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ABSTRACT The Essential Climate Variable (ECV) soil moisture (SM) datasets, originated from the 

European Space Agency, have revealed great potential for application in hydrology and agriculture. Hence, 

it is essential to continuously enhance the data quality and spatial completeness to satisfy the increasing 

scientific research requirements. In this study, we explore the potential possibility of Soil Moisture Active 

Passive (SMAP) datasets in filling the gaps of ECV SM. The comprehensive assessment results show that: 

(1) The data missing percent of gap-filled ECV decreases 20% on average, which can be one step closer to 

generate a seamlessly covered global land surface SM product with favorable quality. (2) Compared to the 

original ECV, the gap-filled ECV products express similar good response to the in-situ measurements, 

suggesting that the SMAP SM products could be taken to efficiently fill the gaps and consistently maintain 

favorable accuracy at the same time. (3) Compared to the in-situ measurements, the original ECV SM 

products demonstrate extremely high probability density peak percentages. Fortunately, this eminent high 

value could be effectively rectified through gap-filling progress using SMAP. Overall, this study conducts 

objective and detailed evaluation on the performance of applying SMAP to fill the gaps of ECV, and is 

expected to act as a valuable reference in ECV SM gap-filling method. 

INDEX TERMS gap-filling, satellite retrieved soil moisture, the Essential Climate Variable soil moisture, 

the Soil Moisture Active Passive soil moisture 

I. INTRODUCTION 

Land surface soil moisture (SM), acting as an important 

vector in underlying surface hydrothermal exchange, is a key 

element in reflecting root-zone SM conditions and feeding the 

growth of herbaceous plants [1-3]. Moreover, spatio-temporal 

SM data is considered as critical references in land-

atmosphere interactions, vapor circulation, crop growth 

monitoring, and watershed hydrological process across the 

globe [4, 5]. Consequently, it is increasingly vital to acquire 

high-accuracy SM products with continuous land surface 

coverage to promote public awareness about the near surface 

topsoil hydrological situation [6, 7].  

Meanwhile, satellite-based remote sensing technology is 

advancing rapidly and becoming an efficient way to acquire 

large scale spectral information [8-13]. With various 

microwave sensors on-board Earth observation satellites, daily 

SM can be derived by radiation transfer equations and 
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backscattering models via signals received by satellite [14]. 

According to different working modes, satellite-based sensors 

are mainly divided into active instruments (laser radar, doppler 

radar, synthetic aperture radar) and passive instruments 

(microwave radiometer, multi-spectral imager, imaging 

spectrometer) [15, 16]. 

Substantial efforts have been made to obtain SM by active 

instruments [17-19]. The Japan Aerospace Exploration 

Agency launched the Advanced Land Observation Satellite-

Phased Array type L-band Synthetic Aperture Radar (ALOS-

PALSAR), which is an L-band synthetic aperture radar (SAR) 

product, to perform all-weather SM monitoring under three 

working modes, called the fine, scanning SAR, and 

polarimetric modes [17]. The European Space Agency (ESA) 

designed and developed the European Remote Sensing (ERS-

1/2) satellites in the 1990s to measure daily SM [18]. 

Moreover, the ESA also initiated the Sentinel-1 satellite 

system with C-band SAR onboard to collect continuous active 

microwave data to derive SM [19].  

Similarly, passive sensors are universally used for obtaining 

SM signals [20-22]. The solar synchronous satellite EOS-

Aqua, launched by the National Space Development Agency 

of Japan (NASDA), is equipped with the advanced microwave 

scanning radiometer Earth observing system (AMSR-E) [20]. 

Composed of six bands from 6.9-89 GHz, SM was inversed 

through a 10.7 GHz band signal. Then, AMSR2 continues 

collecting brightness temperature after AMSR-E completes its 

service in 2012 [21]. The ESA initiates the Soil Moisture and 

Ocean Salinity (SMOS) plan, aiming to observe SM and ocean 

salinity simultaneously. The 1.4 GHz signals received by 

synthetic aperture radiometer on the SMOS satellite can 

penetrate 5 cm deep into soil and no more than 5 kg/m2 water 

content of vegetation cover [22]. 

In general, both active and passive sensors are verified to 

have promising potential for SM retrieval. Additionally, each 

working mode sensor has its own characteristics. Active 

microwave sensors usually acquire data with high spatial 

resolution (tens of meters) but long revisit period (16-25 days). 

Passive microwave sensors can obtain daily global signals, but 

have coarse spatial resolution. Additionally, as SAR has high 

backscattering frequency, the accuracy of SAR-derived SM in 

vegetation-covered areas and crop fields is remarkably lower 

than that in bare areas. Therefore, passive SM is more 

frequently utilized in SM analysis in mixed land cover and 

large-scale regions.   

To take advantage of both active and passive SM products, 

research institutions tries to develop multi-sensor combined 

SM by fusing active and passive sensor-derived SM dataset. 

Since 2010, the ESA, after launching the Climate Change 

Initiative project, is devoted to developing high-precision SM 

products called the Essential Climate Variable (ECV) SM [23, 

24]. This program merges currently available SM products 

and obtained a 0.25° resolution, daily SM product from 1st 

November 1978 to now. The ECV SM contains three datasets: 

(1) Active ECV SM (ECV_A), through merging ERS-1/2 [25] 

and METeorological OPerational satellite (MetOp-A/B) [26] 

scatterometer derived SM; (2) Passive ECV SM (ECV_P), 

through merging Scanning Multichannel Microwave 

Radiometer (SMMR) [27], Special Sensor Microwave/Imager 

(SSM/I) [28], Tropical Rainfall Mission Microwave Image 

(TMI) [29], AMSR-E/2 [1, 6, 30], Windsat [31], and SMOS 

[32] radiometer-based SM; and (3) Active and passive 

combined ECV SM (ECV_C), through merging ECV_A and 

ECV_P.  

