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Abstract

White dwarfs and neutron stars are stellar objects with masses comparable to that of our
sun. However, as the endpoint stages of stellar evolution, these objects do not sustain any
thermonuclear burning and therefore can no longer support the gravitational load of their own
mass by generating thermal pressure. Rather, matter in their interiors is compressed to much
higher densities than commonly found in normal stars, and pressure is created by degenerate
fermion kinetic energy and particle interactions. As a result, white dwarfs and neutron stars
offer unique cosmic laboratories for studying matter at very high densities. In this review we
discuss the basic properties of condensed matter at extreme densities and summarize the extent
to which these properties can be examined by observations of compact objects.

I. Introduction

Astronomical phenomena provide many examples where matter exists in extreme conditions not
found in terrestrial environments. One example is the high density of degenerate matter in “compact
objects” - the relics of stars that have ceased burning thermonuclear fuel, and thereby no longer
generate thermal pressure to support themselves against gravitational collapse. By contracting
appreciably from their original sizes, the interiors of compact objects reach sufficiently high densities
to produce nonthermal pressure via degenerate fermion pressure and particle interactions. Compact
objects provide cosmic laboratories for studying the properties of matter at high densities.

Firm observational evidence and well-founded theoretical understanding both exist for two
classes of compact objects which support themselves against collapse by cold, degenerate fermion
pressure: white dwarfs, whose interiors resemble a very dense solid, with an ion lattice sur-
rounded by degenerate electrons, and neutron stars, whose cores resemble a giant atomic nucleus
- a mixture of interacting nucleons and electrons, and possibly other elementary particles and con-
densates. White dwarfs are supported by the pressure of degenerate electrons, while neutron stars
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are supported by pressure due to a combination of nucleon degeneracy and nuclear interactions.
These unique states of matter are achieved by significant compression of stellar material. Table 1
compares the principal physical quantities of a typical white dwarf and neutron star with those of
the sun1.

Table 1: Parameters for the sun and a typical white dwarf and neutron star.

object mass radius mean density mean pressure GM/Rc2 b

(M� a) (km) (gm cm−3 ) (dyne cm−2 )
Sun 1 ∼ 7 × 105 ∼ 1 ∼ 1012 ∼ 10−6

White Dwarf ≤ 1.4 ∼ 5 × 103 ∼ 107 ∼ 1024 ∼ 10−4

Neutron Star 1-3 ∼ 10 ∼ 1014 ∼ 1034 ∼ 10−1

a - M� ≡ 1.989 × 1033 gm = one solar mass.
b - This ratio measures the importance of relativistic gravitation, i.e., general relativity.

Condensed matter in compact objects spans an enormous range of densities, which we loosely
refer to as “high densities”. These extend from about 7 gm cm−3 (e.g., the density of terrestrial
56
26Fe), at the surface of a cold neutron star or white dwarf, to as much as ρ ≈ 1015 gm cm−3 ,
several times the density in atomic nuclei, in the cores of neutron stars. Matter at the various
densities found in compact objects exhibits a variety of novel properties. Electromagnetic, strong,
and weak interactions all play an important role in determining the character of compact objects.
Since these objects are bound by gravity, they are a meeting point of all four of the fundamental
forces of nature. Correspondingly, the astrophysics of white dwarfs and neutron stars incorporates
a wide variety of physics including nuclear, particle, solid state and gravitation physics, to name a
few areas.

In this review we briefly survey the theory of condensed matter at high densities in compact
objects and illustrate how the basic theory is tested through astronomical observations. Since we
must cover fifteen orders of magnitude in density, our presentation is at most introductory in nature,
and we encourage the interested reader to pursue the cited references. A detailed introduction to
the physics of high density matter and compact objects can be found in the textbook Black Holes,
White Dwarfs and Neutron Stars: the Physics of Compact Objects, by Shapiro and Teukolsky [1].

We begin by considering the fundamental nature of cold (T = 0) high density matter in Sec-
tion II., and distinguish between different regimes of high density. In Section III. we connect these
microscopic properties with the fundamental macroscopic parameters of a compact object through
the hydrostatic equilibrium dependence of mass and radius on central density. We summarize the
fundamental predictions regarding the structure of white dwarfs and neutron stars. In Section IV.-
V. we examine how observations of white dwarfs and neutron stars can be used to probe the
properties high density matter. We briefly discuss the perturbative effects of a finite temperature
in Section VI..

1Throughout this review we will be using units which are the standard in astrophysical research: cgs for microscopic
properties of matter and solar units (denoted by �) for macroscopic properties of astronomical objects.
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II. The Cold, High Density Equation of State

The pressure and energies in white dwarfs and neutron stars are nonthermal; thermal effects due
to a finite-temperature can be treated as a perturbation. We may therefore treat high density
matter as having a zero temperature to very good approximation. The equation of state (EoS)
of the matter then reduces to a single-parameter function, P (ρ0) and ρ(ρ0), or P (ρ), where P is
the pressure, ρ0 is the rest-mass density and ρ is the total mass-energy density which accounts for
internal (possibly relativistic) particle energies as well as rest-mass energy.

There exist two main regimes of high density, distinguished as follows. As long as all nucleons
are confined to nuclei, their contribution to the total pressure is negligible compared to that of
the degenerate electrons. At some threshold density, ρn−drip, it becomes favorable for the nuclei to
disintegrate, i.e., neutrons “drip” out of the nuclei and form a “nucleon gas”. The standard EoS of
Baym, Pethick and Sutherland [2] suggests that ρn−drip ≈ 4× 1011 gm cm−3 . We may distinguish
between the EoS for ρ ≤ ρn−drip which characterizes matter in white dwarfs and in the outermost
layers of neutron stars, and ρ > ρn−drip, which describes matter in the interior of neutron stars.

A. The Equation of State below Neutron Drip Density: ρ ∼< 4 × 1011 gm cm−3

In matter below the neutron drip density the ions provide a Coulomb lattice of point-like charges,
which is (to good approximation) independent of the properties of the surrounding electrons. The
EoS of such matter is governed mainly by the electron gas. To lowest approximation, we may treat
the electrons as an ideal fermion gas, incorporating some Coulomb corrections at relatively low
density (ρ ≤ 104 gm cm−3 ) and corrections due to inverse β−decay just below the neutron drip
density (109 gm cm−3 ≤ ρ ≤ ρn−drip). The EoS of condensed matter below neutron drip density
is well understood. The standard equations for cold, degenerate matter in white dwarfs (helium,
carbon, oxygen and, possibly iron dominated models) have been derived by Chandrasekar [3] and
Salpeter [4], whereas models for equilibrated matter2, are based on the works of Dirac [5] and
Feynman, Metropolis and Teller [6] for ρ ≤ 104 gm cm−3 , and e.g., of Harrison and Wheeler [7]
and Baym, Pethick and Sutherland [2] for higher densities.

1. The Ideal Fermion Gas

For almost the entire range of high densities the electrostatic energy associated with the structure
of matter is much smaller than the Fermi energies. Consequently, Coulomb forces are generally
negligible in a first order treatment of the high density EoS. The electron component of high density
matter can therefore be described by a cold, single species gas of noninteracting fermions. At zero
temperature the fermions fill all the states with momentum p ≤ pF and none of the states with
p > pF , where pF is the Fermi momentum. The corresponding Fermi energy of the particle species

2The equilibrium isotope of matter is the nucleus of highest binding energy per nucleon. At low densities this
isotope is normal 56

26Fe, but as density increases so do the atomic mass and neutron to proton ratio [1].

3



is
EF ≡

(
(pF c)2 + (mc2)2

)1/2
, (1)

where c = 3 × 1010 cm sec−1 is the speed of light in vacuum and m is the fermion rest mass.

For electrons, their number density, ne, is directly related to their Fermi momentum, pF,e by
integrating over all occupied phase space (h = 6.63 × 10−27 ergs sec is Plank’s constant):

ne =
∫ pF,e

0
ne(p)dp ≡ 2

1
h3

∫ pF,e

0
4πp2dp =

8πp3
F,e

3h3
. (2)

The factor of 2 in the second equation arises from the electron spin degeneracy.

