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Abstract
Background: Colorectal cancer (CRC) is the third most common malignancy in the world and metastasis
is responsible for a major proportion of the cancer-related deaths in CRC patients.

Aims: To construct machine learning models for predicting lymph node and distant metastases in
colorectal cancer and analyze biological functions features of metastasis-related genes.

Methods: RNA-seq and miRNA-seq data as well as corresponding clinical data from colon
adenocarcinoma (COAD) and rectum adenocarcinoma (READ) were obtained from The Cancer Genome
Atlas (TCGA) database. The differentially expressed RNAs (DE-RNAs) in non-LNM (N0) and LNM (N1/N2)
as well as non-distant metastases (M0) and distant metastases (M1) were analyzed. Six machine
learning models including logistic regression (LR), random forest (RF), support vector machine (SVM),
Catboost, gradient boosting decision tree (GBDT), and arti�cial neural network (NN) were constructed to
predict cancer metastasis and the feature genes of the optimal model were further analyzed by functional
enrichment, protein-protein interaction (PPI) network, and drug-target analyses.

Results: Differential RNA expression pro�les of LNM and non-LNM as well as M0 vs. M1 were observed in
both COAD and READ samples. NN model was determined to be the optimal model for predicting distant
metastases, while Catboost and LR models were the optimal models for predicting LNM in COAD and
READ samples, respectively. PPI analysis indicated that KIR2DL4, chemokine-related genes
CXCL9/10/11/13 and CCL25, and gamma-aminobutyric acid (GABA) receptor genes (GABRR1, GABRB2
and GABRA3) were key genes in metastasis. In addition, atorvastatin and eszopiclone were identi�ed as
potential therapeutic agents as they target these genes.

Conclusions: We constructed six machine learning models for predicting colorectal cancer metastases
and identify the optimal model. We analyzed biological functions features of metastasis-related RNAs in
colorectal cancer.

Highlights
1. We analyzed the differential RNA expression related to pro�les metastasis-related molecules in

colorectal cancer.

2. We constructed six machine learning models for predicting lymph node and distant metastases in
colorectal cancer and identify the optimal model.

3. We analyzed biological functions features of metastasis-related RNAs in colorectal cancer.

Introduction
Colorectal cancer (CRC) is the third most common malignancy in the world. In the United States,
clinicians observed a decreased CRC incidence rate in adults older than 50 years of age between 2000
and 2014, especially in distal tumors of individuals aged ≥ 65 years, while an increased incidence rate
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was observed in people less than 50 years of age during the same period [1]. The incidence and mortality
of CRC vary between human development levels, with both increasing rapidly in low/middle-income
countries while highly developed countries seem to be experiencing a decrease in these parameters. It is
estimated that the global burden of CRC will increase by 60% by the year 2030 with over 2.2 million new
cases and 1.1 million deaths per year [2]. Tumor cells from primary tumors can migrate to regional lymph
nodes and distant organs. Metastasis is responsible for most cancer-related deaths in patients with CRC
[3]. Although most local CRC patients can be cured using surgical resection, only around 70% of CRC
patients with regional lymph node metastasis (LNM) can be cured by surgery coupled with adjuvant
chemotherapy, and advanced metastatic CRCs are still mostly incurable, in spite of the improvements in
medical treatment [4, 5]. Thus, the accurate prediction of metastasis in CRC is crucial for its treatment.

Recently, aberrant expression of genes, and several kinds of non-coding RNAs have been demonstrated to
function in CRC metastasis and could serve as predictive biomarkers for this condition [6–8]. For
example, Schmid et al. showed that the high expression of Spondin 2, a transcriptional target of the
metastasis gene MACC1, was associated with speci�c prognostic outcomes, and that overexpression of
Spondin 2 could promote CRC metastasis both in vitro and in vivo [8]. Hur et al. showed that patients with
elevated serum miR-203 levels were at higher risk for developing LNM and distant organs metastasis, and
serum miR-203 levels obviously increased in CRC metastasis mouse models when compared to those of
the control [9]. Yoshida et al. suggested that small nucleolar RNA 21 (SNORA21) was signi�cantly up-
regulated in CRC using both RNA pro�ling datasets and clinical validations, and proliferation and
invasion of CRC cells were reduced following inhibition of SNORA21 [10]. High expression of long non-
coding RNA (lncRNA) XIST has been reported in CRC cells and tissues, and XIST has been shown to
regulate tumor growth and metastasis via the miR-200b-3p-ZEB1 axis.