Many studies have made extraordinary contributions to 

assess the quality of the ECV SM [4, 23, 33-37]. Most of their 

results suggested that the ECV SM, especially ECV_C SM, 

outperformed numerous of traditional single-sensor retrieved 

SM products in both value accuracy and correlation 

coefficient. Further, to some extent, these findings approved 

the superiority of multi-active and passive sensors integrated 

ECV SM. However, although ECV SM has gained superior 

quality over many single-sensor retrieved SM products, more 

development is needed; not only to further improve data 

accuracy in diverse land cover types, but also to fill the gap 

areas to formulate a global completely covered land surface 

SM in a true sense. Previous studies utilized various of 

algorithms to reproduce SM in the gap regions [38-41], 

however, the robustness and applicability of each algorithm 

still need further discussions. It is suggested that with more 

members contributing, the spatial coverage integrity and data 

accuracy of ECV may get a chance for steady improvement. 

In addition, combining SM signals derived from various 

satellite-based sensors may have the potential to offer 

improved estimations of surface SM at a global scale [42, 43]. 

Hence, there exists an urgent need to explore the potential 

applicability of other highly-qualified satellite-based SM in 

ECV SM gap-filling. 

Currently, as the satellite on-board sensor technology is 

increasingly maturing, new microwave-derived SM products 

are emerging continuously [44, 45]. The National Aeronautics 

and Space Administration (NASA) initiated the Soil Moisture 

Active Passive (SMAP) mission in January 2015, aiming to 

acquire global SM with intermediate resolution [46, 47]. It 

used both L-band radar and radiometer for concurrent, 

coincident SM measurements. The effectiveness of SMAP 

SM has gone through all-around validations since its inception 

[15, 48-50]. On average, SMAP SM compares very well 

against in-situ observations over different landcover types, 

except for dense vegetation areas like forest.  

In general, increasing satellite-based SM appeared with 

improved and advanced instruments, which provide a 

promising opportunity for formulating a spatial completely 

covered ECV SM. As a result, in this study, an attempt is made 

to examine the potential applicability of SMAP in ECV SM 

gap filling with a case study in Europe.  
 
II.  DATA RESOURCES AND GAP-FILLING METHOD 

A.  SATELLITE RETRIEVED SM PRODUCTS 

1)  ECV SM 

The ECV SM has approximately 40 years of top layer soil 

humidity data with global coverage, which could be a 

meaningful dataset for land-air hydrothermal transfer analysis 
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[51, 52]. Additionally, its time series keep extending with 

version renewal. This daily, 0.25° pixel-size dataset has been 

proved effectively in depicting large-scale hydrological 

evolution trends and drought spatial distribution levels 

worldwide [23]. In terms of the unique features of sensor 

operation modes, the ECV SM products are divided into three 

types: active sensor integrated ECV_A, passive sensor 

formulated ECV_P, and active passive sensor combined 

ECV_C. To carry out comparisons and explorations under 

different sensor modes, both ECV_P and ECV_C SM 

products were acquired from the official website (https://esa-

soilmoisture-cci.org) to carry out the experiments.  

Additionally, the ECV SM retrieving algorithms merge pre-

processed level 2 SM products originated from 

radiometrically calibrated backscatter or brightness 

temperature measurements. Then, all these datasets are scaled 

against the Global Land Data Assimilation System Noah land 

surface model to harmonize their climatology. And the 

vegetation optical depth pattern derived uncertainty 

estimations are carry out to construct error covariance matrices. 

The correlation significance levels are used to mask out 

unreliable input elements, and the elements with favorable 

quality are merged to generate ECV_C and ECV_P [23, 43, 

53-55].  

In comparison, the unit of SM in ECV_C and ECV_P is 

m3/m3, while in ECV_A is % [34]. There exists a conversion 

formula between soil volumetric moisture content (m3/m3) and 

relative soil humidity (%) [56], shown by Equation (1). Since 

the SMAP SM belongs to passive microwave derived products 

with the unit of volumetric moisture content, we select the 

ECV_C and ECV_P to participate in the analysis in our 

research. 

𝜃𝑣 = 𝑆𝑚𝜌𝜃𝑔                                     (1) 

where 𝜃𝑣 , 𝑆𝑚 , 𝜌  and 𝜃𝑔  stand for soil volumetric moisture 

content, relative soil humidity, soil bulk density and field 

moisture capacity, respectively. 

2)  SMAP SM 

NASA launched the SMAP satellite successfully with an L-

band radar and an L-band radiometer on-board on 31st January  

2015 [57]. The SMAP program planned to measure daily SM 

by active and passive microwave sensors at 3 km and 36 km 

spatial resolutions, individually [48]. According to satellite 

orbit lifting and declining, the derived SMs are 

correspondingly named as ascending and descending products. 

However, the radar failed to deliver data since 7th July 2015. 