The pressure the electrons supply is calculated through the mean momentum flux of the electron
gas,

P =
1
3

∫ pF,e

0
ve(p)ne(p)pdp =

2
h3

∫ pF,e

0

p2c2

(p2c2 + (mc2)2)1/2
4πp2dp =

mec
2

λ3
e

φ(x) , (3)

where xe ≡ pF,e/mec is the electron “relativity parameter”, λe ≡ h/(2πmec) is the electron Comp-
ton wavelength, ve = pec

2/Ee is the electron velocity and

φ(x) =
1

8π2

{
x(1 + x2)1/2(2x2/3 − 1) + ln

[
x + (1 + x2)1/2

]}
. (4)

The mass-energy density of the free electrons is also uniquely related to the Fermi momentum
as

εe =
∫ pF,e

0
Ee(p)ne(p)dp =

2
h3

∫ pF,e

0
(p2c2 + (mc2)2)1/24πp2dp =

mc2

λ3
e

χ(xe) ; (5)

where
χ(x) =

1
8π2

{
x(1 + x2)1/2(1 + 2x2) − ln

[
x + (1 + x2)1/2

]}
. (6)

However, even when the degenerate electrons contribute most of the pressure, the mass-energy
density is dominated by the rest mass of the ions, which are very nonrelativistic at these densities.
Thus, the density of the matter may be simply taken as

ρ = ρ0 =
nemB

Ye
, (7)

where Ye is the mean number of electrons per nucleon and mB is the mean nucleon mass. In the
case of white dwarfs we may set Ye = Z/A = 0.5 (Z =atomic number, A =atomic weight) which is
appropriate for fully ionized helium, carbon or oxygen, the most abundant constituents in a white
dwarf, and mB = 1.66 × 10−24 gm. Combining Eqs. (2), (3) and (7) provides the basic EoS of
electron-pressure dominated high-density condensed matter in this regime.

There exist opposite limits to the cold fermion gas equation of state: the low density, nonrel-
ativistic (x � 1) and the high density, extremely relativistic (x � 1) limits. From Eqs. (2) and
(7) we find that in cold matter with Ye = 0.5 the electron relativity parameter satisfies xe = 1 at
ρ ≈ 106 gm cm−3 , which therefore marks the transition density between a nonrelativistic (NR)
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and extremely relativistic (ER) electron gas. It is convenient to write the EoS in the two limits in
a polytropic form,

P (ρ) = KρΓ (8)

where

NR xe � 1, ρ � 106gm cm−3 : Γ =
5
3
, K = 1.0036 × 1013Y 5/3

e ; (9)

ER xe � 1, ρ � 106gm cm−3 : Γ =
4
3
, K = 1.2435 × 1015Y 4/3

e . (10)

The constant K is in cgs units, yielding a pressure in dyne cm−2 for a density in gm cm−3 . Note
that in this approximation the composition of the matter enters only through Ye. Correspondingly,
helium, carbon and oxygen, which all have Ye = 0.5 have identical ideal equations of state, slightly
stiffer than that of iron (Ye = 26/56 ≈ 0.43). Fully equilibrated matter (often referred to as
“catalyzed”) has a Ye that decreases with density and is therefore softer than matter composed of
a single element.

The free, degenerate electron pressure EoS outlined here is a good approximation for the equa-
tion of state below neutron-drip density. It was employed by Chandrasekar in his pioneering
analysis of equilibrium white dwarfs [3], for which he received the Nobel prize in 1983. More ex-
act treatments were introduced in later years, which included the two main required corrections -
electrostatic effects at low densities, and neutronization (or inverse β−decay) at higher densities.

2. Electrostatic Corrections to the Cold Equation of State: ρ ∼< 104 gm cm−3

There exists a net electrostatic correction to the ideal equation of state due to the fact that the
local distribution of charge is very nonuniform. The fact that positive charge is concentrated in
point-like ions causes the average electron-ion separation to be smaller than the average distance
between electrons. The net electrostatic potential felt by the electrons is thus an attractive one,
which effectively reduces the pressure for a given density.

Electrostatic corrections to the cold equation state are mostly important at relatively low den-
sities. Electrostatic energies are inversely proportional to the average separation between particles,
<r> which is naturally proportional to n

−1/3
e . The relative importance of electrostatic energy, EC ,

between a degenerate, nonrelativistic electron and an ion of charge Z, can be estimated through

EC

E′
F

≡ Ze2/ < r >

pF,e/2me
∝ n−1/3

e (11)

where E′
F,e = p2

F,e ∝ n
2/3
e is the Fermi kinetic energy of the nonrelativistic electrons. Unlike the

case of hot matter (where the mean electron kinetic energy is ∼ kBT ), the relative importance of
electrostatic corrections decreases with density as n

−1/3
e .

A rough estimate of the quantitative electrostatic correction can be performed by using the
Wigner-Seitz approximation, which describes the lattice as neutral sphere with a central point-
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like ion and an ambient uniform electron gas3. For a carbon or oxygen lattice, the correction to
the pressure is typically of the order of a few percent. At lower densities the electron distribu-
tion deviates from uniformity, and more sophisticated approaches, namely the Thomas-Fermi and
Thomas-Fermi-Dirac models, must be invoked [4, 6].

3. Neutronization Corrections to the Cold Equation of State: 109 gm cm−3 ρ ∼< 4 ×
1011 gm cm−3

Stable high density matter must be in chemical equilibrium to all types of reactions, including the
weak interactions which drive β decay and electron capture (“inverse β−decay”):

n → p + e + ν̄e , p + e → n + νe , (12)

where n and p denote a neutron and a proton, respectively, e denotes and electron and νe(ν̄e)
denote an electron neutrino (anti-neutrino). If the matter’s composition is out of β−equilibrium,
it will adjust through β−decays or electron capture. Both types of reactions change the electron
per nucleon fraction, Ye, and thus affect the EoS (Eqs. (9-10)).

In cold white dwarfs and neutron stars the weakly interacting neutrinos freely escape the system:
a zero neutrino abundance implies a zero neutrino chemical potential. The condition of chemical
equilibrium is then stated as:

µn = µp + µe , (13)

where µx denotes the chemical potential of species x. The condition of chemical equilibrium is the
fundamental origin of the stable existence of neutrons in nuclei and in uniform n − p − e matter.
For free, single, particles the chemical potential is identical to the rest mass. The masses in MeV
of the three elementary particles of Eq. (13) are mn = 939.6, mp = 938.3 and me = 0.511 (1 MeV
is equivalent to ∼ 1.78 × 10−27 gm). It is energetically allowed to have a free neutron decay in the
reaction n→ p+e+ ν̄e (mn − mp − me ≈ 0.8 MeV). Indeed, the life-time of a free neutron is only
about 1000 sec before it undergoes a β-decay. By contrast, in a cold, degenerate, noninteracting
n− p− e gas neutron decay can be “blocked”: since the protons and electrons must obey the Pauli
principle, the decays will be suppressed if the energy available to the newly formed electron and
proton is insufficient to place them above their respective Fermi levels. At such high densities, the
equilibrium state of the gas includes a finite fraction of neutrons.

In bulk matter, the electron chemical potential, which is equal to the electron Fermi energy,
rises with electron number density. Hence, maintaining chemical equilibrium (Eq. 13)) may require
some protons to capture electrons and covert to neutrons. In matter below the neutron drip density
these conversions occur in nuclei, so their neutron fraction increases - they “neutronize”. The result
is a net decrease in the electron abundance (Ye) at high densities, which lowers the pressure and
“softens” the EoS.

The fact that “neutronization” becomes energetically favorable at densities below the neutron
drip must be taken into account when formulating an exact EoS for this range. In matter composed

3We note that such an approximation is actually better suited for white dwarfs than for laboratory solids, where
the electron distribution is much more nonuniform.
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of nuclei and free electrons, β−decay is limited to relatively high densities (ρ ≥ 109 gm cm−3 ), and
the exact threshold for the onset of neutronization depends on the nature of the nucleus, since the
nuclear interactions must be taken into account in addition to Fermi kinetic energies. For example,
the reaction 12

6 C + e →12
5 B requires the nucleus to absorb an energy of ∼ 14 MeV, which an

electron can supply if the density of a pure carbon lattice reaches ∼ 3 × 1010 gm cm−3 . The EoS
of matter close to the neutron drip density is thus dependent on its chemical composition even for
elements of equal Ye, such as helium and carbon [4].

