) will be
delivered by design engineers with knowledge of vehicle dynamics, and parts (b)
and (c) will be automatically synthesized by our algorithm. The latter being the
main contribution of the paper.

Example 1. Consider a ground vehicle moving on a 2D workspace W ⊆ R
2 as

shown in Fig. 1.

Fig. 1. Zigzag scenario for a controller syn-
thesis problem. The initial set is blue, the
goal set is green, and the unsafe sets are
red. A valid reference trajectory is shown
in black and a feasible trajectory is shown
in purple. (Color figure online)

This scenario is called Zigzag and
it is adopted from [32]. The red poly-
topes are obstacles. The blue and
green polytopes are the initial set Θ
and the goal set G. There are also
obstacles (not shown in the figure)
defining the boundaries of the entire
workspace. The black line is a projec-
tion of a reference trajectory to the
workspace: ξref(t) ↓ p. This would not
be a feasible state trajectory for a
ground vehicle that cannot make sharp
turns. The purple dashed curve is a

2 ξg is a standard solution of ODE with piece-wise continuous right hand side.

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 635

real feasible state trajectory of the system starting from Θ with a tracking con-
troller gtrk, where gtrk will be introduced in Example 2.

Consider the standard nonlinear bicycle model of a car [31]. The control
system has 3 state variables: the position px, py, and the heading direction θ. Its
motion is controlled by two inputs: linear velocity v and rotational velocity ω.
The car’s dynamics are given by:

d
dtpx = v cos(θ), d

dtpy = v sin(θ), d
dtθ = ω. (3)

3 Constructing Reference Trajectories from Waypoints

If ξref(t) ↓ p is a PWL (PWL) curve in the workspace W, we call ξref(t) a
PWL reference trajectory. In W, a PWL curve can be determined by the
endpoints of each line segment. We call such endpoints the waypoints of the
PWL reference trajectory. In Fig. 1, the black points p0, · · · , p6 are waypoints of
p(t) = ξref(t) ↓ p.

Consider any vehicle on the plane3 with state variables px, py, θ, v (x-position,
y-position, heading direction, linear velocity) and input variables a, ω (acceler-
ation and angular velocity). Once the waypoints {pi}k

i=0 are fixed, and if we
enforce constant speed v̄ (i.e., ξref(t) ↓ v = v̄ for all t ∈ [0, ξref.ltime]), then ξref(t)
can be uniquely defined by {pi}k

i=0 and v̄ using Algorithm 1. The semantics of
ξref and uref returned by Waypoints to Traj is that the reference trajectory
requires the vehicle to move at a constant speed v̄ along the lines connecting
the waypoints {pi}k

i=0. In Example 1, ξref(t), uref(t) can also be constructed using
Waypoints to Traj moving v to input variables and dropping a.

We notice that if k = 1, ξref(t), uref(t) returned by Algorithm1 is a valid
state-input trajectory pair. However, if k > 1, ξref(t), uref(t) returned by Algo-
rithm1 is usually not a valid state-input trajectory pair. This is because θref(t)
is discontinuous at the waypoints and no bounded inputs uref(t) can drive the
vehicle to achieve such θref(t). Therefore, when k > 1, ξref(t) is a PWL reference
trajectory with no uref(t) such that ξref, uref are solutions of (1).

Algorithm 1: Waypoints to Traj({pi}k
i=0, v̄)

input : {pi}k
i=0, v̄

1 ∀t ∈ [0,
∑k

i=1

‖pj−pj−1‖2
v̄

], vref(t) = v̄, aref(t) = 0, ωref(t) = 0;

2 ∀i ≥ 1, ∀t ∈
[∑i−1

j=1

‖pj−pj−1‖2
v̄

,
∑i

j=1

‖pj−pj−1‖2
v̄

)
,

pref(t) = pi−1 + v̄t − ∑i−1
j=1 ‖pj − pj−1‖2,

θref(t) = mod(atan2((py,i − py,i−1), (px,i − px,i−1), 2π);
3 ξref(t) = [pref(t), θref(t), vref(t)];
4 uref(t) = [aref(t), ωref(t)];
5 return ξref(t), uref(t) ;

3 A similar construction works for vehicles in 3D workspaces with additional variables.

636 C. Fan et al.

Proposition 1. Given a sequence of waypoints {pi}k
i=0 and a constant speed v̄,

ξref(t), uref(t) produced by Waypoints to Traj({pi}k
i=0, v̄) satisfy:

– pref(t) = ξref(t) ↓ p is a piece-wise continuous function connecting {pi}k
i=0.

– At time ti =
∑i

j=1 ‖pj −pj−1‖2/v̄, pref(ti) = pi. We call {ti})k
i=1 the concate-

nation time.
– ξref(t) = ξref,1(t) � · · · � ξref,k(t) and uref(t) = uref,1(t) � · · · � uref,k(t),

where (ξref,i, uref,i) are state-input trajectory pairs returned by the function
Waypoints to Traj({pi−1, pi}, v̄).

Outline of Synthesis Approach. In this Section, we present an Algo-
rithm Waypoints to Traj for constructing reference trajectories from arbitrary
sequence of waypoints. In Sect. 4, we precisely characterize the type of vehi-
cle tracking controller our method requires from designers. On our tool’s web-
page [27], we show with several extra examples that indeed developing such
controllers is non-trivial, far from automatic, yet bread and butter of control
engineers. In Sect. 5, we present the main synthesis algorithm, which uses the
tracking error bounds from the previous section, to construct waypoints, for
each initial state, which when passed through Waypoints to Traj provide the
solutions to the synthesis problem.

4 Bounding the Error of a Tracking Controller

4.1 Tracking Error and Lyapunov Functions

Given a reference controller gref, a tracking controller gtrk, and an initial state
x0 ∈ Θ, the resulting trajectory ξg of the closed control system (A closed with
gref and gtrk) is a state trajectory that starts from x0 and follows the ODE (2). In
this setting, we define the tracking error at time t to be a continuous function:

e : X × X → R
n.

When ξg(t) and ξref(t) are fixed, we also write e(t) = e(ξg(t), ξref(t)) which makes
it a function of time. One thing to remark here is that if ξref(t) is discontinuous,
then e(t) is also discontinuous. In this case, the derivative of e(t) cannot be
defined at the points of discontinuity. To start with, let us assume that gref =
(ξref, uref) is a valid state-input pair so ξref is a continuous state trajectory. Later
we will see that the analysis can be extended to cases when ξref is discontinuous
but a concatenation of continuous state trajectories.