Therefore, the radiometer based 36 km SM and the enhanced 

radiometer 9 km SM are selected and evaluated in this study 

to explore their potential applicability in filling the gaps of 

ECV SM. The SMAP SM dataset is released by the National 

Snow & Ice Data Center (NSIDC, 

https://nsidc.org/data/smap/smap-data.html).  

The 36 km SMAP SM is retrieved from the detected 

brightness temperature signals from passive radiometer 

without further interpolation. Comparatively, the enhanced 9 

km SMAP SM is derived from the SMAP Level 1B brightness 

temperature. The Backus Gilbert optimal interpolation 

algorithm is applied for comprehensive correction to form the 

enhanced bright temperature product. Then, the 9 km grid 

enhanced brightness temperature data is used as the main input 

data to retrieve the 9 km passive enhanced SMAP SM [46, 58, 

59]. Basic information of the above-mentioned satellite-based 

SM, including names, spatial resolutions, temporal resolutions, 

and abbreviations, are listed in Table I. 

TABLE I. BASIC INFORMATION OF SATELLITE-BASED SM PRODUCTS 

Name 
Spatial 

resolution 

Temporal 

resolution 
Abbreviation 

ECV Passive 

Combined SM 
0.25° 

Daily 

ECV_P 

ECV Active and 

Passive Combined SM 
ECV_C 

SMAP Ascending SM 

9 km 

SMAP_A_9 

SMAP Descending 
SM 

SMAP_D_9 

SMAP Ascending SM 

36 km 

SMAP_A_36 

SMAP Descending 

SM 
SMAP_D_36 

B.  IN-SITU MEASUREMENTS 

Eight in-situ networks in Europe are applied in this study 

(Figure 1). All the in-situ data are acquired from the 

International Soil Moisture Network 

(https://ismn.geo.tuwien.ac.at/en/) [60]. Each of them has 

been utilized for SM evaluation, calibration, and uncertainty 

analysis in previous studies, and has revealed consistent 

performance [61-68]. Basic attributes of each in-situ 

measurement are listed in Table II. It can be seen that these in-

situ measurements are located in regions with abundant 

climate types and biomes that could be employed to carry out 

systematical and comprehensive validation process. The 

topsoil humidity records at 5 cm depth are chosen to validate 

performances of the remotely sensed SM products. 

Additionally, to maintain the stability of the data series, daily 

in-situ SM is calculated from the arithmetic mean of hourly-

monitored value.  

 

TABLE II. BASIC ATTRIBUTES OF THE EIGHT IN-SITU MEASUREMENTS  

Name Nation Station Number Region Climate  Land Cover Types Reference 

REMEDHUS Spain 20 temperate marine climate cropland and Shrubland Sanchez et al. [61] 

FR_Aqui France 4 Mediterranean climate cropland and forest Albergel et al. [62] 
FMI Sweden 20 climate of sub-frigid coniferous forest woody savanna Zeng et al. [63] 

HOBE Denmark 27 temperate marine climate cropland and forest Jensen et al. [64] 

BIEBRZA_S Poland 18 temperate continental climate grassland and marshland Katarzyna et al. [65] 
TERENO Germany 5 temperate marine climate cropland and forest Bogena et al. [66] 

RMSN Romania 19 temperate continental climate cropland and forest Sandric et al. [67] 

SMOSMANIA France 21 Mediterranean climate diverse land cover Calvet et al. [68] 

https://ismn.geo.tuwien.ac.at/en/
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FIGURE 1. Distribution of the eight in-situ networks in Europe

C. GAP-FILLING METHOD  

Firstly, the accuracy of the original ECV and SMAP SM 

products are compared to clarify their initial quality levels 

under diverse in-situ measurements and to discuss the 

potential of SMAP in filling the gaps of ECV. In particular, 

the correlation coefficient (CC), bias, and unbiased root mean 

square error (ubRMSE) are selected as error parameters to 

objectively and systematically depict data accuracy. CC is a 

statistical index firstly designed by statistician Carl Pearson 

[69]. It is an indicator that could be used to analyze the linear 

correlation degree of two variables. Bias reflects the error 

between the output of the regression model based on the 

sample and the true value, that is, the accuracy of the model 

itself [70]. According to the positive and negative values, it 

can be divided into overestimation and underestimation, 

respectively. UbRMSE depicts the difference in dispersion 

between satellite-based SM values and corresponding in-situ 

measurements [71]. Additionally, defined by the SMOS and 

SMAP community, satellite retrieved SM are expected to get 

a target accuracy of ubRMSE ≤ 0.04 m3/m3 [32, 46]. 

Therefore, these metrics allow us to objectively explore the 

accuracy of SMAP and ECV SM datasets over the case study 

areas. And their equations are listed as follows. 

𝐶𝐶 =  
∑ (𝑌𝑖−𝑌)(𝑋𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑌𝑖−𝑌)2𝑛
𝑖=1 √∑ (𝑋𝑖−�̅�)2𝑛

𝑖=1

                    (2) 

𝐵𝑖𝑎𝑠 =  
∑ 𝑋𝑖

𝑛
𝑖=1 −∑ 𝑌𝑖

𝑛
𝑖=1

𝑛
                            (3) 

𝑢𝑏𝑅𝑀𝑆𝐸 =  √
∑ [(𝑋𝑖−�̅�)−(𝑌𝑖−�̅�)]2𝑛

𝑖=1

𝑛
                  (4) 

where 𝑋𝑖, �̅�, 𝑌𝑖, �̅� are remotely sensed SM value at pixel i, 

arithmetic means of all remotely sensed SM pixels, in-situ 

measurements value at station i, and averaged value of all in-

situ measurements values, respectively. 

