UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION

2015

SAMPLE COSTS TO PRODUCE PASTURE

SACRAMENTO VALLEY

Flood Irrigation
Prepared by:

Larry C. Forero
Roger Ingram
Josh Davy
Glenn Nader
Karen Klonsky
Don Stewart

UC Cooperative Extension Farm Advisor, Shasta/Trinity County
UC Cooperative Extension Farm Advisor, Placer Nevada Counties
UC Cooperative Extension Farm Advisor, Glenn, Colusa, Tehama Counties
UC Cooperative Extension Farm Advisor, Sutter/Yuba/Butte Counties
UC Cooperative Extension Specialist, Department of Agricultural and Resource Economics, UC Davis
Staff Research Associate, Department of Agricultural and Resource Economics, UC Davis

UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION SAMPLE COSTS TO PRODUCE PASTURE In the Sacramento Valley -2015

 STUDY CONTENTS

 STUDY CONTENTS}
INTRODUCTION 2
ASSUMPTION 3
Production Operating Costs 3
Table A. Forage Produced Per Acre 4
Cash Overhead 5
Non-Cash Overhead 6
REFERENCES 8
Table 1. COSTS PER ACRE to PRODUCE PASTURE 9
Table 2. COSTS AND RETURNS PER ACRE to PRODUCE PASTURE 10
Table 3. MONTHLY CASH COSTS PER ACRE to PRODUCE PASTURE 11
Table 4. RANGING ANALYSIS 12
Table 5. WHOLE FARM ANNUAL EQUIPMENT, INVESTMENT and OVERHEAD COSTS 14
Table 6. OPERATIONS WITH EQUIPMENT and MATERIALS 15

INTRODUCTION

Sample costs to produce irrigated pasture in the Sacramento Valley are shown in this study. The study is intended as a guide only, and can be used to make production decisions, determine potential returns, prepare budgets and evaluate production loans. Practices described are based on the production practices considered typical for this crop and region, but will not apply to every farm situation. Sample costs for labor, materials, equipment and custom services are based on current figures. "Your Costs" columns in Tables 1 and 2 are provided for entering your farm costs.

The hypothetical farm operations, production practices, overhead, and calculations are described under the assumptions. For additional information or an explanation of calculations used in the study contact the Department of Agricultural and Resource Economics, University of California, Davis, California, (530) 7524651, destewart@ucdavis.edu.

Sample Cost of Production Studies for many commodities are available and can be downloaded from the department website http://coststudies.ucdavis.edu. Many older archived studies are also available on the website.

[^0]
ASSUMPTIONS

The assumptions refer to Tables 1 to 6 and pertain to sample costs to produce pasture and pasture hay in the Sacramento Valley. Practices described are Not University of California recommendations but represent production practices and materials considered typical of a well-managed pasture stand in the Sacramento Valley. Costs, materials, and practices in this study will not be applicable to all situations. Cultural practices vary among growers within the region. The use of trade names in this report does not constitute an endorsement or recommendation by the University of California nor is any criticism implied by omission of other similar products.

Farm. The hypothetical farm that is leased consists of 45 contiguous acres. Forty of the acres are considered pasture land. The remaining 5 acres are roads, farmstead, and miscellaneous buildings and corrals. For this study the pasture land is established and rented at $\$ 180.00$ per acre. If your farm does not already have an established pasture, refer to ("Sample Costs to Establish or Reestablish and Produce Pasture in the Sacramento Valley - 2015 ") for the costs of establishing a pasture. For this study it is assumed that the irrigation infrastructure is already intact.

Production Operating Costs

Tables 1 to 6.

Irrigation. The water is supplied by an irrigation district and is gravity fed into the growers' irrigation system. Water districts in the Sacramento Valley were randomly selected for 2014 water costs and an average cost determined. Costs vary among districts and depending on the district, the rates are either metered (per acre foot) or non-metered rates (per acre). Four-acre feet of water ranged from $\$ 42$ to $\$ 101$ per acre or $\$ 10$ to $\$ 25$ per acre-foot, including base charges and application fees. Irrigation begins in April and continues into October. Four and half acre-feet of water at $\$ 16.32$ per acre-foot, ($\$ 1.36$ per acre inch) or $\$ 73.44$ per acre is applied by border-flood irrigation. Pumped irrigation water for either flood or sprinklers will increase the irrigation costs. Water costs are volatile and vary between irrigation districts and within counties.

