Volume 39, Issue 5
Communication

On the Surprising Kinetic Stability of Carbonic Acid (H2CO3)

Thomas Loerting Mag.

Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, Innrain 52 a, 6020 Innsbruck (Austria) Fax: (+43) 512‐507‐5144

Search for more papers by this author
Christofer Tautermann Mag.

Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, Innrain 52 a, 6020 Innsbruck (Austria) Fax: (+43) 512‐507‐5144

Search for more papers by this author
Romano T. Kroemer Prof. Dr.

Department of Chemistry, Queen Mary/Westfield College University of London, Mile End Road, London E1 4NS (UK)

Search for more papers by this author
Ingrid Kohl Mag.

Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, Innrain 52 a, 6020 Innsbruck (Austria) Fax: (+43) 512‐507‐5144

Search for more papers by this author
Andreas Hallbrucker Prof. Dr.

Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, Innrain 52 a, 6020 Innsbruck (Austria) Fax: (+43) 512‐507‐5144

Search for more papers by this author
Erwin Mayer Prof. Dr.

Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, Innrain 52 a, 6020 Innsbruck (Austria) Fax: (+43) 512‐507‐5144

Search for more papers by this author
Klaus R. Liedl Prof. Dr.

E-mail address: Klaus.Liedl@uibk.ac.at

Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, Innrain 52 a, 6020 Innsbruck (Austria) Fax: (+43) 512‐507‐5144

Search for more papers by this author

The work was supported in part by grants of the Austrian Academy of Sciences (T.L.) and the Austrian Science Fund (P13930‐PHY).

Abstract

A half‐life of 0.18 million years for dry H2CO3 at 300 K clearly demonstrates that carbonic acid is not unstable, as is erroneously taught in high school and in many classical textbooks. Thus, H2CO3 possibly exists in outer space. Nevertheless, proton transfer mediated by just two catalytic water molecules leads to a decomposition (scheme shows analogous reaction with one water molecule) which is nearly as quick as that in aqueous solution.