Then, the 9 km and 36 km SMAP are resampled to 0.25° 

spatial resolution (to maintain accordance with the spatial 

resolution of ECV) by calculating their arithmetic means, and 

taken to fill the null value region of ECV SM. The global 

spatial null value percent of the original ECV and gap-filled 

ECV SM products from 1st January 2016 to 31st December 

2017 are illustrated to explore their initial spatio-temporal 

coverage integrity and analyze the space integrity 

improvement after gap-filling process. Additionally, for 

quantitative evaluation, CC, bias, and ubRMSE are together 

utilized to explain the fitting degree and accuracy of different 

gap-filled results. Meanwhile, the probability density function 

(PDF) curves [72] are drawn to analyze the SM value 

distribution features of each gap-filled SM product and in-situ 

measurements, trying to figure out the rectification degree of 

value distribution after the gap-filling procedure. Moreover, 

the time series evolution curves are drawn to reveal temporal 

goodness of fit between gap-filled ECV SM products and in-

situ measurements.  

III. RESULTS  
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A. ACCURACY ANALYSIS OF THE ORIGINAL SATELLITE 
RETRIEVED SM PRODUCTS 

Figures 2-4 display boxplots of CC, bias, and ubRMSE 

among the eight in-situ measurements. The horizontal lines 

from top to bottom in boxplots can effectively show the upper 

edge, upper four quantile, median, lower four quantile, lower 

edge, and outliers (red points) of an array [73]. There are 

significant differences among the multiple sensor-derived SM 

products in in-situ measurements validation results. 

Comparatively speaking, the ECV_C, synthesized by ECV_A 

and ECV_P, shows a generally better accuracy than ECV_P 

both in fitting degree and in value errors. In comparison, 

SMAP-derived SM datasets achieve outstanding performance 

among the assessed products. They even remarkably surpass 

ECV_C in terms of CC as shown in Figure 2 (c), (f), (g), and 

(h), and in terms of bias in Figure 3 (a), (b), and (h). It seems 

that spatial resolution may not be the main factor affecting 

accuracy, as at both 9 km and 36 km pixel resolution SMAP 

SM are verified to have high accuracy to in-situ measurements. 

The ascending SMAP has slightly better ability in representing 

all-day surface SM than the corresponding descent acquisition 

occurring in the night when there is dew [65]. The overall 

performances of CC, bias, and ubRMSE co-confirm the 

prominence of SMAP-retrieved SM, namely, the 

distinguished SM depicting capability of the L-band centered 

at 1.41 GHz. Summarily, the SMAP SM products could be 

qualified candidates for ECV to adopt to further enhance data 

integrity and quality.  

Considering different in-situ networks, the validation 

results of REMEDHUS, TERENO, and SMOSMANIA are 

favorable. Both ECV and SMAP products could precisely 

match the dynamics and values of in-situ measurements with 

average CC higher than 0.7 and bias close to 0. Nevertheless, 

the original SM products does not accurately match the in-situ 

measurements in the FMI and BIEBRZA_S-1 networks, 

accompanied by relatively obvious errors. At the FMI network, 

although the SMAP products outperform ECV products with 

good data accuracy, SMAP always significantly overestimates 

the in-situ measurements, shown by Figure 3 (c). This 

phenomenon may be associated with its cold climate, as recent 

studies conducted in the Tibetan Plateau, which locates in cold 

climate region, also display unfavorable performance of 

satellite retrieved SM products [7, 63]. The BIEBRZA_S-1 

network is located in wetland ecosystems, where SM values 

are several times higher than in agricultural areas. According 

to a recently research in BIEBRZA_S-1 network, the SM 

products retrieved from Sentinel-1 express a CC value of 

approximate 0.5 at 5 cm depth, which is essentially in 

agreement with the outcome in our study [65].  

 

Figure 2. Boxplot of CC among eight in-situ measurements 

 

Figure 3. Boxplot of bias among eight in-situ measurements 

 

Figure 4. Boxplot of ubRMSE among eight in-situ measurements 

B. SPATIAL COVERAGE INTEGRITY PERFORMANCES 

Although ECV has already developed a global scale SM 

product with 40-year time series, the limited spatial coverage 

percent remains a challenge that notably restricts its spatio-

temporal consistency. The missing data could be inevitably 

induced by regular relative motion between the satellite and 
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Earth. Meanwhile, both radio-frequency interference (RFI) 

and dense vegetation could introduce microwave echo signal 

gaps [74]. Figures 2 shows the data missing percentages of the 

original and gap-filled ECV SM from 1st January 2016 to 31st 

December 2017, respectively. Essentially, active and passive 

SM products combined ECV_C datasets (Figure 2(b)) 

achieves relatively low missing percentages. They obtained 

less than 40% missing data at the middle and low latitude 

zones, while the missing percentages could achieve 60-80% at 

60-90°N. Instead, the ECV_P (Figure 2(a)) displays much 

larger missing day percentages. Specifically, the space 

integrity improvement of ECV_P could be in urgent need. 

