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Review article

Blood doping and its detection
Wolfgang Jelkmann1 and Carsten Lundby2

1Institute of Physiology, University of Lübeck, Lübeck, Germany; and 2Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland

Hemoglobin mass is a key factor for maxi-
mal exercise capacity. Some athletes ap-
ply prohibited techniques and substances
with intent to increase hemoglobin mass
and physical performance, and this is
often difficult to prove directly. Autolo-
gous red blood cell transfusion cannot be
traced on reinfusion, and also recombi-
nant erythropoietic proteins are detect-
able only within a certain timeframe. Novel
erythropoietic substances, such as mi-

metics of erythropoietin (Epo) and activa-
tors of the Epo gene, may soon enter the
sports scene. In addition, Epo gene trans-
fer maneuvers are imaginable. Effective
since December 2009, the World Anti-
Doping Agency has therefore imple-
mented “Athlete Biologic Passport Oper-
ating Guidelines,” which are based on the
monitoring of several parameters for ma-
ture red blood cells and reticulocytes.
Blood doping may be assumed, when

these parameters change in a nonphysi-
ologic way. Hematologists should be fa-
miliar with blood doping practices as they
may play an important role in evaluating
blood profiles of athletes with respect to
manipulations, as contrasted with the es-
tablished diagnosis of clinical disorders
and genetic variations. (Blood. 2011;118(9):
2395-2404)

Introduction

The World Anti-Doping Agency (WADA) defines blood doping as
“the misuse of certain techniques and/or substances to increase
one’s red blood cell mass, which allows the body to transport more
O2 to muscles and therefore increase stamina and performance.”1

Prohibited procedures include the use of synthetic O2 carriers, the
transfusion of red blood cells (RBCs), the infusion of hemoglobin
(Hb), and the artificial stimulation of erythropoiesis. This review
focuses on erythropoietic substances and RBC parameters that are
affected by blood doping and provided the basis for WADA’s
“Athlete Biologic Passport Operating Guidelines.”2 Synthetic
O2 carriers, such as Hb-based O2 carriers or perfluorocarbons, are
not considered here. The topic is timely. Experts having knowledge
in the fields of clinical hematology, laboratory medicine/
hematology, and physiology/hematology may become involved in
the evaluation of athletes’ blood profiles. The experts must be able
to analyze and certify whether a blood value abnormality is the
result of doping or the result of an acute disorder, respectively, a
genetic variation.3

Several paragraphs of the “2011 Prohibited List” of the WADA
are relevant as regards blood doping.1 First, under “Prohibited
Substances” (“S2. Peptide hormones, growth factors and related
substances”), several erythropoiesis-stimulating agents (ESAs) are
itemized: erythropoietin (Epo), darbepoetin-alfa, hypoxia-induc-
ible factor (HIF) stabilizers, methoxy polyethylene glycol-epoetin
� (CERA), and peginesatide (Hematide; Affymax). Second, under
“Prohibited Methods” forbidden blood products are specified
(“M1. Enhancement of oxygen transfer”). Furthermore, intrave-
nous infusions (unless clinically legitimated) and the sequential
withdrawal, manipulation and reinfusion of whole blood are
prohibited (“M2. Chemical and physical manipulation”). Finally,
genetic interventions with the potential to enhance sport perfor-
mance are defined (“M3. Gene doping”), including “the transfer of
nucleic acids or nucleic acid sequences, the use of normal or
genetically modified cells, and the use of agents that directly or

indirectly affect functions known to influence performance by
altering gene expression.”1

Hb mass and physical performance

In aerobic sport disciplines, such as long-distance running, cycling,
or cross-country skiing, the main factors determining performance
are a high delivery of O2 to the exercising skeletal muscles and its
use (Figure 1). The rate of maximal O2 uptake (�O2 max) is dependent
on a high cardiac output (Q) and a wide difference for arterial-
venous O2 (a-vO2), that is, the Fick equation: �O2 max � Qmax �
a-vO2 max. Because (1) Qmax is difficult (if not impossible) to
manipulate to higher values during competitions, (2) the distribu-
tion of Q during maximal exercise to the working skeletal muscles
is close to 80%, and (3) arterial O2 extraction is already in the range
of approximately 90% at maximal exercise, the only variable that
remains open for manipulations in regards to increasing exercise
performance is the arterial O2 content. Accordingly, in a given
person, changes in Hb concentration ([Hb]) by either RBC
transfusion or hemodilution will increase or decrease �O2 max,
respectively.4 On the group basis, however, [Hb] is not predictive
of �O2 max, whereas the total mass of Hb (Hbmass) correlates very
well with �O2 max.5 Indeed, a somewhat reduced [Hb] is sometimes,
but not always, observed among athletes, whereas Hbmass is usually
increased compared with normal healthy persons (Figure 2).