B. The Equation of State Above Neutron Drip Density: ρ ∼> 4 × 1011 gm cm−3

As neutronization proceeds, the nuclei become increasingly neutron-rich. The so-called “tensor-
force” component of the nuclear interactions causes like nucleons to repel one another, so that
the binding energy of a neutron rich nucleus is smaller than in one where Z/A = 0.5. Fully
equilibrated matter, reaches the last stable isotope 118Kr (Ye ≈ 0.31) just before the density of
ρ ≡ ρn−drip ≈ 4.3 × 1011 gm cm−3 . At higher densities it becomes favorable for some neutrons to
“drip” out of their parent nuclei. The nucleon component of the matter can no longer be confined
to point-like objects and the nuclei begin to dissolve. As density is increased, a larger fraction of
the nucleons exists as “free” particles, outside the nuclei. This is a gradual transition, until the
matter approaches the density of atomic nuclei, where all nuclei have essentially dissolved, and
the distribution of nucleons becomes uniform. The EoS above the neutron drip density must be
formulated by consistently including the effects of nuclear physics, which become the governing
component of the properties of matter as the density of atomic nuclei, ρnuc≈2.8×1014 gm/cm3 is
approached.

C. Subnuclear Densities: 4 × 1011 gm cm−3 ∼< ρ ∼< 2.8 × 1014 gm cm−3

An analysis of cold matter in the range ρn−drip ≤ ρ ≤ ρnuc is complicated by requiring chemical
equilibrium between nucleons inside the nuclei and those that have dripped outside. One must
account for the effects of the surrounding gas of free nucleons on the nuclei, as well as other effects
such nuclei surface and Coulomb energies. In addition, the nuclei are expected to be very neutron
rich, deviating from the Z/A = 0.4 − 0.5 found in terrestrial nuclei. Nonetheless, the properties
of matter in this range of densities can still be derived by a natural extrapolation from ordinary
nuclei, and, indeed, the EoS for such matter is believed to be well understood. The principal
studies of matter (e.g., Ref. [8]) are based on the nuclear liquid-drop model, and are suitable for
most applications regarding neutron star structure. For problems where a more accurate description
of the neutron star inner crust is required, attention must be given to lattice effects, as the nuclei
and free nucleons arrange in a distinct spatial structure (where the nuclei settle into bubbles, slabs
or rods, depending on density [9]). It is expected that at ρ ≈ 1

2ρnuc all nuclei will have dissolved so
that the matter is completely uniform.
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D. Supernuclear Densities: ρ ∼> 2.8 × 1014 gm cm−3

The upper end of the high density regime is referred to as “supernuclear” where ρ ≥ ρnuc. As
matter is compressed to such densities the EoS becomes gradually dominated by the degenerate
nucleons and the nucleon interactions.

It is instructive to begin by considering an ideal uniform mixture of neutrons, protons and
electrons. For any given nucleon number density, nN , solving the equilibrium composition nn, np

and ne (the neutron, proton and electron number densities, respectively) requires three equations.
The first is baryon number conservation,

nN = nn + np , (14)

and the other two arise from imposing chemical equilibrium (Eq. 13) and charge neutrality. The
condition for charge neutrality is

np = ne . (15)

For a noninteracting mixture of nucleons and electrons all chemical potentials are simply the
Fermi energies (Eq.1)). Electrons are extremely relativistic at nuclear densities so their electron
chemical potential is

µe ≈ pF,ec = h̄c(3π2YeρB)1/3 ≈ 100
(

Ye

0.03

)1/3 ( nN

nnuc

)1/3

MeV , (16)

where nnuc = 0.16 fm−3 is the number density of nuclei at the saturation density (and 1 fm =
10−13 cm). Even if the electron fraction per baryon is only a few percent, the electron chemical
potential exceeds the mass difference between neutrons and protons by two orders of magnitude.
The only way to maintain a finite electron fraction (which is required to balance the protons for
charge neutrality) and satisfy chemical equilibrium is by having a significantly larger neutron than
proton fraction (note that for nonrelativistic fermions EF ∝ n2/3 and for extremely relativistic
fermions EF ∝ n1/3). Equilibrium matter at nuclear densities must be very neutron dominated,
and objects composed of such matter are thus “neutron stars”. For an noninteracting gas the ratio
of neutrons to protons in equilibrium must be about 8 : 1, which is also representative of more
realistic models of supernuclear densities.

The noninteracting gas approximation is not reliable for deriving the EoS at supernuclear
densities. Unlike electrostatic perturbations, nucleon-nucleon interactions are not negligible, and
the interaction energies are comparable to the Fermi energies of the degenerate nucleons (electrons
do not feel the strong interaction, and may still be treated as noninteracting). Modeling of the
nucleon-nucleon interaction is one of the longest-standing problems in nuclear physics, still only
partially solved. Profound difficulties exist due to the absence of a comprehensive theory of the
interactions and the difficulty of obtaining experimental data for ρ > ρnuc. Further complications
arise due to the fact the Fermi and interaction energies at ρ ∼ 2 − 3ρnuc reach a sizable fraction
of the rest mass, and relativistic effects must be taken into account as well. It is not yet possible
to apply quantum chromodynamics (QCD), the fundamental theory of strong interactions, to the
many-body nuclear domain at ρ ≈ ρnuc. Instead, the most useful approaches are still based on
phenomenological potential formalisms, and many-body Schrödinger-like systems of equations [1].
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The EoS of supernuclear matter remains to date a field of active research. Current approaches
include variational methods based on deduced two and three nucleon interactions ([10], see [11] for
a recent study), and relativistic mean field approximations ([12], see [13] for a review). The models
are based on fitting parameters to reproduce the empirically determined properties of finite nuclei
with n = nnuc. A rough approximation of the properties of the nucleon component of supernuclear
matter can be obtained through the effective, nonrelativistic model of Ref. [14],

ρ(n, x) = Egas(n, x) + an2 + b(nn − np)2 + cnδ+1 . (17)

The first term Egas is the mass-energy density of a noninteracting gas of nucleons at density n and
composition nn, np. The coefficient a is negative, representing the long range attractive component
of the inter-nucleon force, while c is positive, representing the short-range repulsive component.
The power δ is larger than unity, so that short-range repulsion dominates at high density. The
symmetry term includes the positive coefficient b which describes the “tensor-force” that repels like
nucleons, and its contribution is therefore minimized at for symmetric nuclear matter (nn = np).
The values of a, b, c and δ are derived by requiring Eq. (17) to reproduce the assumed properties of
symmetric matter at nN = nnuc. See Refs. [14, 15] for typical (model dependent) values of these
parameters.

Finally, we note that it is quite possible that other particles, besides neutrons, protons and
electrons, coexist in stable equilibrium at supernuclear matter. The most obvious example is the
muon, which is a lepton similar to the electron, but has a rest mass of mµ ≈ 105 MeV. The
equilibrium condition for the muons will simply be µµ = µe, so from Eq. (16) it is evident that
at densities n ∼> nnuc it is energetically favorable to convert some electrons into muons through
the weak interactions. At densities of n ∼> 2nnuc it possible that other exotic particles will appear,
such as hyperons (baryons that are heavier than nucleons), Bose-Einstein condensates of mesons
(i.e., pions or kaons), or even conversion of the nucleons into an uniform mixture of quarks (see
Refs. [13, 16, 17] for recent reviews of the possible presence and roles of such particles in neutron
stars).