In comparison, after the gap-filling process, the days 

missing percent of both ECV_P and ECV_C are evidently 

decreased. As shown in Figure 5 (c)-(j), the high missing 

percentage areas in Figure 5 (a)-(b), such as the Qinghai-Tibet 

Plateau, the Central Siberian Plateau, and the Rocky 

Mountains, all improve their coverage percentages from about 

20-40% to 40-60%. Additionally, in Northern South America 

and Central Africa, where the Amazon Rain Forest and the 

Sahara Desert situated in, the days missing percentages 

obviously shrink from 100% to 40-60%. Besides, this paper 

displays the original and the gap-filled results in 1st July 2016 

and 1st July 2017 in Europe (as shown in Figure 6). The null 

value region could be effectively and smoothly filled by 

SMAP SM products after resample. In particular, at high 

latitudes, the ECV_P significantly overestimate the FMI in-

situ measurements, however, the overestimation level in the 

gap region filled by SMAP can be reduced significantly. As a 

result, the SMAP SM products reveal its capability both in 

filling the gap and in improving the accuracy of the original 

ECV_P SM.
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Figure 5. Days missing percent of the original and gap-filled ECV_P and ECV_C SM data using different SMAP SM products. (Unit: ×100%) 
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Figure 6. Original ECV SM products and corresponding gap-filled results using different SMAP SM products in 1st July 2016 and 1st July 2017. (Unit: m3×m-3) 
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C. COMPARISON OF THE ORIGINAL AND GAP-FILLED 
ECV SM  

1) ACCURACY ANALYSIS 

Given the good performances of SMAP retrieved SM 

products in precisely representing the dynamic feature and 

value of the in-situ measurements, they are taken to fill the 

gaps of the ECV SM in this study. The 9 km and 36 km SMAP 

SM products (including ascending and descending ones) are 

resampled to the resolution of 0.25° grid to keep in line with 

ECV. The blank regions in ECV SM are filled by different 

SMAP products, and the accuracy of the gap-filled results 

among the eight in-situ measurements are displayed in Table 

III. Since the accuracy results are relative analogous to each 

other, we employ table instead of boxplot to illustrate their 

values.  

Table III shows the comparison of the accuracy of the 

original and gap-filled ECV SM products. It can be clearly 

seen that ECV products filled by upscaled 9 km SMAP and 

downscaled 36 km SMAP achieve similar good response to 

the in-situ measurements. Meanwhile, the gap-filled results by 

ascending and descending SMAP express quite similar 

performance to each other. In particular, the accuracy of 

ECV_P in REMEDHUS in-situ measurements is excellent. At 

the REMEDHUS network, compared to the original ECV_P, 

the CC and bias in gap-filled ECV_P can be effectively 

enhanced and decreased, respectively. Both integrity and 

accuracy can be significantly improved in this network.  