Fertilization. 200 lb ammonium sulfate ($21-0-0,24 \% \mathrm{~S}$) provides 42 pounds of N applied in April or June. The fertilizer also supplies 48 pounds of elemental sulfur to cover sulfur deficiency. Growers should apply fertilizer or soil amendments after appropriate soil and/or tissue testing in the establishment and succeeding years. It is assumed that phosphorous was applied pre-plant, none is required at this stage.

Pest Management. Pesticides mentioned in this study are not recommendations, but those commonly used in the region. For information and pesticide use permits, contact the local county Agricultural Commissioner's office. For information on other pesticides available, pest identification, monitoring, and management, visit the UC IPM website at www.ipm.ucdavis.edu. Pest control costs can vary considerably each year depending upon local conditions and pest populations in any given year. Adjuvants are recommended for many pesticides for effective control and are an added cost. Adjuvants and costs are not included in this study.

Pest Control Adviser/Certified Crop Advisor ($P C A / C C A$). Written recommendations are required for many pesticides and are available from licensed pest control or certified crop advisers. In addition the PCA/CCA or an independent consultant will monitor the field for agronomic problems including irrigation and nutrition. Growers may hire a private PCA/CCA or receive the service as part of a service agreement with an agricultural chemical and fertilizer company. It is assumed in this study that PCA/CCA services are provided by the chemical and Fertilizer Company.

Weeds-Spot sprays. Spot application with glyphosate (Roundup) for grasses and 2,4-D for broadleaves in March and April are applied to approximately 1% of the acres with a small sprayer on the ATV. Each would be applied at 3% concentration and approximately 1 gallon per acre of solution would be used.

Weeds-Rotary wiper. A rotary wiper is used to control smutgrass and other undesirable weeds in late summer or early fall, after smutgrass has flowered. It is assumed that about one third of the pasture is infested with smutgrass, which would use approximately 5 gallons of glyphosate at 50% concentration in the roto-wiper for 40 acres. It is critical that desirable plants are grazed closer to the ground before using a rotary wiper.

Harrow. The field is harrowed twice, June and September to break up and spread the manure deposited in the pasture.

Harvest. There are two different operational options. Option 1 - Forty acres are custom harvested in June. The pasture is swathed, raked, baled and roadside stacked by a custom operator for $\$ 48$ per ton. The regrowth is grazed from July through October. Option 2- the 40 acres are grazed from April through October. Grazing costs are the
ATV use for daily checking of the fence and cattle at one-hour per day or 0.025 hours per acre for 40 acres.

Yield. In option 1 the June hay harvest is at 90% dry matter is assumed to yield 2.50 tons of hay per acre per year over 20 acres. Stocking rate of beef cattle varies with production. Total grazing yield on the hayed acreage is 5.50
AUM/acre (July to October)

Table A. Forage Produced Per Acre for Grazed Only Acres, Grazed and Hayed Only Acres and Average Yield Over Entire 40 Acres

Month	lbs/acre	tons/acre	Graze Only (40 acres) Yield/acre AUM	Graze \& Hay Only (40 acres) Yield/acre		Average Yield over 40 acres Yield/acre	
				AUM	hay tons	AUM	hay tons
May*	3,247	1.62	3.25	0	0	1.62	0
June	1,783	0.89	1.78	0	2.51	0.89	1.25
July	1,628	0.81	1.63	1.63	0	1.63	0
August	1,665	0.83	1.67	1.67	0	1.67	0
Sept.	1,422	0.71	1.42	1.42	0	1.42	0
Oct.	753	0.38	0.75	0.75	0	0.75	0
Total	10,498	5.25	10.50	5.47	2.51	7.98	1.25

*Includes forage produced in the months preceding

In Option 2- the grazed only there is 10.50
AUM/acre (April to October). AUM's (animal unit month) can be converted to approximate hay tons equivalent. For air-dried irrigated pasture hay, 1,000 pounds of hay is equivalent to 1.0 AUM or 2.0 AUM is equivalent to one ton of pasture hay. Projected forage yields based on unpublished data from five locations in the Sacramento Valley, grazed only yields for $2=40$ acres, grazed and hayed yields on 40 acres and average yields over 40 acres, are shown in Table A. Grazing and haying management, species composition, access to timely irrigation water and the fertilizer program will affect the pasture production (yield).