E. Basic Properties of High Density Matter

In Table 2 we present an EoS of cold, fully catalyzed matter ranging from normal iron at zero
pressure to supernuclear densities. The EoS in the subnuclear regime is compiled from Refs. [2,
6, 8] and are “standard” for studying catalyzed high density matter. For realistic white dwarf
models, which are presumably composed mostly of helium or carbon and oxygen, and never reached
sufficiently high temperatures to catalyze their nuclei, a slightly different EoS must be used, based
on a single species; see Ref. [4]. We also tabulate one “state-of-the-art” EoS for the supernuclear
range [11]

The EoS P (ρ) is plotted in Figure 1a. It is especially instructive to examine corresponding
values of the adiabatic index, Γ ≡ d lnP/d lnρ, plotted in Figure 1b, along with the sound speed
(cs =

√
dP/dρ). Note that around ρ ≈ 106 gm cm−3 the EoS transforms, as expected, from a

nonrelativistic Γ = 5/3 polytrope to a relativistic Γ = 4/3 one as the Fermi energy of the electrons,
which dominate the pressure, gradually becomes relativistic. There is a sharp drop in the adiabatic
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Table 2: The equation of state a of cold, catalyzed high density matterb

ρ nB P Γ Y K cs

gm cm−3 cm−3 dyne cm−2 dyne cm−2 MeV cm sec−1

1.00E+01 6.02E+24 5.13E+11 7.03E+00 3.20E+12 7.68E-06 5.67E+05
2.00E+01 1.21E+25 2.59E+13 3.09E+00 7.32E+13 3.41E-05 1.91E+06
5.00E+01 3.01E+25 2.21E+14 2.50E+00 5.51E+14 1.03E-04 3.32E+06
1.00E+02 6.02E+25 1.13E+15 2.23E+00 2.88E+15 2.69E-04 5.37E+06
2.00E+02 1.20E+26 5.14E+15 2.14E+00 1.10E+16 5.15E-04 7.43E+06
5.00E+02 3.01E+26 3.54E+16 2.05E+00 7.27E+16 1.36E-03 1.21E+07
1.00E+03 6.02E+26 1.44E+17 1.90E+00 2.95E+17 2.75E-03 1.72E+07
2.00E+03 1.20E+27 4.91E+17 1.74E+00 8.56E+17 3.99E-03 2.07E+07
5.00E+03 3.01E+27 2.53E+18 1.82E+00 4.61E+18 8.61E-03 3.04E+07
1.00E+04 6.02E+27 9.01E+18 1.80E+00 1.75E+19 1.63E-02 4.18E+07
2.00E+04 1.20E+28 3.07E+19 1.78E+00 5.45E+19 2.54E-02 5.22E+07
5.00E+04 3.01E+28 1.51E+20 1.73E+00 2.61E+20 4.87E-02 7.22E+07
1.00E+05 6.02E+28 4.90E+20 1.69E+00 8.91E+20 8.32E-02 9.44E+07
2.00E+05 1.20E+29 1.57E+21 1.65E+00 2.59E+21 1.21E-01 1.14E+08
5.00E+05 3.01E+29 7.07E+21 1.60E+00 1.13E+22 2.11E-01 1.50E+08
1.00E+06 6.02E+29 2.16E+22 1.59E+00 3.63E+22 3.39E-01 1.90E+08
2.00E+06 1.20E+30 6.38E+22 1.57E+00 9.97E+22 4.65E-01 2.23E+08
5.00E+06 3.01E+30 2.63E+23 1.48E+00 3.90E+23 7.29E-01 2.79E+08
1.00E+07 6.02E+30 6.81E+23 1.44E+00 1.03E+24 9.64E-01 3.21E+08
2.00E+07 1.20E+31 1.88E+24 1.44E+00 2.68E+24 1.25E+00 3.66E+08
5.00E+07 3.01E+31 6.84E+24 1.40E+00 9.55E+24 1.78E+00 4.37E+08
1.00E+08 6.02E+31 1.78E+25 1.38E+00 2.57E+25 2.40E+00 5.07E+08
2.00E+08 1.20E+32 4.67E+25 1.36E+00 6.29E+25 2.94E+00 5.61E+08
5.00E+08 3.01E+32 1.53E+26 1.39E+00 2.11E+26 3.95E+00 6.50E+08
1.00E+09 6.02E+32 3.91E+26 1.17E+00 4.57E+26 4.27E+00 6.76E+08
2.00E+09 1.20E+33 8.83E+26 1.36E+00 1.19E+27 5.57E+00 7.72E+08
5.00E+09 3.01E+33 3.03E+27 1.36E+00 4.12E+27 7.71E+00 9.07E+08
1.00E+10 6.01E+33 7.24E+27 1.35E+00 1.01E+28 9.47E+00 1.01E+09
2.00E+10 1.20E+34 1.83E+28 1.24E+00 2.24E+28 1.05E+01 1.06E+09
5.00E+10 3.00E+34 5.63E+28 1.13E+00 6.37E+28 1.19E+01 1.13E+09
1.00E+11 5.99E+34 1.40E+29 1.26E+00 1.80E+29 1.69E+01 1.34E+09
2.00E+11 1.20E+35 3.13E+29 1.17E+00 3.69E+29 1.73E+01 1.36E+09
5.00E+11 2.99E+35 8.28E+29 5.60E-01 4.65E+29 8.75E+00 9.63E+08
1.00E+12 5.97E+35 1.26E+30 8.48E-01 1.05E+30 9.86E+00 1.02E+09
2.00E+12 1.19E+36 2.12E+30 7.53E-01 1.61E+30 7.60E+00 8.97E+08
5.00E+12 2.98E+36 4.79E+30 1.11E+00 5.34E+30 1.01E+01 1.03E+09
1.00E+13 5.95E+36 1.16E+31 1.44E+00 1.76E+31 1.66E+01 1.33E+09
2.00E+13 1.19E+37 3.26E+31 1.52E+00 4.94E+31 2.34E+01 1.57E+09
5.00E+13 2.97E+37 1.32E+32 1.53E+00 2.03E+32 3.84E+01 2.01E+09
1.00E+14 5.92E+37 3.93E+32 1.87E+00 8.36E+32 7.94E+01 2.88E+09
2.00E+14 1.18E+38 1.93E+33 2.75E+00 5.54E+33 2.64E+02 5.24E+09
5.00E+14 2.89E+38 1.77E+34 3.00E+00 5.54E+34 1.08E+03 1.03E+10
1.00E+15 5.50E+38 1.52E+35 2.87E+00 6.52E+35 6.68E+03 2.30E+10
2.00E+15 9.36E+38 9.20E+35 2.23E+00 3.01E+36 1.81E+04 c

5.00E+15 1.57E+39 4.87E+36 1.50E+00 1.44E+37 5.14E+04 c

a - shortened notation: 2.00E + 10 is 2.00 × 1010.
b - The EoS up to ρ ∼ ρnuc = 2.8 × 1014 is based on Table 5 of Ref. [8] [ c© 1971. The American Astronomical Society]. The

supernuclear EoS is adapted from Ref. [11].
c - the APR [11] EoS is not relativistic, and at extremely high densities has an unphysical superluminal (greater than light

speed) speed of sound.

10



10
5

10
10

10
15

ρ (gm/cm
3
)

10
7

10
8

10
9

10
10

c s (
cm

/s
ec

)

0

1

2

3
Γ

10
20

10
30

10
40

P
 (

dy
ne

/c
m2 )

Γ

cs

(a)

(b)

Figure 1: The equation of state of cold, catalyzed high density matter, based on Refs. [6, 8, 2, 11]:
(a) the pressure density relation, (b) adiabatic index and sound speed.

index around the neutron drip density, since at first the dripped neutrons contribute to mass-density
but not to pressure. Only as matter approaches nuclear densities does the nucleon pressure become
important, pushing the adiabatic index back up to values in the range 2 − 3.

Along with the EoS, we also examine some thermodynamic quantities of cold high density mat-
ter. In Table 2 we also list the adiabatic index, sound speed, bulk modulus Y , and incompressibility,
K, defined as

Y = n
dP

dn
and K = 9

dP

dn
≡ 9n

d2ρ

dn2
. (18)

Note that the bulk modulus (which has units of pressure) is the reciprocal of the quantity usually
defined as the compressibility (χ ≡ Y −1), while the “incompressibility” (units of energy) is more
commonly used in nuclear physics applications (and is indeed measurable in nuclei). In Table 3 we
list typical values of Γ, cs, Y, K and the specific heat capacity, cv , for condensed matter found in
white dwarfs and neutron stars. For the purpose of comparison, we also give values for the sun,
where the pressure roughly follows an ideal Maxwell-Boltzmann law P ∼ nkBT . Note how the
extreme conditions of high densities leads to properties that are very different than those found for
terrestrial materials. For example, the speed of sound in a neutron star is expected to be several
tens of percent of the speed of light!
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Table 3: Typical values of thermodynamic quantities in the sun, white dwarfs and neutron stars .