TABLE III. ACCURACY OF THE ORIGINAL AND GAP-FILLED ECV SM PRODUCTS. A_9, D_9, A_36, D_36 REFER TO ECV SM PRODUCTS FILLED 

BY SMAP_A_9, SMAP_D_9, SMAP_A_36, SMAP_D_36, RESPECTIVELY 

In-situ Measurements 

 ECV_P ECV_C 

 Original A_9 D_9 A_36 D_36 Original A_9 D_9 A_36 D_36 

REMEDHUS 

CC 0.76 0.81 0.81 0.81 0.81 0.75 0.74 0.75 0.74 0.75 

Bias 0.10 0.08 0.08 0.08 0.08 0.09 0.07 0.08 0.07 0.08 

ubRMSE 0.09 0.09 0.08 0.09 0.08 0.05 0.05 0.05 0.05 0.05 

FR_Aqui 

CC 0.69 0.67 0.68 0.68 0.68 0.76 0.76 0.77 0.76 0.76 

Bias 0.21 0.17 0.17 0.17 0.17 0.11 0.11 0.11 0.11 0.11 

ubRMSE 0.08 0.08 0.08 0.08 0.08 0.04 0.04 0.04 0.04 0.04 

FMI 

CC 0.20 0.13 0.13 0.15 0.15 0.11 0.21 0.21 0.19 0.19 

Bias 0.27 0.17 0.18 0.20 0.21 -0.08 -0.01 -0.01 -0.01 -0.01 

ubRMSE 0.09 0.15 0.15 0.13 0.13 0.07 0.05 0.05 0.06 0.06 

HOBE 

CC 0.59 0.49 0.50 0.49 0.51 0.62 0.55 0.53 0.53 0.52 

Bias 0.17 0.16 0.16 0.16 0.16 0.00 -0.01 0.00 -0.01 0.00 

ubRMSE 0.07 0.07 0.07 0.07 0.07 0.04 0.05 0.05 0.05 0.05 

BIEBRZA_S-1 

CC 0.59 0.67 0.67 0.65 0.65 0.60 0.57 0.59 0.58 0.60 

Bias -0.27 -0.27 -0.27 -0.28 -0.28 -0.34 -0.34 -0.34 -0.35 -0.35 

ubRMSE 0.13 0.11 0.11 0.11 0.11 0.14 0.13 0.13 0.13 0.13 

TERENO 

CC 0.62 0.64 0.65 0.65 0.65 0.67 0.55 0.56 0.66 0.71 

Bias 0.00 -0.02 -0.02 -0.01 -0.01 0.02 0.03 0.03 0.03 0.03 

ubRMSE 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.05 0.05 

RSMN 

CC 0.50 0.49 0.49 0.49 0.49 0.56 0.56 0.56 0.56 0.56 

Bias 0.12 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 

ubRMSE 0.12 0.11 0.11 0.11 0.11 0.05 0.05 0.05 0.05 0.05 

SMOSMANIA 

CC 0.67 0.64 0.61 0.61 0.62 0.62 0.70 0.63 0.63 0.63 

Bias 0.10 0.07 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 

ubRMSE 0.09 0.06 0.10 0.10 0.10 0.10 0.06 0.06 0.06 0.06 

*Unit of bias and ubRMSE is m3m-3

2) PDF DISTRIBUTION 

PDF curves among the eight in-situ networks are drawn to 

tentatively explore the value distribution characteristics of 

each kind of SM product (Figure 7) [72]. Comparatively, the 

PDF of in-situ measurements obtain lower maximum 

probability percentages than satellite-based SM products; in 

other words, the in-situ measurements generally have more 

decentralized distribution of SM values than remotely sensed 

SM. Actually, the ground sensors could monitor SM on hourly 

or sub-hourly scale, and the daily SM value is acquired 

through calculating their arithmetic mean. Hence, the daily 

SM value from in-situ measurements can represent the 

average SM condition of a whole day. In comparison, because 

of the instantaneous transit of satellites, the satellite retrieved 

data could only record the SM at a certain time point within a 

day. It is suggested that the different measurement frequencies 

could be a reason that result to the heterogeneity of PDF 

shapes.  

Compared to ECV_C, the shapes of original ECV_P and its 

gap-filled results display more analogous PDF shapes to the 
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in-situ measurements in the TERENO and SMOSMANIA 

networks, as shown in Figure 7(f) and (h). It is worth 

mentioning that although the ECV_C shows favorable 

accuracy, which is proved in the first part of section IV, its 

maximum probability percent is much higher than the ECV_P 

and the in-situ measurements in Figure 7 (c)-(f).  

In terms of the gap-filled results, it could be preliminarily 

inferred that even though there are remarkable spatial 

resolution differences between the 9 km and 36 km SMAP 

products, their gap filling results express similar performance. 

And the difference between ECV SM products filled by 

ascending and descending SMAP SM products is not obvious. 

Besides, the gap-filled results have an advantage in balancing 

the SM value distribution percentage of the original ECV SM 

products, especially the ECV_C SM. For instance, as shown 

in Figure 7 (a), (c), (d), (e), and (f), the maximum probability 

percentages of gap-filled ECV_C results are evidently 

decreased, and the corresponding SM values get closer to the 

in-situ measurements than the original ECV_C ones. 

Consequently, this rectification result suggests that the SMAP 

has competent potential in improving the spatial coverage 

percent and enhancing the data accuracy of the original ECV 

SM products.

 

Figure 7. SM PDF curves in different in-situ measurements: (a) REMEDHUS, (b) FR_Aqui, (c) FMI, (d) HOBE, (e) BIEBRZA_S-1, (f) TERENO, (g) 

RSMN, and (h) SMOSMANIA. C_A_9, C_ D_9, C_A_36, C_D_36 refer to ECV_C SM products filled by SMAP_A_9, SMAP_D_9, SMAP_A_36, 

SMAP_D_36, respectively. P_A_9, P_ D_9, P_A_36, P_D_36 refer to ECV_P SM products filled by SMAP_A_9, SMAP_D_9, SMAP_A_36, 

SMAP_D_36, respectively.

3) TEMPORAL EVOLUTION TRENDS 
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Temporal evolution tendency could efficiently depict 

annual variation of different SM products. The SM fluctuation 

curves from 1st January 2016 to 31st December 2017 are drawn 

in Figure 8 to systematically compare the fitting degree 

between gap-filled ECV_C, ECV_P and the in-situ 

measurements. The red lines, indicating gap-filled ECV_C, 

achieve good accordance to the in-situ measurements. In 

comparison, the gap-filled ECV_P (green lines) displays 

relative obvious overestimation in the FMI and HOBE 

networks, as shown in Figure 8(c) and (d). However, both 

ECV_C and ECV_P evidently underestimate the in-situ 

measurements in BIEBRZA_S-1 (Figure 8 (e)). This 

phenomenon coincides with the PDF curves in Figure 7(e), 

where the value ranges of in-situ measurements sparsely 

distribute in 0.5-0.8 m3m-3. Actually, hybrid pixels in this 

region are composed by marshland as well as grassland, 

leading to wet condition all year round [65]. It could be 

implied that the accuracy of remotely sensed microwave SM 

in wetland area needs further improvement. Moreover, the 

SMAP products, which participate in the gap-fill process, are 

also displayed in Figure 8 through black lines. It can be seen 

that, compared to multi passive bands retrieved ECV_P, the 

L-band derived SMAP could accurately fit the temporal 

evolution trend of in-situ measurements, further proving its 

outstanding performance in representing surface SM 

condition.

 

Figure 8. SM time-series evolution in different in-situ measurements from 1st January 2016 to 31st December 2017: (a) REMEDHUS, (b) FR_Aqui, (c) 

FMI, (d) HOBE, (e) BIEBRZA_S-1, (f) TERENO, (g) RSMN, and (h) SMOSMANIA.

IV. DISCUSSION 

Satellite-retrieved SM has been broadly utilized in global 

climate change, surface hydrological cycle, agricultural water 

management, and other relative fields [3, 5, 75]. The multi-

sensor based ECV SM has attracted widespread attentions and 

thorough studies since its inception, whereas frequent null 

value regions and limited data accuracy hinder its integrity and 

in-depth application. Hence, this research attempts to explore 

the potential of SMAP SM products in filling the gaps of ECV 

SM, so as to undertake additional efforts to improve the 

quality of ECV SM.  