Machine learning has been shown to be extremely accurate and precise when used to predict medical
outcomes outstripping standard statistics and human judgment [11, 12]. A previous review showed that
machine learning models displayed excellent performance in predicting the outcomes of various
neurosurgical conditions, outstripping established prognostic indicators and clinical experts [13]. Andrés
et al. reported that machine learning showed increased sensitivity and speci�city when predicting nodal
metastasis compared to the tumor depth invasion model developed using early oral squamous cell
carcinoma, and the forest algorithm was shown to be the most e�cient model for this data [14]. Zhi et al.
revealed that the genes identi�ed by the support vector machine (SVM) classi�er algorithm could
accurately distinguish metastatic and non-metastatic CRC samples [15]. Arti�cial neural network (NN)
can be used to realize effective analysis of non-linear datasets and have been successfully used to assist
clinical decision-making in neurosurgery [16]. In addition, it has been reported that NN is better at
predicting relapse in breast cancer than the logistic regression (LR) model [17]. However, there are no
studies on the applications of different machine learning models to CRC metastasis.

In this study, RNA expression data and clinical phenotype data from The Cancer Genome Atlas (TCGA)
database, was analyzed using six machine learning models, including LR, random forest (RF), SVM,
Catboost, gradient boosting decision tree (GBDT), and NN to predict CRC metastasis. Among the six
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models, the genes identi�ed by the optimal models were further analyzed using functional enrichment
analysis, protein-protein interaction (PPI) network and drug-target analysis (Supplemental Fig. 1 showing
the work�ow). This study could provide valuable insight for the treatment of CRC by providing biomarkers
for the prediction of CRC metastasis.

Materials And Methods
Data acquisition and preprocessing

The sequencing data from RNA (RNA-seq) and microRNA (miRNA-seq) experiments as well as the
corresponding clinical data of TCGA-colon adenocarcinoma (TCGA-COAD) and TCGA-rectum
adenocarcinoma (TCGA-READ) were downloaded from the university of California Santa Cruz (UCSC,
http://xena.ucsc.edu/) Genome Browser database. Based on the annotation �le
(gencode.v22.annotation.gene) available from the GENCODE database, the RNA-seq and miRNA-seq data
were annotated to identify mRNA, lncRNAs, snoRNAs, and miRNA transcripts.

Differential expression analysis

For both COAD and READ data sets, the differential expression analysis of non-LNM (N0) and LNM
(N1/N2), and non-distant (M0) and distant metastases (M1) were performed using the limma package.
The differentially expressed mRNA (DE- mRNA), lncRNAs (DE- lncRNAs), snoRNAs (DE- snoRNAs), and
miRNAs (DE-miRNAs) with a P value < 0.05 and |log fold change (FC)| > 0.585 or 1 (the number of feature
genes used in the construction of the data models must be less than the number of samples, therefore
the thresholds were different when identifying the candidate feature genes) were selected. The ggpubr
package was used to visualize the volcano plot.

