
 

A Study of Performance Monitoring Unit, 
perf and perf_events subsystem 

 

 

Team 
Aman Singh 
Anup Buchke 

 
 
 

Mentor 
Dr. Yann-Hang Lee 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary 
 

Performance Monitoring Unit, or the PMU, is found in all high end processors these days. The 
PMU is basically hardware built inside a processor to measure it's performance parameters. We 
can measure parameters like instruction cycles, cache hits, cache misses, branch misses and 
many others depending on the support i.e. hardware provide by the processor. And as the 
measurement is done by the hardware there is very limited overhead. 
 
In this review we will look inside the PMU of Intel IA-32 and see how it works, from a very high 
level. How these PMU registers are configured and how they can be utilized for different types 
of performance measurements. We will then look into how the software utilizes this hardware. 
We will closely look into the working of the linux command line utility: perf and the perf_events 
subsystem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Contents 
 

Summary ....................................................................................................................................................... 2 

PMU Hardware .......................................................................................................................................... 4 

Types of Performance Measurement .................................................................................................. 6 

Counting .................................................................................................................................................. 6 

Event based Sampling ........................................................................................................................... 7 

Performance Monitoring Tools ............................................................................................................. 9 

perf - Command Line Utility .................................................................................................................. 9 

Counting Support in Linux Perf ......................................................................................................... 10 

Sampling Support in Perf ..................................................................................................................... 14 

Measuring Software Events and Per-process performance using perf. ................................. 14 

References ............................................................................................................................................... 15 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PMU Hardware 
 
The PMU in the Intel IA-32 architecture consists of two types of registers or Model-Specific 
Registers (MSRs). They are called model specific because every processor model has some 
registers different from the other models, even from the same company. These two types are 
the Performance Event Select Registers and the Performance Monitoring Counters(PMC). 
Measuring a performance event requires programming the Event Select Registers. The 
performance events are counted  in the PMCs. So for measuring a performance event we need 
both the event selector and the PMC. 
 
Layout of IA32_PERFEVTSELx MSRs: 
 

 
Figure 1: Layout of IA32_PERFEVTSELx MSRs from the Intel64_developer_model_vol3b.pdf 

 

 

 Event Select Fields (bits 0-7) : 
This field is used to select the logic unit to detect the performance monitoring event to be 
monitored. So the values to be filled in this field is determined by the architecture. 
 

 Unit mask (UMASK) fields (bits 8-15): 
The logic unit selected by the Event Select field might be capable of monitoring multiple 
events. So this UMASK field is used to select one of those events which can be monitored 
by the logic unit. So based on the logic unit selected the UMASK field may have one fixed 
value or multiple values, which is dependent on the architecture. 
 

 USR flag (bit 16): 
This flag, if set, tells the logic unit to monitor events which happen when the processor is 
running in the User privilege level i.e. levels 1 through 3. 
 

 OS Flag (bit 17): 
This flag, if set, tells the logic unit to monitor events which happen when the processor is 
running in the highest privilege level i.e. level 0. This flag and the USR flag can be used 
together to monitor or count all the events. 
 

 E (Edge Detect) (bit 18): 
This flag when set counts the number of times the selected event has gone from low to high 
state. 
 



 PC (Pin Control) (bit 19):  
This flag when set increments the counter and toggles the PMi pin when the monitored 
event occurs. And when not set, it toggles the PMi pin only when the counter overflows. 
 

 INT (APIC interrupt enable) flag (bit 20): 
When this flag is set the processor raises an interrupt when the performance monitoring 
counter overflows. 
 

 EN (Enable Counters) flag (bit 22): 
This flag when set enables the performance monitoring counters for the event and when 
clear disables the counters. 
 

 INV (inversion) flag (bit 23): 
This flag when set inverts the output of CMASK comparison. This enables the user to set 
both greater than and less than comparisons between CMASK and the counter value. 
 

 CMASK (Counter mask) field (bits 24 through 31): 
If this field has a value more than zero then that value is compared to the number of events 
generated in one clock cycle. If the events generated is more than the CMASK value then 
the counter is incremented by one else the counter is not incremented. 

 
 
Other features provided by hardware: 

 
 Fixed function performance counter register and associated control register: 

There are a few counters which can measure only a specific event unlike general purpose 
counters which can be configured to measure different events. 
 

 Global Control Registers: 
Some architectures provide global control registers which can be used to control all or a 
group of control registers or counters. This reduces the number of instructions required to 
modify the control registers and hence eases programming. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Types of Performance Measurement 
 

Counting 

In this type of measurement the total number of events that happen in a given time duration are 
aggregated and reported at the end of the duration. The performance control registers are set 
for counting the desired event and after the end of monitoring period the values of these 
registers are read. 
 
Challenges faced: 

 If the number of events to be monitored are more than the total number of counters 
provided by the processor. 

 If two different events to be monitored are measured by the same digital logic present in 
the processor. 

 
Resolution: 
Multiplexing is used to resolve the issues mentioned above. 