A. PARAMETER ANALYSIS OF SATELLITE-BORNE 
SENSORS  

The ECV dataset is originated from the integration of 

diverse active passive sensor-based SM products. The basic 

information of each sensor is listed in Table IV. The time 

ranges in Table IV reveal that every SM product has its own 

time series duration. For example, SSM/I, launched in 1987, 

is still in service. By contrast, AMSR-E has already completed 

its nine-year mission from 2002 to 2011. Furthermore, the 

upcoming ECV SM with continuous time series update would 

come from the fusion of the ongoing MetOp-A ASCAT, 

MetOp-B ASCAT, SSM/I, AMSR-2, Windsat, and SMOS. 

Therefore, it is necessary to steadily develop and add new SM 

products to prolong ECV SM. In this study, it is preliminarily 

proved that the SMAP SM could be conducive to enhancing 

the spatial integrity and quality of ECV SM.  

As a newly emerging satellite-based SM products with long 

service lives, SMAP might have a promising potential in 

assuring temporal coherence and continuity of ECV SM. 

Moreover, compared to the other ongoing sensors, the SMAP 

has unique ascending and descending time nodes, which could 

also be helpful in enriching daily SM information with 

enhanced data stability and superior representation levels.  
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TABLE IV. BASIC ATTRIBUTES OF ECV AND SMAP SENSORS 

SM Products Time ranges Ascending/ Descending Time Nodes Sensor Types Bands 
Penetration 

Depths 
Spatial Resolutions 

Temporal 

Resolutions 

ERS-1 
1991.7.17-

2000.3.10 
22:15 (A), 10:30 (D) scatterometer C-band (5.3GHz) < 2 cm 50 50 km 

daily 

ERS-2 1995.4.21-2011.9.5 22:30 (A), 10:30 (D) scatterometer C-band (5.3GHz) < 2 cm 25 25 km2 

MetOp-A 

ASCAT 

2006.10.19 on 

going 
21:30 (A), 09:30 (D) scatterometer C-band (5.3GHz) < 2 cm 2525 km2 

MetOp-B 

ASCAT 
2012.9.17 on going 21:30 (A), 09:30 (D) scatterometer C-band (5.3GHz) < 2 cm 2525 km2 

SMMR 1979-1987 12:00 (A), 24:00 (D) radiometer 
C-band (6.6 GHz), 

Ka-band (37 GHz) 
< 2 cm 150150 km2 

SSM/I 1987 on going 

DMSP-F08 06:12 (A), 18:12 (D) 

DMSP-F11 18:11 (A), 06:11 (D) 

DMSP-F13 17:42 (A), 05:42 (D) 

radiometer 
K-band (19.4 GHz), 

Ka-band (37.0 GHz) 
< 1.5 cm 6943 km2 

TMI 1997.12.7-2015.4.8 
changes 24 hours of local time in 46-day 

procession 
radiometer 

X-band (10.65 GHz),  

Ka-band (37.0 GHz) 
< 3 cm 5936 km2 

AMSR-E 2002.6.1-2011.10.4 01:30 (A), 13:30 (D) radiometer 
C-band (6.9 GHz), 

X-band (10.7 GHz) 
< 2 cm 7644 km2 

AMSR-2 2012.8.10 on going 01:30 (A), 13:30 (D) radiometer 
C-band (6.9 GHz), 

X-band (10.7 GHz) 
< 2 cm 3562 km2 

Windsat 2003.2.13 on going 18:10 (A), 06:10 (D) radiometer C-band (6.8 GHz) < 2 cm 2535 km2 

SMOS 2009.11.2 on going 06:00 (A), 18:00 (D) radiometer L-band (1.4 GHz), ~ 5 cm 4040 km2 

SMAP 2015.1.31 on going 18:00 (A), 06:00 (D) 
scatterometer 

radiometer 
L-band (1.4 GHz) ~ 5 cm 33/99/3636 km2 
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B. IMPROVING SPATIAL COVERAGE, DATA COVERAGE, 
AND VALUE DISTRIBUTION 

In this study, the spatial coverage percentage of ECV SM is 

analyzed to illustrate the necessity of enhancing its land 

coverage integrity. Although composed by multiple satellite-

retrieved SM products, the gap regions of ECV SM, mainly 

caused by the RFI, dense vegetation, and satellite scanning 

gaps, can be seen everywhere. Therefore, it is beneficial for 

SMAP to fill the gaps of ECV SM products and increase 

spatial coverage integrity. Meanwhile, the accuracy of the 

original SMAP and ECV SM products are evaluated against 

eight in-situ measurements in Europe with diverse 

hydrothermal combination conditions and underlying surface 

types. The L-band derived SMAP SM (including ascending 

and descending products on 9 km and 36 km scales) could 

outperform multi bands fused ECV SM in both fitting degree 

and value errors.  

Detailed analysis is processed by comparisons between the 

gap-filled ECV and original ECV to discuss the improvement 

after the participation of SMAP. First of all, the data coverage 

ratio of gap-filled ECV increases 20% on average. The 

improved spatial integrity coverage can effectively promote 

studies focused on regional daily continuous SM evolution 

analysis. Secondly, the accuracy is objectively and 

systematically evaluated by using in-situ measurements. 