The first experiments with blood transfusions and exercise were
performed by Pace et al,6 who demonstrated that the transfusion of
450 mL of whole blood on 4 consecutive days decreases submaxi-
mal exercise heart rate (in hypoxia) for several weeks, and hence
predicted that exercise performance would be increased. Accord-
ingly, it was calculated in a recent review that a change of 1 g in
Hbmass will produce a change in �O2 max of 4 mL min�1,7 whereas the
effects on submaximal exercise performance are probably variable
according to competition distance. It should also be noted here that
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volume loading (ie, plasma volume expansion) in itself does not
lead to an improved exercise performance in elite athletes,8 again
highlighting the role of Hbmass. If, however, a plasma volume

expander is administrated simultaneously with increments in
Hbmass, then performance will probably increase more than when
just augmenting the total red cell volume.9

Figure 1. Parameters determining the aerobic capacity. The aerobic capacity, as measured as the maximal O2 uptake (�O2 max), depends primarily on the person’s total Hb
mass, the maximal cardiac output, and the maximal O2 extraction in the heart and the skeletal muscles. The total Hbmass results from the blood hemoglobin concentration and
the blood volume.

Figure 2. Hematocrit (%) and total Hbmass (g/kg). Measures were made in moderately trained young males (Danish, commuting to work/school on bicycle and engaged in
easy aerobic training 1-3 times per week); in trained runners (French, all finishers of the “Ultra Trail du Mont Blanc,” 166 km of mountain trail running with 9500 m of altitude
gain); in national level cyclists (Danish, American, Canadian); and in national team cross-country skiers (German, Swedish, and French), including several Olympic and
World Championship medalists. The figure illustrates that elite athletes may have similar hematocrit values compared with healthy persons, but that Hbmass is increased.
*P � .001 versus moderately trained persons. The data were collected by C.L., Paul Robach, and Bengt Saltin between 2005 and 2011 in a joint effort.
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The influence of Epo on exercise performance

The performance enhancing (ergogenic) effect of recombinant
human Epo (rhEpo) in aerobic sports was investigated shortly after
the medicine became available.10,11 It soon became clear that
subcutaneous administration of rhEpo at doses of 60 to 350 U/kg
body weight and week for 4 to 6 weeks increases �O2max and the
time to exhaustion substantially.10,12,13 More recent studies in which
rhEpo was applied to healthy volunteers in lower dosages demon-
strated that �O2 max is increased by 6%-12% when the hematocrit
(Hct) is increased to approximately 0.50 but also demonstrated that
time to exhaustion (in the laboratory) at a given level of �O2 max is
increased by up to 50%.14 A challenge for antidoping work is that
when rhEpo administration is discontinued in healthy volunteers,
�O2 max remains elevated for at least 3 weeks. Effects of rhEpo in
normal humans have been reviewed recently.15 Although Epo is
reported to activate several nonhematologic factors (ie, in addition
to stimulating erythropoiesis), which are usually also associated
with improvements in aerobic performance, the primary mecha-
nism by which Epo increases exercise performance in humans is
through augmented erythropoiesis.16-18 ESAs are particularly effec-
tive in combination with iron supplementation.19 The administra-
tion of iron results in increased ferritin levels in athletes.20 Ferritin
levels more than 1000 �g/L have been observed.21

There are as yet no reports on physical performance in healthy
humans with increased circulating Epo and Hbmass because of the
administration of compounds stimulating the expression of the
endogenous Epo gene or after Epo gene transfer.

Direct detection of blood doping

Blood and urine samples can be taken in-competition and out-of-
competition. With respect to reservations that a venipuncture is a
medical intervention and may violate the tenets of certain religious
or cultural groups, the WADA has stated that there is no basis for
such provisos.1

RBC transfusion

A test for detection of allogeneic blood transfusion doping was
implemented in 2004. The test uses blood group antisera to identify
mixed RBC populations in blood samples by flow cytometry.
Nelson et al22 applied antisera against 12 blood group antigens and
demonstrated that the presence of allogeneic cells can be assessed
in the blood of subjects who had previously received at least one
unit of allogeneic blood. Giraud et al23 carried out a single-blind
and single-site study to validate the flow cytometry method as a
forensic quality standard analysis and to allow objective interpreta-
tion of real cases. No false-positive results were obtained in an
analysis of 140 blood samples containing different percentages
(0%-5%) of a minor RBC population, indicating a 100% specificity
of the method. Most samples containing a 1.5% minor RBC
population were unambiguously detected, yielding a 78% sensitiv-
ity. The method proved to fulfill the ISO-17025 accreditation and
validation requirements.23 Athletes making use of allogeneic blood
transfusion are thus very likely to be caught if tested.

Autologous RBC manipulations can at present only be detected
via indirect measures, which represents a major problem in

antidoping efforts. The CO rebreathing technique for detecting
nonphysiologic increases in Hbmass is still investigational,24,25 and
besides practical difficulties related to this method, its potential
inclusion in the blood passport may be problematic,26 because the
margin of variation when assessing Hbmass (biologic and measure-
ment errors) would still allow athletes to manipulate with blood
volumes that would increase exercise performance considerably.27

Finally, it should also be considered that, from an athlete’s
viewpoint, it may not be desirable to breathe CO shortly before a
competition as this may limit exercise performance.