Object Γ cs Y K cv

(cm sec−1 ) (dyne cm−2 ) (MeV) ergs deg−1 gm−1

Sun 5/3 ∼ 107 ∼ 1012 ∼ 10−4 ∼ 3
2

(1/µ + 1/mp) kB

White Dwarf (C/O) 4/3 ∼ 5 × 108 ∼ 1024 ∼ 10 3
2
kB/µ

Neutron Star 2 − 3 ∼ 1010 ∼ 1035 ∼ 200 ∼ 10−3kB/mp
†

† - for an ideal nonrelativistic neutron gas and a central temperature of ∼ 109 oK → kBT/EF ≈ 10−3.

III. White Dwarf and Neutron Star Structure

Compact objects are self-gravitating equilibria with a mass comparable to that of the sun,
1 M� ≡ 1.989 × 1033 grams. Both white dwarfs and neutron stars are centrally condensed ob-
jects - most of their mass is located in a high density core, which is limited to a fraction of the
volume; furthermore, the radius of the objects decreases with increasing mass. These traits are
characteristic of a configuration supported by degenerate-fermion pressure.

A. Construction of a Self-gravitating, Equilibrium Star

The equilibrium structure of a self-gravitating object is derived from the equations of hydrostatic
equilibrium. The simplest case is that of a spherical, nonrotating, static configuration, where
for a given EoS all macroscopic properties are parameterized by a single parameter, for example,
the central density. In the case of compact objects, the gravitational fields are strong enough
that calculations must be performed in the context of general relativistic (rather than Newtonian)
gravity. The fundamental equation of hydrostatic equilibrium in its general relativistic form has
been derived by Tolman [19] and Oppenheimer and Volkoff [20], and is known as the “TOV”
equation:

dP (r)
dr

= −Gm(r)ρ(r)
r2

(
1 +

P (r)
c2ρ(r)

)(
1 +

4πr3P (r)
c2m(r)

)(
1 − 2Gm(r)

c2r

)−1

. (19)

This equation simply states that at any radial distance r, the gravitational pull by the mass interior
to r, m(r), is balanced by the gradient of the pressure P (r); G = 6.67 × 10−8 cm3 gm−1sec−2 is
the gravitational constant. Note that the first term on the right hand side is the only term in the
nonrelativistic case, where P/(ρc2) � 1 and 2Gm/(rc2) � 1. The second and third factors arise
from the pressure being a form of energy density (“regeneration of pressure” effect), while the last
term includes the correction due to the curvature of space in the strong gravitational field of the
star.
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B. Stable Configurations of High Density Matter

Given an EoS, Eq. (19) can be integrated simultaneously with the mass equation,

dm(r)
dr

= 4πr2ρ(r) , (20)

to determine the entire profile of the object. The actual integration is typically solved by numerical
means, assuming a central density ρ(r = 0) = ρc, and integrating outward from the center until
reaching the surface where P (r)=0, which identifies r = R as the radius of the star and M(R) as its
mass. We emphasize that the TOV equations provide the gravitational mass (or total mass-energy)
of the star, which includes the effect of the gravitational binding energy, EGB ∼ GM2/R, as well
as the internal and rest mass energy of the stellar constituents. Note that in the case of neutron
stars, (GM2/R)/(Mc2) ∼ 10−20%; indeed, the gravitational mass of a neutron star is measurably
lower than the total rest mass of its constituents.
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Figure 2: Mass vs. central density of a cold, carbon star [18] (dashed line) and of a star composed
of cold catalyzed matter (solid line).

Varying ρc produces a sequence of models for the given EoS, yielding M(ρc) and R(ρc) along the
sequence. The resulting sequences for stars composed of pure carbon (based on [18]) and of cold,
catalyzed condensed matter (with the EoS tabulated in table 2) are both shown in Figure 2 (note
that carbon dominated matter beyond the neutron drip density is unphysical and therefore omitted).
The most distinct feature about the equilibrium sequences is the existence of local maxima in the
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Figure 3: Schematic illustration of the structure of a typical white dwarf (left) and a neutron star
(right).

M(ρc) curves. A hydrostatic equilibrium configuration is dynamically unstable to catastrophic
gravitational collapse if dM/dρc < 0, since a radial perturbation would cause it to collapse on itself
[1]. Therefore stable carbon white dwarfs exist only if the central density is ρc ≤ 6×109 gm cm−3 ,
while cold, catalyzed, matter has two distinct regimes of stable configurations: one with central
densities below ∼ 1010 gm cm−3 (equivalent to white dwarfs), and one where the central density lies
roughly in the range 1013 ≤ ρc ≤ 1015 gm cm−3 (neutron stars). Configurations where ρc ∼> ρn−drip

are unstable, and cannot be found in nature. This situation is a direct consequence of the nature
of the EoS as shown in Figure 1. Quantitatively, it can be shown that a hydrostatic configuration
is stable only if its mass averaged adiabatic index, Γ̄, satisfies [1]

Γ̄ − 4
3 ∼>

2GM

Rc2
. (21)

It is evident therefore, that the effect of neutronization and neutron drip, which cause Γ̄ to drop
below 4/3, is to separate astrophysical objects with high density matter into two distinct classes of
stable configurations, which are shown schematically in Figure 3.

1. White Dwarfs

White dwarfs are composed of matter below the neutronization density. The astrophysical scenario
which creates white dwarfs, i.e., quasi-static contraction of a progenitor star at the end point
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of thermonuclear burning, does not allow matter to reach high enough temperatures to achieve
equilibrium composition through further burning. Accordingly, the composition of white dwarfs is
mostly dominated by its nuclear ashes. In the standard scenario white dwarfs are composed mostly
of carbon and oxygen, but there is observational evidence that helium white dwarfs (and perhaps
even iron-core white dwarfs - see below) exist as well. The pressure throughout the star is due to
degenerate electrons, which are nonrelativistic in the outer layers, but are relativistic in the interior
of the more massive stars with M ∼ M�.

By approximating the EoS as a Newtonian polytrope (Eq. (8)), Chandrasekar [3] derived the
basic features of white dwarfs:

ρc ∼< 106gm cm−3 Γ = 5
3 : R −∼ 1.12 × 109 ×

(
ρc

106 gm cm−3

)−1/6 ( Ye

0.5

)5/6

cm (22)

M −∼ 0.496 ×
(

ρc

106 gm cm−3

)1/2 ( Ye

0.5

)5

M� ,

ρc ∼> 106gm cm−3 Γ = 4
3 : R −∼ 3.35 × 109 ×

(
ρc

106 gm cm−3

)−1/3 ( Ye

0.5

)2/3

cm (23)

M −∼ 1.46 ×
(

Ye

0.5

)−2

M� .

White dwarfs are expected to have radii of the order of 104 km - roughly the size of the Earth, or
about one percent of that of the sun (which has a radius R� ≈ 7 × 105 km).

As long as the EoS is approximated as a pure polytrope, so that electrostatic and neutronization
corrections are ignored, helium, carbon and oxygen white dwarfs (Ye = 0.5) are all identical, while
an iron-dominated white dwarf is only slightly different (Ye ≈ 0.43). Cold, catalyzed matter, which
is used for the mass sequence in Figure 2, has a significantly softer EoS (due to Ye decreasing
with increasing density), and its sequence lies, therefore, lower than those of stars composed of a
single species. The most significant result in Eq. (23) is that there is no dependence of M on the
central density. The mass MCh −∼ 1.46 M�, known as the Chandrasekar mass, is the asymptotic
value a white dwarf can reach if it achieves sufficiently high density, so that its entire structure is
governed by relativistic fermions (in practice this mass cannot be reached, since the outermost layer
have nonrelativistic electrons). Nonrotating white dwarfs cannot have a mass exceeding MCh, and
the precise limit on their mass is lower by several percent, due to neutronization at high densities
(Section III.B.3.) and general-relativistic effects. In spite of the negligible effect on the hydrostatic
equilibrium profile of white dwarfs, general relativity is required for a full analysis of white dwarf
stability, since an exact Γ = 4

3 star is unstable to gravitational collapse (Eq. 21).