Returns. The price of $\$ 185$ per ton is based on October 2014 California hay Report, USDA market prices for fair grade orchard grass hay. Returns will vary during the season, depending upon the hay quality and grazing markets. Returns for grazing forage are assumed to be the stated hay value and give a return of $\$ 35$ per AUM (each animal unit $=0.5$ ton). The price received (returns) for pasture rental can vary greatly ($\$ 18-\$ 40 /$ AUM $)$ depending on the structure of the lease and pasture amenities. The price received will vary depending on who pays (lessor or lessee) for the irrigation water and the labor to apply it, and for the fertilizer. Responsibility for animal management (checking livestock water, providing salt and minerals, and doctoring sick animals), for death loss, for moving the cattle from field to field, and for repairing the fence are also items to consider.

Other rental and rent price considerations are the ranch infrastructure and location variables such as quality of the livestock handling facilities, proximity to lessee's operation, quality of the pasture, and number of AUM's. Table 4 "Ranging Analysis" shows a range of returns and yields. Harvest costs in the table are based on a combination of grazing and hay harvest costs.

Grazing Management. Increasing the management of irrigated pasture will require a capital investment in fence installation and maintenance, as well as labor in monitoring electric fences, forage and animals and moving animals more frequently. In return, stocking rate could easily increase by 30% and has been increased to $50-100 \%$ in some cases. Implementing grazing management requires dividing the pasture into smaller paddocks and rotating animals frequently to optimize the amount of forage harvested and providing the proper length of rest allowed for regrowth. Intensive grazing management may also minimize the need for harrowing to break up manure and mowing weeds.

Fencing. In this study, twenty 2 acre paddocks would be developed. Fencing is a mixture of permanent and electric temporary fencing, and layout will vary greatly with each operation's needs. Cattle trained to electric fence can be controlled with a one-wire electric fence on irrigated pasture.

Watering. If livestock always have to come back to a single water point, the result will be heavier utilization closer to the water and lighter grazing farther out from the water. Water will need to be available in each paddock and temporary paddock. Five watering points are developed (each one located in a corner that meets 4 paddocks) to serve 20 paddocks.

Labor. Time will be invested into installing the permanent fencing and water points. More labor will also be required throughout the grazing season to monitor forage, animals, and move animals frequently. On average, animals will be move every 2 days.

On a 40 acre operation, the labor is provided by the owner/operator and will not be a cash cost in this study. The labor and equipment operator charges are included in the individual custom operations.

Carrying Capacity. This can vary greatly based on rainfall, irrigation, and temperature. Stocking rates will vary by location, topography, and slope. A good starting point on irrigated pasture would be 1 Animal-Unit Month (AUM) per acre. This would be the equivalent of one 1,000 pound cow one acre per month.

Cash Overhead

Cash overhead consists of various cash expenses paid out during the year that are assigned to the whole farm and not to a particular operation. These costs include property taxes, interest on operating capital, office expense, liability and property insurance, crop insurance, and investment repairs. Employee benefits, insurance, and payroll taxes are included in labor costs and not in overhead. Cash overhead costs are shown in Tables 1, 2, 3, 4 and 5.

Property Taxes. Counties charge a base property tax rate of 1% on the assessed value of the property. In some counties special assessment districts exist and charge additional taxes on property including equipment, buildings, and improvements. For this study, county taxes are calculated as 1% of the average value of the property. For this study the only taxed property is the corral fencing.

Interest on Operating Capital. Interest on operating capital is based on cash operating costs and is calculated monthly until harvest at a nominal rate of 5.75% per year. A nominal interest rate is the typical market cost of borrowed funds.