 In the first case, as the number of counters is less the events share time of the same 
counter i.e. time division multiplexing. Which means that one event does not get a 
dedicated counter for the entire duration of measurement. Instead the events are 
measured in small durations many times during the entire measuring period. At the end 
of measurement duration the actual measurement period is also recorded and the 
aggregated event count is scaled for the complete measurement period. 

 In the second case, the same technique is used as in the first case. The only difference 
being that this time the digital logic unit is time multiplexed to measure different events. 

 
Limitations: 

 Although multiplexing solves some issues and will be pretty close to the actual values 
but the scaled results are not completely reliable. It may so happen that the event which 
was not being measured for a particular instance may have spiked or tanked during that 
instance and the scaled value will be misleading. 

 So, in cases where highly precise values are desired the user should take care that the 
monitored event gets dedicated hardware and is not time multiplexed. 

 
Example: 
 Here is an example of the counting type of measurement. Here we are measuring the 
number of cache misses for two different types of matrix multiplications. We have designed the 
first algorithm to be more efficient than the second one by utilizing spatial locality for memory 
references hence the cache hits for the first one is expected to be much lower than the second 
algorithm. We have measured the total number of cache hits for both the multiplication 
algorithms using the perf tool with stat option. 
 
 

 
Figure 2a: Performance Measurement using Counting Example 1 with efficient matrix multiplication algorithm 



 
Figure 2b: Performance Measurement using Counting Example 2 with inefficient matrix multiplication algorithm 

 

Event based Sampling 
 
In this type of measurement, the PMU counters are configured to overflow after a preset number 
of events and when the overflow happens the process status information is recorded by 
capturing the data of the instruction pointer, general purpose registers and EFLAG registers. 
This sampled data can be utilized for profiling software applications, finding how the software is 
utilizing the underlying hardware and many other purposes. 
 
Limitations: 

 Sampling Delay 
There is delay between the counter overflow and the time when interrupt is raised. This 
combined with the long pipelines present in high-end processors the program counter 
data stored at the time of sampling may not be the event which caused the counter to 
overflow. 

 Speculative count 
Most high end processors these days use branch predictions which leads to speculative 
execution of instructions which may not complete if some other branch is selected. But 
these speculatively executed instructions may cause events and contribute to the event 
count even if they do not complete, which is not correct. 

 
Example: 
In the example, discussed in the previous section, we saw that the second algorithm is not 
performing well. So let us now use the perf record utility to find out approximately where a lot of 
execution time is being spent in that program. Below is the snapshots of the output of perf 
record interpreted using perf report. 
 
 

 
Figure 3a: Example of performance monitoring using sampling 

 

 



 

Figure 3b: Example of performance monitoring using sampling 

We can see from figure 3a that 99.62% of samples, which were taken using the default event 
cycles,  are in the mul4 function which is the function which multiplies the matrix. On further 
digging we can see from Figure 3b that a lot of time is spent is moving the data which is 
because of the many cache hits. So using this technique performance issues in software 
applications can be debugged easily. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Performance Monitoring Tools 
 
This following is the list of performance monitoring tools which are widely used. 

 Intel VTUNE Amplifier 

 OProfile 

 LTTng6 

 Perf Tools 
 
 

perf - Command Line Utility 
 
This is an open source tool available in linux which can be used for monitoring performance of 
applications. 
 

 
Figure 4: Architecture of perf event subsystem 

 
 
 
The Linux Perf_Event Subsystem consists of the files core.c and perf_event.c. These files are 
the interface between the linux kernel and various user space performance monitoring tool. 
 
 
 
 



Data Structures in Linux perf_event Subsystem 
 
The following are some of the important data structures which are used by the perf_event 

subsystem. 

struct perf_event; 
struct perf_event_attr; 
struct perf_event_context; 
struct perf_sample_data; 
struct pmu; 
 

Important Fields in the Data Structures 
 

struct perf_event { 

struct perf_event          *group_leader; 

struct pmu                 *pmu; 

u64                         total_time_enabled; 

u64                         total_time_running; 

struct perf_event_attr      attr; 

atomic64_t                  child_count; 

struct perf_event_context  *ctx; 

perf_overflow_handler_t         overflow_handler;  

struct task_struct              *owner;  } 
 
Description: 
group_leader 
 This field specifies the leader of the group of events attached to the process. 
pmu 
 This field points to the generic performance monitoring unit structure. 
total_time_enabled 
 This field specify the total time in nanoseconds that the event has been enabled. 
total_time_running 
 This field specify total time in nanoseconds that the event is running(scheduled onto the 
CPU) 
owner 
 This field points to the task structure of the process which has monitoring this event. 
 
struct perf_event_attr { 

__u32     type;         

__u64     config;       

__u64 sample_period;    

__u64 sample_freq;  

__u64 sample_type;     

exclusive      : 1,    

exclude_user   : 1,    

exclude_kernel : 1,    

exclude_hv     : 1,    

exclude_idle   : 1,    

exclude_host   : 1,    

exclude_guest  : 1  } 

 