When (ξref, uref) is a valid state-input pair and e(t) satisfy an differential
equation d

dte(t) = fe(e(t)), we use Lyapunov functions, which is a classic tech-
nique for proving stability of an equilibrium of an ODE, to bound the tracking
error e(t). The Lie derivative ∂V

∂e fe(e) below captures the rate of change of the
function V along the trajectories of e(t).

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 637

Definition 4 (Lyapunov functions [16]). Fix a state-input reference trajec-
tory pair (ξref, uref), assume that the dynamics of the tracking error e for a closed
control system A with gref and gtrk can be rewritten as d

dte(t) = fe(e(t)), where
fe(0) = 0. A continuously differentiable function V : R

n → R satisfying (i)
V (0) = 0, (ii) ∀e ∈ R

n, V (e) ≥ 0, and (iii) ∀e ∈ R
n, ∂V

∂e fe(e) ≤ 0, is called a
Lyapunov function for the tracking error.

Example 2. For the car of Example 1, with a continuous reference trajectory
ξref(t) = [xref(t), yref(t), θref(t)]ᵀ, we define the tracking error in a coordinate
frame fixed to the car [13]:

⎛

⎝
ex(t)
ey(t)
eθ(t)

⎞

⎠ =

⎛

⎝
cos(θ(t)) sin(θ(t)) 0

− sin(θ(t)) cos(θ(t)) 0
0 0 1

⎞

⎠

⎛

⎝
xref(t) − px(t)
yref(t) − py(t)
θref(t) − θ(t)

⎞

⎠ . (4)

With the reference controller function g defined as:

v(t) = vref(t) cos(eθ(t)) + k1ex(t),
ω(t) = ωref(t) + vref(t)(k2ey(t) + k3 sin(eθ(t))),

(5)

it has been shown in [13] when k1, k2, k3 > 0, d
dtωref(t) = 0, and d

dtvref(t) = 0,

V ([ex, ey, eθ]ᵀ) =
1
2
(e2

x + e2
y) +

1 − cos(eθ)
k2

(6)

is a Lyapunov function with negative semi-definite time derivative ∂V
∂x fe =

−k1e
2
x − vrefk3 sin2(eθ)

k2
.

4.2 Bounding Tracking Error Using Lyapunov Functions: Part 1

Consider a given closed control system, A with gref and gtrk, in this section,
we will derive upper bounds on the tracking error e. Later in Sect. 5, we will
develop techniques that take the tracking error into consideration for computing
reference trajectories ξref.

To begin with, we consider state-input reference trajectory pairs (ξref, uref)
where uref is continuous, and therefore, ξref and ξg are differentiable. Let us
assume that the tracking error dynamics (d

dte(t) = fe(e(t))) has a Lyapunov
function V (e(t)). The following is a standard result that follows from the theory
of Lyapunov functions for dynamical systems.

Lemma 1. Consider any state-input trajectory pair (ξref, uref), an initial state
x0, the corresponding trajectory ξg of the closed control system, and a constant
� > 0. If the tracking error e(t) has a Lyapunov function V , and if initially
V (e(0)) ≤ �, then for any t ∈ [0, ξref.ltime], V (e(t)) ≤ �.

This lemma is proved by showing that V (e(t)) = V (e(0))+
∫ t

0
d
dtV (e(τ))dτ ≤

V (e(0)). The last inequality holds since d
dtV (e(τ)) = ∂V

∂e fe(e) ≤ 0 for any τ ∈
[0, t] according the definition of Lyapunov functions (Definition 4).

638 C. Fan et al.

Lemma 1 says that if we can bound V (e(0)) = V (e(x0, ξref(0))), we can bound
V (e(ξg(t), ξref(t))) at any time t within the domain of the trajectories, regardless
of the value of ξref(t). This could decouple the problem of designing the track-
ing controller gtrk and synthesizing the reference controller gref as a state-input
trajectory pair (ξref, uref).

Example 3. Given two waypoints p0, p1 for the car in Example 1, take the
returned value of Waypoints to Traj({p0, p1}, v̄), move vref to uref and drop
aref. Then, the resulting (ξref, uref) is a continuous and differentiable state-input
reference trajectory pair. Moreover, if the robot is controlled by the tracking
controller as in Eq. (5), V (e(t)) = 1

2 (ex(t)2 + ey(t)2) + 1−cos(eθ(t))
k2

is a Lyapunov
function for the corresponding tracking error e(t) = [ex(t), ey(t), eθ(t)]ᵀ.

From Eq. (4), it is easy to check that e2
x(t) + ey(t)2 = (xref(t) − px(t))2 +

(yref(t) − py(t))2 for any time t. Assume that initially the position of the vehi-
cle satisfies [px(0), py(0)]ᵀ ∈ B�([xref(0), yref(0)]ᵀ). We check that V (e(0)) =
1
2 (ex(0)2 + ey(0)2) + 1−cos(eθ(0))

k2
≤ �2

2 + 2
k2

.

From Lemma 1, we know that ∀t ∈ [0, ξref.ltime], V (e(t)) ≤ �2

2 + 2
k2

.
Then we have (xref(t) − px(t))2 + (yref(t) − py(t))2 = (ex(t)2 + ey(t)2) ≤
�2 + 4

k2
. That is, the position of the robot at time t satisfies [px(t), py(t)]ᵀ ∈

B√
�2+ 4

k2

([xref(t), yref(t)]ᵀ).

4.3 Bounding Tracking Error Using Lyapunov Functions: Part 2

Next, let us consider the case where ξref is discontinuous. Furthermore, let us
assume that it is a concatenation of several continuous state trajectories ξref,1 �
· · · � ξref,k. In this case, we call ξref a piece-wise reference trajectory. If we have
a sequence of (ξref,i, uref,i), each is a valid state-input trajectory pair and the
corresponding error ei(t) has a Lyapunov function Vi(ei(t)), then we can use
Lemma 1 to bound the error of ei(t) if we know the value of ei(0). However,
the main challenge to glue these error bounds together is that e(t) would be
discontinuous with respect to the entire piece-wise ξref(t).

Without loss of generality, let us assume that the Lyapunov functions
Vi(ei(t)) share the same format. That is, ∀i, Vi(ei(t)) = V (ei(t)). Let ti be the
concatenation time points when ξref(t) (and therefore e(t)) is discontinuous. We
know that limt→t−i

V (e(t))
= limt→t+i
V (e(t)) since limt→t−i

e(t)
= limt→t+i
e(t).