Peptidic ESAs

Currently available rhEpo preparations (epoetins) are produced in
Epo complementary DNA (cDNA) transfected Chinese hamster
ovary (CHO) or baby hamster kidney (BHK) cell cultures. The only
therapeutic rhEpo engineered in human cells (epoetin �) is off
market since the beginning of 2009 (Table 1). Because the patents
of the originator epoetins have died, biosimilar products have been
approved in many parts of the world.28 Furthermore, various copied
CHO cell-derived rhEpos are available in countries without a
regulated market.29

Endogenous Epo and the epoetins have an invariant sequence of
165 amino acids, but they differ in glycosylation. Compared with
the epoetins, endogenous Epo isoforms are more acidic30-32 and
smaller in size.33 Epo can be separated by isoelectric focusing (IEF)
or electrophoresis of urine samples. After IEF, a double-blotting
procedure is performed. The mutein darbepoetin-alfa migrates
more in the acidic range than Epo on IEF.30,31 The WADA has
established criteria to achieve harmonization in the performance of
the test for epoetin and darbepoetin in urine.34 Actually, when urine
samples from rhEpo-treated subjects were submitted to 2 WADA-
accredited laboratories, the results were not fully consistent,35

which, as claimed by the laboratories, was apparently the result of
methodologic differences. A recent detection problem has arisen
with the addition of proteases by athletes to their urinary samples,
which destroys the erythropoietic proteins.36,37 The adulteration of
urine with proteases is a prohibited method,1 and techniques have
been developed for the detection of their misuse.38

Another difficulty relates to the fact that once [Hb] has been
raised in athletes by the administration of recombinant ESAs, only
microdoses or less frequent injections of the drugs are needed to
maintain [Hb] at the high level.39 In this situation, the window of
detection of rhEpo in urine is only 12-18 hours,40 compared with
about 3 days on regular dosing (50 U/kg body weight 3 times a
week).41 Thus, although the detection of rhEpo in urine is effective
if the injection frequency is high, this is certainly not the case when
the injection rate is reduced to weekly injections.35 Because
darbepoetin-alfa has a 3- to 4-fold longer half-life (24-26 hours)42

than the epoetins (6-8 hours), the window of detection of darbepo-
etin-alfa is prolonged to approximately 7 days.43,44 CERA has an
even longer half-life of approximately 6 days.45 IEF of CERA
yields bands in the less acidic area compared with native Epo.46 IEF
for investigation of doping with CERA has also been applied to
blood samples.47 In addition, CERA can be detected by ELISA.

Table 1 gives an overview of recent Epo-like molecules and
derivatives that have entered preclinical or clinical trials and are
potential candidates for misuse in sports. Of particular interest are
recombinant fusion proteins of Epo with the Fc region of human
IgG because one of these was shown to stimulate erythropoiesis,
when administered as an aerosol in a phase 1 trial.48
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Epo mimetic peptides (EMPs) are synthetic cyclic peptides of
about 20 amino acids. A potent pegylated EMP dimer (INN:
peginesatide; Hematide) proved to stimulate erythropoiesis in
experimental animals49 and in healthy male volunteers.50 Pegine-
satide is currently in phase 3 trials for the treatment of patients with
chronic renal failure (CKD). Peginesatide can be detected by
enzyme-linked immunoassay.49 In a clinical trial on 14 patients
with CKD, who had pure red cell aplasia because of anti-Epo
antibodies and were treated with peginesatide for 28 months,
neutralizing antibodies against the drug occurred in one of the
patients.51 This should further discourage athletes to use the
medicine as a doping means.

In an alternative approach, EMPs have been constructed onto
human IgG1-based scaffolds by recombinant DNA technology. The
seminal compound, CNTO 528 (Centocor), produced a reticulocy-
tosis and increased [Hb] on intravenous administration in a phase
1 study in healthy men.52 The follow-on product CNTO 530, a
dimeric EMP fused to a human IgG4 Fc scaffold, has been shown
to expand the pool of erythroid progenitors in vitro and in vivo.53

Drugs activating the endogenous Epo gene

The Epo enhancer is under the control of HIFs, heterodimeric
proteins composed of the subunits � and �. HIF-2 is the main factor
inducing Epo expression.54 The C-terminus of HIF-� is composed
of proline residues that are hydroxylated in the presence of O2.
Prolyl hydroxylated HIF-� binds the von Hippel-Lindau tumor
suppressor protein in complex with an E3-ligase and undergoes
immediate proteasomal degradation. The transcriptional activity of
the HIFs is suppressed by O2-dependent hydroxylation of an