Description: 
type 
 This field specifies the overall event type.  
config 
 This field specifies which event needs to be monitored. It is used along with type to 
decide the exact event. 
sample_period, sample_freq 
 Sampling period defines the N value where N is the number of events after which the 
interrupt is generated. It can be counted in terms of frequency as well. 
sample_type 
 The various bits in this field specify which values to include in the sample. 
exclude_user 
 This bit when enabled the count excludes the user-space events. 
exclude_kernel 
 This bit when enabled the count exclude the kernel-space events. 
 
struct perf_event_context { 

struct list_head                event_list; 

int                             nr_events; 

struct perf_event_context       *parent_ctx; 

u64                             time; 

u64                             timestamp; } 

 
Description: 
event_lists 
 This field specifies the list of events. 
nr_events 
 This field specifies the number of events that are currently monitored. 
parent_ctx 
 This fields points to the context of the processes parent. 
time,timestamp 
 These are context clocks, they run when the context is enabled. 
 
struct pmu { 
void (*pmu_enable)              (struct pmu *pmu);  
void (*pmu_disable)             (struct pmu *pmu);  
void (*start)                   (struct perf_event *event, int flags); 
void (*stop)                    (struct perf_event *event, int flags);  
void (*read)                    (struct perf_event *event); } 
 
Description: 
This structure majorly contains the function pointers to various PMU related functions. 
 
pmu_enable,pmu_disable 
 These functions are used to fully disable/enable a PMU. 
start,stop 
 These functions are used to start or stop a counter on a PMU.  
read 
 This function is used to update the event value for a particular counter. 

 
 
 



Counting Support in Linux Perf 
 
perf_event assigns one file descriptor per event and either per-thread or per-CPU. The system 
call perf_event_open() configures the hardware MSRs and creates a file descriptor which can 
be used for reading the performance measurement data. Once the file descriptor is obtained we 
can issue subsequent read calls to get the values of the performance counters. These values 
are then aggregated at the end of the program execution. 
 
The following is the execution flow for getting the file descriptor. 
 

 
Figure 5: function call trace 

 
For enabling and disabling performance monitoring events we use the ioclt and prctl system 
calls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 6: Execution flow of the read system call 

 

 

 



Sampling Support in Perf 
 
Perf_event is a Linux Subsystem. When the linux kernel is loaded the corresponding perf 
modules are statically loaded.When the perf subsystem is loaded it register a Nonmaskable 
interrupt handler to process its events.This interrupt is raised when the counter overflows.The 
interrupt handler takes a snapshot of the registers and the counters are reset to predefined 
values. 
 
In Linux the following functions are being invoked: 
 

1. perf_event_nmi_handler() 
2. This invokes x86_pmu_handle_irq(). 
3. This function performs the following steps 

 3.1. Iterate through all the performance events. 
 3.2. Extract the values and check if the counters overflow.(Uses    
  perf_event_overflow() function for it) 
 3.3. if the counter has overflow stop the counting using the function  x86_pmu_stop(). 

 

Measuring Software Events and Per-process performance using perf. 
 
For measuring per-thread or per-process performance, the perf_event subsystem invokes some 
functions of the Linux scheduler. For every context switch the context of current events are been 
pushed on the task_struct structure. Once the context switch is over the events attached to the 
newly scheduled process are accessed via the current macro in Linux which point to the 
currently running process. 
 
In the Linux context switch the following activities happens. 
 

1) The function static inline void context_switch(struct rq *rq, struct task_struct *prev, struct 
task_struct *next) is invoked by the scheduler. 
 

2) prepare_task_switch(struct rq *rq, struct task_struct *prev,struct task_struct *next) is 
invoked. 
 

3) This function invokes perf_event_task_sched_out(prev, next) 
 

4) This function performs two actions. It counts the software event of context switch and 
also calls __perf_event_task_sched_out which copies the context into the task_struct for 
the task which is scheduled out. 
 

5) Then switch_to performs the task swapping. 
 

6) Once the context switch is done the function finish_task_switch() is invoked.  This 
function invokes perf_event_task_sched_in() which using the current macro in Linux 
access the newly scheduled task’s task_struct and load the monitoring events on the 
CPU. 

 

 

 



References 
 
1.  http://www.eece.maine.edu/~vweaver/projects/perf_events/perf_event_open.html 
2.  http://en.wikipedia.org/wiki/List_of_performance_analysis_tools 
3.  http://lxr.free-electrons.com 
4.  A Performance Counter Architecture for Computing Accurate CPI Components. 
 Stijn Eyerman Lieven Eeckhout ELIS, Ghent University, Belgium 
 {seyerman,leeckhou}@elis.UGent.be, Tejas Karkhanis James E. Smith 
 ECE, University of Wisconsin–Madison {karkhani,jes}@ece.wisc.edu 
5.  Are Hardware Performance Counters a Cost Effective Way for Integrity Checking of Programs? 
 Corey Malone , Mohamed Zahran, Ramesh Karri 
6.  https://perf.wiki.kernel.org/index.php/Main_Page 
7.  http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
 manuals.html 
 

http://www.eece.maine.edu/~vweaver/projects/perf_events/perf_event_open.html
http://en.wikipedia.org/wiki/List_of_performance_analysis_tools
http://lxr.free-electrons.com/
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