One insight we can get from Example 3 is that although e(t) is discontinuous
at time tis, some of the variables influencing e(t) are continuous. For exam-
ple, ex(t) and ey(t) in Example 3, which represent the error of the positions,
are continuous since both the actual and reference positions of the vehicle are
continuous. If we can further bound the term in V (e(t)) that corresponds to
the other variables, we could analyze the error bound for the entire piece-wise
reference trajectory. With this in sight, let us write e(t) as [ep(t), er(t)], where
ep(t) = e(t) ↓ p is the projection to W and er(t) is the remaining components.

Let us further assume that the Lyapunov function can be written in the form
of V (e(t)) = α(ep(t)) + β(er(t)). Indeed, on the tool’s webpage [27] we show

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 639

that four commonly used vehicle models (car, robot, underwater vehicle, and
hovercraft) have Lyapunov functions for the tracking error e(t) of this form. If
β(er(t)) can be further bounded, then the tracking error for the entire trajectory
can be bounded using the following lemma.

Lemma 2. Consider ξref = ξref,1 � · · · � ξref,k, and uref = uref,1 � · · · � uref,k

as a piecewise reference and input with each (ξref,i, uref,i) being a state-input
trajectory pair. Suppose (1) V (e(t)) = α(ep(t))+β(er(t)) be a Lyapunov function
for the tracking error e(t) of each piece (ξref,i, uref,i); (2) ep(t) is continuous and
α(·) is a continuous function; (3) β(er(t)) ∈ [bl, bu], and (4) V (e(0)) ≤ ε0. Then,
the tracking error e(t) with respect to ξref and uref can be bounded by,

V (e(t)) ≤ εi,∀i ≥ 1,∀t ∈ [ti−1, ti),

where ∀ i > 1, εi = εi−1 − bl + bu, ε1 = ε0 being the bound on the initial tracking
error, and ti’s are the time points of concatenation4.

Proof. We prove this by induction on i. When i = 1, we know from Lemma 1
that if the initial tracking error is bounded by V (e(0)), then for any t ∈
[0, t1), V (e(t)) ≤ V (e(0)) ≤ ε0 = ε1, so the lemma holds.

Fix any i ≥ 1. If V (e(ti−1)) ≤ εi, from Lemma 1 we have ∀t ∈ [ti−1, ti),
V (e(t)) ≤ εi. Also, limt→t−i

V (e(t)) = limt→t−i
α(ep(t)) + β(er(t)) ≤ εi. Since

∀er(t) ∈ R
n−d, β(er(t)) ∈ [bl, bu], we have limt→t−i

α(ep(t)) ≤ εi − bl, and
limt→t−i

α(ep(t)) = limt→t+i
α(ep(t)). Therefore,

εi+1 = lim
t→t+i

V (e(t)) = lim
t→t+i

α(ep(t)) + β(er(t)) ≤ εi − bl + bu.

Another observation we have on the four vehicle models used in this paper is
that not only V (e(t)) can be written as α(ep(t)) + β(er(t)) with β(er(t)) being
bounded, but also α(ep(t)) can be written as α(ep(t)) = ceᵀ

p(t)ep(t) = c‖p(t) −
pref(t)‖2

2, where c ∈ R is a scalar constant; p(t) = ξg(t) ↓ p and pref(t) = ξref(t) ↓ p
are the actual position and reference position of the vehicle. In this case, we can
further bound the position of the vehicle p(t).

Lemma 3. In addition to the assumptions of Lemma2, if α(ep(t)) =
ceᵀ

p(t)ep(t) = c‖p(t) − pref(t)‖2
2, where c ∈ R, p(t) = ξg(t) ↓ p and pref(t) =

ξref(t) ↓ p. Then we have that at time t ∈ [ti−1, ti),

eᵀ
p(t)ep(t) ≤ εi − bl

c
,

where εi and bl are from Lemma2, which implies that

p(t) ∈ B�i
(pref(t)),with �i =

√
εi − bl

c
.

4 ∀t ∈ [ti−1, ti), ξref(t) = ξref,i(t − ∑i−1
j=1 ξref,j .ltime).

640 C. Fan et al.

Note that Lemma 2 and 3 does not depend on the concrete values of ξref and
uref. The lemmas hold for any piece-wise reference trajectory ξref and reference
input uref as long as the corresponding error e has a Lyapunov function (for each
piece of ξref and uref).

Example 4. Continue Example 3.

Fig. 2. Illustration of the error
bounds computed from Lemma 3.
The ith line segment is bloated by√

�2 + 4i
k2

. The closed-loop system’s

trajectory p(t) are purple curves and
they are contained by the bloated-
tube. (Color figure online)

Now let us consider the case of
a sequence of waypoints {pi}k

i=0. Let
(ξref, uref) = Waypoints to Traj({pi}k

i=0, v̄).
From Example 3, we know that V (e(t)) =
1
2 (ex(t)2 + ey(t)2) + 1−cos(eθ(t))

k2
is a Lya-

punov function for each segment of the piece-
wise reference trajectory ξref(t). We also
know that for any value of eθ, the term
1−cos(eθ(t))

k2
∈ [0, 2

k]. From Lemma 2, we have
that for t ∈ [ti−1, ti) where ti are the con-
catenation time points, we have V (e(t)) ≤
V (e(0)) + 2(i−1)

k2
Therefore, following Exam-

ple 3, initially V (e(0)) ≤ �2

2 + 2
k2

. Then ∀t ∈
[ti−1, ti), V (e(t)) ≤ �2

2 + 2i
k2

, and the posi-
tion of the robot satisfies [px(t), py(t)]ᵀ ∈
B√

�2+ 4i
k2

([xref(t), yref(t)]ᵀ).

As seen in Fig. 2, we bloat the black reference trajectory pref(t) = ξref(t) ↓ p

by �i =
√

�2 + 4i
k2

for the ith line segment, the bloated tube contains the real
position trajectories (purple curves) p(t) of the closed system.

5 Synthesizing the Reference Trajectories

In Sect. 4.3, we have seen that under certain conditions, the tracking error e(t)
between an actual closed-loop trajectory ξg(t) and a piece-wise reference ξref(t)
can be bounded by a piece-wise constant value, which depends on the initial
tracking error e(0) and the number of segments in ξref. We have also seen an
example nonlinear vehicle model with PWL ξref for which the tracking error can
be bounded.