2. Neutron Stars

Neutron stars are composed mostly of matter at nuclear densities, including a core with supernuclear
densities, and is topped by a thin crust at subnuclear densities. The crust, composed of cold,
catalyzed matter, may also be divided into an inner part with ρn−drip ≤ ρ ≤ ρnuc and an outer
part where ρ ≤ ρn−drip.
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Immediately after the neutron was discovered (1932) Landau modeled a neutron star as a gas of
noninteracting, degenerate neutrons [21]. He found that neutron stars would have a maximum mass
of about 1M� and a radius of several kilometers. Although this was a very crude approximation,
it does suggest the correct orders of magnitude regarding the structure of these objects: a neutron
star has a mass comparable to that of the sun compressed to the size of a medium city! If supported
by degenerate fermion pressure, a neutron star cannot have a mass that exceeds the Chandrasekar
limit by much, while its radius is inversely proportional to the mass of the pressure providing
fermion. A neutron star should indeed have radius about mn/me ∼ 103 times smaller that of a
white dwarf.
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Figure 4: The mass vs. radius relation for of a nonrotating neutron star for several supernuclear
equations of state: Huber et al. (RHF8, [22]), Pandharipande and Smith (MF, [23]), Glendenning
(GM24, [13], page 244), Friedman and Pandharipande (FPS, [24]), Wiringa, Fiks, and Fabrocini
(AU, [10]), and Akmal, Pandharipande and Ravenhall (APR, [11]).

A realistic treatment of neutron star structure requires general relativity [20], whose effects are
appreciable in this case. Furthermore, quantitative estimates must be based on a realistic EoS at
all densities and especially a realistic model for the supernuclear regime where particle interactions
are most important. In particular, these interactions are repulsive at short distances and oppose
compression, thereby stiffening the EoS in comparison to a free particle gas. Indeed, plausible
equations of state predict that Mmax(NS) ∼ 2 M�, (∼ 2.2 M� for Ref. [11]), whereas the star’s
radius will lie in the range R ∼ 10 − 15 km. As an example, we show in Figure 4 the M vs. R
relation found for a few representative equations of state of supernuclear densities. The exact
value of Mmax(NS) depends on the assumed EoS and therefore provides an integral measure of
the properties of matter at supernuclear densities [17, 25]. We also note that the existence of a
maximum mass for neutron stars has important astrophysical implications, since it suggests that a
larger mass cannot be sustained by cold pressure and must inevitably collapse to a black hole.
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IV. Observations of Condensed Matter in White Dwarfs

Over 2000 white dwarfs have been discovered to date, based on the spectroscopic properties of
observed stars [26]. While the thermal energy in white dwarfs is small compared to the Fermi
energies of the electrons in the interiors, it is still sufficient to generate an observable surface
luminosity for several billion years. The luminosity of a star is dependent on its radius, R, and its
effective surface temperature, Teff , according to

L = 4πσR2T 4
eff , (24)

where σ = 5.67× 10−5 erg cm−2 sec−1 deg−4 is the Stephan-Boltzmann constant. The luminosities
of white dwarfs are typically 10−3 to 10−2 of that of the sun, L� ≈ 4 × 1033 ergs sec−1, but their
radii are also smaller than those of ordinary stars by a factor of ∼ 100. As a result, white dwarfs
have apparent surface temperature of several times 104 oK , unusually high in comparison with
most observable stellar objects, so they do appear very “white”. The existence of white dwarfs was
established spectroscopically (by determining the surface temperature of sources) as early as 1910.

White dwarfs are believed to be remnants of stars with initial masses in the range 0.1− 8 M�,
which are not massive enough to complete the thermonuclear burning process all the way to iron.
Mostly they are mostly composed of carbon and oxygen, but in some cases, thermonuclear burning
ceased before these elements were produced, and such stars are dominated be helium.

A. Radii

Observational determination of a white dwarf radius is straightforward if its flux, F , is measured
and its distance from the Earth, D, is known:

F (D) =
L

4πD2
→ R2 =

FD2

σT 4
eff

. (25)

The stellar radius is derived only after the effective surface temperature is obtained spectroscopically
[28]. Estimated radii of white dwarfs reside in the range of 0.007 − 0.013 R�, which is consistent
with an object supported by degenerate electron pressure (Section III.B.) and thereby confirms the
basic nature of white dwarfs.

B. Mass-Radius Relations

The most significant test of the nature of matter in a white dwarf is obtained by comparing
observed mass-radius relations with the theoretical predictions. Once the radius of a white dwarf
is determined, details of the surface emission (effects of gravitational acceleration on line emission
[29] or gravitational redshift [30]) are then used to estimate the surface gravity, which scales as
M/R. An independent (and usually more accurate) estimate of the mass can be obtained directly
for white dwarfs in binary-star systems, through Kepler’s third law [33]. Through these methods,
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Table 4: Mass-radius relations of selected white dwarfs with 1σ errors. [Adapted from Provencal
et al. [27], c© 1998. The American Astronomical Society]

Object Mass Radius
(M�) (R�)

Masses from binary motion
Sirius B 1.000 ± 0.016 0.0084 ± 0.0002
Procyon B 0.604 ± 0.018 0.0096 ± 0.0004
40 Eri B 0.501 ± 0.011 0.0136 ± 0.0002

Masses from surface acceleration
EG 50 0.50 ± 0.06 0.0104 ± 0.0006
GD 140 0.79 ± 0.09 0.0085 ± 0.0005

Masses from surface gravitational redshift
CD-38 10980 0.74 ± 0.04 0.01245 ± 0.0004
W485A 0.59 ± 0.04 0.0150 ± 0.001

masses of a few white dwarfs have been estimated with reasonable accuracy, and most seem to
cluster around ∼ 0.6 M� [31]. Some larger mass white dwarfs are also known, including the most
famous Sirius B [34], with M ≈ 1 M�. Note that these masses are smaller than MCh: it is believed
that stellar evolution, and especially periods of mass loss, limit the masses of most white dwarfs to
M ≤ 1 M�, even though the EoS could sustain somewhat higher masses.

Some examples of observationally determined radii and mass for white dwarfs are presented in
Table 4. Note that larger mass stars have smaller radii, as is expected (Eqs. (22-23)). It is interesting
to note that for some time, there was a nonnegligible discrepancy between the observations and
theory, where observed radii seemed to be ∼ 10− 20% smaller than estimated by theory for carbon
white dwarfs [29]. Only improved estimates of distances to several white dwarfs with the Hipparcos
satellite, and better modeling of white dwarf atmospheres [35] have allowed this discrepancy to be
mostly resolved [27]. A comparison of current observed mass-radii determinations with theoretical
curves is presented in Figure 5, and in general, the fit is indeed very good: these new results
seem to confirm that the composition of most white dwarfs is indeed dominated by medium weight
elements (carbon and oxygen). However, they also imply that a small minority of white dwarfs
do have relatively small radii, and may therefore contain iron cores, which presents an intriguing
puzzle from the point of view of stellar evolution.
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Figure 5: The mass-radius relation for white dwarfs. Solid lines labeled He, C, Mg, and Fe denote
the zero-temperature mass-radius relation for a star composed of each element of Ref. [18]. Models
of white dwarfs with a hydrogen atmosphere [35] are for an effective atmosphere temperature of
30,000oK (dotted line) and 15,000oK and 8000 oK (dashed lines). Estimates for observed white
dwarfs are shown with a 1σ error. [From Provencal et al. [27], c© 1998. The American Astronomical
Society]

V. Observations of Condensed Matter in Neutron Stars

Neutron stars are often identified observationally as very accurately pulsating sources, where the
pulsation is attributed to the star’s rotation. The period of pulsation limits the size of the source
to no more than a few tens of kilometers, thus indicating the presence of a very compact object.
Since the first discovery in 1967, close to 800 pulsars have been identified, over 700 of those in
radio waves [36]. About thirty X-ray pulsars have also been observed, and a smaller number of
nonpulsating X-ray sources of various types are also most likely to contain a neutron star [37].

Theory suggests that neutron stars are formed when a massive star is disrupted in a “supernova”
explosion. As the massive star evolves, matter in its core undergoes thermonuclear burning all the
way to iron, which is the most tightly bound nucleus and therefore cannot burn further. When
the iron core is massive enough it collapses under its own weight, until the collapse is halted when
nuclear densities are reached. Most of the gravitational binding energy is released in the form of
neutrinos, but some is transformed into an outgoing shock wave that expels the star’s envelope and
leaves behind the newly formed neutron star. Indeed, several dozen young neutron stars have been
found in sites of past supernovae, confirming this scenario.
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A. Neutron Star Masses

The masses of over twenty neutron stars have been determined observationally through their grav-
itational pull on a binary companion star. Within the errors of measurement, the masses of these
stars appear to cluster in a narrow range of 1.35 ± 0.1 M� [38]. This is especially true of the
masses of neutron stars in the five known binary-pulsar systems (where the companion object is
also a neutron star), listed in Table 5, where mass determinations are most accurate. In particular,
the Hulse-Taylor binary pulsar 1913+16 (the galactic coordinates of its location) has been very
accurately determined to have M1913+16 = 1.4411 ± 0007 M�. Clearly, a high density EoS must
satisfy Mmax ≥ 1.44 M� to be consistent with this observation.