Number of times cited according to CrossRef: 103

  • Isotopic fractionation during acid digestion of calcite: A combined ab initio quantum chemical simulation and experimental study, Rapid Communications in Mass Spectrometry, 10.1002/rcm.8790, 34, 13, (2020).
  • Heterogeneous Chemistry of CaCO 3 Aerosols with HNO 3 and HCl , The Journal of Physical Chemistry A, 10.1021/acs.jpca.9b11691, (2020).
  • How Collective Phenomena Impact CO 2 Reactivity and Speciation in Different Media , The Journal of Physical Chemistry A, 10.1021/acs.jpca.9b11744, (2020).
  • Molecular-Level Mechanism of Phosphoric Acid Digestion of Carbonates and Recalibration of the 13 C– 18 O Clumped Isotope Thermometer , ACS Earth and Space Chemistry, 10.1021/acsearthspacechem.9b00307, (2020).
  • Switching of the reaction enthalpy from exothermic to endothermic for decomposition of H 2 CO 3 under confinement , Physical Chemistry Chemical Physics, 10.1039/C9CP04587B, (2019).
  • Can carbonic acid protonate biological bases? Support from base protonation in methanol solvent, EPJ Web of Conferences, 10.1051/epjconf/201920509005, 205, (09005), (2019).
  • Understanding the nature of bonding interactions in the carbonic acid dimers, Journal of Molecular Modeling, 10.1007/s00894-018-3907-1, 25, 1, (2019).
  • Intact carbonic acid is a viable protonating agent for biological bases, Proceedings of the National Academy of Sciences, 10.1073/pnas.1909498116, (201909498), (2019).
  • Large Presence of Carbonic Acid in CO 2 -Rich Aqueous Fluids Under Earth's Mantle Conditions , The Journal of Physical Chemistry Letters, 10.1021/acs.jpclett.9b01919, (2019).
  • The influence of relative humidity on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate particles, Science of The Total Environment, 10.1016/j.scitotenv.2018.03.288, 633, (1253-1262), (2018).
  • Insight into interaction mechanisms of binary mixture systems of explosion products (H2O, CO2, and N2) at extreme high pressures and temperatures, Chemical Physics Letters, 10.1016/j.cplett.2018.10.081, (2018).
  • High-affinity adsorption leads to molecularly ordered interfaces on TiO 2 in air and solution , Science, 10.1126/science.aat6752, 361, 6404, (786-789), (2018).
  • Effect of ammonia-water complex on decomposition of carbonic acid in troposphere: A quantum chemical investigation, Computational and Theoretical Chemistry, 10.1016/j.comptc.2018.04.005, 1132, (50-58), (2018).
  • Carbonic acid monohydrate, American Mineralogist, 10.2138/am-2018-6554, 103, 9, (1468-1472), (2018).
  • First identification of unstable phosphino formic acid (H 2 PCOOH) , Chemical Communications, 10.1039/C8CC01391H, 54, 45, (5716-5719), (2018).
  • Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature, Scientific Reports, 10.1038/srep19902, 6, 1, (2016).
  • Tunnelling in carbonic acid, Chemical Communications, 10.1039/C6CC01756H, 52, 50, (7858-7861), (2016).
  • The role of dissolved carbon dioxide in both the decline in rumen pH and nutritional diseases in ruminants, Animal Feed Science and Technology, 10.1016/j.anifeedsci.2016.06.026, 219, (268-279), (2016).
  • Ammonia as an efficient catalyst for decomposition of carbonic acid: a quantum chemical investigation, Phys. Chem. Chem. Phys., 10.1039/C6CP02407F, 18, 23, (15995-16004), (2016).
  • Convective dissolution of CO 2 in reactive alkaline solutions: Active role of spectator ions, International Journal of Greenhouse Gas Control, 10.1016/j.ijggc.2016.07.034, 53, (230-242), (2016).