In this section, we discuss how to utilize such bound on e(t) to help find a
reference controller gref consisting of a reference trajectory ξref(t) and a reference
input uref(t) such that closed-loop trajectories ξg(t) from a neighborhood of
ξref(0) that are trying to follow ξref(t) are guaranteed to satisfy the reach-avoid
requirement. The idea of finding a gref follows a classic approach in robot motion
planning. The intuition is that if we know at any time t ∈ [0, ξref.ltime], ‖ξg(t) ↓
p − ξref(t) ↓ p‖2 will be at most �, then instead of requiring ξref(t) ↓ p to be
at least � away from the obstacles (inside the goal region), we will bloat the
obstacles (shrink the goal set) by �. Then the original problem is reduced to

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 641

finding a ξref(t) such that ξref(t) ↓ p can avoid the bloated obstacles and reach
the shrunk goal set.

5.1 Use PWL Reference Trajectories for Vehicle Models

Finding a reference trajectory ξref(t) such that (a) ξref(t) satisfies the reach-avoid
conditions, and (b) ξref(t) and uref(t) are concatenations of state-input trajectory
pairs {(ξref,i, uref,i)}i and each pair satisfies the system dynamics, is a nontriv-
ial problem. If we were to encode the problem directly as a satisfiability or an
optimization problem, the solver would have to search for over the space of con-
tinuous functions constrained by the above requirements, including the nonlinear
differential constraints imposed by f . The standard tactic is to fix a reasonable
template for ξref(t), uref(t) and search for instantiations of this template.

From Example 4, we see that if ξref is a PWL reference trajectory con-
structed from waypoints in the workspace, the tracking error can be bounded
using Lemma 2. A PWL reference trajectories connecting the waypoints in the
workspace have the flexibility to satisfy the reach-avoid requirement. Therefore,
in this section, we fix ξref and uref to be the reference trajectory and reference
input returned by the Waypoints to Traj(·, ·). In Sect. 5.2, we will see that the
problem of finding such PWL ξref(t) can be reduced to a satisfiability problem
over quantifier-free linear real arithmetic, which can be solved effectively by
off-the-shelf SMT solvers (see Sect. 6 for empirical results).

5.2 Synthesizing Waypoints for a Linear Reference Trajectory

Algorithm 1 says that ξref(t) and uref(t) can be uniquely constructed given a
sequence of waypoints {pi}k

i=0 in the workspace W and a constant velocity v̄.
From Proposition 1, pref(t) = ξref(t) ↓ p connects the waypoints in W. Also, let
ti =

∑i
j=1 ‖pj − pj−1‖2/v̄ be the concatenation time, ∀t ∈ [ti−1, ti), p(t) is the

line segment connecting pi−1 and pi. We want to ensure that p(t) = ξg(t) ↓ p
satisfy the reach-avoid requirements. From Lemma 3, for any t ∈ [ti−1, ti), we
can bound ‖p(t) − pref(t)‖2 with the constant �i, then the remaining problem is
to ensure that, pref(t) is at least �i away from the obstacles and pref(ξref.ltime) is
inside the goal set with �k distance to any surface of the goal set.

Let us start with one segment p(t) with t ∈ [ti−1, ti). To enforce that p(t)
is �i away from a polytope obstacle, a sufficient condition is to enforce both
the endpoints of the line segment to lie out at least one surface of the polytope
bloated by �i.

Lemma 4. If pref(t) with t ∈ [ti−1, ti) is a line segment connecting pi−1 and pi

in W. Given a polytope obstacle O = Poly(HO, bO) and �i > 0, if

dP(HO)∨

s=1

(
(H(s)

O pi−1 > b
(s)
O + ‖H

(s)
O ‖2�i) ∧ (H(s)

O pi > b
(s)
O + ‖H

(s)
O ‖2�i)

)
= True,

then ∀t ∈ [ti−1, ti), B�i
(pref(t)) ∩ O = ∅.

642 C. Fan et al.

Proof. Fix any s such that (H(s)
O pi−1 > b

(s)
O + ‖H

(s)
O ‖2�i) ∧ (H(s)

O pi > b
(s)
O +

‖H
(s)
O ‖2�i) holds. The set S = {q ∈ R

d | H
(s)
O q > b

(s)
O + ‖H

(s)
O ‖2�i} defines a

convex half space. Therefore, if pi−1 ∈ S and pi ∈ S, then any point on the
line segment connecting pi−1 and pi is in S. Therefore, for any t ∈ [ti−1, ti),
H

(s)
O pref(t) > b

(s)
O + ‖H

(s)
O ‖2�i > b

(s)
O , which means pref(t) /∈ O.

The distance between pref(t) and the surface H
(s)
O q = b

(s)
O is |H(s)

O pref(t)−b
(s)
O |

‖H
(s)
O ‖2

>

�i. Therefore, for any p ∈ B�i
(pref(t)) we have ‖p− pref(t)‖2 ≤ �i and thus p /∈ O.

Furthermore,
∧dP(HO)

s=1 H
(s)
O q ≤ b

(s)
O +‖H

(s)
O ‖2�i defines of a new polytope that

we get by bloating Poly(HO, bO) with �i. Basically, it is constructed by moving
each surface of Poly(HO, bO) along the surface’s normal vector with the direction
pointing outside the polytope.

Similarly, we can define the condition when pref(ξ.ltime) = pk is inside the
goal shrunk by �k.

Lemma 5. Given a polytope goal set G = Poly(HG, bG) and �k > 0, if

dP(HG)∧

s=1

(
H

(s)
G pk ≤ b

(s)
O − ‖H

(s)
G ‖2�k

)
= True, then B�k

(pk) ⊆ G.

Putting them all together, we want to solve the following satisfiability prob-
lem to ensure that each line segment between pi−1 and pi is at least �i away
from all the obstacles and pk is inside the goal set G with at least distance �k to
the surfaces of G. In this way, ξg(t) starting from a neighborhood of ξref(0) can
satisfy the reach-avoid requirement.

φwaypoints(pref(0), k,O, G, {�i}k
i=1) = ∃p0, · · · , pk,

p0 == pref(0)
dP(HG)∧

s=1

(
H

(s)
G pk ≤ b

(s)
O − ‖H

(s)
G ‖2�k

)

k∧

i=1

(
∧

Poly(H,b)∈O

(
dP(H)∨

s=1

(
H(s)pi−1 > b(s) + �i‖H(s)‖2 ∧ H(s)pi > b(s) + �i‖H(s)‖2

)
))

Notice that the constraints in φwaypoints are all linear over real
arithmetic. Moreover, the number of constraints in φwaypoints is

O

(
∑

Poly(H,b)∈O

kdP(H) + dP(HG)

)

. That is, fixing k, the number of constraints

will grow linearly with the total number of surfaces in the obstacle and goal set
polytopes. Fixing O and G, the number of constraints will grow linear with the
number of line segments k.