Training of the optimal model and performance evaluation

The count value of the candidate feature genes was standardized to log2 (x+1) data and binary labels
were added to each sample: metastases was 1 while non-metastases was 0. After that, samples were
divided into a training (80% samples) and a test (20% samples) dataset using the train_test_split method
from the scikit learn package in python. The sklearn.linear_model, sklearn.ensemble, sklearn.svm and
sklearn.neural_network methods were used to construct LR, RF, GBDT, SVM and NN machine learning
models, and the Catboost package was used to construct the Catboost machine learning model. The
expression value of the feature genes in the samples were used as the feature value to classify and
discriminate the samples. The Recursive Feature Elimination (RFE) algorithm was implemented in the
sklearn.feature_selection method. After cross-validation, the optimal feature genes from each model were
identi�ed based on the area under the receiver operating characteristic (ROC) curve (AUC). The LNM and
distant metastases in COAD and READ were predicted using the six models, and the model with the
highest AUC was selected as the optimal model. The formula or code for all six models used in this study
are shown in Supplemental �les 1-4. The feature genes of the optimal model were used in the following
analyses.
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Functional enrichment analysis

To investigate the biological function of the feature genes, the Gene Ontology (GO) annotation terms and
KEGG pathways were enriched using the clusterPro�ler tool with a cut-off value of P < 0.05 and count ≥
2.

Construction of the PPI network

The interactions between the feature genes were retrieved using the STRING database (Version: 11.0,
http://www.string-db.org/) with the parameters set as follows: (1) 0.4 (medium con�dence) PPI score; (2)
species: Homo sapiens; and (3) disable structure previews inside network bubbles, hide disconnected
nodes in the network. The PPI network was visualized using Cytoscape software.

Prediction of drug-target pairs

The drug-target pairs for the feature genes were predicted using the DGIdb 3.0 database. The drug-target
pairs with FDA approval or those reported in published studies were selected and visualized using
Cytoscape software.

Results
RNAs were differentially expressed in LNM and non-LNM samples

A total of 438 COAD samples with RNA-seq, miRNA-seq and clinical data were included, of which 255
were N0 and 183 were N1/N2 samples. In total, 352 RNAs were differentially expressed between LNM and
non-LNM samples, including 263 unique DE-mRNAs, 60 DE-lncRNAs, 10 DE-miRNAs and 19 DE-unde�ned
genes (Figure 1A and Table 1).

For READ, a total of 160 samples with RNA-seq, miRNA-seq and clinical data were included, of which 80
were N0 samples and 76 were N1/N2 samples. A total of 474 RNAs were differentially expressed in LNM
vs. non-LNM samples, including 244 unique DE-mRNAs, 87 DE-lncRNAs, 26 DE-miRNAs and 117 DE-
unde�ned genes (Figure 1B and Table 1).

RNAs were differentially expressed in distant metastases and non-distant metastases samples

Among the 438 COAD samples, there were 316 M0 and 63 M1 samples. In all, 129 RNAs were
differentially expressed in M0 and M1 samples, including 81 unique DE-mRNAs, 22 DE-lncRNAs, 5 DE-
miRNAs, and 21 DE-unde�ned genes (Figure 1C and Table 1).

Among the 160 READ samples, there were 121 M0 and 22 M1 samples. A total of 134 RNAs were
differentially expressed in the M0 and M1 samples, including 90 unique DE-mRNAs, 34 DE-lncRNAs, and
10 DE-unde�ned genes (Figure 1D and Table 1).

Identifying the optimal model to predict LNM in COAD and READ samples
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For LNM prediction in COAD we evaluated the AUC for each of the six machine learning models. They
were as follows: 0.7671 for the LR model, 0.7722 for the NN model, 0.7532 for the SVM model, 0.7610 for
the RF model, 0.7634 for the GBDT model, and 0.8040 for the Catboost model (Figure 2A). Therefore,
Catboost was identi�ed as the optimal model for the prediction of LNM in COAD samples. There were
236 feature genes identi�ed by the Catboost model (Supplemental Table 1), of which C6orf15 and
CXCL11 were shown to make the largest contribution (Supplemental Figure 2).

For LNM prediction in READ samples, the LR model showed the largest AUC at 0.9254 and thus was
identi�ed as the optimal model (Figure 2B). A total of 292 feature genes were identi�ed by this model
(Supplemental Table 2), and the signi�cance of each of these genes is shown in Supplemental Figure 3.