  • The Role of Negative Hyperconjugation in Decomposition of Bicarbonate and Organic Carbonate Anions, ChemistrySelect, 10.1002/slct.201601357, 1, 16, (5250-5259), (2016).
  • H 2 CO 3 → CO 2 + H 2 O decomposition in the presence of H 2 O, HCOOH, CH 3 COOH, H 2 SO 4 and HO 2 radical: instability of the gas-phase H 2 CO 3 molecule in the troposphere and lower stratosphere , RSC Advances, 10.1039/C4RA13233E, 5, 23, (17623-17635), (2015).
  • Insights into the Relationship of Catalytic Activity and Structure: A Comparison Study of Three Carbonic Anhydrase Mimics, International Journal of Chemical Kinetics, 10.1002/kin.20879, 46, 11, (683-700), (2014).
  • Molecular dynamics simulations predict an accelerated dissociation of H 2 CO 3 at the air–water interface , Phys. Chem. Chem. Phys., 10.1039/C4CP03302G, 16, 46, (25573-25582), (2014).
  • Autocatalytic Isomerizations of the Two Most Stable Conformers of Carbonic Acid in Vapor Phase: Double Hydrogen Transfer in Carbonic Acid Homodimers, The Journal of Physical Chemistry A, 10.1021/jp5024873, 118, 26, (4620-4630), (2014).
  • Carbonic acid: molecule, crystal and aqueous solution, Chem. Commun., 10.1039/C3CC45174G, 50, 5, (503-514), (2014).
  • Clarifying the structure of carbonic acid, Science, 10.1126/science.1260117, 346, 6209, (544-545), (2014).
  • Organic Acids Tunably Catalyze Carbonic Acid Decomposition, The Journal of Physical Chemistry A, 10.1021/jp5037469, 118, 27, (5020-5028), (2014).
  • The Role of Hydrogen Bonding in the Decomposition of H 2 CO 3 in Water: Mechanistic Insights from Ab Initio Metadynamics Studies of Aqueous Clusters , The Journal of Physical Chemistry B, 10.1021/jp5029195, 118, 22, (5983-5993), (2014).
  • New Mechanism for Autocatalytic Decomposition of H 2 CO 3 in the Vapor Phase , The Journal of Physical Chemistry A, 10.1021/jp412239e, 118, 13, (2385-2392), (2014).
  • Computational study of the reaction of dimethyl carbonate with methyl amine, Computational and Theoretical Chemistry, 10.1016/j.comptc.2014.09.010, 1049, (7-12), (2014).
  • Gas‐Phase Preparation of Carbonic Acid and Its Monomethyl Ester, Angewandte Chemie International Edition, 10.1002/anie.201406969, 53, 44, (11766-11771), (2014).
  • Gas‐Phase Preparation of Carbonic Acid and Its Monomethyl Ester, Angewandte Chemie, 10.1002/ange.201406969, 126, 44, (11960-11965), (2014).
  • Avoiding CO2 in Catalysis of Decarboxylation, , 10.1016/B978-0-12-407754-6.00002-8, (85-128), (2013).
  • Single-Crystal Neutron Diffraction Study on Guanidine, CN 3 H 5 , Crystal Growth & Design, 10.1021/cg400054k, 13, 4, (1730-1735), (2013).
  • Role(s) of adsorbed water in the surface chemistry of environmental interfaces, Chemical Communications, 10.1039/c3cc38872g, 49, 30, (3071), (2013).
  • Computer simulation of interactions in the NH3-CO2-H2O system, Russian Journal of General Chemistry, 10.1134/S1070363213010027, 83, 1, (10-14), (2013).
  • Frustrated Lewis Pairs: Activation of H2 and Other Small Molecules, Comprehensive Inorganic Chemistry II, 10.1016/B978-0-08-097774-4.00136-4, (1069-1103), (2013).
  • Matrix Isolation Studies of Carbonic Acid—The Vapor Phase above the β-Polymorph, Journal of the American Chemical Society, 10.1021/ja4020925, 135, 20, (7732-7737), (2013).
  • Mechanisms of the thermal decay of chlorpropham, Journal of Hazardous Materials, 10.1016/j.jhazmat.2012.12.003, 246-247, (154-162), (2013).
  • Autocatalytic decomposition of carbonic acid, International Journal of Quantum Chemistry, 10.1002/qua.24452, 113, 20, (2306-2311), (2013).