Insurance. Insurance for farm investments varies depending on the assets included and the amount of coverage. Property insurance provides coverage for property loss and is charged at 0.843% of the average value of the assets over their useful life. Liability insurance covers accidents on the farm and costs $\$ 627$ for the entire farm (45 acres) or $\$ 13.93$ per acre.

Crop Insurance. The insurance protects the grower from crop losses due to adverse weather conditions, fire, unusual diseases and/or insects, wildlife, earthquake, volcanic eruption, and failure of the irrigation system. The grower can choose the protection level at 50% to 75% of production history or county yields. In this study, no level is specified.

Office Expense. Office and business expenses are estimated to be $\$ 20.00$ per acre. These expenses include office supplies, telephones, bookkeeping, accounting, legal fees, road maintenance, office and shop utilities, and miscellaneous administrative expenses.

Investment Repairs. Annual repairs on investments or capital recovery items that require maintenance are calculated as two percent of the purchase price.

Non-Cash Overhead

Non-cash overhead is calculated as the capital recovery cost for equipment and other farm investments.
Capital Recovery Costs. Capital recovery cost is the annual depreciation and interest costs for a capital investment and is the amount of money required each year to recover the difference between the purchase prices and salvage value (unrecovered capital). The capital recovery costs are equivalent to the annual payment on a loan for the investment with the down payment equal to the discounted salvage value. This is a more complex method of calculating ownership costs than straight-line depreciation and opportunity costs, but more accurately represents the annual costs of ownership because it takes the time value of money into account (Boehlje and Eidman). The formula for the calculation of the annual capital recovery costs is;
[(Purchase Price - Salvage Value) x Capital Recovery Factor] + (Salvage Value x Interest Rate).

Salvage Value. Salvage value is an estimate of the remaining value of an investment at the end of its useful life. For farm machinery the remaining value is a percentage of the new cost of the investment (Boehlje and Eidman). The percent remaining value is calculated from equations developed by ASAE based on equipment type and years of life. The life in years is estimated by dividing the wear out life, as given by ASAE by the annual hours of use in the operation. For other investments including irrigation systems, buildings, and miscellaneous equipment, the value at the end of its useful life is zero. The salvage value for land is the purchase price because land does not depreciate.

Capital Recovery Factor. Capital recovery factor is the amortization factor or annual payment whose present value at compound interest is 1 . The amortization factor is a table value that corresponds to the interest rate and equipment life.

Interest Rate. The interest rate of 4.75% used to calculate capital recovery cost is the effective long-term interest rate in January 2014. The interest rate is used to reflect the long-term realized rate of return to these specialized resources that can only be used effectively in the agricultural sector.

Fence. This is as dealer-estimated cost for energizer (electrical unit), posts, clips and wire. Corral fencing is 10 , portable panels.

Irrigation System. The system consists of two underground lines with alfalfa valves, each line is one-quarter mile long and installed at the edge and middle of the 40 acres. The water is gravity fed from a water district canal into the growers' underground main line.

Livestock Facility. These facilities for handling the grazing cattle are estimated costs for two corrals, a squeeze chute and related equipment that are included in the $\$ 180$ per acre lease price.

Equipment Operating Costs. Repair costs are based on purchase price, annual hours of use, total hours of life, and repair coefficients formulated by the American Society of Agricultural Engineers (ASAE). Fuel and lubrication costs are also determined by ASAE equations based on maximum power takeoff (PTO) horsepower, and fuel type. Prices for on-farm delivery of diesel and gasoline are $\$ 3.88$ and $\$ 3.39$ per gallon, respectively. The costs are based on October 2014 prices. Energy Information Administration, Department of Energy (DOE) weekly data. Gasoline also includes federal and state excise tax, which are refundable for on-farm use when filing your income tax. The fuel, lube, and repair costs per acre for each operation in Table 1 is determined by multiplying the total hourly operating cost in Table 6 for each piece of equipment used for the selected operation by the hours per acre. Tractor time is 10% higher than implement time for a given operation to account for setup, travel and down time.