Table 5: Mass determinations with errors of neutron stars in known binary pulsar systems.
[Adapted from Thorsett and Chakrabarty [38], c© 1999. The American Astronomical Society].

Median mass 68% 95%
Star mass (M�) central limits central limits
J1518+4904 pulsar 1.56 +0.13/ − 0.44
J1518+4904 companion 1.05 +0.45/ − 0.11
B1534+12 pulsar 1.339 ±0.003 ±0.006
B1534+12 companion 1.339 ±0.003 ±0.006
B1913+16 pulsar 1.4411 ±0.00035 ±0.0007
B1913+16 companion 1.3874 ±0.00035 ±0.0007
B2127+11C pulsar 1.349 ±0.040 ±0.080
B2127+11C companion 1.363 ±0.040 ±0.080
B2303+46 pulsar 1.30 +0.13/ − 0.46 +0.18/ − 1.08
B2303+46 companion 1.34 +0.47/ − 0.13 +1.08/ − 0.15

This mass limit does not impose a serious constraint on realistic models for the supernuclear
EoS and is satisfied by all but the softest equations. There has been much debate whether the
narrow range of observed neutron star masses is evidence for the maximum mass being rather low
(Mmax(NS) ≈ 1.5 M�) [39], or whether it is due to astrophysical effects, which could restrict the
range of masses of observable stars. Recently, there is growing evidence that heavier neutron stars
exist: the Vela pulsar is now estimated to have a mass of ∼ 1.9 M� [40], and the oscillations
observed in some galactic X-ray sources seem to indicate that they include neutron stars with
masses larger than 2 M� [41]. If these estimates are confirmed with improved observations in the
future, they will provide a much more stringent test that would be consistent only with the stiffer
models for the supernuclear EoS.

B. Radii

The mass and radius relation of a nonrotating neutron star is uniquely defined for any given EoS
through the solution of the TOV equations (Figure 4). However, to date, observational methods for
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estimating neutron star radii lack the accuracy required to critically differentiate between realistic
equations of state. Hopefully, data from a new generation of X-ray satellites will provide substantial
constraints on the compactness (M/R) of neutron stars (either through their thermal emission [42]
or from emission of material accreting upon them [43]).

C. Rotation periods

The observed pulsation period of a neutron star is attributed to rotation. Most measured periods
are in the range 0.25 − 1 sec, but a subclass of millisecond pulsars are also known to exist. The
fastest spinning neutron star observed to date has a period of P = 1.56 msec (so that it spins faster
than an egg-beater!).

Rotation provides an additional centrifugal barrier which assists the internal pressure in sup-
porting the gravitational load. The resulting configuration is then dependent on both central
density and rotation period, and must be solved self-consistently including the effects of general
relativity. The maximum mass a given equation of state can support increases with respect to the
static (TOV) value as the star is allowed to rotate faster [44]. There must exist a lower limit on
the rotation period (upper limit on the rotation rate), since too rapid rotation would cause the star
to shed mass at the equator. The general trend is that a softer EoS predicts a smaller lower limit
on the rotation period, since a more compact star is more tightly bound gravitationally and so is
better suited to resist the centrifugal force. At present, the limit of ∼ 1.56 msec is not very re-
strictive, and is consistent with basically all realistic models of high density matter. Discovery of a
sub-millisecond (P ∼> 0.5 msec) pulsar would allow to distinguish more directly between competing
supernuclear equations of state [1, 45, 46].

D. Pulsar Glitches

Pulsar periods are observed to increase gradually with time, implying that rotational energy of the
star is being lost (primarily by electromagnetic dipole radiation). However, several pulsars have
been observed to undergo sudden decreases in the rotation period, which are believed to originate
from the transfer of angular momentum between different parts of the star. The current leading
model [47, 48] suggests that the source of excess angular momentum is the inner curst, and thus
the magnitude of glitch phenomena can be used to set a lower limit on the fraction of the total
moment of inertia the inner crust must carry. Recent results [49] suggest the crust of the Vela
pulsar must carry at least 1.4% of the total moment of inertia of the star, which is sufficient to
rule out equations of state which are very soft in the range 1 ≤ ρ/ρnuc ≤ 2. Possible progress
in theoretical modeling of glitch phenomena could provide further limits on the properties of high
density matter near the nuclear saturation density.
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VI. Thermal Properties of Matter in White Dwarfs and Neutron

Stars

Fermions in both white dwarfs and neutron stars are expected to have degenerate energies which
are much larger than their thermal energies. However, compact objects do have finite temperatures
that are a relic of their progenitors. Since degenerate matter has very long scattering lengths for
individual particles, the cores of both white dwarfs and neutron stars are expected to be excellent
thermal conductors, and practically isothermal.

Finite temperature effects on the properties of condensed matter in compact objects has become
a very active theoretical and observational field in recent years, especially in the case of white dwarfs.
A finite temperature leads to cooling through thermal emission processes which are potentially
observable. Examining the cooling history (i.e., temperature vs. age) of compact objects thus
provides empirical evidence regarding the thermal properties of high density matter. Here we can
only briefly mention some of the topics of current interest.

A. Thermal Effects in White Dwarf Structure

The region most affected by a finite temperature is the low density outer-layers of a white dwarf,
which may include a thin atmosphere composed of helium and possibly also hydrogen. For lower
densities the electrons are not degenerate and a surface temperature of 104 oK will severely alter the
equation of state, especially in the regime where electrostatic corrections are important. Modern
equations of state for a hydrogen/helium atmosphere [50] have been incorporated in several studies
of white dwarf structure (see [51] for helium stars, [35] for carbon-oxygen, and [52] for a recent
compilation of various compositions). The thermal pressure in the outer layers is generally found
to be very effective in inflating the stellar radius. As seen from Figure 5, a surface temperature of
Teff = 104 oK increases the radius by a factor of two [35, 52] with respect to the cold [18] models.

There has been a recent revival of studies of white dwarf thermal evolution, and its dependence
on the properties of matter at the relevant high densities. We briefly review here the two main
aspects of these studies, namely cooling and pulsations.

1. White Dwarf Cooling

The basic theory of white dwarf cooling was established by Mestel in 1952 [53]. The heat is originally
stored in the nondegenerate ion-lattice, and the dominant cooling mechanism is photon diffusion to
the surface from the isothermal core through the nondegenerate outer layers. The simplest results
are based on Kramer’s approximation for the photon opacities in the nondegenerate regime:

κ = κ0ρT−3.5 , (26)

where κ is the mean opacity (in cm2gm−1 ) and κ0 = 4.34×1024Z(1+XH) cm2gm−1 is a composition
dependent constant, XH and Z being the mass-fraction of hydrogen and heavy (not hydrogen or
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helium) elements, respectively. The luminosity through the outer layers, L(r), is dependent on the
temperature gradient according to the radiative diffusion equation

L(r) = −4πr2 c

3κρ

d

dr
(aT 4) (27)

(where a = 7.7565 × 10−15 erg deg−4 is the radiation constant). Combining the above thermal
temperature gradient with the pressure gradient required for hydrostatic stability (Eq. (19), see
[1]), one finds that the surface luminosity satisfies

L = 5.7 × 106µY 2
e

1
Z(1 + X)

(
M

M�

)
T 3.5

c , (28)

where µ is the mean molecular weight in the nondegenerate atmosphere and Tc is the core tem-
perature in the star. For typical white dwarfs (M ∼ 1 M�) with no hydrogen in the atmosphere,
X = 0, Z ≈ 0.1, µ = 1.4, Ye = 0.5, an observed luminosity in the range 10−5−10−2 L� corresponds
to a central temperature of Tc ∼ 106 − 107 oK .