  • THE MECHANISM OF ACID-CATALYZED DECARBOXYLATION OF PYRROLE-2-CARBOXYLIC ACID: INSIGHTS FROM CLUSTER-CONTINUUM MODEL CALCULATIONS, Journal of Theoretical and Computational Chemistry, 10.1142/S021963361350017X, 12, 04, (1350017), (2013).
  • Comparative Study between Carbonic and Sulfurous Acids for Dissociation Reaction, Journal of the Chinese Chemical Society, 10.1002/jccs.200200111, 49, 5, (777-781), (2013).
  • How water molecules modulate the hydration of CO2 in water solution: Insight from the cluster‐continuum model calculations, Journal of Computational Chemistry, 10.1002/jcc.23144, 34, 5, (372-378), (2012).
  • On the formation of carbonate adducts of fatty alcohols, sterols, and sugars in biological conditions, ELECTROPHORESIS, 10.1002/elps.201200080, 33, 14, (2102-2111), (2012).
  • Formation and Stability of Bulk Carbonic Acid (H2CO3) by Protonation of Tropospheric Calcite, ChemPhysChem, 10.1002/cphc.201200422, 13, 13, (3087-3091), (2012).
  • Vibrational Spectra of Linear Oligomers of Carbonic Acid: A Quantum Chemical Study, The Journal of Physical Chemistry A, 10.1021/jp209715x, 116, 6, (1638-1647), (2012).
  • Bridging Static and Dynamical Descriptions of Chemical Reactions: An ab Initio Study of CO 2 Interacting with Water Molecules , Journal of Chemical Theory and Computation, 10.1021/ct300581n, 8, 11, (4029-4039), (2012).
  • CO2 capture in aqueous ammonia solutions: a computational chemistry perspective, Physical Chemistry Chemical Physics, 10.1039/c2cp43459h, 14, 47, (16301), (2012).
  • δ18O anchoring to VPDB: calcite digestion with 18O‐adjusted ortho‐phosphoric acid, Rapid Communications in Mass Spectrometry, 10.1002/rcm.4933, 25, 7, (851-860), (2011).
  • Investigating the formation and the properties of monoalkyl carbonates in aqueous medium using capillary electrophoresis with capacitively coupled contactless conductivity detection, ELECTROPHORESIS, 10.1002/elps.201000624, 32, 8, (850-856), (2011).
  • CO 2 Capturing Mechanism in Aqueous Ammonia: NH 3 -Driven Decomposition−Recombination Pathway , The Journal of Physical Chemistry Letters, 10.1021/jz200095j, 2, 7, (689-694), (2011).
  • Quantum chemical calculation on the potential energy surface of H2CO3 and its implication for martian chemistry, Icarus, 10.1016/j.icarus.2011.05.009, 214, 1, (228-235), (2011).
  • A computational study on the relationship between formation and electrolytic dissociation of carbonic acid, Theoretical Chemistry Accounts, 10.1007/s00214-011-0929-5, 130, 4-6, (909-918), (2011).
  • Mechanistic Insights into the Dissociation and Decomposition of Carbonic Acid in Water via the Hydroxide Route: An Ab Initio Metadynamics Study, The Journal of Physical Chemistry B, 10.1021/jp207752m, 115, 50, (15024-15035), (2011).
  • Populations of Carbonic Acid Isomers at 210 K from a Fast Two-Electron Reduced-Density Matrix Theory, The Journal of Physical Chemistry A, 10.1021/jp2057805, 115, 43, (12011-12016), (2011).
  • Spectroscopic Observation of Matrix‐Isolated Carbonic Acid Trapped from the Gas Phase, Angewandte Chemie International Edition, 10.1002/anie.201004729, 50, 8, (1939-1943), (2010).
  • Spektroskopische Beobachtung von matrixisolierter Kohlensäure, abgeschieden aus der Gasphase, Angewandte Chemie, 10.1002/ange.201004729, 123, 8, (1981-1985), (2010).
  • Ester Pyrolysis of Carbonates: Bis(benzene hydrate) Carbonate as Potential Precursor for Monomeric Carbonic Acid, European Journal of Organic Chemistry, 10.1002/ejoc.200901212, 2010, 6, (1070-1075), (2010).
  • Aqueous Carbonic Acid (H2CO3), ChemPhysChem, 10.1002/cphc.201000220, 11, 11, (2305-2309), (2010).