asparagine residue. The HIF-� hydroxylases contain Fe2	 and are
inactivated by Fe2	 removal.55 However, iron chelators are not
suited for stimulation of erythropoiesis in the long-term because
iron is required for heme synthesis. HIF-dependent Epo expression
is augmented by divalent transition metals, such as cobalt or nickel.
It has been known that cobalt increases erythropoiesis in experimen-
tal animals.56 Cobalt binds to HIF-�, thereby preventing the
docking of von Hippel-Lindau tumor suppressor protein.57 Cobalt
is a very potent inducer of Epo transcription. Indeed, the interna-
tional Epo unit (IU) was originally defined as the dose eliciting the
same erythropoiesis stimulating response in rats as 5 �mol of
cobaltous chloride.58 The treatment of anemic CKD patients
with cobalt (commonly administered as enteric-coated tablets,
30-150 mg daily)59,60 is no longer performed because of its
toxicity.61 However, cobalt may be misused by athletes as a
proper means to enhance Epo levels and Hbmass.62 Cobalt is very
potent, inexpensive, and not comprehended in the WADA’s “Prohib-
ited List.” Furthermore, the HIF-� hydroxylases require �-ketoglu-
tarate for their catalytic action.55 �-Ketoglutarate competitors
(“HIF stabilizers”) are orally active compounds that stimulate
Epo production and erythropoiesis.63,64 A number of chemically
different HIF stabilizers has been identified.65,66 A phase 1 clinical
trial investigating effects of the �-ketoglutarate competitor
FG-2216 (FibroGen) in CKD patients has been reported.67 How-
ever, HIF stabilizers induce the expression of more than 200 genes
apart from Epo,65,66 which may result in serious unwanted effects in
athletes. On the other hand, it is probable that some of the
HIF-activated genes encode proteins that may increase physical
performance (eg, glycolytic enzymes, glucose transporters, and
angiogenic peptides).

Table 1. Erythropoiesis-stimulating compounds and techniques prohibited in sports

Compound/technique Manufacturer Development/approval status
Pharmacologic

references

Recombinant products

Originator epoetins

(�, �, 
), biosimilar

epoetins (�, �, �)

Recombinant DNA technology Epo-transfected

CHO cells

Country- and product-specific marketing

authorization in North America, Australia, Asia,

European Union

28(R), 29(R), 46(R), 58(R)

Epoetin-� copies Epo-transfected CHO cells Marketed in Asia, Central and South America,

Africa

29(R), 46(R), 125(R)

Epoetin- Epo-transfected BHK cells Marketed in South Africa 46(R)

Epoetin-� Cytomegalovirus promoter-transfected HT-1080

cells

No longer available (marketing stopped in 2009) 29(R), 46(R), 125(R)

Methoxy-PEG-epoetin-� Epo-transfected CHO cells, pegylated Marketed in European Union and Asia 29(R), 45(R), 46(R)

Darbepoetin-alfa Mutated Epo-transfected CHO cells,

hyperglycosylated

Marketed in European Union, North America,

Australia, Asia

42, 43, 29(R), 46(R)

Epo fusion proteins Recombinant DNA technology Clinical trials 48, 125(R)

Epo-Epo, Epo-Fc,

Epo-�HCG

Peptidic Epo mimetics Chemical synthesis Clinical trials 29(R), 46(R)

Pegisenatide PEG coupled 49-51

CNTO 528, CNTO 530 Fused to recombinant immunoglobulin 52, 53

Epo gene activators Chemical synthesis 125(R)

HIF stabilizers 55(R), 65(R), 66(R)

Cobalt Unapproved administration 59, 61, 60(R)

�-Ketoglutarate

competitors

Clinical trials 67

GATA inactivators Preclinical trials 68-70

Epo gene transfer In vivo gene transfer Preclinical trials 71-75

In vitro gene transfer Clinical trials 79

Modified from Jelkmann.125

(R) indicates review.
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GATA inhibitors are nonpeptidic organic compounds that
prevent GATA-2 from suppressing the Epo promoter.68,69 Initially,
the GATA inhibitor K-7174, a diazepane derivative, was used.
Subsequent reports have indicated that the follow-on product
K-11706 exerts even stronger erythropoietic effects in vitro and in
experimental animals.69,70 K-11706 was already shown to increase
physical performance in mice.70

Epo gene transfer

A viral gene delivery vector carrying the human Epo gene under the
control of an O2-dependent hypoxia response element (Repoxygen;
Oxford BioMedica) was earlier developed that might have been
misused for Epo gene doping. Reportedly, however, the technique
never proceeded beyond animal experiments.71 In addition, in vivo
Epo gene transfer could probably be detected if applied by athletes,
as an IEF study revealed unusual Epo glycosylation forms on
allogeneic Epo transfer into skeletal muscle of cynomolgus ma-
caques via adeno-associated virus.72 In the initial studies of
adeno-associated virus-mediated allogeneic Epo cDNA transfer to
macaques, severe anemia developed in many animals after a few
months, which was probably the result of an immune reaction.73,74

However, in using a rapamycin dimerizer-regulated gene expres-
sion system, Rivera et al75 achieved controlled, long-term produc-
tion (up to 6 years) of Epo in rhesus monkeys, with no apparent
immune response. Regarding the possibility of Epo gene doping in
humans, strategies are under development to specifically amplify
intron-less DNA sequences and PCR protocols allowing the
detection of small amounts of transgenic DNA in blood.76-78 The
tests take into consideration that transgenes are usually derived
from the cDNA for the gene to be transferred and cDNA does not
contain introns.