ATV. An All-Terrain Vehicle (ATV - 4 wheeler) is used for spot spraying, irrigating, checking fence lines and cattle. The charges for the ATV and other equipment are included in the individual custom operations.

Risk. The associated production risks should not be minimized. While this study makes every effort to model a production system based on typical, real world practices, it cannot fully represent financial, agronomic and market risks, which affect the profitability and economic viability of pasture production.

Table Values. Due to rounding, the totals may be slightly different from the sum of the components.

REFERENCES

American Society of Agricultural Engineers. 2011. American Society of Agricultural Engineers Standards Yearbook. Russell H. Hahn and Evelyn E. Rosentreter (ed.) St. Joseph, Missouri. 41st edition.

American Society of Farm Managers and Rural Appraisers. 2014. Trends in Agricultural Land \& Lease Values. California Chapter of the American Society of Farms Managers and Rural Appraisers. Woodbridge, CA.

Boelje, Michael D., and Vernon R. Eidman. 1984. Farm Management. John Wiley and Sons. New York, New York.

Lile, David F., Daniel B. Marcum, Donald L. Lancaster, Karen, M. Klonsky, and Pete Livingston. 2008. Sample Costs To Establish and Produce Pasture, Intermountain Region-2008. University of California Cooperative Extension and Department of Agricultural and Resource Economics. Davis, CA. http://coststudies.ucdavis.edu/en/current/

Forero, Larry C., Barbara A. Reed, Karen M. Klonsky, Richard L. De Moura. 2003. Sample Costs to Establish and Produce Pasture, Sacramento Valley-2003. University of California Cooperative Extension and Department of Agricultural and Resource Economics. Davis, CA. http://coststudies.ucdavis.edu/en/current/

University of California Statewide Integrated Pest Management Program. UC Pest Management Guidelines, Alfalfa. 2001. University of California, Davis, CA. http://www.ipm.ucdavis.edu.

California Department of Insurance, Rate Regulation Branch. http://www.insurance.ca.gov/0500-about-us/ Energy.

Information Administration 2014. Weekly Retail prices for farm delivery of Diesel \& Gasoline. http://tonto.eia.doe.gov/oog/info/gdu/gasdiesel.asp.

University of California Agriculture and Natural Resources. Statewide IPM Program, How to Manage Pests, Alfalfa. http://www.ipm.ucdavis.edu/PMG/selectnewpest.alfalfa-hay.html.

UC COOPERATIVE EXTENSION
TABLE 1. COSTS PER ACRE TO PRODUCE PASTURE 40 AC
SACRAMENTO VALLEY-2015

Operation	Operation Time (Hrs/A)	Cash and Labor Costs per Acre						
		Labor Cost	Fuel	Lube \& Repairs	Material Cost	Custom/ Rent	Total Cost	Your Cost
Cultural:								
Weeds-Spot Spray 2X	0.00	0	0	0	5	11	16	
Irrigate-Flood 7X	0.00	0	0	0	73	10	83	
Fencing Setup	0.00	0	0	0	0	7	7	
Fertilizer-21-0-0, 24% S	0.00	0	0	0	68	11	79	
Harrow Pasture 2X	0.00	0	0	0	0	15	15	
Weeds-Rotary Wiper	0.00	0	0	0	2	5	7	
TOTAL CULTURAL COSTS	0.00	0	0	0	149	58	206	
Harvest:								
Harvest Hay 40 Ac	0.00	0	0	0	0	120	120	
Graze 40 Ac 5X	0.00	0	0	0	0	14	14	
TOTAL HARVEST COSTS	0.00	0	0	0	0	134	134	
Interest on Operating Capital at 5.75\%							0	
TOTAL OPERATING COSTS/ACRE	0	0	0	0	149	191	339	
CASHOVERHEAD:								
Office Expense							20	
Liability Insurance 45Ac							16	
Land Lease 40 Ac							180	
Property Taxes (Corral fencing)							1	
Property Insurance							1	
Investment Repairs							2	
TOTAL CASH OVERHEAD COSTS/ACRE							220	
TOTAL CASH COSTS/ACRE							559	
NON-CASHOVERHEAD:		Per Producing Acre		Annual Capital Re	Cost overy			
Corral Fencing		42		3			3	
Electric Fencing		198		15			15	
Equipment		0		0			0	
TOTAL NON-CASH OVERHEAD COSTS		240		18			18	
TOTALCOSTS/ACRE							577	