Identi�cation of the optimal model to predict distant metastases in COAD and READ samples

For the prediction of distant metastases in COAD, the AUC for all six models were evaluated. The values
were as follows: 0.6914 for the LR model, 0.8047 for the NN model, 0.6432 for the SVM model, 0.6992 for
the RF model, 0.6406 for the GBDT model, and 0.6953 for the Catboost model (Figure 2C). The NN model
was thus identi�ed as the optimal model to predict distant metastases in COAD. There were 129 feature
genes identi�ed by the NN model.

For the prediction of distant metastases in READ samples, the NN model was also identi�ed as offering
the best AUC value (0.8600) making it the optimal model (Figure 2D). A total of 134 feature genes were
identi�ed by the NN model.

Biological functions of the feature mRNAs identi�ed by the optimal models

The feature mRNAs identi�ed by the optimal models are listed in Table 2. In order to investigate the
biological functions of these mRNAs, GO annotation and KEGG pathway enrichment was analyzed. For
the feature mRNAs distinguished by the Catboost model for LNM prediction in COAD, we observed a
signi�cant enrichment in calcium ion homeostasis, calcium ion transport into the cytosol, the calcium
signaling pathway amongst others (Figure 3A).

The mRNAs identi�ed by the LR model for LNM prediction in READ were implicated in
retinoid/diterpenoid/ metabolic process, cholesterol metabolism, and remodeling related biological
processes, including, protein−containing complex remodeling, protein−lipid complex remodeling, plasma
lipoprotein particle remodeling (Figure 3B).

The mRNAs identi�ed by the NN model for distant metastases prediction in COAD were found to
participate in terms that included regulation of transmembrane transport/ion transport, T cell chemotaxis,
chemokine signaling pathway amongst others (Figure 4A). For the mRNAs identi�ed by the NN model for
distant metastases prediction in READ, the enriched results mainly contained killing of cells of other
organisms, disruption of cells of other organisms, triglyceride−rich lipoprotein particle remodeling, and
cholesterol/thiamine metabolism (Figure 4B).



Page 7/23

PPI network from the feature mRNAs identi�ed by the optimal models

PPI analysis was performed on the feature mRNAs identi�ed by the optimal models, and the mRNAs were
resolved using the STRING database were listed in Supplemental Table 3. Isthmin 2 (ISM2) and killer cell
immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 4 (KIR2DL4) were the only
overlapping mRNAs between all four groups. Figure 5A shows the PPI network of the mRNAs identi�ed in
the Catboost prediction model for LNM in READ. Among the mRNAs in �gure 5A, C6orf15, an
uncharacterized protein located on chromosome 6 open reading frame 15, had the greatest log FC value
(positively correlated with node size) in the differential expression analyses. While GNG4, G protein
subunit gamma 4, interacted with the most proteins. The PPI network of the mRNAs identi�ed by the LR
prediction model for LNM in READ is shown in Figure 5B and identi�es KIR2DL4 as the most signi�cant
component.

The PPI network of the mRNAs identi�ed by the NN model for distant metastases prediction in COAD is
shown in Figure 6A, and was shown to include several chemokine genes, including C-X-C motif
chemokine ligand 9 (CXCL9), CXCL10, CXCL11, CXCL13 and C-C motif chemokine ligand 25 (CCL25). The
PPI network of the mRNAs identi�ed by the NN model for distant metastases prediction in READ is shown
in Figure 6B. Regenerating family member 3 alpha (REG3A), defensin alpha 5 (DEFA5), and DEFA6 were
shown to have the greatest log FC (positively correlated with node size) values in the differential
expression analysis.