The key elements of Eq. (28) are that the surface luminosity (which is observable) is clearly
related to the mass of the star, the composition and the internal temperature. If the mass is also
determined separately (as discussed above), luminosity can then provide a direct test of the star’s
thermal and composition profiles. Furthermore, the age of the white dwarf can also be estimated
based on its cooling time scale, which is dependent on the luminosity function (Eq. 28), the stellar
mass and the specific heat capacity of a white dwarf material. The latter (in ergs deg−1 gm−1) if
roughly that of the ion lattice,

cv(ions) = 2
3
2

kB

µ
, (29)

where the factor of 2 comes from the three degrees of collective vibration and rotation, in addition
to the three single ion degrees of motion. Due to their degeneracy, the specific heat capacity of the
electrons is suppressed by a factor of ∼ kBT/EF [54], which for a density of 108 gm cm−3 and an
internal temperature of ∼ 107 oK is 10−3.

While models which include more detailed microphysics do reproduce the general results of the
Mestel model (see, for example, in Refs. [1, 32, 55, 56]), accurate work that is compatible with
the quality of current observations must include several important perturbations. Most notably,
accurate low temperature opacities, semidegenerate electron thermal conductivity and pressure-
induced ionization must be accounted for in modeling the white dwarf atmosphere. Crystallization
of the ion gas may also have a significant effect on the thermal history of the star, both as a transient
source of (latent) heat and by effectively reducing the heat capacity. In particular, below the Debye
temperature, ΘD −∼ 4× 103ρ1/2 oK , the specific heat capacity becomes temperature dependent [1],

cv =
12π4

5
kB

(
T

ΘD

)3

. (30)

The specific effects of the finite temperature on the thermodynamic properties of matter in white
dwarf atmosphere are most notable through studies of pulsations (see below).

It is noteworthy that for several years there seemed to be a paucity of low-luminosity (and
therefore, old) observed white dwarfs, which posed a nontrivial puzzle in terms of models for the
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stellar evolution. Only rather recently it was realized [57] that the properties of the finite temper-
ature atmospheres would make old white dwarfs dimmer than previously anticipated (especially if
their atmosphere included only a helium layer and no hydrogen).

2. Pulsation of White Dwarfs

The basic theory of stellar pulsation is reviewed in detail by Sarbani Basu in this volume. We
note that studies of pulsations in general allow one to estimate the sound speed profile of the
star, its temperature gradient, and even the mean molecular weight in its core. It has been well
established [58] that stellar pulsation provides an effective probe for the properties of matter in
a star. Commonly referred to as “astroseismology”, this field is rapidly emerging due significant
advances in observational instrumentation and theoretical modeling.

White dwarfs, like many other stars, may undergo stable pulsations which leave a detectable
imprint on the time dependence of the star’s luminosity [59, 60]. Since pulsations tend to damp
over time, they are most easily observable in younger, and therefore hotter, white dwarfs. Modeling
observed pulsations of young white dwarfs is particularly important for probing the EoS of semide-
generate matter [61, 62]. With the aid of theoretical models, studies of white dwarfs pulsations
have been used for independently restricting the mass-radius relationships and dimensions of the
hydrogen envelope [60, 63], and in general seems to hold much potential for future studies of the
details of white dwarf physics. For example, some pulsation modes are theoretically predicted to
be more sensitive to the extent of crystallization of the atmosphere material. Recent analysis of the
periods and relative magnitudes various pulsation modes in the white dwarf BPM 37093 [62] helps
determine the extent of crystallization in the atmosphere (about 50% in mass), which compares
favorably with theory. In another recent example [64], it is possible to identify, for the first time,
the contraction rate of the pre-white dwarf star PG 1159-035, by measuring the secular changes
over time of the periods of various modes.

B. Thermal Effects in Neutron Star Structure

Although finite temperature effects are practically negligible when considering the overall structure
of evolved neutron stars, they are important in assessing their thermal history and as probes of
matter in the interior of these objects. Some thermal effects on structure do exist in newly-born
neutron stars (often called “proto-neutron star”).

1. Proto-Neutron Stars

Neutron stars are born in supernovae with initial internal temperatures of several times 1011 oK and
initial entropies of ∼ 2kB per nucleon (kB is the Boltzmann constant). These values are large enough
to impose nontrivial effects on the composition and structure of the neutron star compared to the
T = 0 case [16]. At such high temperatures the matter is not transparent to the thermal neutrinos

24



[1, 65], and the proto-neutron star must cool through neutrino diffusion to the surface, which
occurs over a time scale of several seconds (much longer than a dynamical time of milliseconds)
[66]. This fundamental prediction was dramatically confirmed by the observed neutrino pulse from
the supernova 1987A (the closest supernova observed from the Earth in 400 years), which lasted
for ∼ 12 seconds. (see [67] for a review). Further studies of the properties of high temperature,
supernuclear-density matter are required to model this brief early cooling epoch and its possible
observational signatures [68].

2. Cooling of Neutron Stars

After the initial rapid cooling stage which lasts several days, a neutron star settles on a slower
cooling curve [1, 69]. Once neutrinos escape the system freely, they must be continuously produced
in order to fuel the emission process. Subsequent neutrinos are mostly produced by the so-called
URCA (β and inverse β decays as in Eq. (12)) and other processes. The isothermal core at this
stage is expected to have temperature of several times 108 oK , while at the surface the temperature
is down to several times 106 oK - which provides for continuous surface thermal luminosity in soft
X-rays. This soft X-ray luminosity is much more difficult to detect than the optical ultraviolet
luminosity white dwarfs. Current observations are generally limited to young (age ∼< 106 yrs)
neutron stars, where the main cooling mechanism is still the neutrino emission from the core. An
important consequence of this situation is that estimates of thermal emission from neutron stars
serve as a probe of the properties of matter in the core [70].

Over 20 compact, isolated soft X-ray sources observed with X-ray imaging telescopes have
been identified as neutron stars [71]. In most cases the source is either too faint to allow for
a spectroscopic determination of the surface temperature, or the emission is dominated by other
phenomena (most likely magnetospheric emission). However, in a hand-full of cases surface thermal
emission has been strong enough to be detected and the surface temperature has been deduced to
within a factor of two [71]. The measurements are still not accurate enough to determine whether
the observed layer is the actual surface or a possible hydrogen atmosphere, which would have
different emission properties, but they are sufficient to place some constraints on the rates of
neutrino emitting processes in the core [72].

Perhaps the most notable conclusion to date of observed neutron star cooling rates is that
they support the theoretical prediction that the nucleons in the core couple to a superfluid state.
Theoretical models suggest that the strong interactions will pair the neutrons in the core in a
3P1 superfluid and the protons to a 1S0 superconductor with critical temperatures of the order of
109 oK [73]. Neutrino emitting processes, such as β-decays must break a coupled Cooper pair before
its constituents can participate in the decay. The main effect of nucleon superfluidity is therefore
damping the efficiency of neutrino emission from the core (there is also a secondary effect due to
the modulation of the heat capacity, which first increases discontinuously as the star cools to the
critical temperature, and then decreases exponentially at lower temperatures). Observed neutron
star surface temperatures are apparently too high to be consistent with the cooling rates predicted
for normal core, but they agree with the suppressed cooling rates when the nucleons couple to a
superfluid state [74, 75]. Further progress in analyses of the matter in the interiors of neutron stars
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is expected through measurements by NASA’s recently launched Chandra X-ray satellite.

VII. Concluding Remarks

The theoretical and observational study of compact objects remains one of the most exciting fields
in modern astronomy. In essence, this research is also an exploration of the properties of condensed
matter at extreme densities. Predictions regarding the properties of white dwarfs and neutron
stars serve to test our understanding of matter at these high densities, while theories of high
density matter serve as a basis for interpreting observational results regarding these objects. Most
exciting, these objects bring together all four of the fundamental forces of nature and probe regimes
not accessible in the terrestrial laboratory. They provide the most numerous and accessible sample
of objects where relativistic gravitation - general relativity - plays a role in determining their
physical properties.

In this review we have described the tight interconnection between the microscopic (local)
properties of condensed matter at high densities and the macroscopic (global) properties of white
dwarfs and neutron stars. While the fundamental principles of cold, high density matter are believed
to be well understood, and are generally consistent with observations, key questions still remain,
and new observations may give rise to new puzzles. The current boom in capabilities of Earth-
bound telescopes and satellite instrumentation promises that many more puzzles - and hopefully,
answers - are in store regarding the nature of cosmic matter at high densities.
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