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 643

Theorem 1. Fix k ≥ 1 as the number of line segments, pref(0) ∈ W as the
initial position of the reference trajectory. Assume that

(1) A closed with gref and gtrk is such that given any sequence of k+1 waypoints
in W and any v̄, the piece-wise reference ξref (and input uref) returned by
Algorithm1 satisfy the conditions in Lemmas 2 and 3 with Lyapunov func-
tion V (e(t)) for the tracking error e(t).

(2) For the above ξref, fix an ε0 such that V (e(0)) ≤ ε0, let {�i}k
i=1 be error

bounds for positions constructed using Lemma 2 and Lemma 3 from ε0.
(3) φwaypoints(pref(0), k,O, G, {�i}k

i=1) is satisfiable with waypoints {pi}k
i=0.

Let ξref(t), uref(t) = Waypoints to Trajectory ({pi}k
i=0, v̄), and pref(t) = ξref(t) ↓ p.

Let ξg(t) be a trajectory of A closed with gtrk(·, ξref, uref) starting from ξg(0) with
V (e(ξg(0), ξref(0))) ≤ ε0, then ξg(t) satisfies the reach-avoid requirement.

Proof. Since ξref(t), uref(t) are a PWL reference trajectory and a reference input
respectively constructed from the waypoints {pi}k

i=0, they satisfy Assumption
(1). Moreover, V (e(ξg(0), ξref(0))) ≤ ε0 satisfies Assumption (2). Using Lemma 2
and Lemma 3, we know that for t ∈ [ti−1, ti), ‖ξg(t) ↓ p − ξref(t) ↓ p‖2 ≤ �i.

Finally, since {pi}k
i=0 satisfy the constraints in φwaypoints, using Lemma 4 and

Lemma 5, we know that for any time t ∈ [0, tk], ξg(t) ↓ p /∈ O and ξg(tk) ∈ G.
Therefore the theorem holds.

5.3 Partitioning the Initial Set

Starting from the entire initial set Θ, fix ξref(0) ∈ Θ and an ε0 such that ∀x ∈
Θ, V (e(x, ξref(0))) ≤ ε0, then we can use Lemma 2 and Lemma 3 to construct the
error bounds {�i}k

i=1 for positions, and next use {�i}k
i=1 to solve φwaypoints and

find the waypoints and construct the reference trajectory.
However, if the initial set Θ is too large, {�i}k

i=1 could be too conservative
so φwaypoints is not satisfiable. In the first two figures on the top row of Fig. 3,
we could see that if we bloat the obstacle polytopes using the largest �i, then
no reference trajectory is feasible. In this case, we partition the initial set Θ to
several smaller covers Θj and repeat the above steps from each smaller cover Θj .
In Lemma 2 and Lemma 3 we could see that the values of {�i}k

i=1 decrease if ε0

decreases. Therefore, with the partition of Θ, we could possibly find a reference
trajectory more and more easily. As shown in Fig. 3 bottom row, after several
partitions, a reference trajectory for each Θj could be found.

644 C. Fan et al.

Fig. 3. Top row: each step attempting to find a reference trajectory in the space where
obstacles (goal set) are bloated (shrunk) by the error bounds {�i}i. From left to right:
Without partition, {�i}i are too large so a reference trajectory cannot be found. Θ is
partitioned, but {�i}s for the left-top cover are still too large. With further partions,
a reference trajectory could be found. Bottom row: It is shown that the bloated tubes
for each cover (which contain all other trajectories from that cover) can fit between
the original obstacles.

5.4 Overall Synthesis Algorithm

Taking partitioning into the overall algorithm, we have Algorithm2 to solve
the controller synthesis problem defined in Sect. 2.2. Algorithm 2 takes in as
inputs (1) an (n,m)-dimensional control system A, (2) a tracking controller
gtrk, (3) Obstacles O, (4) a goal set G, (5) a Lyapunov function V (e(t)) for the
tracking error e that satisfies the conditions in Lemma 2 and Lemma 3 for any
PWL reference trajectory and input, (6) the maximum number of line segments
allowed Segmax, (7) the maximum number of partitions allowed Partmax, and (8)
a constant velocity v̄. The algorithm returns a set RefTrajs, such that for each
triple 〈Θj , ξj,ref, uj,ref〉 ∈ RefTrajs, we have ∀x0 ∈ Θj , the unique trajectory ξg

of the closed system (A closed with gtrk(·, ξj,ref, uj,ref)) starting from x0 satisfies
the reach-avoid requirement. The algorithm also returns 〈Cover,None〉, which
means that the algorithm fails to find controllers for the portion of the initial
set in Cover within the maximum number of partitions Partmax.

In Algorithm 2, Cover is the collection of covers in Θ that the corresponding
ξref and uref have not been discovered. Initially, Cover only contains Θ. The for-
loop from Line 2 will try to find a ξref and a uref for each Θ ∈ Cover until the
maximum allowed number for partitions is reached. At line 3, we fix the initial
state of ξref(0) = ξinit to be the center of the current cover Θ. Then at Line 4,
we get the initial error bounds ε0 after fixing ξinit. Using ε0 and the Lyapunov
function V (e), we can construct the error bounds {�i}k

i=1 for the positions of the
vehicle using Lemma 2 and Lemma 3 at Line 5.