An autologous ex vivo approach was chosen in the first human
Epo gene therapy trial on patients with CKD.79 An individual
dermal core sample was transfected with Epo cDNA inserted into a
vector containing the cytomegalovirus promoter and the simian
virus-40 polyA site. When the dermal cores were reimplanted
under the abdominal skin, serum Epo levels peaked in most cases
on day 3 and then decreased, reaching baseline levels, probably
because of immunologic rejection of the transplants. The transient
Epo increase produced a reticulocytosis but was not sufficient to
raise [Hb] levels.79

In conclusion, Epo gene transfer is possible but medically little
explored with respect to efficacy, safety, and immunogenicity. It
seems less likely that any of the techniques has entered the sports
scene.

Other erythropoietic hormones

Several hormones may stimulate the renal and/or hepatic produc-
tion of Epo, including prostanoids, thyroid hormone, angiotensin
II, growth hormone (GH), and testosterone. The latter are of
particular interest regards blood doping (Figure 3).

A study in anemic CKD patients has shown that plasma Epo
levels increase 6 hours after the start of GH infusion, with peak
values reached after 96 hours.80 The fact that the rise in plasma Epo
occurred earlier than the rise in insulin-like growth factor-1 (IGF-1)
indicates that GH directly stimulates Epo production. IGF-1 was
earlier shown to promote the growth of erythrocytic progenitors.81

The concentration of circulating IGF-1 correlates with Hct in CKD
patients.82 Synthetic GH secretagogues (ghrelin mimetics), recom-
binant human GH, and recombinant human IGF-1 are available for
therapeutic purposes.

Figure 3. Control of erythropoiesis and starting points for blood doping. The hormone Epo, which derives from kidneys and liver, stimulates the survival, proliferation, and
differentiation of the erythrocytic progenitors in hemopoietic tissues. The enhanced release of reticulocytes leads to an increase in the blood hemoglobin concentration and,
thus, the O2 capacity of the blood and the total Hb mass. Epo gene expression in the kidneys and the liver is controlled at the transcriptional level. Because the Epo enhancer is
activated by the HIF, chemicals stabilizing HIF, such as cobalt and �-ketoglutarate competitors, increase Epo expression. GATA inactivators release the Epo promoter from the
inhibition by GATA-2. Androgenic steroids and GH, respectively IGF-1, augment the production of Epo and the proliferation of erythrocytic progenitors.
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Anabolic-androgenic steroids also increase both the production
of Epo and the proliferation of erythrocytic progenitors in the bone
marrow, as reviewed elsewhere.83

WADA’s “Biologic Passport”

Traditional antidoping analyses are based on the detection of a
substance in biologic fluids (“Adverse analytical finding”). This
approach has major limitations in regard to blood doping. As
outlined in the previous section, autologous blood cannot be
detected, there is a plethora of ESAs, the detection window is
limited, and there is urine manipulation. Some sports federations
earlier introduced upper [Hb] and Hct limits to escape from this
dilemma. Athletes tested above the limits were declared unfit for
competition (“No-start rule”). However, [Hb] and Hct are influ-
enced by external factors, such as body posture, exercise, or
residence at altitude. In addition, “clean” athletes can have
naturally high [Hb] and Hct values. A large retrospective study on
male blood donors in Denmark revealed that 3.9% of nonathletes
and 10.4% of elite rowers had Hct values more than 0.51 (ie, above
the recommended limits for athletic competition).84 In addition,
Cazzola 21 warned that the adoption of upper [Hb] and Hct limits
may paradoxically generate more blood doping because, by ESA
misuse, [Hb] and Hct can be manipulated with the aim of
approaching the target values without exceeding it.

Hematologic parameters depend on ethnicity, age, and gender.
Even [Hb] values differ.85 Hence, it has been suggested to use
longitudinal blood profiles together with heterogeneous factors,
such as ethnicity and age, to develop models with improved
sensitivity to detect blood doping.86-88 Some blood parameters,
such as the concentration of Epo and reticulocytes (Ret), increase
on administration of ESAs (ON-score), whereas they decrease after
RBC transfusion or after the cessation of ESA administration
(OFF-score).86,89-94 The “Abnormal Blood Profile Score” (not
presently used for the assessment of abnormal blood profiles based
on the passport data) regards additional red cell parameters,
including the mean corpuscular Hb concentration (MCHC), mean
corpuscular volume (MCV), mean corpuscular Hb mass (MCH),
Ret counts, serum Epo, and soluble transferrin receptor (sTfR).95

Algorithms have been used that are sensitive during one of the two
phases, with ON-score being sensitive during ESA treatment and
OFF-score during the cessation phase. Details of the calculation of
these scores are described elsewhere.96