Drug-target pairs for feature mRNAs

For LNM prediction in COAD, 264 drug-gene pairs were predicted to target 29 feature mRNAs (Figure 7A
and Supplemental table 4). Gamma-aminobutyric acid type A receptor alpha3 subunit (GABRA3),
cholinergic receptor muscarinic 2 (CHRM2), Fc fragment of IgG receptor IIIb (FCGR3B), and dopamine
receptor D2 (DRD2) were targeted by the most drugs. A total of 9 drugs were found to target CXCL10.
From the LNM prediction in READ, 113 drug-gene pairs were predicted to target 12 feature mRNAs (Figure
7B and Supplemental table 5). GABRB2 was targeted by 11 drugs, and all 11 drugs were potentiators of
GABRB2. Cyclosporine and deferoxamine were found to target CXCL2.

For the distant metastases prediction in COAD, 83 drug-gene pairs were predicted to target 17 feature
mRNAs (Figure 8A and Supplemental table 6). For the distant metastases prediction in READ, 119 drug-
gene pairs were predicted to target 17 feature mRNAs (Figure 8B and Supplemental table 7). A total of 9
drugs were found to target CXCL10. GABRA3, 5-hydroxytryptamine receptor 1D (HTR1D), HTR2C, and
solute carrier family 6 member 4 (SLC6A4) were targeted by the most drugs, and the interaction types
were all known.

Discussion
Machine learning has recently been shown to be an accurate and precise method for predicting medical
outcomes outstripping standard statistics and human judgment. In this study, the NN model was
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identi�ed as the optimal model for predicting distant metastases, while Catboost and LR models were
shown to be optimal models for predicting LNM in COAD and READ samples, respectively. Consistent
with these observations Biglarian et al. showed that the ROC for NN and LR models predicting distant
metastasis of CRC were 0.82 and 0.77, respectively, suggesting that the NN model was more suitable for
the prediction of distant metastasis in CRC [18]. The feature genes from the optimal models were
signi�cantly enriched in calcium ion homeostasis, transmembrane transport/ion transport, T cell
chemotaxis, chemokine signaling pathway amongst others. While the PPI analysis indicated that
KIR2DL4, chemokine-related genes (CXCL9/10/11/13 and CCL25), and gamma-aminobutyric acid
(GABA) receptor genes ( GABRR1, GABRB2 and GABRA3) are all key genes in metastasis. In addition,
atorvastatin and eszopiclone were shown to target those genes, suggesting they may have some
therapeutic value.

KIR2DL4, also known as CD158D, is a member of the killer cell immunoglobulin-like receptor (KIR) family
expressed by natural killer (NK) cells [19]. KIRs can recognize histocompatibility complex (MHC) ligands
and mediate the function of NK cells. KIR2DL4 functions as an inhibitory receptor that releases inhibitory
signals to NK cells [19, 20]. HLA-G, a non-classical class I human leukocyte antigen, is the only known
ligand for KIR2DL4 [19]. Notably, expression of HLA-G has been reported to be a predisposing factor for
metastasis [21]. Studies have revealed the associations between HLA-G expression and lymph node
metastasis in cervical cancer [22], papillary thyroid cancer [23], and CRC-associated liver metastases [24].
Reportedly, HLA-G upregulates the expression of matrix metalloproteinases (MMPs) and other tumor
promoting factors, so that tumor cells have a higher invasion and metastasis potential [25]. Ueshima et
al. suggested that KIR2DL4 + tissue mast cells promote LNM and lymph-vascular invasion in HLA-G + 
breast cancer cells [26]. Thus, we hypothesize that KIR2DL4 plays a crucial role in CRC metastases
probably via interactions with its ligand HLA-G.