  • The formation and stability of carbonic acid on outer Solar System bodies, Icarus, 10.1016/j.icarus.2010.06.002, 210, 1, (480-487), (2010).
  • Insights into the structure and stability of the carbonic acid dimer, Physical Chemistry Chemical Physics, 10.1039/c003520c, 12, 36, (10963), (2010).
  • Hydrolytic Decarboxylation of Carboxylic Acids and the Formation of Protonated Carbonic Acid, Journal of the American Chemical Society, 10.1021/ja910608m, 132, 7, (2430-2436), (2010).
  • undefined, International Conference on Ultrafast Phenomena, 10.1364/UP.2010.TuD5, (TuD5), (2010).
  • Frustrated Lewis Pairs: Metal‐free Hydrogen Activation and More, Angewandte Chemie International Edition, 10.1002/anie.200903708, 49, 1, (46-76), (2009).
  • Frustrierte Lewis‐Paare: metallfreie Wasserstoffaktivierung und mehr, Angewandte Chemie, 10.1002/ange.200903708, 122, 1, (50-81), (2009).
  • Mid‐IR Spectroscopy and Structural Features of Protonated Carbonic Acid in the Gas Phase, ChemPhysChem, 10.1002/cphc.200800795, 10, 3, (520-522), (2009).
  • Reversible Metal‐Free Carbon Dioxide Binding by Frustrated Lewis Pairs, Angewandte Chemie International Edition, 10.1002/anie.200901636, 48, 36, (6643-6646), (2009).
  • Raman Spectroscopic Study of the Phase Transition of Amorphous to Crystalline β‐Carbonic Acid, Angewandte Chemie International Edition, 10.1002/anie.200805300, 48, 15, (2690-2694), (2009).
  • Reversible, nicht metallunterstützte Bindung von Kohlendioxid durch frustrierte Lewis‐Paare, Angewandte Chemie, 10.1002/ange.200901636, 121, 36, (6770-6773), (2009).
  • Raman‐spektroskopische Studie der Phasenumwandlung von amorpher in kristalline β‐Kohlensäure, Angewandte Chemie, 10.1002/ange.200805300, 121, 15, (2728-2732), (2009).
  • Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements, Geochimica et Cosmochimica Acta, 10.1016/j.gca.2009.05.071, 73, 24, (7203-7225), (2009).
  • Real-Time Observation of Carbonic Acid Formation in Aqueous Solution, Science, 10.1126/science.1180060, 326, 5960, (1690-1694), (2009).
  • Interaction of Carbon Dioxide and Hydroxide Ion at the Surface of Ice Films, The Journal of Physical Chemistry C, 10.1021/jp806643e, 112, 46, (18104-18109), (2008).
  • IR Spectra of Protonated Carbonic Acid and Its Isomeric H3O+⋅CO2 Complex, Angewandte Chemie International Edition, 10.1002/anie.200700750, 46, 25, (4754-4756), (2007).
  • IR Spectra of Protonated Carbonic Acid and Its Isomeric H3O+⋅CO2 Complex, Angewandte Chemie, 10.1002/ange.200700750, 119, 25, (4838-4840), (2007).
  • Electronic structure of H2CS3 and H2CS4: An experimental and theoretical study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 10.1016/j.saa.2006.06.016, 66, 4-5, (1261-1266), (2007).
  • DFT study on the water-assisted mechanism for the reaction between VO+ and NH3 to yield VNH+ and H2O, Chemical Physics Letters, 10.1016/j.cplett.2006.06.096, 427, 4-6, (265-270), (2006).
  • Batch Aqueous-Phase Reforming of Woody Biomass, Energy & Fuels, 10.1021/ef060113p, 20, 4, (1744-1752), (2006).
  • Theoretical Study on the Coupling Mode of BrOH2O and HOBrH2O Complexes, Chinese Journal of Chemistry, 10.1002/cjoc.200590483, 23, 5, (483-490), (2005).
  • Simple Chemical Reactions in the Solid State: Towards Elaborating a Conception, Foundations of Chemistry, 10.1007/s10698-005-7326-x, 7, 3, (307-314), (2005).
  • Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study, Physical Chemistry Chemical Physics, 10.1039/b417872f, 7, 6, (1266), (2005).