Having become effective in December 2009, the “Athlete
Biologic Passport Operating Guidelines”2 equip Anti-Doping Orga-
nizations with a framework in which to pursue antidoping rule
violations in accordance with Article 2.2. of the World Anti-Doping
(WAD) Code (“Use or Attempted Use by an Athlete of a Prohibited
Substance or a Prohibited Method”). The guidelines include
mandatory requirements for collection, transportation, analysis of
blood samples, and results management. The following markers are
considered in the Athlete Biologic Passport hematologic module:
Hct, Hb, RBC count, reticulocyte percentage, reticulocyte number,
MCV, MCH, MCHC, and OFF-hr score (Index of stimulation
derived from the formula: ([Hb] (g/L) � 60 � � (reticulocyte
percentage); normal range, 85-95). In addition, parameters of
interest can be the mean Ret cell volume (MCVr), Ret Hb
concentration (MCHCr) and Ret Hb content (MCHr), as measured
by flow cytometry as in clinical routine.97 The results reported to
the WADA are processed by an “Adaptive Model” that identifies

abnormal blood parameter changes related to the athlete’s indi-
vidual profile. In particular, [Hb] or OFF-hr score abnormalities
with a 99.9% probability or more will be reviewed by experts.2

RBC parameters associated with autologous
retransfusion

The failure to obtain direct proof for autologous blood transfusion
has prompted the search for indirect evidence. In a preliminary
antidoping context, Damsgaard et al98 reported changes in hemato-
logic parameters after blood withdrawal and reinfusion. Ten
healthy men were subjected to withdrawal of 20% of their blood
volume (and hence much more than common doping practice),
which was replaced by 1.3 L of hydroxyl-ethyl starch. Circulating
Epo increased 4-fold within a day, declining exponentially thereaf-
ter. Reticulocyte number increased 2.4-fold after 7 days, remaining
elevated for another 7 days. [Hb] remained reduced on average by
15% for 2 weeks. sTfR increased by 60% by day 14 and remained
elevated until 3 days after reinfusion of 0.8 L of packed RBCs,
which was performed one month later. Thereby, [Hb] increased
acutely by 8% returning to the initial baseline value after 7 days.
Epo concentrations remained unchanged, whereas reticulocyte
numbers were reduced by approximately 30% from days 7 to 21. Only
one of the men in this study showed [Hb] values higher than
170 g/L,98 thereby exceeding the upper limit offset by some sport
federations for male athletes. None of the men demonstrated
positive OFF-scores according to the model of Gore et al,86 which
renders this model less effective in detecting blood transfusion
doping.98 The loss of Hbmass of approximately 75 g (measured by
CO rebreathing) after donation of 550 mL blood has been shown to
be recovered after a mean of 36 days.99 After the retransfusion of
one RBC unit Hbmass acutely increased by 51 g, showing a
continuous decrease from week 2 until week 8, albeit Hbmass was
still elevated compared with pre-reinfusion values.100 Based on the
results of a retrospective longitudinal blinded study, the same group
of investigators has reported that the use of an adaptive model
incorporating hematologic measures ([Hb], reticulocyte percent-
age, OFF-score) allows for detection of autologous blood transfu-
sion.101 In a comparative study of 3 blood passport approaches and
4 blood markers, Mørkeberg et al102 retransfused 29 subjects with
either 1 or 3 units of autologous blood. Hbmr (derived from the
formula [4.51 � ln (Hbmass) � � reticulocyte percentage]; cur-
rently not part of antidoping testing) demonstrated superior sensitiv-
ity in detecting blood transfusion.102 The same authors have
reported that the determination of the ratio between the mass of Hb
in the mature erythrocyte population and in the reticulocyte
fraction (RBCHb/RetHb ratio) is the best indicator of autologous
blood doping.103

RBC parameters associated with ESA doping

There are no major differences in basal [Hb], RBC count, Hct, and
MCHC values in elite athletes compared with healthy nonath-
letes.104 When blood samples obtained from 413 female and
739 male elite athletes from 12 countries were screened for
hematologic abnormalities, 1% of the females and 1.4% of the
males had hemoglobinopathies.105 Furthermore, 2.4% of the fe-
males and 0.7% of the males were iron-deficient with or without
anemia.105 Accelerated erythropoiesis resulting from the use of
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rhEpo may lead to the production of iron-deficient reticulocytes
(reduced MCHr), even when iron stores are normal.106 An increase
in hypochromic red cells has been seen on rhEpo therapy despite
the use of parenteral or oral iron.107 Reticulocyte number was not
affected by intravenous iron administration in healthy humans
subjected to a bolus injection of rhEpo (300 U/kg intravenously).19

However, MCHr and Ret [Hb] were increased in the intravenous
iron/rhEpo group compared with the group receiving rhEpo alone.
Thus, intravenous iron increases the hemopoietic response to rhEpo
in normal subjects, and this therapy is probably practiced by
cheating athletes. Note that parenteral iron alone did not produce a
change in Hbmass, [Hb], or specific RBC parameters in young
female athletes, despite their low baseline [Hb] (128 g/L) and
serum ferritin (35 �g/L) levels.108