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 645

Algorithm 2: Controller synthesis algorithm
input : A = 〈X , Θ,U, f〉, gtrk,O, G, V (e(t)), Segmax,Partmax, v̄
initially: Cover ← {Θ}, prt ← 0, k ← 1, RefTrajs ← ∅

1 while (Cover �= ∅) ∧ (prt ≤ Partmax) do
2 for Θ ∈ Cover do
3 ξinit ← Center(Θ) ;
4 ε0 ← a such that ∀x ∈ Θ, V (e(x, ξinit)) ≤ a ;

5 {�i}k
i=1 ← GetBounds(V (e(t)), ε0) ;

6 while k ≤ Segmax do

7 if CheckSAT(ξinit ↓ p, k,O, G, {�i}k
i=1)) == SAT then

8 p0, · · · , pk ← GetValue(φwaypoints) ;

9 ξref, uref ← Waypoints to Traj({pi}k
i=0, v̄) ;

10 RefTrajs ← RefTrajs ∪ 〈Θ, ξref, uref〉 ;
11 Cover ← Cover \ {Θ};
12 k ← 1 ;
13 Break ;

14 else
15 k ← k + 1

16 if k > Segmax then
17 Cover ← Cover ∪ Partition(Θ) \ {Θ} ;
18 prt ← prt + 1;
19 k ← 1 ;

20 return RefTrajs, 〈Cover,None〉 ;

If the if condition at Line 7 holds with {pi}k
i=0 being the waypoints that

satisfy φwaypoints, then from Theorem 1 we know that the ξref, uref constructed
using {pi}k

i=0 at Line 9 will be such that, the unique trajectory ξg of the closed
system (A closed with gtrk(·, ξref, uref)) starting from x0 ∈ Θ satisfies the reach-
avoid requirement. Otherwise the algorithm will increase the number of segments
k in the PWL reference trajectory (Line 15). When the maximum number of line
segments allowed is reached but the algorithm still could not find ξref, uref that
can guarantee the satisfaction of reach-void requirement from the current cover
Θ, we will partition the current Θ at Line 17 and add those partitions to Cover.
At the same time, k will be reset to 1.

Theorem 2 (Soundness). Suppose the inputs to Algorithm2, A, gtrk, O, G,
V (e(t)), v̄ satisfy the conditions of Theorem1. Let the output be RefTrajs =
{〈Θj , ξj,ref, uj,ref〉}j and 〈Cover,None〉, then we have (1). Θ ⊆ ∪Θj ∪Cover, and
(2). for each triple 〈Θj , ξj,ref, uj,ref〉, we have ∀x0 ∈ Θj, the unique trajectory ξg

of the closed system (A closed with gtrk(·, ξj,ref, uj,ref)) starting from x0 satisfies
the reach-avoid requirement.

The theorem follows directly from the proof of Theorem 1.

6 Implementation and Evaluation

We have implemented our synthesis algorithm (Algorithm2) in a prototype open
source tool we call FACTEST5 (FAst ConTrollEr SynThesis framework). Our

5 All models and source code of FACTEST are available at [27].

646 C. Fan et al.

implementation uses Pypoman6, Yices 2.2 [6], SciPy7 and NumPy8 libraries.
The inputs to FACTEST are the same as the inputs in Algorithm 2. FACTEST
terminates in two ways. Either it finds a reference trajectory ξj,ref and reference
input uj,ref for every partition Θj of Θ so that Theorem 2 guarantees they solved
the controller synthesis problem. Otherwise, it terminates by failing to find ref-
erence trajectories for at least one subset of Θ after partitioning Θ up to the
maximum specified depth.

6.1 Benchmark Scenarios: Vehicle Models and Workspaces

We will report on evaluating FACTEST in several 2D and 3D scenarios drawn
from motion planning literature (see Figs. 4). Recall, the state space X dimen-
sion corresponds to the vehicle model, and is separate from the dimensionality
of the workspace W. We will use four nonlinear vehicle models in these different
scenarios: (a) the kinematic vehicle model (car) [31] introduced in Example 1,
(b) a bijective mobile robot (robot) [13], (c) a hovering robot (hovercraft), and
(d) an autonomous underwater vehicle (AUV) [29]. The dynamics and tracking
controllers (gtrk) of the other three models are described on the FACTEST web-
site [27]. Each of these controllers come with a Lyapunov function that meets
the assumptions of Lemmas 2 and 3 so the tracking error bounds given by the
lemmas {�}k

i=1 can be computed.

(a) Zigzag [32] (b) Maze [32] (c) SCOTS [38] (d) Barrier

(e) Simple Env (f) Difficult Env (g) L-tunnel [32] (h) Z-tunnel [32]

Fig. 4. 2D and 3D workspaces with initial (blue) and goal (green) sets. The scenar-
ios run in the two-dimensional W use the car model. The scenarios run in the three
dimensional W use the hovercraft model. The black lines denote ξref and the dotted
violet lines denote ξg. (Color figure online)

6 https://pypi.org/project/pypoman/.
7 https://www.scipy.org/.
8 https://numpy.org/.

https://pypi.org/project/pypoman/
https://www.scipy.org/
https://numpy.org/

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 647

6.2 Synthesis Performance

Table 1 presents the performance of FACTEST on several synthesis problems.
Several points are worth highlighting. (a) The absolute running time is at the
sub-second range, even for 6-dimensional vehicle models with 4-inputs, operating
in a 3D workspace. This is encouraging for online motion-control applications
with dynamic obstacles. (b) The running time is not too sensitive to dimensions
of X and U because the waypoints are only being generated in the lower dimen-
sional workspace W. Additionally, the construction of ξref from the waypoints
does not add significant time. However, since different models have different
dynamics and Lypunov functions, they would have different error bounds for
position. Such different bound could influence the final result. For example, the
result for the Barrier scenario differs between the car and the robot. The car
required 25 partitions to find a solution over all of Θ and the robot required
22. (c) Confirming what we have seen in Sect. 5.2, the runtime of the algorithm
scales with the number of segments required to solve the scenario and the num-
ber of obstacles. (d) As expected and seen in Zigzag scenarios, all other things
being the same, the running time and the number of partitions grow with larger
initial set uncertainty.

Table 1. Synthesis performance on different scenarios (environment, vehicle). Dimen-
sion of state space X (n), input (m), radius of initial set Θ, number of obstacles O,
running time (in seconds).

Scenario n, m Radius of Θ # O Time (s) # segments per ξref # partitions

Zigzag, car 1 3, 2 0.200 9 0.037 6.0 1.0

Zigzag, car 2 3, 2 0.400 9 0.212 4.0 6.0

Zigzag, car 3 3, 2 0.800 9 0.915 5.0–6.0 16.0

Zigzag, robot 1 4, 2 0.200 9 0.038 6.0 1.0

Zigzag, robot 2 4, 2 0.400 9 0.227 4.0 6.0

Zigzag, robot 3 4, 2 0.800 9 0.911 5.0–6.0 16.0

Barrier car 3, 2 0.707 6 0.697 2.0–4.0 25.0

Barrier, robot 4, 2 0.707 6 0.645 2.0–4.0 22.0

Maze, car 3, 2 0.200 22 0.174 8.0 1.0

Maze, robot 4, 2 0.200 22 0.180 8.0 1.0

SCOTS, car 3, 2 0.070 19 1.541 26.0 1.0

SCOTS, robot 4, 2 0.070 19 1.623 26.0 1.0

L-tunnel, hovercraft 4, 3 0.173 10 0.060 5.0 1.0

L-tunnel, AUV 6, 4 1.732 10 0.063 5.0 1.0

Z-tunnel, hovercraft 4, 3 0.173 5 0.029 4.0 1.0

Z-tunnel, AUV 6, 4 1.732 10 0.029 4.0 1.0

Comparison with Other Motion Controller Synthesis Tools: A Chal-
lenge. Few controller synthesis tools for nonlinear models are available for direct
comparisons. We had detailed discussions with the authors of FastTrack [11],