Studies have shown that chemokines play important roles in clinical outcome prediction and
invasion/metastasis of various cancers [27, 28]. For example, CXCL10 elevates the expression of MMP9,
and triggers cell migration and invasion in metastatic CRC cells rather than primary cancer cells [29].
Tokunaga et al. revealed that the chemokine CXCL9/CXCL10/CXCL11/CXCR3 axis mediates
differentiation and migration of immune cells via the paracrine axis and promotes cancer metastasis via
the autocrine axis, suggesting that this axis is a potential target for anti-cancer therapies [30]. This is
consistent with the results of our study where we found that aberrant expression of
CXCL9/CXCL10/CXCL11/CXCL13/CCL25 were identi�ed as features in the NN model used to predict
distant metastases and were enriched in T cell chemotaxis and chemokine signaling pathways. We
suggest that this implicates these chemokines in the regulation of CRC metastases. Notably, several
drugs were found to target CXCL10, for example, atorvastatin. Atorvastatin has been reported to decrease
plasma CXCL10 levels in the treatment of Crohn's disease [31], and decrease plasma CXCL9 levels in the
treatment of systemic lupus erythematosus [32]. In addition, combined treatment with atorvastatin and
phloretin induces apoptosis and G2/M arrest in colon cancer cells [33]. Thus we speculate that
atorvastatin may be a promising drug for targeting chemokines during the treatment of CRC.
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Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter which interacts with two types of
receptors, including GABA A and GABAB. GABAA receptors are ionotropic receptors consisting of various
subunits and functioning as chloride channels [34, 35]. GABA has been implicated in cancer metastasis
[36, 37]. GABRR1, GABRB2 and GABRA3 are all subunits of the GABAA receptor. Liu et al. suggested that
GABRA3 could promote LNM in lung adenocarcinoma by inducing MMP-2 and MMP-9 expression [38]. In
this study, GABRR1, GABRB2 and GABRA3 were all aberrantly expressed in CRC, and were among the
feature genes identi�ed by the optimal machine learning models for the prediction of CRC metastasis.
They were enriched in ion transport and transporter activity related terms. Reportedly, ion
channels/transporters are important operators of various cell-cell signaling pathways as they sense and
respond to changes in the environment. Ion channels/transporters participate in each step of the cascade
in cancer metastasis, suggesting that they could be potential therapeutic targets in cancer therapy and
metastasis prevention [39–41]. In this study, various drugs were predicted to target GABRR1, GABRB2 and
GABRA3. These included eszopiclone, which is an agonist/positive allosteric modulator of GABRA3.
Studies have shown the interactions between eszopiclone and GABA receptors [42, 43]. However, despite
these novel �ndings, this study did have some limitations. (1) We analyzed the expression of different
kinds of RNAs in CRC, and the role of differentially expressed mRNAs in the prediction of CRC metastasis.
These analyses should be extended to the effects of the differential expression of the various miRNAs,
lncRNAs and snoRNAs identi�ed in previous CRC metastasis studies. (2) The effect of the key mRNAs
identi�ed in the machine models should be validated by experimental and clinical data. (3) The predicted
drug-gene interactions should be con�rmed to provide insight into their application in CRC treatment and
the prevention of CRC metastasis.

Conclusions
We constructed multiple machine learning models for colorectal cancer metastasis, identi�ed the optimal
model, and applied the optimal model to analyze the valuable RNAs related to colorectal cancer
metastasis. The machine learning models could contribute to the prediction of LNM and distant
metastases in CRC. This study might provide a novel routine for screening the promising targets for CRC
treatment and the prevention of CRC metastases.
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Table 1
Statistics of differentially expressed genes.

  COAD

(Lymph nodes
metastasis)

READ

(Lymph nodes
metastasis)

COAD

(Distant
metastases)

READ

(Distant
metastases)

Log FC 0.585 0.585 1 1

Up probes 310 328 88 112

Down probes 42 146 41 22

Total probes 352 474 129 134

Not matched
probes

62012 61890 62235 62230

mRNA
(up/down)

263(230/33) 244(191/53) 81(58/23) 90(74/16)

lncRNA
(up/down)

60(54/6) 87(45/42) 22(20/2) 34(29/5)

snoRNA
(up/down)

0 0 0 0

miRNA
(up/down)

10(10/0) 26(26/) 5(5/0) 0

Unde�ned
(up/down)

19(16/3) 117(66/51) 21(5/16) 10(9/1)

Unique mRNA 263 244 81 90

The differentially expressed mRNAs, lncRNAs, snoRNAs, miRNAs and unde�ned genes between N0
vs. N1/N2 in COAD, N0 vs. N1/N2 in READ, M0 vs. M1 in COAD, and M0 vs. M1 in READ. Up, up-
regulated genes; Down, down-regulated genes; COAD, colon adenocarcinoma; READ, rectum
adenocarcinoma.
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Table 2
Statistics of feature mRNAs distinguished by optimal models.