UC COOPERATIVE EXTENSION
TABLE 2. COSTS AND RETURNS PER ACRE TO PRODUCE PASTURE 40 AC
SACRAMENTO VALLEY-2015

	Quantity/ Acre	Unit	Price or Cost/Unit	Value or Cost/Acre	$\begin{aligned} & \text { Your } \\ & \text { Cost } \end{aligned}$
GROSS RETURNS					
Hay 40 Ac	2.5	Ton	185.00	463	
Graze 40 Ac	5	AUM	35.00	175	
TOTAL GROSS RETURNS				638	
OPERATINGCOSTS					
Fertilizer:				68	
Ammonium Sulfate	200.00	Lb	0.34	68	
Custom:				191	
Ground Application	1.00	Acre	10.50	11	
Hand Labor	2.20	Hour	13.60	30	
Swath/Rake/Bale/Roadside	2.50	Ton	48.00	120	
Broadcast Fertilizer	1.00	Acre	10.50	11	
Harrow	1.00	Acre	15.00	15	
Rotary Weeder	0.50	Acre	10.50	5	
Herbicide:				7	
Roundup UltraMax	1.00	Pint	4.31	5	
2,4-D	0.50	Pint	3.55	2	
Irrigation:				73	
Water Delivered	54.00	AcIn	1.36	73	
Interest on Operating Capital @ 5.75\%				0	
TOTAL OPERATING COSTS/ACRE				339	
NET RETURNS ABOVE OPERATING COSTS				298	
CASH OVERHEAD COSTS					
Office Expense				20	
Liability Insurance 45Ac				16	
Land Lease 40 Ac				180	
Property Taxes (Corral fencing)				1	
Property Insurance				1	
Investment Repairs				2	
TOTAL CASH OVERHEAD COSTS/ACRE				220	
TOTAL CASH COSTS/ACRE				559	
NET RETURNS ABOVE CASH COSTS				79	
NON-CASH OVERHEAD COSTS (Capital Recovery)					
Corral Fencing				3	
Electric Fencing				15	
Equipment				0	
TOTAL NON-CASH OVERHEAD COSTS/ACRE				18	
TOTAL COST/ACRE				577	
NET RETURNS ABOVE TOTAL COST				60	

UC COOPERATIVE EXTENSION

TABLE 3. MONTHLY COSTS PER ACRE TO PRODUCE PASTURE 40 AC
SACRAMENTO VALLEY-2015

	$\begin{array}{r} \text { MAR } \\ 15 \end{array}$	APR 15	$\begin{array}{r} \text { MAY } \\ 15 \end{array}$	$\begin{array}{r} \text { JUN } \\ 15 \end{array}$	$\begin{array}{r} \text { JUL } \\ 15 \end{array}$	$\begin{array}{r} \text { AUG } \\ 15 \end{array}$	$\begin{array}{r} \text { SEP } \\ 15 \end{array}$	$\begin{array}{r} \text { OCT } \\ 15 \end{array}$	Total
Cultural:									
Weeds-Spot Spray 2X	9	6							16
Irrigate-Flood 7X		11	11	14	14	14	11	10	83
Fencing Setup		7							7
Fertilizer-21-0-0, 24\%S				79					79
Harrow Pasture 2X				8		8			15
Weeds-Rotary Wiper						7			7
TOTAL CULTURAL COSTS	9	24	11	100	14	29	11	10	206
Harvest:									
Harvest Hay 40 Ac			120						120
Graze 40 Ac 5X				3	3	3	3	3	14
TOTAL HARVEST COSTS	0	0	120	3	3	3	3	3	134
Interest on Operating Capital @ 5.75\%	0	0	0	0	0	0	0	0	0
TOTAL OPERATING COSTS/ACRE	9	24	132	101	16	31	13	12	339
CASHOVERHEAD									
Office Expense							20		20
Liability Insurance 45Ac							16		16
Land Lease 40 Ac							180		180
Property Taxes (Corral fencing)					1				1
Property Insurance					1				1
Investment Repairs	0	0	0	0	0	0	0	0	2
TOTAL CASH OVERHEAD COSTS	0	0	0	0	1	0	216	0	220
TOTAL CASH COSTS/ACRE	9	24	132	102	17	31	229	12	559