There is fair stability of reticulocyte number in top-level
athletes,109 although decreases were observed in some athletes
during competition periods.110 High and middle fluorescence
(immature) Ret with a high RNA content (IRF) are relatively
frequent in athletes because of continuous bone marrow stimula-
tion linked to hemolysis, which is typical of sports activities.110

Bolus rhEpo injections (150 U or 300 U/kg body weight) further
increase the IRF.111 The increase in immature Ret starts 36 hours
after a single dose of rhEpo, reaching a peak after 3-4 days and
normalizing within 7 days.111 A pharmacodynamic model calcula-
tion has revealed that rhEpo transiently increases the life span of
circulating Ret from the baseline value of 1.7 days to 3.4 days.112

Thus, the treatment with rhEpo appears to increase Ret values
2-fold: by increased Ret release from the bone marrow and by
prolonged maturation time of circulating Ret.

Audran et al12 studied the time course of reticulocyte number
after repeated subcutaneous injections of rhEpo (50 U/kg body
weight every day) in athletes. Reticulocyte numbers were increased
from day 10 to 24 and remained elevated for 7 days after cessation
of rhEpo therapy. Reticulocyte numbers were significantly lower
than the baseline values 14 and 25 days after the last rhEpo
injection. During treatment up to 14 days after the last rhEpo
injection, sTfR and the sTfR/serum protein ratio were elevated
above baseline.12 Russell et al113 administered first high (50 U/kg
body weight 3 times a week for 3 weeks) and then low doses of
rhEpo (20 U/kg 3 times a week for 5 weeks), with oral or parenteral
iron supplementation. Reticulocyte percentage approximately
doubled by day 8 of the high-dose rhEpo treatment, but during the
low-dose phase was not different from baseline values or from
those of the placebo group, irrespective of the route of iron
administration. During the washout phase, reticulocyte percentage
fell to about half of the baseline values in the rhEpo-treated
subjects. In a similar study, after frequent weekly injections for
14 days and a concomitant doubling in reticulocyte percentage,
reticulocyte percentage returned to basal levels despite weekly
rhEpo injections and continuously high [Hb], suggesting a de-
creased sensitivity to prolonged rhEpo treatment.39 In accordance,
low-dose treatment with rhEpo (� 15 U/kg 3 times a week) did not
increase reticulocyte percentage above normal in subjects with
elevated [Hb] because of previous high doses of rhEpo.40 However,
there are no published data to exclude the possibility that low-dose
rhEpo may stimulate erythropoiesis sufficiently to mask the
decrease in reticulocyte percentage after RBC transfusion. Pari-
sotto et al90 subjected recreational athletes to rhEpo treatment
(50 U/kg 3 times a week for 4 weeks), either supplemented with
oral or intramuscular iron. The authors analyzed combinations of
Hct, Ret-Hct, serum Epo, sTfR, and percentage macrocytes by
logistic regression. The ON-model identified 94%-100% of rhEpo

group members during the final 2 weeks of the treatment phase.
One false positive was recorded from a possible 189. The OFF-model,
incorporating Ret-Hct, Epo, and Hct, identified 67%-72% of recent
uses with no false positive, when applied during the washout phase
and the period of 12-21 days after the last rhEpo injection.90

After a single administration of high-dose Epo (200 U/kg) Hb
and Hct did not increase despite an increase in reticulocyte
number.114 The subcutaneous administration of rhEpo (� 200 U/kg
per week) and oral iron (270 mg/day) for 30 days produced an
increase in Hct from 42.7 to 50.8, as well as in sTfR (from 3.1-
6.3 mg/L) and the ratio between sTfR and ferritin (from 3.2-
11.8).13 Casoni et al115 administered rhEpo subcutaneously at doses
of 30 U/kg body weight every other day for 30-45 days to
20 subjects practicing sports at an amateur level. rhEpo treatment
was accompanied by twice weekly administration of parenteral
iron (62 mg intravenously) and oral vitamins. The rhEpo-treated
subjects had higher values for RBC concentrations, [Hb], Hct,
MCV, reticulocyte percentage, macrocyte (volume � 120 fL), and
hypochromic macrocyte counts (MCH � 28 pg) compared with a
control population of 240 elite athletes from various sport disci-
plines. Breymann et al116 studied the effect of rhEpo in healthy
adults when given at different time intervals. Fifteen volunteers
were randomly selected to receive twice rhEpo (300 U/kg) and
parenteral iron (200 mg), either within a 24- or 72-hour interval.
Controls received parenteral iron only. When second rhEpo admin-
istration was after 72 hours, volunteers showed significantly higher
reticulocyte number in the high percentage of young RNA-rich Ret
(HFR ratio) over several days compared with those who received
rhEpo within a 24-hour interval. Both rhEpo-treated groups
showed an increase in MCVr. MCHCr was inversely correlated
with the increasing cell size with a nadir on day 8.116