648 C. Fan et al.

but found it difficult to plug-in new vehicle models. RTD [44] is implemented in
MatLab also for specific vehicle models. Pessoa [26] and SCOTS [38] are imple-
mented as general purpose tools. However, they are based on construction of
discrete abstractions, which requires several additional user inputs. Therefore,
we were only able to compare FACTEST with SCOTS and Pessoa using the sce-
nario SCOTS. This scenario was originally built in SCOTS and is using the same
car model.

The results for SCOTS and Pessoa can be found in [38]. The total runtime
of SCOTS consists of the abstraction time tabs and the synthesis time tsyn. The
Pessoa tool has an abstraction time of tabs = 13509 s and a synthesis time of
tsyn = 535 s, which gives a total time of ttot = 14044 s. The SCOTS tool has a has
an abstraction time of tabs = 100 s and a synthesis time of tsyn = 413 s, which
gives a total time of ttot = 513 s. FACTEST clearly outperforms both SCOTS
and Pessoa with a total runtime of ttot = 1.541 s. This could be attributed to
the fact that FACTEST does not have to perform any abstractions, but even by
looking sole at tsyn, FACTEST is significantly faster. However, we do note that
the inputs of FACTEST and SCOTS are different. For example, SCOTS needs
a growth bound function β for the dynamics but FACTEST requires Lyapunov
functions for the tracking error.

6.3 RRT vs. SAT-Plan

To demonstrate the speed of our SAT-based reference trajectory synthesis algo-
rithm (i.e. only the while-loop from Line 6 to Line 15 of Algorithm2 which we
call SAT-Plan), we compare it with Rapidly-exploring Random Trees (RRT) [20].
The running time, number of line segments, and number of iterations needed to
find a path were compared. RRT was run using the Python Robotics library [39],
which is not necessarily an optimized implementation. SAT-Plan was run using
Yices 2.2. The scenarios are displayed in Fig. 4 and the results are in Fig. 5.

Fig. 5. Comparison of RRT and SAT-Plan. The left plot shows the runtime and the
right plot shows the number of necessary iterations. Note that RRT timed out on the
SCOTS scenario.

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 649

Each planner was run 100 times. The colored bars represent the average
runtime and average number of iterations. The error bars represent the range of
minimum and maximum. The RRT path planner was given a maximum of 5000
iterations and a path resolution of 0.01. SAT-Plan was given a maximum of 100
line segments to find a path. RRT timed out for the SCOTS scenario, unable
to find a trajectory within 5000 iterations. The maze scenario timed out about
10% of the time.

Overall SAT-Plan scales in time much better as the size of the unsafe set
increases. Additionally, the maximum number of iterations that RRT had to
perform was far greater than the average number of line segments needed to
find a safe path. This means that the maximum number of iterations that RRT
must go through must be sufficiently large, or else a safe path will not be found
even if one exists. SAT-Plan does not have randomness and therefore will find a
reference trajectory (with k segments) in the modified space (bloated obstacles
and shrunk goal) if one (with k segments) exists. Various examples of solutions
found by RRT and SAT-Plan can be found on the FACTEST’s website [27].

7 Conclusion and Discussion

We introduced a technique for synthesizing correct-by-construction controllers
for a nonlinear vehicle models, including ground, underwater, and aerial vehicles,
for reach-avoid requirements. Our tool FACTEST implementing this technique
shows very encouraging performance on various vehicle models in different 2D
and 3D scenarios.

There are several directions for future investigations. (1) One could explore
a broader class of reference trajectories to reduce the tracking error bounds. (2)
It would also be useful to extend the technique so the synthesized controller can
satisfy the actuation constraints automatically. (3) Currently we require user to
provide the tracking controller gtrk with the Lyapunov functions, it would be
interesting to further automate this step.

References

1. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada, P.:
Control barrier functions: theory and applications. In: 2019 18th European Control
Conference (ECC), pp. 3420–3431. IEEE (2019)

2. Ardakani, M.M.G., Olofsson, B., Robertsson, A., Johansson, R.: Real-time trajec-
tory generation using model predictive control. In: IEEE International Conference
on Automation Science and Engineering, pp. 942–948. IEEE (2015)

3. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, Princeton (2010)

4. Bemporad, A., Borrelli, F., Morari, M.: Model predictive control based on linear
programming - the explicit solution. IEEE Trans. Autom. Control 47(12), 1974–
1985 (2002)

5. Chitta, S., Sucan, I., Cousins, S.: Moveit![ROS topics]. IEEE Robot. Autom. Mag.
19(1), 18–19 (2012)

650 C. Fan et al.

6. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

7. Fan, C., Mathur, U., Mitra, S., Viswanathan, M.: Controller synthesis made real:
reach-avoid specifications and linear dynamics. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 347–366. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3 19

8. Mendes Filho, J.M., Lucet, E., Filliat, D.: Real-time distributed receding horizon
motion planning and control for mobile multi-robot dynamic systems. In: Interna-
tional Conference on Robotics and Automation, pp. 657–663. IEEE (2017)

9. Filippidis, I., Dathathri, S., Livingston, S.C., Ozay, N., Murray, R.M.: Control
design for hybrid systems with tulip: the temporal logic planning toolbox. In:
IEEE Conference on Control Applications, pp. 1030–1041 (2016)

10. Girard, A.: Controller synthesis for safety and reachability via approximate bisim-
ulation. Automatica 48(5), 947–953 (2012)

11. Herbert, S.L., Chen, M., Han, S.J., Bansal, S., Fisac, J.F., Tomlin, C.J.: FaSTrack:
a modular framework for fast and guaranteed safe motion planning. In: 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pp. 1517–1522. IEEE
(2017)

12. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast march-
ing sampling-based method for optimal motion planning in many dimensions. Int.
J. Robot. Res. 34(7), 883–921 (2015)

13. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control
method for an autonomous mobile robot. In: Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 384–389. IEEE (1990)

14. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal
motion planning. In: Robotics Science and Systems VI, vol. 104, no. 2 (2010)

15. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans.
Robot. Autom. 12(4), 566–580 (1996)

16. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Prentice Hall, Upper Saddle
River (2002)

17. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems
from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287–297
(2008)

18. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal logic based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)

19. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query
path planning. In: IEEE International Conference on Robotics and Automation,
vol. 2, pp. 995–1001. IEEE (2000)

20. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning (1998)
21. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge

(2006)
22. Liu, C., Lee, S., Varnhagen, S., Eric Tseng, H.: Path planning for autonomous

vehicles using model predictive control. In: IEEE Intelligent Vehicles Symposium,
pp. 174–179. IEEE (2017)

23. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion
planning. Int. J. Robot. Res. 36(8), 947–982 (2017)

24. Mallik, K., Schmuck, A.-K., Soudjani, S., Majumdar, R.: Compositional synthesis
of finite-state abstractions. IEEE Trans. Autom. Control 64(6), 2629–2636 (2018)

https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-96145-3_19
https://doi.org/10.1007/978-3-319-96145-3_19

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 651

25. Mayne, D.Q.: Model predictive control: recent developments and future promise.
Automatica 50, 2967–2986 (2014)

26. Mazo, M., Davitian, A., Tabuada, P.: PESSOA: a tool for embedded controller syn-
thesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
566–569. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 49

27. Miller, K., Fan, C., Mitra, S.: Factest webpage (2020). https://kmmille.github.io/
FACTEST/index.html. Accessed 13 May 2020

28. Mouelhi, S., Girard, A., Gössler, G.: CoSyMA: a tool for controller synthesis using
multi-scale abstractions. In: International Conference on Hybrid Systems: Compu-
tation and Control, pp. 83–88. ACM (2013)

29. Nakamura, Y., Savant, S.: Nonlinear tracking control of autonomous underwater
vehicles. In: Proceedings 1992 IEEE International Conference on Robotics and
Automation, pp. A4–A9. IEEE (1992)

30. Ogata, K., Yang, Y.: Modern Control Engineering, vol. 5. Prentice Hall, Upper
Saddle River (2010)

31. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion
planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell.
Veh. 1(1), 33–55 (2016)

32. Texas A&M University Parasol MP Group, CSE Department Algorithms & appli-
cations group benchmarks

33. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Model predictive control with signal temporal logic specifications. In:
2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 81–87.
IEEE (2014)

34. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis
from signal temporal logic specifications. In: International Conference on Hybrid
Systems: Computation and Control, pp. 239–248. ACM (2015)

35. Ravanbakhsh, H., Sankaranarayanan, S.: Robust controller synthesis of switched
systems using counterexample guided framework. In: 2016 International Conference
on Embedded Software (EMSOFT), pp. 1–10. IEEE (2016)

36. Richter, S., Jones, C.N., Morari, M.: Computational complexity certification for
real-time MPC with input constraints based on the fast gradient method. IEEE
Trans. Autom. Control 57(6), 1391–1403 (2011)

37. Roy, P., Tabuada, P., Majumdar, R.: Pessoa 2.0: a controller synthesis tool for
cyber-physical systems. In: International Conference on Hybrid Systems: Compu-
tation and Control, pp. 315–316. ACM (2011)

38. Rungger, M., Zamani, M.: SCOTS: a tool for the synthesis of symbolic controllers.
In: Proceedings of the 19th International Conference on Hybrid Systems: Compu-
tation and Control, pp. 99–104 (2016)

39. Sakai, A., Ingram, D., Dinius, J., Chawla, K., Raffin, A., Paques, A.: Python-
Robotics: a python code collection of robotics algorithms (2018)

40. Singh, S., Majumdar, A., Slotine, J.-J., Pavone, M.: Robust online motion plan-
ning via contraction theory and convex optimization. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 5883–5890. IEEE (2017)

41. Sucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE
Robot. Autom. Mag. 19(4), 72–82 (2012)

42. Tabuada, P.: Verification and Control of Hybrid Systems - A Symbolic Approach.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4419-0224-5

43. Tedrake, R.: LQR-trees: feedback motion planning on sparse randomized trees
(2009)

https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1007/978-3-642-14295-6_49
https://kmmille.github.io/FACTEST/index.html
https://kmmille.github.io/FACTEST/index.html
https://doi.org/10.1007/978-1-4419-0224-5

652 C. Fan et al.

44. Vaskov, S., et al.: Towards provably not-at-fault control of autonomous robots in
arbitrary dynamic environments. arXiv preprint arXiv:1902.02851 (2019)

45. Vitus, M., Pradeep, V., Hoffmann, G., Waslander, S., Tomlin, C.: Tunnel-MILP:
path planning with sequential convex polytopes. In: AIAA Guidance, Navigation
and Control Conference and Exhibit, p. 7132 (2008)

46. Wong, K.W., Finucane, C., Kress-Gazit, H.: Provably-correct robot control with
LTLMoP, OMPL and ROS. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, p. 2073 (2013)

47. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic
planning. IEEE Trans. Autom. Control 57(11), 2817–2830 (2012)

48. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: International Conference
on Hybrid Systems: Computation and Control, pp. 313–314. ACM (2011)

49. Zeilinger, M.N., Jones, C.N., Morari, M.: Real-time suboptimal model predictive
control using a combination of explicit MPC and online optimization. IEEE Trans.
Autom. Control 56(7), 1524–1534 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1902.02851
http://creativecommons.org/licenses/by/4.0/

	Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models
	1 Introduction
	2 Preliminaries and Problem Statement
	2.1 Nonlinear Control System
	2.2 Controller Synthesis Problem

	3 Constructing Reference Trajectories from Waypoints
	4 Bounding the Error of a Tracking Controller
	4.1 Tracking Error and Lyapunov Functions
	4.2 Bounding Tracking Error Using Lyapunov Functions: Part 1
	4.3 Bounding Tracking Error Using Lyapunov Functions: Part 2

	5 Synthesizing the Reference Trajectories
	5.1 Use PWL Reference Trajectories for Vehicle Models
	5.2 Synthesizing Waypoints for a Linear Reference Trajectory
	5.3 Partitioning the Initial Set
	5.4 Overall Synthesis Algorithm

	6 Implementation and Evaluation
	6.1 Benchmark Scenarios: Vehicle Models and Workspaces
	6.2 Synthesis Performance
	6.3 RRT vs. SAT-Plan

	7 Conclusion and Discussion
	References