UC COOPERATIVE EXTENSION

TABLE 4. RANGING ANALYSIS - PASTURE 40 AC

SACRAMENTO VALLEY-2015

COSTS PER ACRE AT VARYING YIELDS TO PRODUCE PASTURE 40 AC

	$\begin{aligned} & \hline \text { TOTAL } \\ & \text { YIELD (TON) } \\ & \hline \end{aligned}$						
	3.00	4.50	6.00	7.50	9.00	10.50	12.00
OPERATINGCOSTS/ACRE:							
Cultural	206	206	206	206	206	206	206
Harvest	53	80	107	134	160	187	214
Interest on Operating Capital @ 5.75\%	0	0	0	0	0	0	0
TOTAL OPERATING COSTS/ACRE	259	286	312	339	366	393	419
TOTAL OPERATING COSTS/TON	86.24	63.45	52.05	45.21	40.66	37.40	34.96
CASHOVERHEADCOSTS/ACRE	220	220	220	220	220	220	220
TOTAL CASH COSTS/ACRE	478	505	532	559	586	612	639
TOTAL CASH COSTS/TON	159.48	112.27	88.67	74.51	65.07	58.33	53.27
NON-CASHOVERHEAD COSTS/ACRE	18	18	18	18	18	18	18
TOTALCOSTS/ACRE	497	524	550	577	604	631	658
TOTAL COSTS/TON	166.00	116.00	92.00	77.00	67.00	60.00	55.00

Net Return per Acre above Operating Costs for Pasture 40 Ac

PRICE (\$/ton)		YIELD (Ton/acre)						
Graze 40 Ac								
Hay 40 Ac		1.00	1.50	2.00	2.50	3.00	3.50	4.00
\$/ton	\$/AUM	2.00	3.00	4.00	5.00	6.00	7.00	8.00
125.00	20.00	-94	-38	18	73	129	185	241
145.00	25.00	-64	7	78	148	219	290	361
165.00	30.00	-34	52	138	223	309	395	481
185.00	35.00	-4	97	198	298	399	500	601
205.00	40.00	26	142	258	373	489	605	721
225.00	45.00	56	187	318	448	579	710	841
245.00	50.00	86	232	378	523	669	815	961

Net Return per Acre above Cash Costs for Pasture 40 Ac

PRICE (\$/ton)		YIELD (Ton/acre)						
Graze 40 Ac								
Hay 40 Ac		1.00	1.50	2.00	2.50	3.00	3.50	4.00
\$/ton	\$/AUM	2.00	3.00	4.00	5.00	6.00	7.00	8.00
125.00	20.00	-313	-258	-202	-146	-91	-35	21
145.00	25.00	-283	-213	-142	-71	-1	70	141
165.00	30.00	-253	-168	-82	4	89	175	261
185.00	35.00	-223	-123	-22	79	179	280	381
205.00	40.00	-193	-78	38	154	269	385	501
225.00	45.00	-163	-33	98	229	359	490	621
245.00	50.00	-133	12	158	304	449	595	741

TABLE 4. RANGING ANALYSIS CONTINUED

SACRAMENTO VALLEY-2015

PRICE (\$/ton)		YIELD (Ton/acre)						
	Graze 40 Ac							
Hay 40 Ac		1.00	1.50	2.00	2.50	3.00	3.50	4.00
\$/ton	\$/AUM	2.00	3.00	4.00	5.00	6.00	7.00	8.00
125.00	20.00	-332	-276	-220	-165	-109	-53	2
145.00	25.00	-302	-231	-160	-90	-19	52	122
165.00	30.00	-272	-186	-100	-15	71	157	242
185.00	35.00	-242	-141	-40	60	161	262	362
205.00	40.00	-212	-96	20	135	251	367	482
225.00	45.00	-182	-51	80	210	341	472	602
245.00	50.00	-152	-6	140	285	431	577	722

UC COOPERATIVE EXTENSION

TABLE 5. WHOLE FARM ANNUAL EQUIPMENT, INVESTMENT AND BUSINESS OVERHEAD COSTS
SACRAMENTO VALLEY-2015

ANNUAL EQUIPMENT COSTS
No Equipment in this study. All operations are hired through a custom farming operation.

