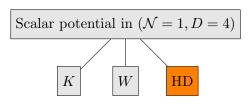
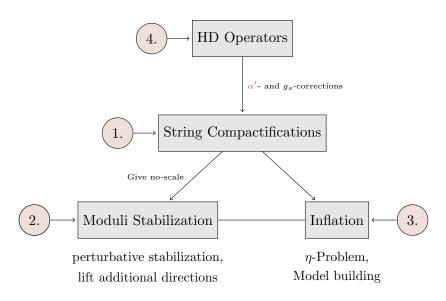
Higher-Derivative Supergravity, α' -Corrections and Phenomenological Applications

David Ciupke


DESY, Hamburg

Based on (DC, Louis, Westphal [1505.03092]), (Broy, DC, Pedro, Westphal [1509.00024]) and (DC [160x.xxxxx])

XXVIII Workshop Beyond the Standard Model


Introduction

In effective supergravity: $V_{M_p} < V_{HD}$

- ► Literature on HD: Case studies: [Cecotti et al '87, Buchbinder et al '94, Baumann et al '11, Khoury et al '11, Koehn et al '12, Farakos et al '12]
- ▶ General analysis of V_{HD} still missing! → Work in Progress

Relevance for String Theory + Cosmology

α' -corrections for String Compactifications

- ▶ IIB/CY Orientifold and flux $\rightarrow T_i$ flat directions
- ▶ Little is known about α' -, g_s -corrections
- ► Type IIB (closed string) $(\alpha')^3$ -corrections are **not fully known** (Best so far: Quintic action [Liu, Minasian '13])

$$S_{(\alpha')^3} \supset \int d^{10}x \left(\underbrace{R^4}_{\text{fully known!}} + \underbrace{R^3 G_3^2}_{\subset V_{\alpha'}} + \underbrace{R^2 G_3^4}_{??} + \dots\right)$$

► [Becker, Becker, Haack, Louis '01]:

$$R^4$$
 in 10D $\xrightarrow{\text{compactify}} \delta K(T_i) \longrightarrow V_{\alpha'}$

Higher-derivative Correction: Strategy

- ▶ At leading order: T_i shift-symmetric no-scale model ⇒ Only F^4 -corrections can appear by HD (more later)
- ▶ F^4 -terms induced by $R^2G_3^4$, but these are unknown (even the tensor structure)!
- ▶ Luckily: \exists 'clean' supergravity lift of F^4 :

$$\mathcal{O} \sim \mathcal{T} \mathcal{D} \Phi \mathcal{D} \Phi \bar{\mathcal{D}} \bar{\Phi} \bar{\mathcal{D}} \bar{\Phi} \supset \mathcal{T} |\partial \phi|^4 - \mathcal{T} |F|^4$$

Strategy: Use BBHL 'trick': Compute $|\partial T_i|^4$ from R^4 -terms and match to \mathcal{O} to determine $|F|^4$

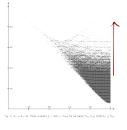
F^4 -Correction [DC, Louis, Westphal '15]

- ▶ Setup: Single deformation, neglect warping
- Result: $\mathcal{T} \sim \int c_2 \wedge J$
- \triangleright Extrapolate to arbitrary $h_{1,1}$ by using no-scale structure:

$$V_{F^4} = \underbrace{\lambda}_{?} |W_0|^4 \frac{\Pi_i t^i}{\mathcal{V}^4}$$

- ▶ Π_i defined via $\Pi_i = \int c_2 \wedge \hat{D}_i$, in Kähler-cone basis semi-positive
- ► Flux-compactifications so far: $(k_{ijk}, h_{1,1}, h_{1,2}, \text{fluxes})$ ⇒ Information of c_2 new!

Perturbative Moduli Stabilization [DC, Louis, Westphal '15]


Taking just BBHL and F^4 -term:

If $\lambda < 0$ then for any CY3 with $\chi > 0$ the potential has a non-susy AdS minimum, fixing all τ_i

$$\langle \tau_i \rangle \sim \Pi_i , \qquad \langle \mathcal{V} \rangle \sim |W_0|^3 (\lambda/\hat{\xi})^{3/2}$$

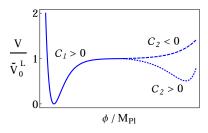
- ► Fully perturbative! Minimum depends only on topological information of CY
- ► $m_{3/2}/m_{KK}$ should be small \Rightarrow favors CY with $h_{1,1} \simeq h_{2,1} \gg 1$ and $|W_0|$ large

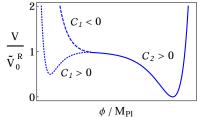
Need to know λ !

Inflation from $(\alpha')^3$ -corrections [Broy, DC, Pedro, Westphal '15]

Can we use the F^4 -term to generate a potential for a Kähler modulus-inflaton?

- ► Kreuzer-Skarke list: $h_{1,1} + h_{1,2} \ge 20$ ⇒ Easier to start with LVS, since $\chi < 0$
- Need mass hierarchy ⇒ use K3-fibered CY as in fibre inflation [Cicoli, Burgess, Quevedo '08]
- ▶ LVS leaves volume of K3-fibre τ_1 flat
- \triangleright F^4 generates a potential for inflation
- ▶ Minima can be generated by F^4 and g_s -corrections


Inflation from $(\alpha')^3$ -corrections [Broy, DC, Pedro, Westphal '15]


▶ After uplifting to Minkowski: Starobinsky-type potentials

$$V(\phi) = V_0 (1 - \beta e^{\nu \phi})^2$$

▶ Depending on signs of Π_1 and Π_2 : inflation to the left $\nu_L = -2/\sqrt{3}$ or to the right $\nu_R = 1/\sqrt{3}$

$$n_s \simeq 0.96 \dots 0.97$$
, $r \simeq 10^{-2} \dots 10^{-3}$

Higher-Derivative Operators in rigid $\mathcal{N}=1$ [Buchbinder, Kuzenko '94], [DC, to appear]

- ▶ To determine λ we need a general understanding of HD
- First understand rigid $\mathcal{N} = 1$: General V for chiral superfield Φ

Pseudo-Kähler potential $K(\Phi,\bar\Phi,D^2\Phi,\bar D^2\bar\Phi)$ and $W(\Phi)$

Higher-Derivative Supergravity [DC, to appear]

- ▶ $\mathcal{N} = 1, D = 4$ old minimal: $(R, G_{\alpha\dot{\alpha}}, W_{\alpha\beta\gamma}) \to \text{extra}$ auxiliaries \to A lot more complicated!
- ► Essentially all operators contribute to scalar potential
- List of relevant four-derivative operators determined: $28 \rightarrow (3+5)$ operators!
- Computation of component action tedious, but completed

Special situation for shift-symmetric no-scale models: Only F-term corrections at leading order, many cancellations!

Conclusions

- \blacktriangleright HD operators relevant for (string-) cosmology, in particular since they modify V
- New $(\alpha')^3$ -corrections for IIB/CY-Orientifold determined \rightarrow Model-independent stabilization of T_i !?
- Useful for inflationary model building

Future Directions:

- ► KK-reduce $(\alpha')^3 R^4$ -terms and solve system relating the ∂^4 -terms to general HD supergravity (5 operators)
- ▶ Methods can easily be extended to IIA or heterotic. Also localized sources are interesting (See talk of S. Bielleman)
- ▶ If $\lambda < 0 \rightarrow$ test the stabilization for explicit examples

Thanks for your attention!

Funding acknowledgement:

This work is supported by the ERC Consolidator Grant STRINGFLATION under the HORIZON 2020 grant agreement no. 647995.