  • Parametric representation of the low-energy portion of the water–carbon dioxide G3(MP2)//B3LYP electronic energy surface. Variations on the theme developed by Professor B. Widom in his PhD dissertation, Molecular Physics, 10.1080/00268970500093902, 103, 21-23, (2829-2837), (2005).
  • Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: a Knudsen cell reactor, FTIR and SEM study, Physical Chemistry Chemical Physics, 10.1039/b510112c, 7, 20, (3587), (2005).
  • The Hidden Equilibrium in Aqueous Sodium Carbonate Solutions − Evidence for the Formation of the Dicarbonate Anion, European Journal of Inorganic Chemistry, 10.1002/ejic.200400445, 2005, 1, (168-172), (2004).
  • Reactions of mass-selected Fen+ cluster ions (n=1–5) with dimethyl carbonate, Inorganica Chimica Acta, 10.1016/j.ica.2004.01.037, 357, 6, (1881-1885), (2004).
  • DFT study of the water-assisted tautomerization process between hydrated oxide, MO(H2O)+, and dihydroxide, M(OH)2+, cations (M=V, Nb and Ta), Chemical Physics Letters, 10.1016/j.cplett.2003.11.093, 384, 1-3, (56-62), (2004).
  • LIGAND SUBSTITUTION REACTIONS, Solvent Exchange on Metal Ions, 10.1016/S0898-8838(03)54002-8, (71-155), (2003).
  • Extended method for adiabatic mode reordering, Journal of Computational Chemistry, 10.1002/jcc.10185, 24, 3, (386-395), (2003).
  • No‐Barrier Theory: Calculating Rates of Chemical Reactions from Equilibrium Constants and Distortion Energies, ChemPhysChem, 10.1002/cphc.200200327, 4, 8, (809-816), (2003).
  • A Gas‐Phase Reaction as a Functional Model for the Activation of Carbon Dioxide by Carbonic Anhydrase, Angewandte Chemie International Edition, 10.1002/anie.200351440, 42, 41, (5087-5090), (2003).
  • Eine Gasphasenreaktion als funktionales Modell der Aktivierung von Kohlendioxid durch die Carboanhydrase, Angewandte Chemie, 10.1002/ange.200351440, 115, 41, (5241-5244), (2003).
  • The ground state tunneling splitting of the 2-pyridone2-hydroxypyridine dimer, Chemical Physics, 10.1016/S0301-0104(03)00254-4, 292, 1, (47-52), (2003).
  • Formation of Ruthenium−Aminocarbene Complexes from Aldimines and Aminals, European Journal of Inorganic Chemistry, 10.1002/ejic.200200695, 2003, 10, (1883-1892), (2003).
  • About the Stability of Sulfurous Acid (H2SO3) and Its Dimer, Chemistry – A European Journal, 10.1002/1521-3765(20021216)8:24<5644::AID-CHEM5644>3.0.CO;2-9, 8, 24, (5644-5651), (2002).
  • Uncatalyzed and Amine Catalyzed Decarboxylation of Acetoacetic Acid: An Examination in Terms of No Barrier Theory, Bioorganic Chemistry, 10.1006/bioo.2001.1231, 30, 1, (32-52), (2002).
  • Towards the Experimental Decomposition Rate of Carbonic Acid (H2CO3) in Aqueous Solution, Chemistry – A European Journal, 10.1002/1521-3765(20020104)8:1<66::AID-CHEM66>3.0.CO;2-F, 8, 1, (66-73), (2001).
  • Tropospheric Formation of Hydroxymethyl Hydroperoxide, Formic Acid, H2O2, and OH from Carbonyl Oxide in the Presence of Water Vapor: A Theoretical Study of the Reaction Mechanism, Chemistry – A European Journal, 10.1002/1521-3765(20010518)7:10<2227::AID-CHEM2227>3.0.CO;2-O, 7, 10, (2227-2235), (2001).
  • The Reaction Rate Constant of Chlorine Nitrate Hydrolysis, Chemistry – A European Journal, 10.1002/1521-3765(20010417)7:8<1662::AID-CHEM16620>3.0.CO;2-P, 7, 8, (1662-1669), (2001).
  • New Insights into the Mechanistic Details of the Carbonic Anhydrase Cycle as Derived from the Model System [(NH3)3Zn(OH)]+/CO2: How does the H2O/HCO3− Replacement Step Occur?, ChemBioChem, 10.1002/1439-7633(20010302)2:3<190::AID-CBIC190>3.0.CO;2-7, 2, 3, (190-198), (2001).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.