ANNUAL INVESTMENT COSTS

ANNUALINVESTMENT COSTS								
Description	Price	$\begin{gathered} \text { Yrs } \\ \text { Life } \\ \hline \end{gathered}$	Salvage Value	Capital Recovery	Cash Overhead			Total
					Insurance	Taxes	Repairs	
INVESTMENT								
Corral Fencing	1,670	20	84	129	7	9	20	165
Electric Fencing	7,920	20	396	610	34	42	50	736
TOTAL INVESTMENT	9,590	-	480	738	42	50	70	900

	Units/ Farm	Unit	Price/ Unit	Total Cost
Description	40	Acre	20.00	800
Liability Insurance 45Ac	45	Acre	13.93	627
Land Lease 40 Ac	40	Acre	180	7,200

UC COOPERATIVE EXTENSION
TABLE 6. OPERATIONS WITH EQUIPMENT \& MATERIALS

Operation	Operation Month	Tractor*	Implement*	Labor Type/ Material	Rate/ acre	Unit
Weeds-Spot Spray	Mar	ATV	Sprayer	Roundup UltraMax	0.25	Pint
				2,4-D	0.50	Pint
				Ground Application	0.50	Acre
	Apr	ATV	Sprayer	Roundup UltraMax	0.25	Pint
				Ground Application	0.50	Acre
Irrigate-Flood 7X	Apr	ATV		Water Delivered	7.00	AcIn
				Hand Labor	0.10	Hour
	May	ATV		Water Delivered	7.00	AcIn
				Hand Labor	0.10	Hour
	June	ATV		Water Delivered	9.00	AcIn
				Hand Labor	0.10	Hour
	July	ATV		Water Delivered	9.00	AcIn
				Hand Labor	0.10	Hour
	Aug	ATV		Water Delivered	9.00	AcIn
				Hand Labor	0.10	Hour
	Sept	ATV		Water Delivered	7.00	AcIn
				Hand Labor	0.10	Hour
	Oct	ATV		Water Delivered	6.00	AcIn
				Hand Labor	0.10	Hour
Fencing Setup	Apr	ATV		Hand Labor	0.50	Hour
Fertilizer-21-0-0, 24\% S	June	45HP Tractor	Broadcast Spreader	Broadcast Fertilizer	1.00	Acre
				Ammonium Sulfate	200.00	Lb
Harrow Pasture 2X	June	45HP Tractor	Harrow	Equipment Operator Labor	0.09	hour
				Harrow	0.50	Acre
	Aug	45HP Tractor	Harrow	Equipment Operator Labor	0.09	hour
				Harrow	0.50	Acre
Weeds-Rotary Wiper	Aug	ATV	Rotary wiper	Equipment Operator Labor	0.16	hour
				Roundup UltraMax	0.50	Pint
				Rotary Weeder	0.50	Acre
Harvest Hay 40 Ac	May	Swather 16'		Swath		
		45HP Tractor	Rake 20'	Rake		
		45HP Tractor	Baler	Bale		
		Bale Wagon		Roadside	2.50	Ton
Graze 40 Ac	June	ATV		Hand Labor	0.20	Hour
	July	ATV		Hand Labor	0.20	Hour
	Aug	ATV		Hand Labor	0.20	Hour
	Sept	ATV		Hand Labor	0.20	Hour
	Oct	ATV		Hand Labor	0.20	Hour

*Equipment listed is owned-operated by custom farmer

[^0]: The University of California does not discriminate in any of its policies, procedures or practices. The university is an affirmative action/equal opportunity employer.