Results illustrate that compared to the original ECV, the gap-

filled ECV products express similar good response to the in-

situ measurements, suggesting that the SMAP SM products 

could consistently maintain favorable accuracy even after 

spatial resample. In particular, the gap-filled results get better 

accuracy than the original ECV in REMEDHUS network. 

Thirdly, in terms of SM value distribution, the original 

ECV_C prominently demonstrates extremely high maximum 

percentages reflected by PDF curves, revealing remarkably 

concentrated SM values. Although previous studies have 

stated the superiority of ECV_C [34, 35], it seems that the 

over-centralized value distribution may be a restriction that 

limits accuracy improvement. Fortunately, this eminent 

drawback could be effectively rectified through gap-filling 

progress using SMAP.  

In this study, the accuracy evaluation results indicate that 

SMAP soil moisture gets superior precision than ECV soil 

moisture over most networks. Therefore, it seems that it may 

be more valuable to formulate a seamless SMAP soil moisture 

dataset through filling its gaps using ECV. However, it was 

not until 2015 that the SMAP program was initiated, which 

means that the its time span could be obviously shorter than 

the 40-year time series ECV soil moisture dataset. We think 

that it could be more beneficial to analyzing climate evolution 

trends using a good soil moisture dataset with decades of time 

series. Additionally, with the development of artificial 

intelligence technology, previous studies have proved that the 

gaps of SMAP could be effectively filled by machine learning 

algorithms [76, 77]. 

C. THE ADVANTAGES OF L-BAND IN SM RETRIEVAL  

This study explores the applicability of SMAP in enhancing 

the space coverage integrity of ECV SM and finds that the L-

band retrieved SMAP SM could reveal remarkable advantages. 

The L-band radiometer has revealed exceptional capability in 

acquiring high accuracy SM since inception [15, 37, 63, 78]. 

Both SMOS and SMAP soil moisture are retrieved from L-

band signals. The SMOS could be a forerunner of L-band 

retrieved global soil moisture with a ground resolution of 50 

km [32]. It firstly uses a single-orbit and then upgrades to a 

multi-orbit retrieval algorithm to derive soil moisture. The 

SMAP retrieved 36-km grid soil moisture from L-band 

radiometer is based on inversion of the tau–omega model 

which includes features to mitigate the disturbances from RFI 

[79]. To protect the L-band from unexpected illegal RFI, it is 

prohibited by international agreements at the observation band 

of the SMAP radiometer (1.4-1.427 GHz) [80]. However, 

since the L-band signals are vulnerable to illegal RFI, the 

accuracy of SMOS retrieved soil moisture can be disturbed by 

both large-level and low-level interferences. In comparison, 

the SMAP program takes various measures to avoid RFI as 

much as possible. It incorporates aggressive RFI avoidance 

and filtering for the radiometer. Ground RFI detectors and 

almost 1000 times more measurements than previously used 

are jointly applied to remove multiple interferences [81]. With 

these safeguard measures simultaneously, SMAP can 

successfully develop high accuracy SM products and keep 

optimizing the performance of the sensor and corresponding 

products.  

In addition, currently most on-board microwave sensors 

adopt C, K, Ka, and X bands to acquire the top 2 cm SM. 

Comparatively, SMAP utilizes the L-band to calculate SM at 

approximate 5 cm depth; which means that, after the 

participation of SMAP, ECV SM may obtain richer band 

information and closer depth matching to ground stations than 

before. Because the in-situ measurements usually monitor top 

layer soil humidity hourly with water probes at 5 cm depth, it 

is suggested that ECV SM may gain more consistent depth 

matching to the ground stations by absorbing the L-band 

SMAP SM. 

V.  CONCLUSION 

As a multiple satellite-derived active and passive sensor 

merged SM product, ECV SM has received extensive 

attention because of its global coverage, and superior data 

accuracy compared to its constituent components. For the sake 

of continuously reducing the null value region and enhancing 

data accuracy, this study explores the potential applicability of 

SMAP in filling the gaps of ECV SM through a case study in 

Europe. 

The validation outcomes indicate that no matter upscaling 

or downscaling, the resampled SMAP could efficiently fill the 

gaps of ECV SM with satisfying accuracy. Meanwhile, both 

ascending and descending SMAP products behave good 

performances, testifying the robustness of L-band retrieved 
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SM products. Furthermore, it may be feasible to integrate the 

ascending and descending SMAP into one day-scale SM 

product, which could be used to further enhance the spatial 

integrity of SM with favorable accuracy. On the whole, this 

study conducts objective and detailed evaluation on the 

performance of applying SMAP to improve the spatial 

completeness of ECV, and is expected to act as a valuable 

reference in ECV SM gap-filling method. In addition, it is 

found that the underestimation of on-board sensors retrieved 

SM in marshland can be very large, which means there is a 

long way to go to steadily improve the on-board microwave 

sensitivity in humid regions such as wetland. 

In this study, we attempt to take SMAP to enhance the 

integrity of ECV SM, and achieve positive conclusions. 

However, much work needs to be done to further promote the 

process. It is noticed that although the spatial coverage percent 

can be significantly improved after the gap-filling, there still 

has sparsely distributed null value regions. It is recommended 

that more satellite retrieved SM products with excellent 

accuracy, long time series, and global coverage could be taken 

to improve the ECV SM and gradually generate a global land 

surface seamlessly covered SM product. 
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