However, apart from blood transfusion or ESA administration,
other (legal) stimuli can affect some of the parameters included in
the blood passport. One such example is altitude exposure.
Residence at altitude may be associated with an Epo-induced
increase in [Hb], and it is important to discriminate between the
effects of hypoxia and rhEpo misuse. Parisotto et al89 have reported
that reticulocyte number, Ret Hb mass (Ret-Hb), and the ratio
between RBC Hb mass (RBC-Hb) and Ret-Hb in nonathletic
subjects treated with rhEpo (1200 U/kg body weight over a 9- to
10-day period) are more significantly increased than the ones in
elite cyclists training at altitude (1780 and 2690 m). Ashenden et
al117 retrospectively evaluated hematologic data from 19 elite
cyclists who lived and trained 2690 m above sea level for
approximately 1 month, from 6 elite canyon runners who lived
2100 m above sea level but descended to compete at sea level and
from 39 well-trained subjects who resided at sea level but slept at a
simulated altitude of 2650 to 3000 m for 20 to 23 days of either
consecutive or intermitted nightly exposure. On ascend to a
terrestrial altitude, ON- and OFF-model scores increased immedi-
ately, mainly because of an increase in [Hb]. Scores had not
returned fully to baseline 3 weeks after return to sea level because
of the persistence of the raised [Hb] for the ON- and OFF-scores
and the fall in reticulocyte percentage for OFF-scores.117 Abellan et
al118 have reported that short-term hypoxia exposure (simulated
altitude of 4000-5500 m in a hypobaric chamber) for 3 hours/day, 5
days a week, for 5 weeks does not cause an increase in reticulocyte
percentage, [Hb], and sTfR. Interestingly, the hypoxia exposure
was associated with a shift of urinary Epo isoforms toward the
basic area on IEF. However, these shifts could not be confused with
the pattern on rhEpo misuse.118 It should be kept in mind, however,
that none of the aforementioned altitude studies was able to show
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increases in Hbmass or performance and that they did not comply
with the minimum recommendations of at least 400 hours of
altitude/hypoxia exposure needed to increase performance. Hence,
if the passport approach was to be tested in combination with an
altitude setting actually leading to performance gains, it seems very
likely that also many of the parameters included in the blood
passport will change substantially, which needs to be accounted for
during the evaluation process.

Discussion

The WAD Code states that a positive analytical result (ie, proof of
the presence of a prohibited substance) will always establish
liability for a doping offense.119 If a medication an athlete is
required to take to treat an illness or condition falls under the
“Prohibited List,” a “Therapeutic Use Exemption” may give the
athlete the authorization to take the needed medicine.1

Regarding blood doping, the traditional analyses based on the
detection of a substance in biologic fluids have major limitations.
Presently, only the misuse of allogeneic blood can be directly
detected, whereas retransfused autologous blood is not detectable.
There is a plethora of novel ESAs that are difficult to uncover. To
overcome the detection problems, the “Athletes Biologic Passport”
has been developed, which is based on the monitoring of selected
RBC parameters. Blood doping may be suspected, when these
parameters change in a nonphysiologic way. There are several
subjects for debate concerning the passport approach, including
(1) the measuring devices, (2) the processing of the analytical data
and the assessment of abnormal parameters to be the result of
doping, (3) the applicability in sports practice, and (4) the impact
on research.

There are methodologic problems because of the lack of clear
standardization and harmonization in antidoping testing. The
longitudinal evaluation of several hematologic variables needs high
comparability among various analytical technologies used by the
different accredited laboratories. Although some parameters (ie,
[Hb] and Hct) are comparable when measured on different
instrumentations, others (ie, percentage of macrocytes or Ret
parameters) are peculiar.26 This bears the risk of false-positive
results in athletes. On the other hand, when 400 blood samples
obtained from 24 subjects receiving rhEpo injections were screened
by the passport parameters, 42% of the subjects were not identified
as rhEpo doped.120

The statistical approach for evaluating the passport data are
focused on the biologic variation of hematologic values. Critical
experts in the analysis of laboratory data have argued that
antidoping tests are based on fraud statistics.121 Sottas et al122 have
stated that antidoping is a forensic science, not a medical one. In
forensics, the traditional assumptions of “absolute certainty” and
“discernible uniqueness” are abandoned in favor of an empirical
and probabilistic approach.

Current antidoping actions in competitive sports are advocated
for reasons of fair play and concern for the athlete’s health. Most of
the efforts concern elite athletes with much less impact on amateur
sports and the general public.123 Indeed, antidoping rules adopted
pursuant to the WAD Code normally apply only to international-
and national-caliber athletes. The monitoring of RBC parameters
according to the biologic passport is not performed in recreational-
level or masters competitors who are not current or potential
national-caliber competitors. Thus, the procedure is of little use in
leisure sports.

In the end, a comment should be passed with respect to plans of
the WADA to extend the passport by working on an endocrine
module that includes androgenic steroid profiling (“Endocrine
module”) as well as on other possible modules. To propose that an
adverse analytical finding is because of doping, knowledge of the
action of the suspected substance must first be gained in healthy
athletes. For example, the effects of androgenic steroids and
recombinant human growth hormone needed to be investigated in
healthy young subjects.124 In the authors’ mind, this is an ethical
dilemma.
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