  COAD READ COAD READ

(Lymph nodes
metastasis)

(Lymph nodes
metastasis)

(Distant
metastases)

(Distant
metastases)

Optimal
model

Catboost LR NN NN

Feature
mRNA

178 149 81 90

Trans
mRNA

177 149 80 90

No dup 177 149 80 90

Trans mRNA, the mRNAs converted by clusterpro�er package and org.hs.eg.db package; No dup, the
amount of mRNAs after removal of duplications; COAD, colon adenocarcinoma; READ, rectum
adenocarcinoma.

Figures



Page 16/23

Figure 1

The volcano plot of the differentially expressed genes. Volcano plot of the differentially expressed genes
(including mRNAs, lncRNAs, snoRNAs, miRNAs and unde�ned genes) between N0 and. N1/N2 in COAD
samples, N0 and. N1/N2 in READ samples, M0 and M1 in COAD samples, and M0 and M1 in READ
samples. Red dots represent the up-regulated genes, and blue dots represent the down-regulated genes.
The dots with genes name were in the top 30 most differentially expressed genes.
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Figure 2

Receiver operating characteristic (ROC) curve for each of the six prediction models. Receiver operating
characteristic (ROC) curve analyses for the six lymph node metastasis prediction models in COAD (A) and
READ (B) samples showing the prediction performance of each model; ROC curves for the six distant
metastases prediction models in COAD (C) and READ (D) samples showing the prediction performance of
each of these models.
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Figure 3
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Functional enrichment analysis for the genes identi�ed in the optimal LNM prediction models. Bubble
chart of GO terms and KEGG pathways enriched for the genes identi�ed in the optimal lymph node
metastasis prediction models for COAD (A) and READ (B) data showing the functions of those genes;
bubble size represents the count of these enriched genes; the color (red to blue) represents decreasing P
value (from high to low).
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Figure 4
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Functional enrichment analysis for the genes identi�ed in the optimal distant metastases’ prediction
models. Bubble chart of GO terms and KEGG pathways enriched for the genes identi�ed in the optimal
distant metastases prediction models from COAD (A) and READ (B) data showing the functions of these
genes; bubble size represents the count for each of these enriched genes; the color (red to blue)
represents changes in the P value (high to low).

Figure 5

PPI network for the genes identi�ed by the optimal LNM prediction models. PPI network for the genes
identi�ed by the optimal lymph node metastasis prediction models in COAD (A) and READ (B)
demonstrating interactions among these genes; red nodes represent up-regulated genes; blue nodes
represent down-regulated genes; lines represent interactions between two nodes.

Figure 6

PPI network for the genes identi�ed by the optimal distant metastases prediction models. PPI network for
the genes identi�ed by the optimal distant metastases prediction models in COAD (A) and READ (B)
demonstrating the interactions between these genes; red nodes represent up-regulated genes; blue nodes
represent down-regulated genes; lines represent interactions between two nodes.
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Figure 7

Drug-gene network for the genes identi�ed by the optimal LNM prediction models. Drug-gene network for
the genes identi�ed by the optimal lymph node metastasis prediction models in COAD (A) and READ (B)
showing the drugs that target these genes; red nodes represent genes; blue nodes represent drugs; lines
represent interactions between gene and drug, and the phrase around the lines represent the interaction
type.

Figure 8

Drug-gene network for the genes identi�ed by the optimal distant metastases prediction models. Drug-
gene network for the genes identi�ed by the optimal distant metastases prediction models in COAD (A)
and READ (B) showing the drugs that target these genes; red nodes represent genes; blue nodes represent
drugs; lines represent interactions between gene and drug, and the phrase around the lines represent the
interaction type.
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